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Abstract—A rising number of preterm babies demands inno-
vative solutions to monitor them in the Neonatal Intensive Care
Unit (NICU) continuously. NICU monitors various kinds of vital
signs. Among them, there is a strong demand for an accurate
and sophisticated technology to monitor respiration rate (RR)
and detect critical events such as apnea. Existing solutions for
RR monitoring either rely on the indirect measurements from
thoracic impedance or other invasive techniques posing discom-
fort and risk of infections to babies. Also, multiple wire loops
lying around babies hinder the delivery of parental and clinical
care. Motivated by this need, we have designed an Internet-of-
Things (IoT) based smart textile chest belt called ’Baby-Guard”
to monitor RR and detect apnea. The Baby-Guard is a neonatal
wearable system consisting of a sensor belt, a wearable embedded
system, and an edge computing device. The sensor belt consists
of textile-based pressure sensors and an Inertial Measurement
Unit (IMU). The wearable system consists of a microcontroller
equipped with wireless connectivity and power management.
The edge computing device (ECD) connects with the wearable
system through an MQTT networking architecture. ECD hosts
signal processing and computing services to extract RR and
detect apnea. We conducted simulation experiments using a high-
fidelity, programmable NICU baby mannequin. We found an
average error of 0.89 BrPM in breathing rate and ~97 percent
accuracy in apnea detection. Computation and communication
latencies were found to be ~66 and 22 ms, respectively. The
Baby-Guard showed potential to be a wireless infant monitoring
system in the NICU settings.

Index Terms—Internet of Things, IoT, NICU, Neonatal Care,
Health Monitoring, Respiration Monitoring, Smart Textiles

I. INTRODUCTION

According to the World Health Organization (WHO),
annually ~15 million babies are born premature (i.e. before
37 completed weeks of gestation) across the globe [1].
One million preterm babies die before the age of 5 years
due to preterm birth and related complications [2]. Preterm
babies need continuous monitoring and special care in the
Neonatal Intensive Care Unit (NICU) that is a specialized
hospital environment that provides monitoring of vital signs
such as heart rate (HR), respiration rate (RR), blood oxygen
saturation (SpO;), and other medical parameters of premature
babies and babies born with significant health problems [3].
For the medical monitoring, NICUs use conventional sticky
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Fig. 1. A Conceptual Diagram of the Baby-Guard

electrodes that suffer from challenges such as skin injuries
due to adhesives, hassle with long wires, and false alarms
due to loosely connected electrodes or drying contacts.
Especially, RR monitoring is a big challenge because existing
solutions either rely on the indirect measurements of thoracic
impedance or other invasive techniques posing discomfort
and the risk of infections to babies [4].

Recent advancements in technologies such as e-textile and
Internet of Things can be employed as a solution for the
challenges of respiratory monitoring in NICU. To address
these challenges, a textile monitoring platform integrated with
an loT-based edge computing architecture called Baby-Guard
(providing sensing and computing services) is presented
in this paper. Fig. 1 shows a neonatal chest belt made of
comfortable smart textiles integrated with textile pressure
sensors that are specially designed to detect subtle movements
such as expansion and contraction of the chest in preterm
babies.

The overall architecture of the Baby-Guard system (shown
Fig. 2) consists of two subsystems: 1) a wearable embedded
system (designed to acquire and communicate the sensor
time-series data from the chest belt) and 2) an edge computing
device (designed to receive the time-series data, perform
signal processing services, and visualize RR parameters and
alarms onto a touchscreen monitor).
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This paper makes the following scientific contributions:

o Based on the literature survey, Baby-Guard is the first
kind of NICU technology that is built upon smart textiles
connected with IoT-based edge computing services;

o« We designed a textile pressure sensor pad using an
industrial embroidery machine. The embroidery design
provided more accuracy and reliability to the respiration
monitoring by increasing the sensitivity and repeatability
of the sensors;

o The location for the pressure sensors was carefully identi-
fied on the chest belt such that the subtle chest movements
can be captured continuously. This is critical for detecting
apnea episodes;

o A local MQTT networking framework was designed and
deployed on the edge computing device for real-time data
communication;

o Signal processing and computing services such as peak
detection, RR calculations, and the detection of apnea
episodes were designed and deployed on the edge com-
puting device to offer monitoring and alarm services in
NICUs;

« We investigated the performance of the Baby-Guard on
a high fidelity NICU training baby mannequin with
different breathing rates to evaluate the performance of
sensors, computing services, and overall IoT system.

II. BACKGROUND AND STATE-OF-ART
A. Neonatal Intensive Care Unit (NICU)

The NICU admits premature babies who are born be-
fore 37 weeks gestation age, mature babies born with birth
weight less than 5.5 pounds, and/or full term babies who
have serious medical conditions such as breathing difficulties,
heart problems, or birth defects [3]. Monitoring physiological
signals in NICU is cumbersome and involves handling wires
and sticky electrodes. One of the major challenges in NICU
medical monitoring is to accurately monitor respiration rate.
Particularly, there is no reliable method to detect respiratory
rate of preterm babies in NICU. The conventional airflow
sensors used for RR monitoring are not well tolerated by
preterm babies because this technology is invasive [5]. For
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this reason, the RR is often monitored indirectly from thoracic
impedance measurement. However, such indirect methods are
prone to artifact and thus, not clinically accurate [6]. Further,
studies have shown that the prevalence of neonatal skin injuries
is as high as 43 percent in the NICU [7], [8]. Measurement of
thoracic impedance requires sticky adhesive-based electrodes
to be placed on the skin of the preterm babies. These sticky
electrodes can be harmful to underdeveloped skin of the
preterm babies as they can cause skin breakdown, irritation,
and stripping [9]. Another disadvantage is that these electrodes
are significantly vulnerable to motion artifacts. Baby’s cry,
holding or moving the baby or other routines of NICU nurses
and families can cause artifacts and false alarms [10].

Further, NICU is often filled with long monitoring wires
around the babies that creates physical and psychological
barriers for nurses and parents to access babies [11], [12]. Such
barriers can significantly hinder timely delivery of parental and
clinical care. In addition, when the nurses and/or families hold
the baby, the movement of wires (that connect the electrodes
to the bedside monitors) degrade signal quality and cause lack
of accuracy in the output. The long wires makes it harder for
nurses to perform routine tasks on babies in NICUs, including
changing the diaper or clothes, feeding, and cleaning. For these
reasons, there is a need to develop a system that can wirelessly
monitor the physiological signals of babies and offer soft,
wire-free sensor interfaces that does not hinder the routine
operations in the NICU.

B. Internet of Things and Smart Textiles for NICU

Recent advancements in technology can be used to ad-
dress the challenges of medical monitoring in the NICU.
Particularly, IoT-based infrastructure can be deployed in the
NICU environment to reduce the number of wires lying
around the babies that can lead to improved parental and
clinical care delivery. E-textiles can be used in conjunction
with the IoT infrastructure to offer a soft and comfortable
way to develop medical wearables. The e-textile components
can be integrated within different medical wearables related
to surgery (e.g. bandages), hygiene (e.g. medical uniforms),
drug-release systems (e.g. smart bandages), biomonitoring



(e.g. ECG, EEG, EMG, thermal), and therapy/wellness (e.g.
electrical stimulation, physiotherapy) [13].

Researchers have also explored smart textile for monitoring
the new born babies. Hariyanti et al. designed a wearable fiber
optic respiration sensor using optical fiber and integrated it into
an elastic material [14]. The sensor was placed on the baby’s
diaper and the changes in the intensity of light received by the
photodiode was monitored to extract the respiration rate. The
system was tested on a ventilator machine and performanced
with an error of 0.25. Raj et. al developed a RR monitoring
system using a 3-axis accelerometer placed on baby’s body
[15]. The system was compared with direct observation and
had a correlation coefficient of 0.974 between measured and
observed values of RR.

Researchers have also explored IoT-based infrastructure for
monitoring the babies. For example, Jabbar et al. developed an
IoT-based baby cradle integrated with sound, temperature, hu-
midity sensors along with auto-swinging support, web camera
and musical toy [16]. Data from these sensors was monitored
and based on that actions were taken to swing the cradle
along with adjusting the cradle temperature and humidity.
Researchers have also explored IoT based infrastructure to
predict the status of the babies. Fahmi et al. developed an IoT-
based smart incubator system for NICU monitoring involving
a microphone based system [17]. They trained the algorithm
with forty pre-recorded baby voices which were successfully
classified into five categories: burping, hungry, sleepy, pain,
and uncomfortable to make the system listen to the baby. Re-
searchers have also tried to extend IoT-based services to cloud-
based data management and data processing. As an example,
Singh et al. developed a system which integrates a Beaglebone
and Intel Edison based IoT system with NICU biomedical
devices aimed towards cloud-based data management and data
analytics [18]. Their system included machine-data integration
(MDI), clinical interface for NICU and data analytics engine.
Also, Bastwadkar et al. designed a cloud-based big data Health
Analytics as a Service (HAaaS) framework to analyze the
NICU data in the cloud [19]. They aimed to ease the load of
data acquisition on low resource setting NICUs by decoupling
the data collection, data acquisition and data transmission com-
ponents from the software-as-a-service part. The transmitted
data was analyzed in Artemis cloud and the results were
sent back to the healthcare organization providing HAaaS.
Researchers have also used such cloud services designed
for patient monitoring to aid the clinical decision making.
Ahouandjinou et al. offered a hybrid, intelligent and ubiquitous
patient monitoring system called Automatic Detection of Risk
Situations and Alert (ADSA) to overcome false alarms and
lack of visualization [20]. Their system included several layers
to provide support services to healthcare providers aiding
clinical decision-making.

In general, most of the existing literature offering IoT-based
architectures for NICU monitoring is aimed to utilize machine
learning and artificial intelligence based methods to enhance
the neonatal monitoring capabilities. Those who used e-textile
for baby monitoring, did not integrate such systems with the

IoT infrastructure. Many other studies monitored baby voices,
temperature, moisture using IoT. However, none of them
focused on monitoring vital physiological parameters such as
respiration rate while taking advantage of IoT infrastructure.
Also, the existing literature added more physical elements
(sensors) to the NICU environment and did not focus on
reducing the wire complexity in the existing NICU setup.
Motivated by this challenges, in our research, we focused
on combining smart e-textiles and IoT technologies to offer
a novel approach for adhesive-free, wireless, and wearable
respiration monitoring technology which can be a promising
solution for physiology monitoring in clinical settings such as
NICU.

III. MATERIALS AND METHODS

The Baby-Guard consists of an e-textile pressure sensor pad
integrated in a chest belt, a wearable embedded system, and an
edge computing device housing signal processing algorithms.
The E-textile chest belt is designed to detect chest expansion
and contractions during the respiration cycle. The wearable
embedded system acquires data from the sensors mounted on
the the chest belt and transmits this data wirelessly to the
edge computing device that processes the data through a signal
processing services and visualizes the resulting parameters.

A. E-Textile Chest Belt for Respiration Monitoring

The e-textile chest belt consisted of a textile base material
and Velostat material as sensing element. The Velostat ma-
terial is a non-woven sheet of polymeric material composed
of polyolefins impregnated with carbon black to make it
electrically conductive with piezoresistive property [21]. The
Velostat material was sandwiched between two layers of
textiles. We chose soft-denim material as the textile base. The
Velostat material was integrated with the denim fabric using
an industrial embroidery machine (ZSK JGVA 0109, ZSK
Stickmaschinen GmbH). We used silver-plated conductive
threads to integrate Velostat material with base fabric. The
signal carrying conductive tracks were also created on the
denim fabric using the conductive threads. We used snap-
connectors to connect the wearable embedded system with the
textile-based sensors. We also integrated an IMU sensor (SEN-
13944, SparkFun Electronics) in the chest belt to monitor the
chest movement through IMU data as a secondary measure.
Also, the IMU data can be useful to identify and remove
motion artifacts from the pressure sensor data. However, in the
present work, we could not include IMU data in our analysis
due to time limitation.

B. Wearable Embedded System (WES)

The WES comprised a microcontroller unit with wire-
less communication capabilities, an analog-to-digital converter
(ADC), and a signal conditioning circuit (Fig. 3). In our
application, we chose an ESP32-based microcontroller (Spark-
fun Thing Plus, Sparkfun Electronics) to design the wearable
embedded system. The board came with in-built WiFi com-
munication capabilities for wireless data transmission. The
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pressure sensors were integrated with the WES using a 16-
bit ADC (ADS1115, Adafruit). Since piezoresistive pressure
sensors change their resistance as the pressure is applied,
we used a resistor divider circuit as an interface between
pressure sensors and the ADC to scale the analog signals.
We also interfaced the IMU sensor with WES through 1>C
communication protocol.

The ESP32 board is programmed using Visual Studio Code
- Platform IO software. The program allows us to sample
the IMU and pressure sensor data at 125 Hz. The maximum
respiration rate for the babies can be 60 breaths per minute
(BrPM), so a sufficient sampling frequency must be 120+
Hz. We chose 125 Hz as sampling frequency for respiration
monitoring. In the presented research, IMU signals were not
used. However, we plan to use IMU data to detect and remove
motion artifacts and enhance signal quality.

C. MQTT data communication

Message Queuing Telemetry Transport (MQTT) is a
subscribe-publish messaging protocol that is commonly used
in IoT applications. The lightweight nature and minimal mem-
ory usage enables MQTT clients to be utilized in resource-
constrained settings such as wearables [22]. Since the MQTT
protocol requires payload to be sent as an unicode character
array, the pressure sensor data and IMU data was converted
into a CSV formatted character array [23]. We chose Async-
MQTT client library due to its non-blocking MQTT publish
method which allows the ESP32-based WES to send sensor
payloads over WiFi at 125Hz [24]. The payloads were received
by the edge computing device which runs a Mosquitto MQTT
broker service [25]. As shown in Fig. 4, the Raspberry Pi
hosted the MQTT broker and collected data from MQTT client
which was running on the WES.

D. Edge Computing Device

The edge computing device (ECD) was a Raspberry Pi
based portable computing system running on an quad core
ARM processor. The ECD is equipped with built-in wireless
communication capabilities. Particularly, we used the MQTT
connection shown in Fig. 4 to link the ECD with the WES.
A client python script uses the Paho-MQTT library to receive
incoming payloads in the base topic to which WES device
publishes [26]. CSV payloads are decoded to UTF-8 and
appended to a python list object which is then stored as a
CSV file every two seconds. A portable 7 LCD screen (Fig.
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5) with SmartiPi Touch 2 Case was used as a tabletop monitor
to display the data graphs, breathing rates and critical events.
The signal processing computing services included filtering,
and feature extraction as discussed below.

o Filtering: The raw data acquired from the chest belt
includes high frequency noise. We used a moving average
filter to remove the noise from the signal. The moving
average filter was delay adjusted with window size of
15 samples for different breathing rate detection and 200
samples for critical event detection.

o Feature Extraction - Extraction of Instantaneous RR: The
breathing process generated peaks in the data as shown in
Fig. 7. The feature extraction included a peak detection
from the pressure data. We employed an adaptive peak
detection algorithm to detect these peaks in the pressure
data using windowing. Subsequently, we computed the
time difference between two successive peaks to compute
the instantaneous respiration rate.

o Detection of Apnea Episode: The apnea detection was
based on the instantaneous respiration rates. After the
instantenous RR was calculated, a threshold was set. The
RR signal which are below the threshold were detected
and labeled as apnea by the algorithm.

IV. EXPERIMENTAL SETUP AND PROCEDURE

Our aim was to design a respiration monitoring system
that can monitor the respiration of premature babies kept
in the NICU and detect critical episodes such as apnea in
these babies. To evaluate the performance of such a system,
we designed a physical simulation experiment setup using a
high fidelity programmable baby mannequin named Tory (Tory
S$2210, Gaumard Scientific Company Inc.) shown in Fig. 6 (a).

A. Experimental Setup

The baby mannequin Tory was borrowed from the
Simulation Program at the Women and Infants Hospital. Tory
is a life-like mannequin and is typically used in training NICU
nurses. Tory can be programmed to offer physical simulations



Real-Time
Signal Processing
Computing

Edge Device - Raspberry Pi 4

Feature
Extraction

Breathing
Rate

Critical
Events

Visualization

Fig. 5. Edge Computing Device

of chest/limb movements and apnea episodes. The chest
belt was placed on Tory as shown in Fig. 6 (b). Tory was
programmed using a software called UNI to simulate different
breathing rates (number of breaths per minute), breathing
types (normal and periodic breathing which includes random
changes in breathing rates) and duration (time duration for
simulation).

(a)

Fig. 6. Experimental Setup (a) Tory - the high-fidelity mannequin and b)
e-textile sensor placement on Tory.

B. Experiment Protocols

To evaluate the system, we developed a set of experimental
protocols as following:

1) Variations in breathing rates: To simulate slow, normal
and fast breathing, breathing rates from 20 BrPM to 60 BrPM
were applied to Tory incrementally. Particularly, we chose to
simulate 20, 35, 40, 45, 60 BrPM scenarios ranging from low
breathing rate to highest breathing rate often seen in newborns.

2) Critical event detection: Apnea is a critical event when
a baby stops breathing for some period of time, minimum of
20 seconds [27]. It is utmost essential to detect this event that
could lead to death or major medical condition to the baby. To
simulate the apnea episodes in our experiments, the breathing
rate was programmed to simulate O BrPM and applied to Tory
between 35, 40 and 45 BrPM breathing rates. Details of each
experiment protocols are indicated in Table 1.

TABLE I
EXPERIMENTAL PROTOCOLS
. Duration Total
Experiment BrPM (min) Duration (min)

20 5

20 to 35 1

35 15

Variations in 35 to 40 I

Breathing Rates 40 1> 59

40 to 45 1

45 15

45 to 60 1

60 5

35 1

3500 1

0 1

0 to 40 1

Apnea 40 1 9

40t0 0 1

0 1

0 to 45 1

45 1

V. RESULTS AND DISCUSSIONS

A. System Evaluation

One of our aims was to evaluate the feasibility of our system
to capture the respiration rate using the chest belt and the
edge computing system with satisfactory accuracy level. For
this, we deployed signal processing algorithms on the edge
computing device. This section describes the performance of
various signal processing algorithms.

1) Preprocessing of the Raw Signal: The changes in the
output of the pressure sensor was successfully captured in our
experiment. The raw signal coming from the pressure sensors
(shown in Fig. 7 (a)) was filtered using a moving average filter
to remove the unwanted noises. Fig. 7 (b) shows the filtered
signal. As can be seen from Fig. 7, the moving average filter
was able to remove the noise artifacts from the raw signal. The
Signal to Noise Ratio (SNR) was found to be 10.79 dB for raw
signal and 11.79 dB for the filtered signal. The moving average
filter was able to improve the SNR by 10 percent. Since a
higher SNR number means clearer signal, the preprocessing
ensured good quality signal for further processing.
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2) Respiration Change Detection: The ECD was enabled
to compute breathing rate from the pressure sensor data. We
used a peak detection algorithm (described in Section II1.D)
to capture the respiration peaks from the filtered data. The
outcome of the peak detection algorithm is shown in Fig. 8.
Based on the peaks found by the peak detection algorithm,the
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Fig. 8. The Outcome of Peak Detection Algorithm

ECD extracted the respiration rate by computing the inter peak
interval. According to our experimental protocol (discussed in
Section IV.B.1) five different RR were simulated using Tory.
We computed Mean Absolute Error (MAE, shown in Table II)
between the measured RR and the simulated RR. We could
find from MAE and Fig. 9 that the respiration rates measured
using the ECD were closely matching with the simulated RR
values.

In our analysis, we observed that higher breathing rates are
more susceptible to noise. Since Tory’s chest movements are

dependent on automated signals coming from software, the
height of the chest increases as the respiratory rate increases.
For this reason, the chest pushes the pressure sensors and
creates separate pressure change independent from actual
respiration. Also, we have noticed the software simulated
breathing rates were not exactly followed by the Tory’s hard-
ware. We found loss of breathing simulation events (on Tory’s
Hardware) in the normal breathing setting, which may lead to
additional noise in the data and errors in benchmarking.

Respiration Change
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Fig. 9. Comparison of RR applied to Tory and RR collected from sensors

TABLE II
ERROR MEASUREMENT IN DIFFERENT BREATHING RATE CONDITIONS

Breathing Rate | Mean Absolute Error
20 0.32
35 0.88
40 0.95
45 1.43

3) Critical Event Detection - Apnea: Apnea can be defined
as cessation of breathing. We aimed to detect respiration
related clinical events such as apnea using the ECD. For this,
Tory was programmed to simulate apnea events. We employed
an apnea detection algorithm on the ECD (discussed in Section
III.D). This algorithm successfully detected apnea episodes.
Fig. 10 shows the comparison between the apnea detection
done by the ECD and the simulated apnea episodes. We
computed accuracy, sensitivity and specificity for the apnea
detection. The accuracy, sensitivity, and specificity values were
found to be 96.94, 96.53, and 100, respectively. Overall, we
could see a good agreement between the simulated apnea
episode and detected apnea episode. To increase the accuracy
of apnea detection algorithm and distinguish motion events
and apnea events, we are planning to perform experiments on
simulating the baby motion and apnea at the same time and
include IMU sensor data in the algorithm.

B. IoT Performance Evaluation

1) Communication Latency: Latency is one of the impor-
tant aspects related to IoT infrastructure. The performance
of the IoT infrastructure depends on the responsiveness of a
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system or network. Higher amounts of latency can lead to
delayed responsiveness and degrade the system performance.
Particularly, in mission critical applications such as NICU,
we need to measure and optimize the latency to identify
the critical events in the NICU and generate timely-alarms.
In our case, the communication latency refers to the time
delay between the time when data is sent from the WES
(ESP32 board) and the time when the data is received by
ECD (Raspberry Pi). To calculate this time difference, a digital
output pin on ESP32 board was assigned to become high
(provides 3.3V output) when the data was sent. Also, on
Raspberry Pi, a digital output pin was assigned to become high
when the data was received. Those two pins were connected
to two different channels of a digital oscilloscope. When those
pins turned high, the signals were captured by the oscilloscope
and the time difference between them was calculated as shown
in Fig. 11 The average communication latency was found to
be 22.33 milliseconds for the data to reach from the WES to
ECD. It is acceptable to monitor the normal breathing events
but needs to be improved to monitor time-critical events such
as apnea. In addition, it should be considered that when the
number of channels increases, the probability of more latency
also increases demanding better optimization techniques.

2) Computational Latency: In our present research, we aim
to detect critical events related to respiration rate, such as
apnea. The detection of such critical events depends on the
collection and processing of RR data. High amounts of pro-
cessing time can lead to delays in the detection of apnea and
may result in severe medical repercussions. Particularly in our
case, the computational latency refers to the time difference
between the time when the data processing begins and the
time when it ends. To calculate the computational delay, a
time stamp was saved at the beginning of data processing,
another time stamp was saved at the end of data processing and
the difference between those time stamps was calculated. The
computational delay was found 0.669 seconds for processing
2-seconds data (250 samples) and 67.9 seconds for processing
1-hour data (438600 samples). In addition to data length, the
complexity of algorithm also effects the computational latency.
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It can be seen that more complex algorithms will take more
time to compute.

3) Battery Performance: Since the Baby-Guard is a wire-
less system operated on a battery, it is essential to know how
long the battery can run the system on a single charge. We
wanted to make sure that the battery will last long enough
to give sufficient time to run the WES for at least one
shift of Nursing i.e. 8 hours. The Baby-Guard was powered
by a 3.7V 2500mAh LiPo battery shown in Fig. 3. The
battery consumption of the system was monitored during the
experiment and the battery status was sampled every 10 second
by the WES, then sent to the ECD. For 70 minutes continuous
data collection, the battery percentage dropped from 3.7 V to
3.43 V. Fig. 12 shows the battery voltage change. Ideally, the
battery lasts approximately 2 days on a single charge based
on the present hardware configuration.
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VI. CONCLUSIONS AND FUTURE WORK

In our present work, we have designed an IoT enabled
e-textile-based respiration monitoring platform called Baby-
Guard. We developed a wire-free sensor belt, a wearable em-
bedded system, and an edge computing device. We evaluated
the performance of the Baby-Guard system using a high-
fidelity baby mannequin called Tory. Our preliminary results
are promising and show the potential of the Baby-Guard



system to be used as a tool to monitor vital physiological
parameters such as respiration rate in the NICU.

The initial promising results also lead us to make more
experiments on the comparison between traditional sensing
systems for respiration monitoring. The system will be tested
with existing solutions to evaluate its accuracy and reliability.

One of the limitations of our current work is the integra-
tion of IMU sensor within the signal processing computing
services. We collected data from pressure sensors and IMU.
We have included an IMU as a secondary measure to detect
respiration rate and critical episodes such as apnea and IMU
data can also help to detect and remove motion artifacts
from pressure sensor data. In future, we plan to work on
the IMU data and define the noise profile from the data of
motion artifacts. This will improve our algorithm to provide
quality data and synchronise the critical event detection using
IMU and pressure sensor data to improve the accuracy of the
system.

Also, to provide more reliable apnea detection, we will
upgrade our data processing with a sliding window detection
algorithm. This algorithm will create a window according to
the base signal and compare the data inside the window based
on the threshold. We are also planning to create a supervisor
algorithm that will monitor the outcome of the instantaneous
peak detection algorithm. According to the number of missing
peaks, the system will create different alarms. These alarms
will be incorporated in the GUI using an Apnea Detection Bar
that will be a colored display to offer alarm severity.

In the future, we are interested in conducting a thorough
fault tolerance analysis on hardware system, software and
firmware, networks, and power sources since NICU is a
mission-critical operation with a minimum margin for failures
and errors, especially when time-critical events like apnea need
to be handled.
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