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Abstract

This paper presents a methodology to study non-twist invariant circles and their bifur-
cations for area preserving maps, which is supported on the theoretical framework
developed in Gonzalez-Enriquez et al. (Mem. Amer. Math. Soc. 227:vi+115, 2014).
We recall that non-twist invariant circles are characterized not only by being invari-
ant, but also by having some specified normal behavior. The normal behavior may
endow them with extra stability properties (e.g., against external noise), and hence,
they appear as design goals in some applications, e.g., in plasma physics, astrodynam-
ics and oceanography. The methodology leads to efficient algorithms to compute and
continue, with respect to parameters, non-twist invariant circles. The algorithms are
quadratically convergent and, when implemented using FFT, have low storage require-

Communicated by Hans Munthe-Kaas.

A part of the research of A.G.-E. was carried out at the Departament de Matematiques i Informatica of
Universitat de Barcelona while she was a Research Fellow under the Beatriu de Pinés programme. A.H.
has been supported by MTM2015-67724-P (MINECO/FEDER, UE) and 2017 SGR 1374. R.L. has been
supported in part by NSF grant DMS-1800241. This project has also been partially funded by the
European Union’s Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie
Grant Agreement No. 734557, and by the National Science Foundation under Grant No. 1440140. The
latter founded the residence of A.H and R.L. at the Mathematical Sciences Research Institute in Berkeley,
California, during the Fall 2018 semester.

1 Alex Haro
alex@maia.ub.es

Alejandra Gonzdlez
m.alejandra.gonzalez @ protonmail.ch

Rafael de la Llave
rafael.delallave @ math.gatech.edu
Foundations of Learning, Zurich, Schwintenmos 4, 8126 Zumikon, Switzerland

Departament de Matematiques i Informatica, Universitat de Barcelona & BGSMath, Gran Via
585, 08007 Barcelona, Spain

School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, GA
30332-0160, USA

FoCT
H_ A
@Springer L0



792 Foundations of Computational Mathematics (2022) 22:791-847

ment and low operations count per step. Furthermore, the algorithms are backed up by
rigorous a posteriori theorems, proved and discussed in detail in Gonzalez-Enriquez et
al. (Mem. Amer. Math. Soc. 227:vi+115, 2014), which give sufficient conditions guar-
anteeing the existence of a true non-twist invariant circle, provided an approximate
invariant circle is known. Hence, one can compute confidently even very close to break-
down. With some extra effort, the calculations could be turned into computer-assisted
proofs, see Figueras et al. (Found. Comput. Math. 17:1123-1193, 2017) for examples
of the latter. The algorithms are also guaranteed to converge up to the breakdown of the
invariant circles, and then, they are suitable to compute regions of parameters where
the non-twist invariant circles exist. The calculations involved in the computation of
the boundary of these regions are very robust, and they do not require symmetries and
can run without continuous manual adjustments, largely improving methods based on
the computation of very long period periodic orbits to approximate invariant circles.
This paper contains a detailed description of our algorithms, the corresponding imple-
mentation and some numerical results, obtained by running the computer programs.
In particular, we include calculations for two-dimensional parameter regions where
non-twist invariant circles (with a prescribed frequency) exist. Indeed, we present
systematic results in systems that do not contain symmetry lines, which seem to be
unaccessible for previous methods. These numerical explorations lead to some open
questions, also included here.

Keywords Non-twist invariant circles - Meandering circles - Bifurcations - KAM
theory - Singularity theory - Fast Fourier transform

Mathematics Subject Classification 37J40 - 37J20 - 37M20 - 65T50

1 Introduction

The standard KAM theorem (see [18] and references there) shows that quasi-periodic
solutions (geometrically invariant tori) in Hamiltonian systems which satisfy some
non-degeneracy conditions are persistent under perturbations.

Models which violate the non-degeneracy conditions of standard KAM theo-
rem appear naturally in several applications, such as models of Rossby waves
in oceanography, celestial mechanics and plasma physics (see, e.g., [3,5,9,12,19—
26,33-36,39,48,48,55,57,61]). Although we are not aware of mathematically precise
formulations, it has been empirically found that non-twist tori are robust barriers for
stochastic transport [21,22,57].

In such cases, where the non-degeneracy conditions of standard KAM theory are
not satisfied, it is possible to establish the persistence by including extra parameters.
The inclusion of extra parameters is natural in several problems, such as the design
of accelerators or of confinement devices. In these problems, the designer can choose
(within certain limits) the system that needs to be considered. In these applications,
where stability is a main goal, one wants to modify the systems so that there are KAM
tori guaranteeing the long-term stability. In design problems, by adjusting parameters,
one aims to obtain not only the existence of KAM tori, but—if sufficient parameters
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are available—also extra properties that make the invariant tori effective barriers for
transport.

With the above motivations, in [37] we introduced a rigorous methodology to study
the persistence of non-twist tori, prescribing the qualitative properties of the degenera-
cies in the normal behavior. The main points of strength of the methodology include:

It is based on the theory of counterterms, also referred to as the method of param-

eters: One fixes the rotation and finds a modification (counterterm) of the system

so that the modified system has an invariant torus, with the prescribed rotation.

This technique was first introduced in [54] for close to integrable systems. See

also [28], which includes a review of Herman’s approach.

It uses symplectic geometry, so that the normal behavior of an invariant torus is

described by the jet of a function (the potential) rather than a Birkhoff normal

form.

The system is not assumed to be written as a close to integrable system.

— Itis formulated in an a posteriori format: Under the hypothesis of the existence of
an approximate solution of the invariance equation which satisfies certain sufficient
conditions, the existence of true solutions is proven in a constructive way. The
sufficient conditions guaranteeing the existence of true solutions are made explicit
in the form of conditions numbers (measuring the quality of the approximation). In
this way, the classical close-to-integrable hypothesis is replaced by the assumption
of the existence of an approximate solution of the invariance equation. Of course,
for close-to-integrable systems, the exact solution of the integrable system can
be taken as the approximate solution. Hence, we recover the customary quasi-
integrable results as particular cases of our approach. Moreover, the a-posteriori
format can also be used to validate the formal expansions obtained by matching
powers.

— As it is shown here, our theory leads to efficient and reliable algorithms for the
computation of non-twist tori and detect bifurcations of invariant tori.

— The method is numerically very robust.

— The theory guarantees that it can continue till the breakdown.

— Given the a posteriori format of the rigorous results, we are assured that the
computations are correct even close to breakdown.

— The method does not rely on existence of symmetries or indicator points.

— The method does not require any fine-tuning (as often happens in the methods
based on approximation by periodic orbits).

One can see the results in Sect. 4, in particular in Fig. 8

The goal of this paper is to turn the rigorous results in [37] into practical algorithms,
implement them and report some results and conjectures obtained by running the
programs. The presentation of the algorithms is mainly for two-dimensional maps,
that is, for computing invariant circles. The assumption of two-dimensional systems
appear frequently in practice, and it allows some simplifications that were not used
in the general results of [37], which were formulated for arbitrary dimension. Some
interesting features of this paper are:

— The algorithms we present are highly efficient:
EOE';W
@ Springer Lﬁjog



794 Foundations of Computational Mathematics (2022) 22:791-847

— They are based on Newton method and, hence, quadratically convergent. The
non-degeneracy condition required to perform one iterative step is just the
invertibility of a matrix, which is defined explicitly (see Algorithm 2).

— To compute d-dimensional tori, one deals only with d- dimensional functions
(in the present paper, d = 1). This can be contrasted with methods based on
normal forms, which rely on transformation theory that requires dealing with
functions depending on as many variables as the dimension of the phase space
(in the present paper, n = 2). It is well known that the computational effort
grows exponentially fast with the dimension of the computed objects.

— Low operation counts and storage requirements. The algorithms described here
involve sequences of steps consisting on rather simple operations with peri-
odic functions represented either in grid space (with N discretization points)
or in Fourier space (with N Fourier coefficients). Each step has cost O(N), in
an appropriate representation, or O (N log(N)), when transforming one rep-
resentation into another by using fast Fourier transform (FFT) algorithm. The
storage is O (N). This is a considerable improvement over the methods based
on a direct discretization of the invariance equations that give rise to large sys-
tems for the Fourier coefficients, which require O (N 3 operations and O (N 2)
storage.

— The algorithms are backed up by rigorous a posteriori theorems. This systematic
assessment of the reliability of the computations is particularly important when
studying invariant tori close to the breakdown. In these regimes, of course, the cal-
culations become delicate and it is found empirically that there are many spurious
solutions (i.e., solutions of the truncated equation which are not truncations of true
solutions). With some extra level of effort (which we have not undertaken here),
the a posteriori theorems allow to obtain computer-assisted proofs. It suffices
to obtain rigorous estimates on the error of invariance, and the—rather mild—
non-degeneracy assumptions. These can be obtained using interval arithmetic in
function space. See [29] for a recent implementation.

— Keeping certain parameters fixed, the continuation algorithms are guaranteed to
converge (in machines with unlimited resources) as close as desired to values of
parameters where the theoretical results (or the non-degeneracy conditions) fail to
hold. This gives a practical criterion to find the limits of validity of the existence
of non-twist invariant tori, which is based on the blow-up of Sobolev norms of
the parameterizations at breakdown (see also [10]). In today’s desktop machines
(which are not infinite) in reasonable problems, such as the ones discussed in this
paper, we estimate that one can get two or three decimal figures of the breakdown
values in calculations of one hour or less.

— The present method can be programmed once and for all: It does not require manual
adjustments.

This is an advantage over methods based on computing periodic orbits with large
period, which often require considerable hand-tweaking of the algorithm to suc-
cess to continue the right periodic orbits. An important example is the study of the
breakdown of invariant circles, in which Greene’s method [19,38,58,60] requires
searching for periodic orbits. In practice, this requires the system to have some sym-
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metries, indicator points, etc. [t has been observed that in systems with two harmon-
ics, the computation of periodic orbits near breakdown is rather delicate [27,49].
In contrast, the Fourier methodology presented here is of general purpose and
it is supported by rigorous results which apply, in principle, to regular regions of
phase/parameter space (the hypotheses of our theorems include analyticity proper-
ties, which can be relaxed to finite differentiability properties). In these regions, the
number of Fourier coefficients required by our methods to approximate an invari-
ant circle with a good level of accuracy is relatively small (usually from 128 to
1024), while approximating the circles by periodic orbits would require periods of
order 10° (for an accuracy 10~2). In critical regimes (i.e., close to breakdown), this
number increases abruptly: to obtain three or four digits of the breakdown param-
eter the required number of the Fourier coefficients easily increases to 10° or 10,
and several observables can be used to extrapolate the breakdown. In this paper,
we provide numerical evidence that in absence of symmetries and close to break-
down, the algorithms presented here produce rather accurate results. Our methods
are guaranteed to run till breakdown and, given the a posteriori results in [37], one
can be confident that the computations are correct even close to breakdown.

— Our method is based on computing a potential, in a parameter space, whose critical
points correspond to the invariant tori. The potential is defined and can be calculated
for any given symplectic map, regardless of the existence of invariant tori. More-
over, the critical points of the potential provide parameter values for which invariant
tori (with a prescribed frequency) are likely to appear. This might be useful in some
applications when the parameters are not subject to control, but they fluctuate (for
example, in oceanography, we can predict where the barriers are likely to form).

Besides describing the algorithms, we also present implementation details: used dis-
cretizations, chosen linear solvers (not all linear solvers are practical for the problems
considered here due to degeneracies in the spectrum), etc.

In a final layer, we present the results of running the implementation in some
problems that we believe would have been difficult by other methods:

— The bifurcation of meandering non-twist circles;

— Phenomena at breakdown;

— The computation of the breakdown of non-twist invariant circles in families with
several harmonics, where the periodic orbit theory seems complicated.

Aims of the Paper This paper requires working with different tools and standards:

— Rigorous results are presented, mainly adapted from [37], but also new results in

the area preserving case;

Numerical algorithms are presented;

— Details of implementation of the algorithms are provided;

Numerical results obtained by running the algorithms are described;

— Conjectures on the mathematical phenomena happening at breakdown obtained,
from the numerical results, are presented.

We hope that the different topics covered in the different sections are sufficiently
clear and that the reader appreciates having in a single paper the different tools which
can bear on a rich problem coming from applied sciences. We certainly hope that this

For Tl
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paper could inspire new further applications (e.g., the higher-dimensional case, more
applied problems and more detailed studies of the breakdown phenomena).
Organization of the Paper Section 2 tailors the geometric and analytic set up intro-
duced in [37] to the area preserving case. In particular, we adopt a few simplifying
assumptions: The phase space is assumed to be a two-dimensional cylinder, and the
symplectic form is assumed to be the standard one. These assumptions make the
theoretical results in [37] ready for the numerical implementation. We recall that a
rotational circle in a cylinder is a no homotopically trivial circle. Section 2 can also
serve as a guide to interpret the results of [37] in a concrete simplified case. More-
over, additional results are here shown to hold in the two-dimensional case. These
are included in Appendix B. Section 3 presents some of the algorithms that can be
derived from the methodology to compute invariant rotational circles. The rotation
number and the type of degeneracy of a rotational invariant circle within a family of
area preserving maps are assumed to be given and fixed. Section 4 reports numerical
results obtained with the implemented algorithms for the cases mentioned above (fold
bifurcation, meandering circles, etc.).

2 Methodology

This section describes our methodology to study degenerate invariant circles for area
preserving maps. As mentioned before, this is an adaptation to the two-dimensional
case of the methodology introduced in [37]. It turns out that the geometric properties
of area preserving maps lead to simplifications with respect to the case of arbitrary
dimension and arbitrary symplectic form. With the aim of implementing the algorithms
produced by the methodology and their application to concrete problems, explicit
formulas are included here, although details regarding the convergence are not given
in this paper. (The latter are presented in full detail in [37].)

To deal with degenerate rotational circles, some parameters (acting as translations)
are introduced. In this way, the existence of invariant rotational circles is reduced to
finding zeros of a function, which acts as a translation. It is worth mentioning that the
translation can be computed even when the invariant rotational circle does not exist.
It was proved in [37] that the translation is the negative gradient of another function,
which we called potential, so existence of invariant tori is reduced to finding critical
points of the potential. See Appendix B for the result tailored to the setting of this
paper.

In the present paper, invariant rotational circles are found by finding zeros of the
translation rather than finding critical points of the potential because in the planar case
both problems are equivalent (the functions are univariate) and, from the numerical
point of view, the former is less expensive and allows greater accuracy than the latter.

The functional equations for the translated circles are formulated in Sect. 2.1. The
corresponding linearized equation is studied in Sect. 2.2. For completeness, in Sect. 2.3
we state a result which gives sufficient conditions for the existence of translated cir-
cles and hence the convergence of the quasi-Newton method described in Sect. 2.2.
Invariant rotational circles are obtained and classified by finding and classifying the
zeros of the translations, as discussed in Sect. 2.4.

Elol:;ﬂ
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2.1 Classification of Invariant Rotational Circles

Let T x R denote the two-dimensional cylinder, with coordinates z = (x, y), endowed
with the canonical symplectic form:

0-1
20 = (1 0 > .
Given z € T x R, let z¥ = x and z¥ = y denote the projections over the x and y
components, respectively.

Let® : R x T xR — T x R denote the Hamiltonian action on T x R given by
the horizontal translations:

X=®"(\;x,y)=x+A modl, n
y=®'Mix,y) =y.
Notice that @ is the flow generated by the Hamiltonian vector field with Hamiltonian
M(x,y) = y. Hence, M is the momentum map of @.
Let F : Tx R — T x R be an exact symplectomorphism z = F(z) which is
homotopic to the identity and has the following form:

X=F(x,y)=x+ f(x,y) mod,
y=F'(x,y) = gy,

where f, g : TxR — Rare 1-periodic in x. The exactness condition on F guarantees
the existence of a function S : T x R — R, known as the primitive function of F,
such that:

as 9 9S 9
Pyl glx,y) (1 + %(x, y)> -, oy = g(x, y)%(x, »).

In particular, F is a zero net flux area preserving map. To avoid a large amount of
notation, in referring to a symplectic map F, no notational distinction is made between
the map and its lift (i.e., F is often assumed to be defined on R x R).

We say that a circle .2 C T x R is a rotational circle if it is homotopic to the
zero section, i.e., £ is parameterized by an embedding K : T — T x R defined as

follows:
_ (KO _ (6 +x©)
K= (K~"<9>> = ( »() )

where x, y are l-periodic in 0. Let (-) denote the average of a periodic function,

given a rotational circle .%, parameterized by K, the averages (x) and (y) are called,
respectively, the phase and the momentum of 2.

For Tl
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A rotational circle J# is F-invariant, with rotation number w € R, if for a param-
eterization K of ., the following equation holds:

F (K@) — K@ +w)=0.

Notice thatif %" is F-invariant with rotation number w, then, for any parameterization
K and any ¢ € R, K,(0) = K (0 + ¢) is also a parameterization of the same invariant
circle J#. The phase of K, is (x,) = ¢ + (x). Hence, by choosing ¢ = —(x), it
is always possible to obtain a parameterization with phase equal to zero. Hereafter,
it is assumed that the parameterization of the circles has phase equal to zero. This
normalization eliminates the ambiguity in the choice of the origin of coordinates on
the circles, and it makes the translated circles locally unique under mild non-degenerate
condition, as it is shown in [37].

Let 7 C R be an open interval, a family of F-translated rotational circles with
frequency w and labeled by the momentum p € % is a map

K=(K,7):Tx% — (T xR) x R,

of the form K (0, p) = (K (0, p), T(p)) with

w0n-(0P). = ()

and such that the following equations hold:

F(K@©,p)+t(p) —KO +w,p)=0,

2
(K@, p)—(©,p)7) =0.

Notice that if K and p satisfy equations (2), with p € %, then the exactness of F
implies o (p) = 0 for all p (an area preserving map with zero net flux cannot translate
a circle neither upward nor downward) and hence the following holds:

@(A(p); F(K©; p)) — KO +w;p)=0, PEU, 3)

with @ defined in (1), thus obtaining a family of (horizontally) translated rotational
circles.

Hence, if K and 7 = (A, 7) satisfy Eq. (2), with p € %, then A is referred to
as the (horizontal) translation function of the family {K (-, p)} e, with p € %.
Moreover, any zero of A corresponds to a F-invariant rotational circle with frequency
w: if A(pg) = 0, then K (-, pp) is the parameterization of an F-invariant rotational
circle .77}, In the latter case, we say that %), is non-degenerate if py is a simple zero
of the equation A(p) = 0, and we say that it is degenerate if pg is a multiple zero. The
multiplicity of the invariant rotational circle is the minimum integer k > 1 such that

A(po) =0, AD(pg) =0, ..., 2% D(pg) =0, 2®(pg) # 0. 4
FoCTM
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Remark 1 In [37], we proved that the translation function A(p) is the negative gradient
of a potential function V (p) (see Appendix B.1), which is explicitly given by

V(p) =—pi(p) = (S(K(0, p))). (&)

We emphasize that the construction works for families of translated Lagrangian tori for
symplectic maps in arbitrary dimension. An important consequence is that invariant
rotational tori correspond to critical points of the potential, and hence, a bifurcation
theory of KAM tori can be derived from singularity theory of critical points of func-
tions. In the two-dimensional case (p € R), rather than the potential V (p), we use
the translation function A(p) because it is less expensive from the numerical point of
view and gives greater accuracy.

2.2 A Quasi-Newton Step for Finding Translated Rotational Circles

In this section, we introduce a quasi-Newton method to find families of translated
rotational circles with a given frequency w. Within the setting of Sect. 2.1, this means
finding a solution (K, 7) of equations (2).

As it is standard in KAM theory, we assume o to be Diophantine: There exists
y > 0and v > 1 such that |gw — n| > y|q|7" forall n, g € Z with g # 0.

In what follows, we describe one step of a quasi-Newton method to solve Eq. (2).
Assuming that (K, t) is an approximate solution of (2), a new approximate solution
can be defined by (K,T) = (K, 1) + (AK, A7), if (AK, A1) solves the linearized
equation

DF(K(0)AK (0) + At — AK(0 + ) = —E(9),

(AK(0)) = —e. ©)

where

E@)=F(K@®)+1—-KO+w),

(7
e=—(KO®) —©O,p"),

are assumed to be “small”.
Our goal is to find (AK, At) solving the linear Eq. (6), up to an error which is
quadratic with respect to (E, e) (in suitable norms). If one defines

M@©) =DF(K(®)), L®)=DK(®),
V(©) = —E(0), v =—e,
U®) = AK (), u = Ar,

then the linearized Eq. (6) can be written as follows:

MOUOB)+u—-UO+w)=V(O),

(U@®)) =v. ®

FoCT
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Moreover, the following hold:
M@)L(O) =L+ w)+DE(@6), (L*(0)) =1, (LY(@®))=0.

To avoid technical details that are not be used in the definition of the approximate
solution of (6), we concentrate our efforts on finding a solution (U, u) of (8) under
the following assumptions: M : T — R?*? is symplectic, ® € R is Diophantine,
V : T — R? and v € R? are known, and there is L : T — R? such that L(0) # 0 for
all & and moreover, the following equations hold:

M@O)LEO)=L0O+w), (L*@®)=1 (L") =0. (C))

Remark2 From a dynamical point of view, (9) implies that L parameterizes an invari-
ant bundle for the bundle map (M, R,) : R2 x T — R2 x T which is defined by

5= M®O)w,
0=0+w.

From a functional analysis point of view, (9) implies that L parameterizes an eigen-
section of eigenvalue 1 for the transfer operator .# acting on sections V : T — R?
of the trivial bundle R? x T by

AMVO)=M©O —w)V(O — w).

We note that the Newton method involves solving equations involving the transfer
operators as above.

Remark 3 Invertibility of transfer operators is key on defining and implementing
a Newton method. It is important to notice that the spectral properties of transfer
operators are rather subtle. The spectrum presents certain peculiarities affecting the
feasibility of the corresponding numerical algorithms.

The spectral theory of transfer operators in spaces of C? functions was studied in
[52] for rather general dynamics, where it was shown that the spectrum is invariant
under rotations. The arguments in [52] do not generalize to the spectrum in spaces of
more differentiable functions. Nevertheless, for bundle maps under irrational rotations,
[42] shows that the spectrum acting on C” (r € N U {w}) is invariant under rotations.

The invariance of the spectrum of transfer operators over rotations has several
practical consequences (see, e.g., [1] for a discussion). In particular, the iterative
methods based on selecting leading eigenvalues (such as Arnoldi iteration methods
[4], based on constructing orthonormal basis of Krylov subspaces), do not work well
in this case. The only alternative, we aware of, to the geometric procedure presented
here is the use of the full matrix method [41], which consists in discretizing the linear
equation into a full matrix equation [45].

Remark 4 Notice that in the case that E = 0 in 7, the bundle map (M, R,,) is the lin-

earized dynamics around a translated rotational circle (K, t), and L gives the tangent
Elol:;ﬂ
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directions to the circle. This property is satisfied approximately when E # 0 but is
small.

In what follows, we give a detailed description of our method to solve equations (8),
under assumptions (9); explicit formulas are provided with the aim of making the
resulting algorithm ready for implementation. First, define the following matrix-valued
function:

P©) = (L©) N©)) . (10)
where
_7y 1
N®) = QLEOLEO) LE) ™ = ( Lﬁé?) EICEYAIOR

Notice that for each 6 € T, P(0) is symplectic: P(0) ' 20P(0) = £2. In particular,
P is invertible with inverse given by:

PO) ' = —20P©)" 2. (11)

Symplectness and invertibility of matrix P, defined by (10), are guaranteed by the fact
that it is 2 x 2 dimensional. In the general dimensional case, P is only approximately
symplectic and approximately invertible with approximate inverse given by (11) In
(x, y)-coordinates,

_(L0) N¥©) L (N0 =N )
P w"(b"(e) N>’(9)>’ Po) ‘(—Ly<9> L’C(e))‘

From (9) one obtains
M@)PO) = PO +w)A@©),
where

A@©) = ((1) T(19)> CTO) = N@© + ) 20MO)NO).

In particular, the linearized dynamics (M, R,) around a translated rotational circle is
reducible by the symplectic bundle map (P, Id) to a triangular bundle map (A, Ry)
with the identity in the diagonal.

The torsion, defined by T = (T), measures how much the normal bundle is twisted
by the action of (M, R,), in average. We say that the circle is twist if T # 0;
otherwise, we say that the circle is non-twist. It was proved in [37] that twist tori
are non-degenerate and non-twist are degenerate in the sense introduced in (4) (see
Appendix B.2 for details in the two-dimensional case).

EOE;”
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Define U (#) = P(6)&(0), then performing some computations, equations in (8)
are transformed into the following system of equations:

ABEWD) + PO+ ) 'u—£0 +w) =),

(P(©)EO)) = v, 12

where n(0) = P(0 + »)~1V (0).
Let .Z, denote the left operator acting on periodic functions £€* : T — R as
follows:

LE*O) =E7(0) — " (0 + ).

Then, using the following notation

_ (5O _ nL(G))
5(9)—<§N(9)>’ n(@—(nN(@) , (13)

enhancing tangent and normal components. Making explicit the tangent and normal
components of the corresponding vectors, (12) is written as follows:

ZoEE0) + T(0)EN (0) + NY (O + w)u* — N*(0 + w)u’ == 0), (14)
ZENO) — LY (0 + o)u* + L¥0 + o) =9V ©0), (15)

(L*(0)E"(0) + N*()EN (9)) = v*, (16)

(LY O)ER(0) + NY(O)EN 9)) = v, (17)

where the unknowns are ££, £V, u* and u”.
A fundamental result in KAM theory [56] is the following. If w satisfies Diophantine
conditions, then given a periodic function n* : T — R, the equation

ZETO) =n"O) — " @), £7©) =0, (18)

has an unique solution. We denote this unique solution by Z,,n*(0) = £*(0), we refer
to %, as the right operator. The paper [56] contains a detailed study of the spaces
in which Eq. (18) is solvable and the estimates satisfied by their solutions. Improved
estimates appear in [29,30].

Remark 5 The operators %, and Z,, introduced above are diagonal in Fourier space: If
£4(0) = Zé,fez”ike . fe) = Z nze2nik0 ’
kel kel
then formally one has:
LE50) = Z(l _ eZnika))%.];kCZnikO . R (0) = Z(l _ eZnikw)fln;f;CZnikG )
k0 k#0
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This is important from both theoretical and practical points of view. Convergence of
Fourier series %Z,,n* is possible thanks to Diophantine properties on w and smoothness
properties of n*.

Numerical implementation of the action of .Z,, and Z,, on (truncated) Fourier series
is straightforward. Indeed, if n* is a (truncated) Fourier series with N harmonics, then
computing &* requires O (N) storage size and O (N) number of operations.

Below we find explicit formulas for the solution £~, €V, 4* and u¥ of Eqs. 14—17
in terms of %, (see Algorithm 2).
From (15) and our hypothesis (L*(0)) = 1, (L¥(0)) = 0, we obtain the following
equalities:
' =N ) (19)
and

EN©O) = &) + R, L (0 + 0" — BpL* (0 + 0)u® + Zun™ (0), (20)

where u* and the average éév have to be determined. Let £V denote the known part of

£V (O):
EN©O) = —Z0L* (0 + 0 + Zon™ (0),
Define
7t ©) = ") — T 0" () + N* (0 + )’

then, substituting (20) in (14), one obtains

ZoELO0) + TOEY + (TO)ZLLY O + ©) + NY (O + 0)u* =7"©), @D
For any EOL € R, and éév and u” such that

(T(0))&) + (T 0)%uL” 0 + ») + N (0 + o))" = (7 (0)), (22)

the following defines a solution of Eq. (21):

§10) = & — AT ©)8) — (T (O)RuL® © + )
+NY (O + )it + Zoit" ©0) . (23)

Replacing (23) into (17) and using the following notation:
i = {T©)).
Tio = (T(0)%uL? (0 + ) + N> (0 + w))

To1 = (NY(0) — LY (0)%,T (0))
(NY ()R, L> (0 + w) — LY (0) Ry (T (0) R, LY (0 + @) + NY (0 + w))

=

T = )

o
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Equations (22) and (17) can be written as the following 2 x 2 linear system:

(& (At ©)) )
u* )\ — (LYO) %7 0) + NV (0)EN (9)) ) °

where

= (T“ @2)_ (24)
Tz T

It is clear that if the determinant of 7 is different from zero, then Sév and u”* can be
computed as follows:

N . (it (6))
<MOX> = <vy — (LY ()i (0) +Ny(9>§N<9>>-) =

Hence, from any SOL € R, solutions of Egs. 14, 15, 17 are defined by (19), (20)(23)
and (25). Equation 16 determines EOL € R (the average of &) as follows. Write

£L(0) = &F + €L (0), then Eq. (16) yields:

£ = v" — (L*OEL0) + N*(0)EN (0)).

Remark 6 We refer to matrix f", defined in (24), as the supertorsion of the circle K
with respect to the map F and the Hamiltonian action @ given by the horizontal
translations (see (1)). Note that the torsion T involves geometric properties only of
the circle and the map, whereas the supertorsion T also involves the whole family
of translated rotational circles (see (3)). We claim that Tisa symmetric matrix and
moreover the following equality holds:

Toy = (#,L> O)N? (0) — Z,N* (0)LY (0) + ZuL” (0 + )T (0)ZWL” (0 + w))

(this result does not appear in [37]). This follows from the fact that for any periodic
functions u and v, the following holds:

(Zou(© + 0)v(0)) = —(uO)Zov(0)).

Remark 7 Tt is worth mentioning that if in (8), M is in a reduced form (as it happens
in integrable systems):

M@©) = ((1) T(le)),

FoC'T
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then, the supertorsion f’, defined in (24), is non-degenerate no matter whether T is
non-degenerate or degenerate. Indeed, it is given by:

A T1
i~(T))
2.3 Existence of Translated Rotational Circles

Under suitable conditions, the iterative procedure based on the quasi-Newton method
sketched in Sect. 2.2 is quadratically convergent, leading to an algorithm to com-
pute translated rotational circles (i.e., solutions of (2)). This algorithm is discussed in
Sect. 3.2. The convergence result is informally stated here without proof as Theorem 1.
See Chapter 6 in [37] for a rigorous and more general statement, and a complete proof,
for existence of families of translated tori for exact symplectic maps (with respect to
a given exact symplectic form). It is also proved in [37] that translated tori (here
rotational circles) depend smoothly on the momentum.

Theorem 1 Let F : TxR — T xR be areal-analytic area preserving map, homotopic
to the identity and with zero net flux. Let w € R be a frequency satisfying Diophantine
conditions and let py € R be a momentum.

Let Ko : T — T x R be a real-analytic parameterization of a rotational circle,
and g = (Ao, Uo)T be a translation.
Assume that:

HI. The parameterization Ky is regular. That is, DK (0) "DK (0) is invertible;
H2. The supertorsion T of Ko (with respect to F and w), defined in (24), is a non-
degenerate 2 x 2 matrix.

Let (E, e) be the error of the approximately translated rotational circle (Ko, to) of
momentum pg:

E©) = F(Ko(0)) + 10 — Ko(® + o),
e=—(Ko®) —(©6,p)").

If (E, e) is sufficiently small (in analytic norms), then:

T1. there exists a locally unique real-analytic family of F-translated rotational circles
with frequency w, labeled with the momentum in a neighborhood % of po, that
is, a real-analytic map K = (K,7) : Tx % —- (TxR)x R2 of the form
K, p) = (K0, p), T(p)) such that

F(K©O,p)+t(p)— KO +w,p)=0,
(K@, p)—(©,p)") =0;

T2. the vertical translation is zero: o (p) == t¥(p) =0 forall p € U;
T3. the supertorsion of all translated tori in the family is non-degenerate.

FolCT
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Remark 8 Hypothesis H2 of Theorem 1, the fact that the supertorsion 7 in non-
degenerate, is much weaker than the usual twist condition in KAM theory, that in
this setting corresponds to the fact the torsion 7 is non-degenerate (see Remark 7). In
a sense, the condition of existence of families of invariant tori (with a fixed frequency)
in families of exact symplectomorphisms is weaker than the condition of existence
of an invariant torus (with that frequency) for a particular exact symplectomorphism.
In other words, given an exact symplectomorphism, by adding suitable parameters
on can obtain invariant tori by tunning those parameters. The extra parameters (the
translations) and the conditions (the averaged momentum of the tori) are geometrically
related through the momentum map, as given in thesis T.1 of Theorem 1.

A quantitative version of Theorem 1 is suitable to perform rigorous proofs of the
existence of (translated) rotational circles because the smallness condition on the error
(E, e) was made explicit in [37]. The paper [29] contains a methodology to perform
computer-assisted proofs in the context of KAM theory. We hope that it can be possible
to extend the techniques in [29] to the problems discussed in this paper.

2.4 A Methodology to Study Bifurcations of Invariant Rotational Circles

This section describes the main ingredients of our methodology to study smooth bifur-
cations of invariant rotational circles.

Theorem 1 and the procedure described in Sect. 2.2 can be adapted to families of
area-preserving maps. To study bifurcations of rotational circles for area-preserving
maps, we assume that the family of area-preserving maps depends on parameters
and ¢. Parameters & = (uo, ..., k—1) are used to unfold a zero, of multiplicity k,
of the translation function, while ¢ is assumed to be a perturbation parameter which
preserve the multiplicity k of the zero. More concretely, if the symplectomorphism
F depends smoothly on parameters u, €, then the families of F-translated rotational
circles, with fixed rotation w, and the translation A = A(p; u, €) depend also smoothly
on [, . Hence, the study of bifurcations of invariant circles (with fixed frequency w),
which in principle is an infinite-dimensional problem, can be reduced to analyze the
bifurcations of the zeros of A(p; i, €), which is a finite-dimensional problem.

The procedure of computing and studying the bifurcations of rotational circles
consists of three following main stages:

Stage 1 For given parameters [, &, fix a value p for the average momentum. Apply a
quasi-Newton method (which is an infinite dimensional problem) to obtain:

1. aparameterization of the translate rotational circle with momentum equal to p
(as well as other normalizations in the phase);

2. the value of the horizontal translation A, which make the momentum of the
translated rotational circle equal to p. Since the value of the momentum depends
on the parameters p and p and ., we will write A(p; i, €x).

Stage 2 For ¢, fixed, run a finite dimensional Newton method to search for a parameter
value w, for which the function A(p; s, &) has a zero at p,, with the

Elol:;ﬂ
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prescribed multiplicity k. That is p, is such that the following holds:

AP s 8) = AV (pas psy 0) = - = A4V (pys iy, £0) = 0,
2O (pas sy £5) # 0.

To do so, one applies perturbation theory to compute the k-jet of A(p; w, €x)
and its first-order derivatives (with respect to ).
Stage 3 Starting at e,., continue with respect to ¢, the solution (p(e); u(e)) of

AMp(e); (), &) = AV (p(e); u(e), &) = -+ = A& D(p(e); p(e), &) =0,
A (p(e); u(e), ) #0.

From the computational point of view, the most delicate step is Stage 1, because it
involves solving an infinite-dimensional problem. Moreover, it involves dealing with
small divisors and it has unbounded derivatives. Hence, issues such as the truncation
of Fourier series are rather delicate, see Sect. 3.

3 Algorithms

This section contains the explicit description of the algorithms that implement the
three-stage procedure introduced in Sect. 2.4.

The algorithm which computes the solution of the linearized Eq. (8) is formulated
in Section 3.1. This algorithm is then applied to perform one step of our quasi-Newton
method to compute translated rotational circles (Stage 1 in Sect. 2.4), see Sect. 3.2.

Section 3.3 contains the algorithms for computing and continuing invariant rota-
tional circles, which is done by finding simple zeros of the translation (u is fixed).
Although, it would be sufficient to apply a root-finding algorithm, such as the secant
method, Brent’s method [8], or Steffensen’s method [7], we present an algorithm based
on a Newton method. The case of zeros of multiplicity k > 1 is considered in Sect. 3.4.
In this case, one needs to obtain the k-jet of the translation function with respect to the
momentum and first-order derivatives with respect to parameters . In this paper, we
only consider zeros of finite multiplicity; hence, only a finite number of computations
is required, see Sect. 3.5. (For examples with zeros of infinite multiplicity, see [37]).

In Sect. 3.6, we discuss some implementation details.

3.1 Approximate Solution of the Linearized Equations

Our first algorithm solves the linearized Eq. (8), providing the basis for our quasi-
Newton method to solve the invariance equations.

Algorithm 2 (Approximate solution of the linearized equations)
Let w € R satisfy Diophantine conditions. Assume that M : T — R? is a matrix-
valued function and that L : T — R? satisfies the following conditions:

— L is a regular function: L(0) "L(9) is invertible;
EOE';W
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- (L*@)) =1, (LY(®)) =0.

Given a couple (V, v), where V : T — R2and v € R, we compute the couple
U, u) = Bp.L.0(V, V), (26)

where U : T — R? and u € R?, through the following sequence of operations:

1. N©) = Q0L©O)(L®)TLO)™;
2. P(0) = (L) N©®));
3. T®)=N@O +w) R20M@O)N©); .,
4. 7(0) = PO + w) 'V (0), with n®) = (ZN((Z)))
5.0 = (N ©O);
6. EN(©O) = =R L™ (0 + o) + Hun™ (0);
7. 75(©0) = nk(0) — T@)EN (0) + N* (0 + w)u’;
8 Tu =(T®));
9. Tiy = (T(O)ZL (6 + ©) + NY(0 + »));
10. Try = Tio;
11. Ty = (NY(0)Z0 LY (0 + ©) — LY (0)Zu(T ()0 L7 (0 + ®) + N7 (0 + »))),
2.7 = (M1
121 T
13. if detT = 0, break algorithm, otherwise define

<s$>_<f11@2>‘1< (")) ) )
u* ) \To Tm v — (LY (0)Zui™ (0) + NV (0)EN (0))

14. EN©0) = &) + %L (0 + w)u* +EN(0);

15. EL0) = —~ZoT0)EY — B0 ((T(0) %L’ (0 + ) + N (0 + 0)) )u* + Zuit: (0);

16. £F = v* — (L*(0)EL(©0) + N*(0)&N (0));

17. £L0) = &f + EL(0);

18. U(O) = P(0)E(H), with £(0) = (%(0))
' EN(©0)

The output (U, u) = %?M, L.o(V, v) of Algorithm 2 satisfies the following:

M@OUEO) +u—-U®O +w)—V(©O) =(M©O) - My(0)) U®),

(U® —v) =0, 7)
where
Mo(0) = PO + w)AO)P©O)™",
with
_ (1 T®)
ao=(370).
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In particular, if M = My is reducible to (A, R,), then (U, u) is the only solution of
the linearized system (8).

Remark 9 1f (K, v) is an approximate solution of (2),
M@®) =DF(K(0)), L(®)=DK(®),
and
V@)=—-E®®), v=-—e,

then (AK = U, At = u) is an approximate solution of the linearized Eq. (6) (which
is quadratic with respect to (E, e), in suitable norms).

Remark 10 Note that the number of steps in the algorithm is not very large (under 20).
Moreover, each of the steps can be implemented in a few lines in a high level language
or in a sophisticated numerical library. Therefore, a bare-bones implementation is not
too difficult.

Of course, a professional quality implementation that monitors the quality of the
results requires more considerations and more sophistication.

The same applies to other algorithms discussed later that depend on this one to
perform other related calculations.

3.2 Computation of Families of Translated Rotational Circles

Implementation of Stage 1 in Sect. 2.4 is performed by applying the algorithms intro-
duced here: Algorithm 4 computes a family of translated rotational circles with fixed
parameters, and then, Algorithm 5 performs the numeric continuation of the translated
rotational circle.

3.2.1 Newton Method for Translated Rotational Circles

To compute a translated rotational circle and its corresponding translation, with
prescribed momentum p and fixed Diophantine frequency w € R, we apply the
quasi-Newton method described in Sect. 2.2. In particular, we apply Algorithm 2,
see Remark 9.

Let Zum 1. denote the output of Algorithm 2 (see equality (26)). Let p € R be
fixed, assume that (K, t) is an approximate solution of:

F(K@)+t—K@O+w) =0,

(28)
(K©)—©,p)")=0.
Let (E, e) be the corresponding error:
EO®)=F(K@®)+71—-—K@0+ o),
e=(K©O)—©6,p"),
EOE';W
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which is assumed to be small (in appropriate norms). .
Define M(0) = DF(K()), L(0) = DK(0). If supertorsion T, defined in (24), is
non-degenerate, Algorithm (2) provides the correction AK and At given by:

(AK, A7) = Zu.L.o(~E, —e),
The new approximate solution is then defined as follows:
(K (), p) = (K(©) + AK(©), p + Ap).

In [37], it was proved (Theorem 2.7) that under suitable conditions the error, corre-
sponding to the new approximate solution, is quadratic with respectto (E, ¢) in analytic
norms (see Remark 9). This is an important ingredient in proving the convergence of
the quasi-Newton method described in Sect. 2.2.

Algorithm 3 implements one step of the Newton method describing the mathemat-
ical theory described in this section.

Algorithm 3 (Newton step for computing a translated rotational circle)

Let the momentum p be given. Assume that (K, ) is an approximate solution of (28)
with invertible supertorsion T. Then, a new approximate solution (K , T) is produced
as follows:

1. E@)=F(K®)+1t—K®O+w);

2. e=(K@®)—©.p)");

3. L(0) =DK®);

4. M(0) =DF (K (9));

5. (AK0), At) = Zm.L.o(—E©0), —e) (call Algorithm 2);
6. K@) =K(®) + AK(®);

7. T =1+ At.

In practice, the previous algorithm needs to be driven by an algorithm that involves
choices of thresholds for success and for unrecoverable failure.

Algorithm 4 (Newton method for computing a translated rotational circle)

Let the momentum p be given. Assume that (K, t) is an approximate solution of (28)
with invertible supertorsion T. Then, repeat iteratively the following procedure (up to
a given number of times):

1. E@)=F(K@®)+1— KO+ w),

2.e=(KO)—©O,p");

3. If (E, e) is too big (given a failure threshold), break and report failure;

4. If (E, e) is small enough (given a tolerance error), break and report success;

5. Otherwise, call Algorithm 3 (but, of course, steps (1) and (2) are already done).

Obviously, when Algorithm 4 reports success, we produce a (good) approximated
translated rotational circle (K, t) = Newton(K, t; F, p) of momentum p.

Notice that the time taken by Algorithm 3 is completely predictable, but Algorithm 4
may require more or less iterations depending on the thresholds chosen. Then, the
resources of storage are very easy to predict and they are linear in the number of
discretization modes.

FoE'ﬂ
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3.2.2 Continuation of the Family of Translated Rotational Circles

To continue the family of translated rotational circles (K (6, p), t(p)), with respect to
the parameter p (the momentum), we apply the quasi-Newton method introduced in
Sect. 2.2, starting with a suitable approximate solution of 28, for p close to p, defined
as follows.

Assume that the supertorsion T (p) of K (0, p) is non-degenerate (this is, in fact, the
condition to apply the implicit function theorem to continue the family of translated
rotational circles). Let

M(@©) =DF(K(®, p)), V() =0, v= <(1)> ,

and, since L(0, p) = DK (0, p) satisfy (9), we define

K T 5 T
(5@,;7), 5@)) = Few(0.0,07) . (29)

Then, for p = p + §p close to p, the approximate solution of 28 is defined by:
K at
K@©,p)+-—0,p)p, t(p)+—(p)p.
ap ap

Algorithm 5 (Predictor of continuation of the translated rotational circles)

Given a solution of (28), (K, 1), if the supertorsion f"(p) of K (0, p) is non-degenerate
at the momentum p, then given 8 p, an approximate solution (K , T) of (28) p = p+8p
is computed as follows:

1. (Kp,tp) = @M‘L_w(o, 0, D), Ap = rlf (call Algorithm 2);
2. K=K+K,p;
3. T=1+71,68p.

Notice that K, 7, and A, in Algorithm 5 are just the derivatives with respect to p
derived above, in (29).

3.3 Computation and Continuation of Invariant Rotational Circles

This section contains the algorithms to numerically compute and continue (with respect
to a perturbative parameter ¢) invariant rotational circles. Later, we will discuss com-
putation and continuation of invariant circles imposing a prescribed degeneracy.

Let F (-; €) be a parameter family of exact symplectomorphisms. Assume that, for e
in a suitable openinterval, {(K (0, p; &), T(p; 8))}17602/ is a family of F'(-; &)-translated
rotational circles with Diophantine frequency w:

F(K(@,p;e);e)+t(p;e)— KO +w,p;e)=0,
(KO, p;e)— (0, p)T)=0.

EOE';W
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Let A(p; €) = t*(p; €) denote the horizontal translation. It is clear that F-invariant
rotational circles correspond to parameter values for which the following equality
holds:

A(p;e)=0. (30)

The computation and continuation F-invariant rotational circles is done by continuing
solutions of Eq. (30).

3.3.1 Computation of Non-Degenerate Invariant Rotational Circles

Let ¢ € I be fixed, assume that p is an approximate solution of (30):

A(p;e) =ep.

A classical Newton method can be applied to solve (30), provided that e is sufficiently
smalland A, = A, (p; &) # 0, i.e., the F-invariant rotational circle is non-degenerate
(see Sect. 3.2.2). At each step, the correction is taken to be the solution of the corre-
sponding linearized equation:

Ap(p:e)Ap = —e, (3D

where
A
Ap(p; &) = a—(p; &)
P

is computed in (29). Then, provided that A, = 4, (p; &) # 0, Ap is given by:

Algorithm 6 (Newton method for non-degenerate invariant rotational circles)

Given a rotational circle K with momentum p and a translation t such that (K, t)
is approximately F (-; €)-invariant, for ¢ fixed. A new approximately F (-; ¢)-invariant
rotational circle K with momentum p and translation T is defined by the following
computations:

(K, 1) = Newton(K, t; F(-; ¢), p) (call Algorithm 4)
(Kp,Tp) = %M .L.w (0, (0, l)T), Ap = 1), (call Algorithm 2);
If Ap # O define p=p — ﬁ, otherwise break;

K©) = K(©)+ K,©0) (5~ p);

T=1+17(p—p).

SO

Remark 11 Another algorithm suitable for computing twist invariant rotational circles

for exact symplectic maps follows from the KAM theory without angle-action angles
Elo [y
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introduced in [15,18]. See, e.g., [40] for actual implementations, and [29] for rigorous
estimates. It is worth mentioning that Algorithm 6 can also be applied to non-exact
symplectic maps to compute vertically translated rotational circles.

Remark 12 We emphasize that Algorithm 6 can be used to refine numerical results
obtained by other methods, such as neighboring periodic orbits (using Fourier
interpolation), or from efficient quantitative methods to compute rotation numbers
[13,14,50,51].

3.3.2 Continuation of Non-Degenerate Invariant Rotational Circles

To continue invariant rotational circles, we look for solutions, (K, 7, p, €), of the
following equations:

F(K@);e)+1— K@ +w) =0,
(K@) —@©,p") =0, (32)
A=0,

where 1 = t*. Here, we consider ¢ as a natural parameter, and we aim to find a function
¢ — p(e) such that, for each ¢, the rotational circle parameterized by K(0; ¢) :=
K@, p(e); €), whose momentum is p(e), is an F(-; &)-invariant rotational circle of
Diophantine frequency w, so that the corresponding translation t(e) := t(p(¢e); €) is
zero. More explicitly:

F(K@©;¢);e)+1(e)— KO+ w;e) =0,
(K(©;¢)— (0, pe)") =0, (33)
Ale) =0,

where A(¢) = T°(¢).

Provided that a solution of 32, (K, 7, p,e) = (K(:;¢),t(e) = 0, p(e), ¢), is
known for ¢ fixed, below we describe an algorithm to compute a predictor to which
our quasi-Newton method (Algorithm 6) can be applied to solve (32) for € = ¢ + Je.

First, we compute the partial derivatives with respect to € of the involved functions
(K, , p) as follows. From

K .y = K0, per: 9L + K0, piey; o
Je ,8—8p ,p8,8d88+8p , p(e); e

and

dt aT dp ot

5(8) = 5(1)(8), S)E(S) + g(p(e), &),
we then obtain that
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dK  dt\ _ . T\ dp R aF -
(Ew,e), E) = .0 (0. 0. )ds @+ Bu. Lo (— oo (K(0:6):2). 0,0) )

where % is chosen so that % = 0. Then, a seed for the Newton method given by
Algorithm 6, for finding a F(-; ¢)-invariant rotational circle with frequency « and
momentum p(g) is the triplet (K, T, p) given by:

. dK . dt . dp
K@®)=K®)+ —(0;¢)de, T=1+ —(e)de, p=p+ —(e)d¢.
e de de

Algorithm 7 (Predictor of the natural continuation method)
Given a solution (K, 0, p, ) of (32) for a value ¢ and an given a parameter step §¢,
an approximate solution (K, T, p, £) of (32) for € = ¢ + 8¢ is computed as follows:

1. (Kp,tp) = C%A’M,L'w(o, o, DN, Ap = r;f (call Algorithm 2);
2. (Ke, @) = Bm Lo (—3E(K(©): €), (0,007), A = ¥ (call Algorithm 2);
A
3. ifAp #0, pe = _A_E’ otherwise break the algorithm;
P
4. K¢ = Ke + K)p pe;
5. K=K+ K, ¢
6. p=p+ pede.

We have again used the convention that subscripts p, ¢ indicate the variables with
respect to which the derivatives are made.

3.3.3 Pseudo-Arclength Continuation Method

The continuation method specified in the previous section fails to continue turning
points of the circle A(p; €) = 0. At the turning points, the invariant rotational circles
are degenerate (non-twist). If the circle is regular, one of the derivatives g—é, g—[}; is
different from zero. In this case, a pseudo-arclength continuation method can be used
to follow turning points (and easily detect degenerate invariant rotational circles).
Within the pseudo-arclength continuation method [46], the solution curve A(p; ¢) = 0
is considered to be parameterized by the arclength (notice that we consider (K, t) as
objects depending on (p, €)).

The pseudo-arclength continuation method involves the following steps:

1. The corrector step: given an approximate solution, represented by a point in the
parameter space that s close to the solution curve A(p, ¢) = 0, the corrector obtains
the point in the solution curve which is the closest to the given approximation. This
is done by applying Newton method to compute the minimum-norm solution of
the corresponding linearized equations (notice that there are more unknowns than
equations).

2. The predictor step: given a point (p, €) in the solution curve A(p;¢) = 0 and a
continuation step s, the predictor obtains a new point in the parameter space which

Elol:;ﬂ
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approximates a new point in the solution curve with arclength distance from (p, ¢)
equal to §s.

Given an approximate solution (p; €) of (30), with A(p; &) = eq, the corrector step
aims to obtain a correction (Ap; Ae) to (p; €) and a correction to the corresponding
translated rotational circle (K, t), (AK, At). The linearized equation for (Ap; Aeg)
is the following:

ApAp + AgAg = —ey,

where the following notation is used:
A (P 8) = E(pie), helpie) = = (pie)
je) =—(pre), 18) = —(p;e).
pP ap p e\p 9e p

The solution that minimizes (Ap)? 4 (Aeg)? (other weights in the Euclidean norm can
also be used) is the one that solves the following linear equation:

Ap Ae Ap\ _ [—eo
() ()= () o4
It is clear that to have a solution of 34, it is sufficient to assume Af, +22£0.
As already showed before, the partial derivatives of K and 7 are obtained as follows:

(Kp, Tp) = %100, 0, 1)),

~ oF
(Ke, Te) = ZM Lo (—gmex e), (0, 0)T> ,

and, in particular, A, = ‘L’lf and A, = 7. The corrections for (K, 7) are then computed
as follows:

(AK, At) = (Kp’ Tp)Ap + (K¢, o) Ag

The above procedure describes the corrector of the pseudo-arclength continuation
method, which is summarized in the following algorithm.

Algorithm 8 (Corrector of the pseudo-arclength continuation method)

At each step of the corrector, given an approximately invariant rotational circle K
of momentum p and translation t for F(-; ¢), we produce another approximately
invariant rotational circle K of momentum p and translation T for F(-; €), as follows:

1. (K,7) = Newton(K, t; F(; ¢), p) (call Algorithm 4);

2. (Kp,1p) = Zum 1.0, (0, I)T), Ap = ‘L’I’,‘ (call Algorithm 2);

3. (K¢, 1) = QM,L@ (—%(K(G), &), (0, O)T), Ae = T (call Algorithm 2);
4. lf)\.f + )»g = 0, break and reports failure;

)
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5. Ap=—=akp O3+ 201
6. As = —A A (Af, Y I
7. AK = K,Ap + K Ag;

8 At =1,Ap + T Ag;

9. K=K + AK;

10. T =1+ At;
11. p=p+ Ap;
12. £ = ¢+ As.

If the initial seed is sufficiently close to regular points of the solution curve A(p, €) =
0, the repeated application of the previous step would converge to a point (p, €) in
the curve, which corresponds to an invariant rotational circle for F(x, y, €). In the
predictor step, A(p, €) = 0 is considered to be a curve parameterized by the arclength,
s, so that one has a function s — (p(s), £(s)), such that

{A(p(sx £(s)) =0,
D (5))2 + (L (5))% = 1.

Hence, the functions K (0; s) = K (0, p(s); €(s)), T(s) := t(p(s); €(s)) satisfy
F(K@;s),e(s)+1(s)— KO +w;s)=0,

(K(0;5) — 0, ps)T) =0, 35)
A(s) =0,

where A(s) = 7*(s). Taking derivative of A(s) = 0 with respect to s and using the
arclength condition, we obtain the following equalities:

oA dp oA de = 0
5(17(8), 8(8))$(S) + 5(17(8), 8(8))$(S) =0,

P o) 4 (%) 21
— S — (S = B
ds ds

from which we have

dp A de A
K(S) = iﬁ, a(s) = :Fﬁ
/12 + 22 /2 + 12

(the choice of the sign depends on the orientation of the arclength parameterization of
the curve A(p, €) = 0). We recall that the partial derivatives of A(p; ¢) are obtained
from

(Kp, Tp) = %m0, 0, 1)),

A oF
(Ke, Te) = ZM. Lo <_¥(K(9; 5); €(s)), (0, 0)T> .
FoCT
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and A, = 75, A, = 7. Finally, we get

dK
(_(9 s), (S)) (Kp’ Tp) (S) + (K¢, Te) ( ).

Previous computations lead to the following predictor step.

Algorithm 9 (Predictor of the pseudo-arclength continuation method)
Given (K, 0, p, €), solution of (32) for a certain arclength parameter value s, and
given an arclength parameter step 8s, an approximate solution (K, T; p, €) of (32)

for the arclength parameter value s = s + §s, is computed as follows:

N~

1. (Kp,tp) = %A’M,L_w(o, 0,11, Ap = 1';;' (call Algorithm 2);
2. (Kg, 1) = %A’M,L,a, (—%(K(O); g), (0, O)T), Ae = 17 (call Algorithm 2);
3. if )Lz + kz = 0, break and report failure;

4 py =i (}\2 Az)—l/z.

5. 85 =—kp O +2D) %

6. K = K, ps —I— Koey;

7. Ts = Tpps + Tebs)

8 K =K+ K, 5s;

9. T =14 14658,

0. p=p+ psds;

1. € =¢+4 & ds.

3.4 Computation of Jets of the Translation Function

As explained before, in this paper the classification of an invariant rotational circle
is based on the multiplicity of the corresponding momentum as a zero of the trans-
lation function. Hence, the continuation and unfolding of an invariant rotating circle
is performed through the continuation and unfolding of the translation function with
respect to the momentum. This, in particular, requires the study of the derivatives of
the translation function with respect to the momentum and parameters, as it is shown
in this section.

Let F(-; ) be a parametric family of exact symplectomorphisms, with ¢ € R (the
case ¢ € RY follows the steps). Assume that for each ¢ in a neighborhood of parameter
space, there exists a family of translated rotational circles (K (0, p;¢), t(p;e) =
(A (p: ), 0)):

F(K@®,p;e);e)+t(p;e) — KO +w,p;e) =0,

(36)
(K@, p;e)— (@0, p")=0.

We aim to compute derivatives of A(p; ¢) up to order k with respect to p and up to
order 1 with respect to €. This is equivalent to compute the k-jets of A(p; €) w.r.t. p
FoE"ﬂ
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(Taylor expansions up to order k) and the corresponding derivatives with respect to &:

k
hk(p; €)(Ap) =) hi(p; £)(Ap)',
i=0

k
ke (pr €)(Ap) =) hie(p, &)(Ap)
i=0

where

I EYY 1 9itix
—(p;e), hie(p,e) = —(p;e)

ri(pye) = — = -———(p;&).
(P €)= o de Mopioe P

Formally, the corresponding jets and the first-order derivatives with respect to € of the
corresponding translated rotational circles are given by:

k
K<k (0, p; €)(Ap) = ) Ki(0, p; £)(Ap),
i=0

k
K<k o0, p; €)(Ap) = Y Ki (0, p,e)(Ap)',
i=0
where
i

ko ey LK e _0Ki _ 1otk
l( ,p,(‘?)— 1_'8_17’( s P 8)’ 1.6‘( ’psg)_ E( s P 8)_ l_'apla&‘

@, p;e).

By applying the methods introduced in the previous sections, the zero- and first-
order terms of A<, A<k ¢, K<k and K<, . can be computed (via Newton method). The
computation of higher-order terms and the corresponding derivatives with respect to
¢ is performed by recurrence as explained below.

Given i > 1, assume that the following have been already computed:

— The (i — -jet (K<;, 7<) = (K<i—1, T<i—1);
— The derivatives of the (i — 1)-jet with respect to ¢;

— The (i —1)-jets and derivatives with respect to ¢ of the corresponding compositions
with F:

aF
[F(K<l (0’ pa S)a 8)]<i’ [DZF(K<I (0’ pa S)a 8)]<i’ I:E(K<l(0a p; 8)3 8)}

<i

An iteration step, i.e., to compute (K <;, T<;), its derivatives with respect to &, the i-jets
of their compositions with F' and the corresponding derivatives with respect to ¢, is
obtained by defining

(Kis 1) = Rut o (= IF (K0, pre)i o), 0,80)7 ).
FolCT
o H
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Indeed, the i-th-order terms in (36) satisfy:

D.F(Ko(0, p; €); €)K; (0, p; €) + 7,(0, p; €) — Ki (0 + w, p; &)
=—[F(K (0, p;e);el;, 37)
(K0, p; &) — (0,8:0)T) =0,

where §;o = 1ifi = 1, and §;0 =0 if i > 1. Then,

[F(K<i (0, p;e).&)]i = [F(K<i—1(0, p: ); &), + D.F(Ko(0, p: &), &)Ki (0, p: €) ,
from which [F(K<; (0, p; &), €]<i, [D:F(K<; (0, p; €), &)] <

and [3E(K<; (0. p; o), ¢)] ., are computed.

By differentiating (36) with respect to &, and then taking terms of order i, we obtain

D F(Ko(0, p: €); £)Ki (0, pi &) + 11,60, p. &) — Ki o (0 + 0, pi &) =

- [DzF(Kgi(G, p;e);e)Ki (0, p; 8)]
' (38)

OF
- 8—(1(51'(9, p;€)e)|s
€ i
(Kie(0, p;e)) = (0,0,
In summary, we get

(Ki,a, Ti,s)

= AM.Lo (—[DZF(Kq O, p;e); &)K i (0, p; s)}

, (0, 0)T> )

i

oF
—| 7= (K<i(0, p; €); €)
ae ;
Remark 13 In the implementations of the previous formulae, jets of compositions such
as F(K(9, p;e);e),D,F(K(, p; ¢); €) or %(K(@, p; €); €) up to a given order can
be performed with automatic differentiation tools [40,47].

3.5 Computation and Continuation of Degenerate Invariant Rotational Circles

In this section, we consider the problem of computing degenerate invariant rota-
tional circles, of multiplicity greater than 1. Of course, for multiplicity & > 1,
the system at hand has to depend on a sufficient number of parameters, at least
k — 1 unfolding parameters, which are denoted by the multidimensional parameter
w = (1o, A1, - - -, k) € RF"1 We also consider the problem of continuing such a
degenerate invariant rotational circle with respect to a perturbative parameter ¢.
Let F(-; u, €) be a multi-parametric family of exact symplectomorphisms, with
parameters (u, €). Assume that a family of F-translated rotational circles has been
EOE';W
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computed for (u, €) in a given neighborhood. Let (K (0, p; u, €), T(p; i, €)) denote
such family, then the following holds:

F(K(O, p; i, €); 1, &) +1(p; u, &)
—KO@+w,p;ue)=0, (39

(KO, pip.e) = 0. p)") =0,
where A(p; 1, €) = ™ (p; u, ) and t¥(p; i, €) = 0. Such a family of F-translated
rotational circles can be computed by applying Algorithm 4 in Sect.3.2.1.

A degenerate invariant rotational circle of multiplicity k& corresponds to values of
the parameters for which the following equality holds in the (k — 1)-jet space:

A<k—1(p; ,€) =0, (40)

for the unknowns (p; i, ). Using the coefficients of the jet, to solve Eq. (40) it is
sufficient to solve the following system of equations:

r(pspm,e) =0,
r(pip,e) =0,
) . (41)

Ak—1(ps e, ) =0,
where

19"
Ai(py ) = 5= (pi i, €).
ildp

See Sect. 3.4 for a methodology to compute jets.

3.5.1 Computation of Degenerate Invariant Rotational Circles

Let ¢ be fixed, and assume that an approximate solution (p; ) of (41) is known, so
that

ro(p; pm,€) =eq,
A(p; w,e) =er,

Ae—1(p; by &) = ex—1

are small errors. In what follows, we describe one step of a quasi-Newton method to

find a solution of (41). To improve the approximate solution, we define a correction

(Ap; Ap), with Au = (Apo, - - ., Auk—2), which satisfies the following linearized
Elol:;ﬂ
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equation:
k=2
Z)"O,Mj (p’ M, S)AMJ = —e€o,
j=0
k=2
D ki (i e e) A = —ey,
j=0 (42)
k=2
khi(ps e €)AP + > Akt (3 12 £) AL = —ex1,
j=0
where we use the notation
My (P ) = ey = LR )
[ i 5 ,€) = N ,€) = o - ; s &),
iy (P 1 o P Ty P

and we neglect quadratically small terms, involving products A ;jAp = e;Ap with
Jj < k. Sect. 3.4 contains methodology for computing such derivatives.

The solubility of (42) depends on the fact that u is the unfolding parameter of the
singularity and that multiplicity is k (A # 0). To solve (42) we proceed as follows.
First, we solve the first k — 1 equations finding Ay = (Apy, ..., Aug—2). Then, we
find Ap from the last equation,

k=2
-1
Ap = o er1+ E Okkfl,u_,-A,Uvj
Jj=

FoCT
H_h
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Algorithm 10 (Newton method for invariant rotational circles of multiplicity k)

At each step of Newton method, given an approximately invariant rotational circle K
of momentum p and translation t, of multiplicity k for w in the family F(-; i, &) with
¢ fixed, we produce another approximately invariant rotational circle K of momentum
p and translation T, of multiplicity k for [i in the family F (-; i, €) as follows:

1. (K,t) = Newton(K, t; F(-; u, ), p) (call Algorithm 4);

2. Compute jet (K< (0, p; i, €), T<k(p; 1, €)), for the triple (p; u, €), with coeffi-
cients (Ko(0), 10), ... (Kx(0), ) (in particular, A<k (p; p, €) = tﬁk(p; n, €));

3. Compute jets (K<k,u,- 0, p; i, &), Tk, (p; m,¢e), for j =0,...,k —2, for the
triple (p; w, €), with coefficients (Ko,u,- ), TO.[.L/)’ - (Kk—l,uj ), Tk—l,uj) (in
particular; A< yu; (ps 1ty €) = T2 (P31, €));

4. Solve linear system of size k — 1:

k=2
Z A0, Apj = —Ao,
j=0

k=2

Z =2, A j = —Ak—2,
=0

5. If A = 0, break and report failure, otherwise compute

k—2
—1
Ap = o Ai—1 + Z)\kfl,ujAﬂj ;

j=0
6. p=p-+ Ap;
7. [,E =u + A,u,; k2
8. K(0)=Ko®) + Ki(0)Ap + >~ Ko.u,; (0) A j;
9. T=10+T114p + le;% T0,u; AW -

3.5.2 Continuation of Degenerate Invariant Rotational Circles

Continuation with respect to the natural parameter ¢ of the degenerate invariant circle,
requires the computation of derivatives with respect to ¢ of the all involved objects. To
obtain a first-order approximation of these objects for a value close to ¢, & = ¢ + e,
we first consider the problem from a formal point of view and assume that there is a
function ¢ — (p(e); n(e)) satisfying the following equalities:

F(K(, p(e); u(e), &) +t(p(e); u(e), &) — KO + w, p(e); u(e), &) =0,
(K@, p(e); (&), ) — (0, p(e)) ") =0,

Elol:;ﬂ
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and

ro(p(e); u(e),e) =0,
Ai(p(e); (), e) =0,

r—1(p(e); u(e),e) =0.

The (formal) derivatives of p(e) and w(e) with respect to ¢ are found by solving the
following equation:

k=2 dl/vj

D M0 () 1(e). £) = (6) = —hoe(p(e). 1(e). €),

j=0

k=2 du;

D huy (P(E): ue). €)= e) = =he(p(e). i(e). €),

i=0 (43)

ki (p(e): p(e). 8)*(3)4‘2)% Ly (P(€): pule), 6) (6) —hi—1.6(p(€), u(e), €) .

Jj=0

The coefficients in (43) are found by computing jets and their derivatives with respect

to u and . The procedure to solve Eq. (43) is similar to the procedure we used to
solve (42). Uniqueness of the solutions of 43 follows from the fact that u is assumed
to be the unfolding parameters of the degeneracy of multiplicity k.

After computing the derivatives, with respect to &, of the momentum p and
the unfolding parameter u, the derivatives with respect to ¢ of the corresponding
k-degenerate invariant rotational circle, K (0; ¢) := K (0, p(¢); u(e), €), and the trans-
lation T(0; ) := (0, p(e); u(e), &) (which should be zero) are computed as follows:

d A d
(—(9 €), (8)> = ZuM,1.00, 0, l)T)ﬁ(S)

dp
de

A oF
+ %M, Lo <_¥(K(9; &), p(e); u(e), ), (0, 0)T> .

+ %um.1.o(—DuF(K(0; €), p(e); u(e), ), (0,0) 1) ——(e)

Indeed, since

oK du
8—(9; &) = (9 p(&); n(e), 8) (8)+D K (9, p(e); u(e), e)——(e)
& de
8
+ 8_(0’ p(&); u(e), &)
£

dp du
= K1(0)— (&) + Ko, (0)——(&) + Ko,£(0)
de de
FoE'ﬂ
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and
—( ) = —(P(S) n(e), 8) (8)+D (p(e); u(e), 8) (8)+—(P(8) n(e), )
=1 (9)%(8) + TO,HE(S) + T0.e

where (K1, 11), (Ko, 4, T0,,) are assumed to be known (computed by Algorithm 10)
and (Ko ¢, 70.¢) is computed in a similar fashion.
We summarize the findings of this section in the following algorithm.

Algorithm 11 (Predictor of the continuation method for degenerate circles)

Given (K, 0; p, i), solution of (39) and (40) for a value €, and given a parameter
step 8¢, an approximate solution (K, 7; p, i) of (32) and (39) (40) for & = & + 8¢ is
computed as follows:

1. Compute jet (K<x (0, p; L, €), T<k(p; I, €)), for the triple (p; u, €), with coeffi-
cients (Ko(0), 70), - . . (Kk(0), &) (in particular, A<k (p; i, &) = T2, (p; i, €));

2. Compute jets (K<k,“j 0, p; u, &), Tk, (psm,e), for j =0,...,k—2, for the
triple (p; ., €), with coefficients (Ko, M,(é)) 70, Mj), o (kal,,” 9), kal,w) (in
particular, Ay, u,(P n, &) = ‘L’<k w (p; i, 8));

3. Compute jets (K <k (0, p; L, €), ‘L'<k€(p W, &), forthetriple (p; |, €), with coeffi-
cients (Ko.e(0),70.¢), - - (Kk—1,£(0), Tk—1.¢) (With k< e(p; 1, €) = T2 (D5 14, €));

4. Solve linear system of size k — 1:

k=2

Z)“O,Mjﬂj.é‘ = _}“0,85
=0

k=2

Z A2, lje = —Ak—2.e5
J=0

5. If A = 0, break and report failure, otherwise compute

N~

k—2
Pe = I A1 + Zkkq,u,-,uj,e ;
Jj=0
6. K. =Ko+ Ki1pe + Zl;;(z) Koy, 1t .ei
7T = To,e + T1Pe + ZI;;(Z) To.ujMjer
8 K =K+ K, 8¢;
9. T=1+71 8¢
0. p=p+ pede;
L fij =+ pe 8e for j=0,... k=2
Fol:'ﬂ
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3.6 Implementation of the Algorithms

On implementing the algorithms presented in this paper, it is convenient to represent
periodic functions in two different ways:

(a) grids (we keep the values over equispaced meshes in the space domain [0, 1]);
(b) truncated Fourier series (with a finite number of harmonics).

In this way, if N is the number of discretization points and the number of harmonics,
almost all operations can be performed with O (N) storage and O (N) operations in
the appropriate representation (see below). The only operations which require more
operations are those transforming one representation into the other, by means of fast
Fourier transform (FFT) algorithm, resulting in O (N log N) operations. Fortunately,
from the practical point of view, FFT is a very well-studied algorithm and, in most
machines, there are implementations and even specialized hardware, which make the
time to be small. So that the theoretical estimate O (N log N) in practice is much better.

The operations with cost O (N) done in Fourier spaces are: linear transformations,
computation of derivatives, composition with the rotation by w, and solving the small
divisors Eq. (18) (i.e., application of the right operator Z%,,).

The operations with cost O (N ) done in grid space are: algebraic operations between
(matrices of) periodic functions, composition of known functions (e.g., functions cor-
responding to the family of symplectic maps and its derivatives). Here we assume
the cost for evaluating known functions at a grid point is O(1). See, e.g., [40] for
implementation details of related algorithms.

The algorithms were coded using the C programming language, and the C library
FFTW [32]. This library was used to perform the backward and forward FFT trans-
formations between grid space and Fourier space.

In the implementations, two different accuracy controls were fixed: one (e.g., 10™7)
for the Newton methods (using £'-norms in Fourier spaces and sup-norms in grid
spaces) and other for the size of the tails of the truncated Fourier series, by making
the harmonics of order higher than N /2 smaller than (e.g., 10~'!). These and other
controls can be easily tuned. See, e.g., [40].

4 Results of Numerical Computations

In this section, we report some results obtained by running the implementations of the
algorithms detailed in Sect. 3 in some concrete examples. Some of them have been con-
sidered by using methods different to those presented here. Moreover, we include some
examples without symmetry lines, which seem to be inaccessible with methods based
on the calculation of periodic orbits. We consider the following phenomena: detection
of fold bifurcations (Sect. 4.1), birth of meandering rotational circles (Sect. 4.2), and
continuation of non-twist rotational circles up to breakdown (Sect. 4.3). Examples
in Sects. 4.1 and 4.2 focus on the detection of bifurcations in regular regions of
parameters, and aim to illustrate the geometrical ideas underlying our methodology.
In Sect. 4.3, we report the numerical results regarding the continuation, with respect to
parameters, of a non-twist invariant rotational circle in a regular region of the param-
Eo oy

@ Springer Lﬁjog



826 Foundations of Computational Mathematics (2022) 22:791-847

eters. Moreover, we provide a critical boundary of this regular region. This boundary
corresponds to values of the parameters for which the non-twist rotational curve breaks
down. This preliminary study of the breakdown reveals several interesting features.
The results presented in this section are numerical computations, for which we will
give error estimates that provide a certain degree of confidence. In order to validate
rigorously these numerical results, one could follow the proofs of the a posteriori results
presented in [37] to obtain explicit bounds for the errors ensuring the convergence of the
algorithms (and then the existence of invariant tori), and then adapt the methodology
introduced in [29] to perform computer assisted proofs of existence of KAM tori.

4.1 Detection of Fold Bifurcations

Fold bifurcations of invariant rotational circles occur when two invariant circles collide
and annihilate each other when tuning control parameters. This is similar to the fold
bifurcation of zeros of a function. To illustrate the fold bifurcation mechanism for
invariant rotational circles, we consider a one-parameter family of quadratic standard
maps F; : T x R — T x R, defined by:

a+x+3y,

=1
Il

(44)

=1
Il

y— £ sin(2mx),
2

where « is a fixed parameter and ¢ is the perturbation parameter. In this case, the
primitive function of F is

2_3 &
Sx,y;e) ==y +—

3 12 cos(2mx).
b4

We are interested in finding invariant rotational circles with a fixed frequency w.

In the following, we fix &« = 0.375 and look for invariant rotational circles with
frequency w = # The choice is selected so that w is a Diophantine number (it is a
quadratic irrational, closely related to the golden mean ratio) and, for ¢ = 0, the map
Fy is integrable and possesses two invariant rotational circles with frequency w. The
rotational circles of the p-parameterized family Ko ,(0) = (0, p) are horizontally

translated by
. — 2
Mp;0O)=w—a—p7,
the corresponding potential function is given by:

V(p; 0) = —pio(p) — (So o Ko, p)

13
=P(w—a)+§l’ .

Hence, the two invariant rotational circles of Fy are parameterized by Ky ,,, where

p+ = £ /o —a ~ £0.08346263 are the two zeros of Ag(p) or, equivalently, the
Elol:;ﬂ
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two critical points of the potential Vy. The corresponding torsion is Tp(p+) = 2p+ =~
+0.1669253: The rotational circles are twist (positive and negative, respectively). We
emphasize that the supertorsion is

7(p:0) = (T(’f 0 é) ,

and, hence, its determinant is different from zero.

We continued both twist invariant rotational circles, with respect to ¢, using the
algorithms 6 and 7. These circles are drawn in blue and red colors in the phase portraits
of the left column of Fig. 1, for different values of . The two rotational circles smoothly
collide at ¢ = ¢, ~ 1.361408, and the resulting invariant rotational circle is non-twist
(i.e., its torsion is zero), shown in magenta in Fig. 1.

As already mentioned, the supertorsion is non-degenerate. This allows us to
apply algorithms 4 and 5 to continue also a family of translated rotational circles,
(K0, p; &), (AM(p; €),0)T) (with frequency w), for ¢ > 0. Computing each transla-
tion function A(p; ¢) for p € [—0.1, 0.1] (with a step size 0.01), takes a few minutes.
It is worth mentioning that families of translated rotational circles can be computed
for values of ¢ greater than the collision value. The second and third columns of Fig. 1
display the translation function and the potential, respectively, for different values of
¢. The zeroes of the function A (or critical points of the potential V, obtained from (5))
correspond to momentum p for with the map F, has rotational invariant circles with
rotation number w and such a momentum. The double zero of A (degenerate critical
point of V') corresponds to the non-twist rotational invariant circle, as it is illustrated in
the third row of Fig. 1. Hence, the observed bifurcation of rotational invariant circles
corresponds to: (a) a saddle-node bifurcation of zeroes in a one-parameter family of
one-dimensional equations (A(p; €) = 0); (b) a fold bifurcation of critical points of a
one-parameter family of one-dimensional functions (V (p; ¢)).

4.2 Birth of Meandering Rotational Circles

In this section, we illustrate the methodology in an example exhibiting meandering
invariant rotational circles, which are circles that cannot be described as graphs of the
y component over the x component. These circles are not present in the non-perturbed
system, but appear for positive value of the perturbation parameter by means of a
mechanism known as reconnection scenario [44,60]. By the so-called second Birkhoff
theorem [6,43,53], meandering circles do not appear in twist maps.

The model we consider in this section is a one-parameter family of quadratic stan-
dard maps F; : T x R — T x R, defined by:

Y=x+0G-a)(F-b),
(45)

Il

&
y=y— —sin2rx),
2
EOE';W
@ Springer Lﬁjog



828 Foundations of Computational Mathematics (2022) 22:791-847

&= 0.000000
02
o1 0.01 0.0004
o
0.0002
i 0.005
o 5 > 0
o
a0s
-0.0002
o
~0.005
ars -0.0004
02 T = 5 =
o ™ % + = i -1 505 G .05 9.1 0T 5205 Q .05 0.1
X i P
&= 1.000000
02
ot 0.01 0.0004
o
0.0002
0d 0.005
o i > o
o
a0
~0.0002
o1
-0.005
ass -0.0004
02
o o 7 o o i Ry EXH g 005 0.1 01 .05 o 705 0.1
F 3 P P
e=1.361408
02
o1 0.01 0.0008
o1
0.0002
- 0.005
o fri > o
0
008
-0.0002
o1
-0.005
ais -0.0004
2 a
v s 7} o3 = 5 0T EXD q .05 0.1 0T .05 5 508 0.1
X P P
&= 1.500000
02
ots 0.01 0.0004
o1
0.0002
i 0.005
° F > o
o
a0
~0.0002
a1
~0.005
018 -0.0004
02 5
W e WE o0 &8 0fF BT we wa 1 0T ENH g .05 0.1 -0.T EET Q .05 0.1
X 2 P

Fig. 1 Numerical continuation of invariant rotational circles of frequency o = %T‘FS and detection of a
fold bifurcation, for the family (44): (left) dynamics and invariant rotational circles of frequency w (if any);
(center) translation function of the family of translated rotational circles with frequency w; (right) potential
of the family of translated rotational circles with frequency @

with a = —0.1, b = 0.2, and ¢ is the perturbation parameter. The primitive function
of F; is

2 5 1 5 €
S(x,y;e) = 3V 73 (a+ by~ + ype) cos(2mx).

_ A5-1

For ¢ = 0, there are two invariant rotational circles with frequency o = =5,
that are parameterized by Ko p, (6) = (0, p+), where p4 are the two solutions of the
equation (p —a)(p —b) = w. When the parameter ¢ increases, the invariant circles are
destroyed in the reconnection of hyperbolic fixed points, colliding with their invariant
manifolds at ¢ ~ 0.241992. We focus on what happens after this breakdown. We
emphasize that there are not rotational invariant circles with frequency w in an interval
of values of parameter €. For ¢ running from 0.42 to 0.45, using algorithms 4 and 5, we

Elo [y
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Fig.2 Detection of a fold bifurcation giving rise to meandering rotational circles of frequency w = %,
for the family (45): (left) dynamics and meandering circles of frequency o (if any); (center) translation
function of the family of translated rotational circles with frequency w; (right) potential of the family of
translated rotational circles with frequency @

have computed the corresponding families of translated rotational circles. Computing
each translation function A(p; €) for p € [0, 0.1] (with a step size 0.01), takes a few
minutes. The results are displayed in Fig. 2, where we mimic the information provided
in Fig. 1. Then, we detect the fold bifurcation at which meandering rotational invariant
circles are born. These circles are referred to as meanders because of their shape [59].
At the bifurcation value ¢, 2~ 0.430396, the meander is non-twist.

Once we have detected the non-twist invariant rotational circle, parameters a or b
can be tuned to perform a continuation of the non-twist invariant rotational circle. In
the following section, we provide some implementation details to do so.

Remark 14 The rotational invariant circle at the bifurcation value in Fig. 2 is a non-twist
meander circle. In [59], the author proves the existence of meanders for certain non-
twist maps. It should be noticed that in our nomenclature, the meanders in the paper
[59] are twist. Indeed, after performing appropriate changes of variables in certain
EIOET
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regions, the system considered in [59] is written as a near-integrable twist map. Then,
the existence of the meanders in [59] is guaranteed by the classical Moser’s twist
map theorem. Of course, the twist theorem can not be applied to prove existence of
non-twist invariant circles, but a parameter version can.

4.3 Continuation of Non-Twist Rotational Circles up to Breakdown

In this section, we consider the continuation of a non-twist invariant rotational circle
from the integrable case up to breakdown. This problem has been previously studied
[19,20,23] by using the Greene’s method in which, assuming reversibility and extra
symmetries properties, non-twist invariant rotational circles are continued by com-
puting stable periodic orbits with very large period. The breakdown of the non-twist
circle is investigated by studying the stability properties of the approximating peri-
odic orbits. In our experience with reversible systems, the presence of symmetries is
crucial for the computation of periodic orbits with large period (see also [58] for the
use of the so-called indicators points). Even with the use of the symmetry lines, it is
hard to systematize the continuation of periodic orbits with large period. Moreover, if
symmetries are not present, finding periodic orbits can be very cumbersome, even for
twist area preserving maps [49].

The present methodology can be used to compute breakdown of twist and non-
twist invariant circles, regardless of the existence of symmetries, and does not rely
on the computation of periodic orbits. It is rigorously shown [17] that the present
methods of continuation, given a computer with unlimited memory and running long
enough, could reach arbitrarily close to the breakdown. (In real computers, of course
it can get only very close as it is standard in all convergence proofs in numerical
analysis.) Furthermore, in [10] it is shown that this breakdown happens if and only if
one (Sobolev) H” norm of the parameterization of the invariant circle blows up. (In
such a case, all H* norms with s > r also blow up.) Note that, since we are computing
Fourier series, H" norms are easy to compute. The criterion of blow up of Sobolev
norms is a very practical tool to ascertain the breakup, and it is often much easier
to implement than the classic Greene’s method. The paper [10] contains a detailed
comparison of several methods to compute the breakdown.

In the present paper, the continuation of a non-twist rotational circle is done by
applying the algorithms introduced in Sect. 3.5 for degenerate rotational circles. In
particular, we seek degenerate zeros of the translation function. The continuation is
performed with respect to a perturbation parameter. To deal with the type of degeneracy,
we use an unfolding parameter, which has to be adjusted during the continuation
process to fix the order of degeneracy. In the case considered here, the multiplicity of
the target zeros is k = 2.

To illustrate our methodology, throughout this section, we consider, foreach ¢ € T,
the two parameter family of quadratic standard maps F, ;, ¢ : T xR — T xR, defined

FoC'T
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by:
I=o+p+x—y*,
e e (46)
y =y —cosQmrep)— sin(2rx) — sin(2mr¢)— cos(4mx) .
2 4
where w = “/52*1 is a fixed frequency, u is the unfolding parameter and ¢ the pertur-

bation parameter. The parameter ¢ breaks reversibility (notice that for ¢ = 0, the map
is reversible). For ¢ = 0, the rotational circle y = 0 is a non-twist invariant rotational
circle with frequency w for © = 0. Once we fix ¢, the goal is to continue the non-
twist rotational circle with respect to ¢, and the corresponding unfolding parameter
w = p(e), up to the breakdown.

Remark 15 Similar models have been considered in the literature. The one proposed
in the seminal works [19,20,23] is
X=X+a—a¥?,
(7)

=~
I

Y — b sin(2n X).

If ¢ = 0, then (46) is conjugated to the model in (47), with conjugacy given by
_ _ ; _ _ &
X=x,Y=y/Ja,witha=w+pandb = Gr e
We first illustrate the case ¢ = % The numerical results are summarized in Table 1,
where for each value of ¢, the corresponding computed values for the following quan-
tities, involved in the continuation, are reported:

— The unfolding parameter u;

— The number of Fourier nodes Nr;

— The determinant of the super-torsion, det T (which should be different from zero
to be able to solve approximately the linearized equations);

— The torsion T (which should be zero, since we are computing non-twist invariant
circles);

— The translation A (which should be zero since we are seeking invariant circles);

— The derivative of the translation, A’ (which should be zero, since we are computing
degenerate invariant circles);

— Error estimates: the invariance error E and the reducibility error Ereq -

As it can be noticed in third column of Table 1, the number of Fourier coefficients
for accurate approximations of the circles increases abruptly when approaching to
the breakdown. Consequently, the computational time also increases. In slightly out
of date desktop computers, ! the continuation up to & = 2.860 takes a few minutes,
the value ¢ = 2.870 takes around half an hour, the values ¢ = 2.871,2.872,2.873

! The computations have been performed with an iMac (27-inch, late 2013; 3.2 GHz quad-core Intel Core
i5 processor; 32 GB of 1600 MHz DDR3 memory), but we have also run the programs at a laptop computer
MacBook Air (13-inch, mid 2012; 1.8 GHz dual-core Intel Core i5; 8 GB of 1600 MHz DDR3L memory).
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Fig.3 Fourier spectrum of the two components of the parameterization of the non-twist invariant rotational
circle for the map (46), with ¢ = % and ¢ = 2.870

take one hour each (with one extra hour to adjust the length Ny and redo some
computations in the continuation from ¢ = 2.870 to ¢ = 2.871), and the last values
e = 2.874,2.875,2.876, 2.877 around two hours and a half each (with extra hour
again to adjust Nr).

Figure 3 shows the Fourier spectrum of the two components of the parameterization
of the non-twist invariant circle for ¢ = 2.870, giving a good numerical evidence of
the convergence of the Fourier series.

The dynamics of the map (46), with ¢ = é, is illustrated in Fig. 4, for values of the
parameters in the regular region (i.e., far from breakdown) and in Fig. 5 for values of
the parameters in the critical region (i.e., close to breakdown). These figures illustrate:

(left) the continuation of the non-twist rotational circle K (0) and the dynamics in
the two connected components into which K () separates the phase space;

(right) the tangentbundle, generated by DK (0) (inred), and the corresponding normal

invariant bundle, generated by N ©) = N@O) — DK(0)Z,T () (in blue),

both represented by the corresponding polar angle « as a function of the

coordinate. As mentioned in Sect. 2.2, the torsion 7 = (T} measures how

much, in average, the normal bundle, N (0),1is twisted by the action of (M, R,).

In the case under study, the torsion is zero because we are continuing non-twist

rotational curves, from which one has that the normal bundle N (0) is invariant.

For parameter values close to breakdown (Fig. 5), it is interesting to observe how
the chaotic sea grows as the twist invariant rotational circles are destroyed, but the
non-twist invariant rotational circle seems to be more robust. The strange behavior of
the invariant bundles announces the breakdown of the invariant circle.

Sobolev norms H” have been used to detect the breakdown of non-twist invariant
circles, monitoring their blow-up [10,11,16,31,40]. It has been shown rigorously that
the breakdown of analytic tori happens iff and only iff all Sobolev norms of index
r > r. blow up.

Furthermore, one of the predictions of the renormalization group picture is that all
Sobolev norms H”, r > r. blow-up following a power law asymptotic of the form:

B () ~ — 48)
O e —e)B
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Fig. 4 Continuation of the golden non-twist invariant circle for the family Fy, ;; ¢ (46), with ¢ = %. For
each parameter value €, p is the unfolding parameter, the left picture shows the invariant rotational circle
and the dynamics, and the right picture shows the angle representation of the tangent bundle (red) and the
normal invariant bundle (blue) as a function of the circle coordinate 6 (Color figure online) Eol T
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Fig.5 Breakdown of the golden non-twist invariant circle for the family Fy, ;; ¢ (46), with ¢ = % For each
parameter value &, u is the unfolding parameter, the left picture shows the invariant rotational circle and the
dynamics, and the right picture shows the angle representation of the tangent bundle (red) and the normal
invariant bundle (blue) as a function of the circle coordinate 6 (Color figure online)
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as & — &.
Furthermore, the renormalization group theory of [10] predicts that B, is affine in

B, =ar — B.

The numbers B, and «, § are universal in the sense of renormalization group theory,
that is, they should be the same for families in an open set and related by explicit
formulas to properties of a fixed point (or periodic orbit) of a renormalization group
operator.

Note that, in contrast with the blow-up, which is an unconditional rigorous result, the
power law (48) depends on the assumption that the family considered is in the domain
of universality of a renormalization group fixed point (or periodic orbit). Indeed, our
numerical results, in particular Fig. 8, suggest that there are families which do not lie
in the standard domains of universality.

We analyzed some Sobolev norms of the invariant rotational circles for (46), with

= %. Figure 6 (top) shows the corresponding Sobolev norm functions 4> and /2
of the parameterization of the non-twist circle, and the corresponding fits. Figure 6
(down-left) shows the critical exponents B, as a function of the Sobolev regularity r.
The glimpsed linear behavior suggests the renormalization group scenario described
in [10], and that the critical Sobolev regularity is bigger than 0.5. Figure 6 (down-right)
shows the dependence of the unfolding parameter pu with respect to &, from which the
critical value of the unfolding parameter, 1., can be extrapolated. Table 2 displays
several extrapolations of the critical parameters from the asymptotic laws, from which
we conjecture the following critical values ¢, >~ 2.879 and . =~ 0.01987 (fits have
been performed with last 10 results displayed in Table 2).

Remark 16 If ¢ = 0 in (46) (the reversible case), our estimates for the critical param-
eters are &, =~ 3.8641 and u, =~ 0.068011, which correspond to the critical values
a. >~ 0.686044 and b, >~ 0.74249 for the model (47). Our estimates follow from the
analysis of the observables, see Fig. 7 and Table 3. In [19], the critical parameters
reported are a. =~ 0.686049 and b, >~ 0.742493 that correspond to ¢, ~~ 3.86411 and
te = 0.068015. These values were obtained by using refined versions of the Greene’s
method, which is a specialized algorithm for detecting breakdown for uniharmonic
reversible non-twist and symmetric area preserving maps.

Continuation of non-twist invariant curves for (46), for several values of ¢, can
easily be handled by a computer cluster 2. We performed the computations for the val-
uesp =5- 1073, withi €0, 1, ..., 199, and obtained a domain in parameter plane
(1, €2) = (cosRmy)e, sin(2mw¢)e) in which there exists a non-twist rotational circle
with frequency w for (46). Figure 8 displays the corresponding results, each boundary

2 We have used a Beowulf-class computer of the UB-UPC Dynamical Systems Group, which is housed at
the Department de Matematiques i Informatica at the Universitat de Barcelona. The cluster is referred to as
HIDRA. The construction of HIDRA (in 1998) and subsequent updates have been made possible thanks to
grants of the Spanish Ministry of Culture and Education, the Generalitat de Catalunya, the support of the
University of Barcelona, and, very specially, by the effort of Joaquim Font, Angel Jorba, Carles Simé and
Jaume Timoneda.
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Fig.6 Asymptotic behavior of different observables in the continuation of a non-twist rotational circle up
to breakdown, for the family Fy , . defined in (46), with ¢ = é: (top) Sobolev norms H 2 and H?S as
functions of ¢; (down-left) critical exponents B, ; (down-right) unfolding parameter p as a function of &

Table2 Extrapolation of critical parameters at breakdown for the system (46) in the case ¢ = % , and fits with
power laws asymptotics (48). The exponents are fit by B, >~ ar — 8, where ¢ = 0.801536, 8 = 0.458888

(see Fig. 6)
r & He A B
1.5 2.879961 1.988833e-02 1.147817e-01 7.348917e-01
1.6 2.879815 1.988619¢-02 1.347752e-01 8.230374e-01
1.7 2.879666 1.988400e-02 1.626924e-01 9.079701e-01
1.8 2.879517 1.988182e-02 2.015756e-01 9.896998e-01
1.9 2.879376 1.987974e-02 2.553353e-01 1.068929e+00
2.0 2.879246 1.987784e-02 3.289723e-01 1.146724e+00
2.1 2.879133 1.987617e-02 4.288363e-01 1.224217e+00
2.2 2.879036 1.987476e-02 5.629332¢-01 1.302416e+00
23 2.878956 1.987359¢-02 7.412960e-01 1.382114e+00
24 2.878893 1.987266e-02 9.764379¢-01 1.463875e+00
2.5 2.878844 1.987195e-02 1.283904e+00 1.548065e+00
2.6 2.878808 1.987142e-02 1.682938e+00 1.634889e+00
2.7 2.878783 1.987105e-02 2.197264e+00 1.724444e+00
2.8 2.878768 1.987082e-02 2.855957e+00 1.816760e+00
2.9 2.878760 1.987071e-02 3.694243e+00 1.911852e+00
3.0 2.878761 1.987072e-02 4.753658e+00 2.009795e+00
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Fig.7 Asymptotic behavior of different observables in the continuation of a non-twist rotational circle up
to breakdown, for the family Fy, ;¢ defined in (46), with ¢ = 0: (top) Sobolev norms H 2 and H2S as
functions of ¢; (down-left) critical exponents B, ; (down-right) unfolding parameter p as a function of

Table 3 Extrapolation of critical parameters at breakdown for the system (46) in the reversible case ¢ = 0,
and fits with power laws asymptotics (48). The exponents are fit by B, =~ ar — 8, where « = 1.045900, 8 =
0.920093 (see Fig. 7)

r E¢ He A B

1.5 3.864123 6.800983e-02 1.119521e-01 6.527341e-01
1.6 3.864125 6.800990e-02 1.188536e-01 7.553563e-01
1.7 3.864130 6.801012e-02 1.280560e-01 8.589383e-01
1.8 3.864135 6.801035e-02 1.398677e-01 9.629918e-01
1.9 3.864140 6.801054e-02 1.546452e-01 0.106729e+00
2.0 3.864143 6.801069¢-02 1.728447e-01 1.171723e+00
2.1 3.864145 6.801078e-02 1.950621e-01 1.276256e+00
22 3.864146 6.801082e-02 2.220730e-01 1.380864e+00
23 3.864146 6.801081e-02 2.548864e-01 1.485515e+00
2.4 3.864145 6.801076e-02 2.948299¢-01 1.590144e+00
2.5 3.864142 6.801063e-02 3.437096e-01 1.694590e+00
2.6 3.864136 6.801036e-02 4.041481e-01 1.798480e+00
2.7 3.864123 6.800981e-02 4.803567e-01 1.900989e+00
2.8 3.864097 6.800871e-02 5.799014e-01 2.000423e+00
2.9 3.864048 6.800661e-02 7.173409e-01 2.093788e+00
3.0 3.863964 6.800306e-02 9.197952e-01 2.177229e+00
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Fig. 8 Domain of existence of non-twist rotational circles in the (g1, £7) plane. The picture on the right
shows a zoom of one of the peaks

point was computed up to 3 digits (and extrapolated to 4 digits). The computational
time, parameterizing the circles with Fourier series up to hundreds of thousands of
coefficients, is only a few hours. Requiring one more precision digit results into the
need of using millions of Fourier coefficients, which clearly lead to much more com-
putation time. It is important to recall that in the whole process, our methodology does
not assume any reversibility property.

5 Conclusions and Some Open Questions

In this paper, we presented several algorithms which can be applied to study bifur-
cations of invariant rotational circles, with fixed rotational number. The algorithms
can be used to study any kind of finitely determined degeneracy class of invariant cir-
cle. Bifurcations of invariant circles are encoded in a parameter-dependent function,
which we called translation function, so that bifurcations of invariant rotational circles
correspond to zeros of the translation function.

Our algorithms are also suitable to continue, with respect to parameters, non-twist
invariant circles (with a specified degeneracy). We reported some numerical results
produced by our algorithms in the simplest class of degeneracy: the fold singularity.
To the best of our knowledge, the accurateness reported here has not been obtained
before and we believe that it would be extremely hard to obtain it with techniques
based on periodic orbits, due to the absence of symmetries and because periodic
orbits may appear in complicated ways [49]. Moreover, the numerical results could be
made rigorous by entangling the a posteriori theorems and methodologies presented
in [29,37].

Even though our methodology has not been tailored for studying the mechanisms
happening at the breakdown, in Sect. 4 we gave numerical evidence that our method-
ology can be used to provide observables that announce the presence of the critical
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phenomena. More precisely, we monitored Sobolev norms A" and their blow-up to
compute values of the parameters corresponding to the critical curves.

The numerical results in Sect. 4 lead to several interesting open questions, all of
them somehow related to each other. For example:

1. The boundary of the domain of existence in families of several parameters contains
smooth pieces, but it also includes sharp corners.
The smooth pieces can be explained by the standard renormalization group picture.
(The breakdown corresponds to the intersection of the family with a stable manifold
of renormalization.) The corners can be explained as indication that the family
considered leaves the domain of universality.
The question of what possible behaviors can the renormalization group experience—
it is a dynamical system in infinite dimensions—is very open.

2. What can be said about the regularity of the invariant circles as they approach to
the critical curve?
Some preliminary results appear in [2]. We also note that the precise regularity of
the conjugacies is a prediction of the renormalization group picture.

3. Isit possible to provide estimates of the critical exponent B, in (48) in terms of the
degree of the Sobolev regularity r?

From our numerical computations, we conjecture that such behavior of B, is affine
with respect to r, for r greater than certain Sobolev regularity r.. This conjecture favors
a renormalization group picture [10,11,16,31,40]. It would be also very interesting to
obtain formulas for the coefficients of such linear behavior, and study the dependence
with respect to the families, and so the existence of universality classes. Notice that
the degenerate nature of the invariant circles approaching the critical circle makes the
computation of the breakdown parameters very challenging. Summarizing, a related
open question is:

3 How the universality classes and the renormalization groups depend on the type
of degeneracy of the invariant circles?

Notice that classes of degeneracy higher to the fold singularity correspond to higher
“flatness” of the frequency map around the circle, so a natural question, which is also
of interest in plasma physics [3,9,19-23,33,61] and oceanography [5,39,55,57]:

4 Whatis the influence of the “flatness” on the robustness of the non-invariant circle?

Last but not least, what about bifurcations of non-twist invariant tori with dimension
greater than 1? The results in [37] hold in arbitrary dimensions, and the algorithms in
this paper can be generalized to the setting in [37]. In that case, to study bifurcations
of non-twist tori the potential function (and its critical points) is more suitable than
the translation function (and its zeros). Of course, from the numerical point of view,
questions 1-4 become more challenging in higher-dimensional cases.
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A Appendix
B The Potential and Degeneracy Conditions

One of the features of the methodology introduced in [37] is that the translation function
of a family of translated tori is the negative gradient of a potential. Another strong point
is the fact that non-degenerate (degenerate) critical points of the potential correspond
to twist (non-twist) rotational tori. Moreover, explicit formulas are provided for the
translation function and the primitive function of F (in terms of the geometrical and
analytical objects associated with the family).

In the area-preserving case, even though the fact that the translation function is the
gradient of a potential becomes apparent (because it depends only on one variable),
some extra properties hold. This appendix reports some of these features and extra
properties for area preserving maps.

In the area preserving case, in addition to the property that the translation function is
the gradient of a potential (which is obvious because it depends only on one variable),
we provide a formula for the potential and its first two derivatives.

B.1 The Potential of a Family of Translated Rotational Circles

Following the notation and definitions introduced in Sect. 2, the potential of the family
of F-translated rotational circles is given by:

V(p) = —pi(p) —(S(K(@, p))).

We have the following result.
Lemmal A(p) = —V'(p)

Proof From the definition of primitive function, we get

K* N aKY
p dy ap

0 N a
£<S(K(9, p)) = <£(K(0’ p)) 3

X X

x @, p))

F~
ay

a
= (FY(K (9, p))@(Fx(K(G, p)) — K0, p)

oF oK
= ((Fy(K(G, p)—— (K. p)— K@, p)>

ap

) K~
+ (FY(K (9, p)) (K (8, p))ﬁ(é’, p))
aK*

ap

@, p)
K™
ap

d

= (K7 (0 + o, p)ﬁ(Kx@-lrw,p)—k(p))—Ky('9, p) @, p))
= _p)\/(P)’

where in the last equality we used the following equality:

(KY(0 + o, p)) = (K0, p)) = p,
FoC'T
b
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and
d d
(K7 (0 + w, p)a—(Kx(O +w, p))) = (K@, p)— (K", p))).
P ap

The proof follows immediately. |

An important consequence of Lemma 1 is that for a F-invariant rotational circle .7,
po is a critical point of the potential V.

B.2 On the Equivalence of Degeneracy and Non-Twist Conditions

In this section, we review the fact that twist (non-twist) invariant rotational circles
correspond to non-degenerate (degenerate) rotational circles, by tailoring some results
in [37] to the area-preserving case. We use the notations and definitions given in Sect. 2.

Lemma2 Let (K, p),t(p)) be a family of F—translatAed rotational circles, with
T(p) = (M(p), 0), andforeach p, let T (p) the torsion and T (p) the supertorsion of the
rotational circle %), of momentum p. We assume the supertorsion is non-degenerate.
Then:

A(p) = T(p).

detT (p)

Proof By differentiating with respect to p the equation for F-translated rotational
circles (2), we find the equations for %—I;(G, p) and T/(p):

DF(K (9, p)) (9 p)+f(p)——(9+w p)=0

0
<5<9, P = (1> :

Fixed p we are in the conditions of Algorithm 2, then taking M (0) = DF (K (0, p))
and L(#) = DK(0, p), we have that M (6) can be reduced to a block triangular
form A(0), so Mo(0) = M(0). Algorithm 2 provides a procedure to compute the
torsion of the rotational circle ), T(p) = T (see step (8) ) and the solutlon of
(49) for the knows V(0) = 0, v = (0, 1)T, and the unknowns U (0) = p (9, j2R

u=1(p)= M (p),o'(p) . Thatis:

(49)

0K -
(5(0, p), r/<p>) = %100, (0, 1))
Following the steps of Algorithm 2, we obtain in step (12)
-1
%V T11 T12 0
u' To1 T Iy
FoE'ﬂ
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from which the result follows. O

Remark 17 In terms of the potential of the family, Lemma 2 gives:

-1 _
V'(p) = ——— T(p).
(p) e () (p)

Remark 18 Notice that in step (4) of Algorithm 2, we obtain n(6) = 0, and, then,
o'(p) = u’ = (nV) = 0. This also follows from the exactness condition on F, which
implies o (p) = 0.

Remark 19 We incidentally obtain the formula

A

1
DyK (O, p) " 20D,K (@, p)) = - = ——— T )
(DoK (0, p) $20D,K (0, p)) & a7 () 12(p)

In fact, it is easy to see that

DyK (0, p) " 20D, K (0, p) — DeK (0 + o, p) T 20D, K (6 + w, p)
=—-DyK” (0 + w, p)X'(p),

from where we obtain that

DoK (0, p)" 20D, K (0, p) = T12(p)

o
detT (p)

— DK 0 + 0, T (p). (50)

If the expression (50) does not vanish, the translated rotational circles are transversal

with respect to their momentum p, guaranteeing the existence of a (local) diffeomor-

phism (0, p) — K(0; p) giving rise to a (local) Lagrangian foliation. In particular,
on a non-twist torus of momentum p,

DoK (0, p) ' 20D,K (6, p) = .
T2(p)
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