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Abstract. Multigrid methods are one of the most efficient techniques for solving large sparse
linear systems arising from partial differential equations (PDEs) and graph Laplacians from ma-
chine learning applications. One of the key components of multigrid is smoothing, which aims
at reducing high-frequency errors on each grid level. However, finding optimal smoothing algo-
rithms is problem-dependent and can impose challenges for many problems. In this paper, we
propose an efficient adaptive framework for learning optimized smoothers from operator stencils in
the form of convolutional neural networks (CNNs). The CNNs are trained on small-scale problems
from a given type of PDEs based on a supervised loss function derived from multigrid conver-
gence theories and can be applied to large-scale problems of the same class of PDEs. Numerical
results on anisotropic rotated Laplacian problems and variable coefficient diffusion problems demon-
strate improved convergence rates and solution time compared with classical hand-crafted relaxation
methods.
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1. Introduction. Partial differential equations (PDEs) play important roles in
modeling various phenomena in many fields of science and engineering. Their solutions
are typically computed numerically when closed-form solutions are not easily avail-
able, which leads to large-scale and ill-conditioned sparse linear systems to solve. In
machine learning applications such as spectral clustering, graph-based semisupervised
learning, Markov chains, and transportation network flows, solving large-scale linear
systems associated with graph Laplacians is often needed [39, 14, 30]. The develop-
ment of efficient linear solvers is still an active research area nowadays [36, 43, 11].

Among many numerical solution schemes, multigrid methods often show superior
efficiency and scalability especially for solving elliptic-type PDE and graph Lapla-
cian problems [6, 34, 10, 42]. Fast convergence of multigrid is achieved by exploiting
hierarchical grid structures to eliminate errors of all modes by smoothing and coarse-
grid correction at each grid level. Thus, the performance of multigrid methods highly
depends on the smoothing property of a chosen smoother. However, the design of opti-
mal smoothing algorithm is problem-dependent and often too complex to be achieved
even by domain experts. In this paper, we propose an adaptive framework for train-
ing optimized smoothers via convolutional neural networks (CNNs), which directly
learns a mapping from operator stencils to the inverses of the smoothers. The train-
ing process is guided by multigrid convergence theories for good smoothing properties
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on eliminating high-frequency errors. Multigrid solvers equipped with the proposed
smoothers inherit the convergence guarantees and scalability from standard multigrid
algorithms and can show improved performance on anisotropic rotated Laplacian
problems that are typically challenging for classical multigrid methods. Numerical re-
sults demonstrate that a well-trained CNN-based smoother can damp high-frequency
errors more rapidly and thus lead to a faster convergence of multigrid than traditional
relaxation-based smoothers. Another appealing property of the proposed smoother
and the training framework is the ability to generalize to problems of much larger
sizes and more complex geometries.

1.1. Related work. There has been an increasing interest in leveraging ma-
chine learning techniques to solve PDEs in the past few years. Several researchers
have proposed to use machine learning techniques to directly approximate the solu-
tions of PDEs. For example, [26] first proposed to use neural networks to approximate
the solutions for both ordinary differential equations and PDEs with a fixed bound-
ary condition. Later, [41] utilized CNNs to solve Poisson equations with a simple
geometry, and [4] extended the techniques to more complex geometries. [21, 38] ap-
plied machine learning techniques to solve high dimensional PDEs, and [44] focused
on applying reinforcement learning to solve nonlinear PDEs. [40] used parameterized
realistic volume conduction models to solve Poisson equations, and [23] trained a neu-
ral network to plan optimal trajectories and control the PDE dynamics and showed
numerical results for solving incompressible Navier—Stokes equations.

Orthogonal to the above methods, a few studies have focused on leveraging neural
networks to improve the performance of existing solvers. For example, [37] developed
optimization techniques for geometric multigrid based on evolutionary computation.
[29] generalized existing numerical methods as neural networks with a set of train-
able parameters. [25] proposed a deep learning method to optimize the parameters
of prolongation and restriction matrices in a two-grid geometric multigrid scheme by
minimizing the spectral radius of the iteration matrix. [17] used neural networks to
learn prolongation matrices in multigrid in order to solve diffusion equations with-
out retraining, and [28] generalized this framework to algebraic multigrid (AMG) for
solving unstructured problems.

Meanwhile, researchers have also explored relationships between CNNs and dif-
ferential equations to design better neural network architectures. For instance, [22]
designed MgNet which uses multigrid techniques to improve CNNs. [20, 12] scaled up
CNNs by interpreting the forward propagation as nonlinear PDEs.

Here, we would like to highlight the work [24], which proposes to use CNNs and U-
net [33] to learn a correction term to the Jacobi method for solving Poisson equations.
This approach is shown to preserve convergence guarantees. Since multigrid methods
are known to be more scalable than Jacobi, we extend this idea to improve multigrid
methods by designing optimal smoothers in this paper. To the best of our knowledge,
our approach is the first attempt to use CNNs to learn the smoother at each level of
multigrid with more than two levels and exhibits good generalization properties to
problems with different sizes, geometries, and variable coefficients.

The outline of the paper is organized as follows. In section 2, we review the back-
ground of the multigrid method and its convergence results. In section 3, we propose
an adaptive learning framework for learning optimized smoothers for constant coef-
ficient PDEs on structured meshes and extend this framework to variable coefficient
problems in section 4. We provide interpretation of the learned smoothers in sec-
tion 5 and demonstrate the performance of the proposed methods through extensive
numerical examples in section 6. Finally, we draw some conclusions in section 7.
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2. Preliminaries and theoretical background. In this section, we review
the classical convergence theory of iterative methods for solving a linear system of
equations,

(2.1) Au = f,

where A € R™ ™ is symmetric positive definite (SPD) and u, f € R™. Iterative
methods generate a sequence of improving approximations to the solution of (2.1),
in which the approximate solution uj at iteration k depends on the previous ones.
Formally, an iterative solver can be expressed as

(22) Uk = q)(’LLO, f, k),

where the solver @ : R” x R™® x Z* — R" is an operator that takes the initial guess
ug, right-hand-side vector f and generates uy at iteration k.

2.1. Relaxation methods. Iterations based on relaxations can be written as
(2.3) Ukl = (I—MﬁlA) up+M Y =Gur +M7Yf, G=I1-M1A4,

where M is the relaxation matrix and G is the iteration matrix. Standard relaxation
approaches include weighted Jacobi method with M = w™!D, where D denotes the
diagonal of A, and the Gauss—Seidel method with M = D — L, where —L is the strict
lower triangular part of A. Denoting by ey = u,. — u the error at iteration k, where
u, is the exact solution of (2.1), it follows that e, = GFeg. The following theorem
gives a general convergence result for limg_, ., e = 0.

THEOREM 2.1 ([35, Theorem 4.1]). Denote by p(G) the spectral radius of G. The
iteration (2.3) converges for any initial vector ug if and only if p(G) < 1.

Notice that p(G) represents the asymptotic convergence rate, which, however,
does not, in general, predict error reduction for a few iterations [10]. When relaxation
methods are used as multigrid smoothers, they are typically applied O(1) times in
each smoothing step. Thus, the convergent smoothers defined as follows can guarantee
a better smoothing effect.

DEFINITION 2.2 (convergent smoother in energy norm). Assuming A is SPD,
relazation matriz M is called a convergent smoother in the energy norm if ||Geg||a <
llexlla for all ey, where G =1 — M~1A and ||z||} = 2T Ax.

It can be shown that M is a convergent smoother if and only if ||G||4 < 1, where
IGlla = sup,{||Gz||a : ||z]]a = 1} or MT + M — A is SPD. Since p(G) is easier
to compute than ||G|l4 and p(G) < 1 is a necessary condition for both asymptotic
convergence and single-iteration convergence, p(G) is still often used as a metric of
convergence rate of smoothers.

Though relaxation schemes can have very slow convergence when being used as
a solver, they are known to be very efficient for smoothing the error especially for
elliptic-type PDEs. That is, after a few iterations, the remaining error varies slowly
relative to the mesh grid and thus can be approximated well on a coarser grid. This
property is explored in multigrid methods as discussed in the next section.

2.2. Multigrid methods. Multigrid methods exploit a hierarchy of grids with
exponentially decreasing numbers of degrees of freedom on coarser levels, starting with
the original problem on the finest level. On each level, the computational cost is pro-
portional to the problem size; therefore, the overall complexity is still linear. Smooth-
ing and coarse-grid correction are the two main components of multigrid, designed to
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be complementary to each other in order to achieve fast convergence, i.e., aiming at
eliminating the “high-frequency” (oscillatory) and “low-frequency” (smooth) errors,
respectively, which usually correspond to eigenvectors of M~ A with large and small
eigenvalues. Relaxation-based approaches such as weighted Jacobi and Gauss—Seidel
are typical choices of multigrid smoothers, as these methods are inexpensive to apply
and can effectively remove high-frequency errors for elliptic-type PDEs. On the other
hand, the effectiveness of coarse-grid correction on low-frequency errors is due to the
fact that smooth errors can be interpolated accurately.

When dealing with hard problems such as ones with irregular anisotropy, anisot-
ropy not aligned along the coordinate axes, or complex geometries, the efficiency of
traditional smoothers can deteriorate, in which cases, stronger and often more expen-
sive smoothers are needed such as block smoothers [15, 5], ILU-based smoothers [45],
and smoothers based on Krylov methods [2, 27]. Nevertheless, finding robust and
efficient smoothers still remains a challenging problem for multigrid methods.

Convergence theory of two-grid methods has been well studied [7, 9, 16, 46]
through the error propagation operator Erq of the following form:

(2.4) Erg = (I-M~'4) (1= P (PTAP) " PT4A),

where M is the smoother, P € R™*"¢ is the prolongation operator, P is typically the
restriction operator for symmetric A, and PT AP is the Galerkin coarse-grid operator.
Generally, a smaller |ETgl|a indicates faster convergence for two-grid methods.

In this paper we choose standard prolongation operators P defined in [35] and
only focus on using CNNs to parameterize M. The following theorem summarizes the
main convergence result in [16] with respect to M and P.

THEOREM 2.3 ([16]). Assuming MT + M — A is SPD, denote by
(2.5) M=M"(M"+M—-A)"'M
the symmetrized smoother. Let R € R"*"™ be any matriz such that RP = I and

I — PR)e|%-
(2.6) K:maxw
e70 llell
We have K > 1 and |Erclla < (1 — 1/K)1/2.

The quantity K in (2.6), corresponding to the so-called weak approzimation prop-
erty [8], essentially measures how accurately interpolation approximates the eigenvec-
tors of M~ A proportional to the corresponding eigenvalues. The optimal K yields an
ideal uniform bound of convergence rate, which is often used to analyze convergence
rate of smoothers in two-grid methods [1].

DEFINITION 2.4 (ideal uniform convergence bound).  Suppose P takes form
P = (W) as in standard multigrid algorithms, where R = (0 I) and ST = (I 0).
Denoting by K, the minimum K in (2.6) over P, we define quantity B, such that

(27) 8= (1= 18 = (1= i ((7228) ™ (57459 )1

which can be considered as the ideal uniform bound of convergence rate [16].

Extension from two-grid methods to multigrid methods is straightforward. This
can be done by recursively applying two-grid methods on the coarse-grid system; see
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Algorithm 3.1 for a brief description of standard multigrid V-cycle. Notice that the
smoother M® at level [ is only required to eliminate errors that are A®)-orthogonal
to Ran(P(l)) in order to have fast convergence. This property will be used to design
efficient training strategies for learning neural smoothers in the next section.

3. Learning deep neural smoothers for constant coefficient PDEs. The
convergence of multigrid V-cycle heavily depends on the choice of smoothers. Classical
off-the-shelf smoothers such as weighted Jacobi or Gauss—Seidel exhibit near-optimal
performance on simple Poisson equations and generally lose their efficiency on other
types of PDEs. In this section, we formulate the design of smoothers as a learning
task and train a single neural network to parameterize the action of the inverse of the
smoother at a given grid level for constant coefficient PDEs discretized on structured
meshes. The learned smoothers are represented as a sequence of convolutional layers
and trained in an adaptive way guided by the multigrid convergence theory.

Algorithm 3.1 Multigrid V-cycle for solving Au = f

1: Presmoothing: u® = u® 4 (M®)=1(fO — AWy D)
2: Compute fine-level residual, 7 = fO — AWy and restrict it to the coarse
level: (1) = (PO)T,(1)
if [ 4+ 1 is the last level then

Solve AU+ (+1) — .(+1)
else

Call multigrid V-cycle recursively with I = [+ 1, f0TD) = (4D and o(HD =0
end if
Prolongate the coarse-level approximation and correct the fine-level approxima-
tion: u® = u® 4 pWy(+1)
9: Postsmoothing: u(®) = u® + (MO)=1(fO — AWy 1)

P N> o Rw

3.1. Formulation. We define a PDE problem as the combination of PDE class
A, forcing term F, and boundary condition G. To solve the problem numerically on
a two dimensional square domain, we discretize it on a grid of size N x N, which
leads to solving linear system Au = f, where A € RN**N? and fe RY”. Our goal
is to train smoothers M) ... M(=1 on the first L levels of a multigrid solver that
has L + 1 levels. We assume that the multigrid solver uses the same smoother for
both the presmoothing and postsmoothing steps (c.f., lines 1 and 9 in Algorithm 3.1,
respectively) and uses direct methods as the coarsest-level solver. Denoting by ®(©)
the multigrid hierarchy from level 0, the training objective for ®(©) is to minimize the
error

(3.1) 12O (g, f, k) — |2,

where ug is a given initial guess, u, is the exact solution, and uj = ®(© (uo, f, k) is
the approximate solution by performing k steps of V-cycles with ®(©).

The advantage of minimizing (3.1) instead of the norm of the associated iteration
matrix is that (3.1) can be evaluated and optimized more efficiently. For example,
in two-grid methods, ®(® (ug, f, k) — us = E:’ﬁGeo for each exact solution u, and an
arbitrary initial guess ug. When multiple initial guesses are used to minimize (3.1)
jointly with different iteration number k, the convergence property of the trained
smoother can be justified by the following theorem, which shows that when the loss
of (3.1) is small, the norm of the associated two-grid operator, Erq, should also be
small. Tt is easy to see that this property also holds true for multigrid operators.
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THEOREM 3.1 ([19]). For any matrizc X € R™™ and z € R™ that is uniformly
distributed on a unit n-sphere, we have

E(n]|Xz]3) = IX][%-

In this paper, we fix A but vary F and G, and we learn multigrid smoothers that
are appropriate for different PDEs from the same class. Specifically, we train the
multigrid solvers on a small set of discretized problems,

Q
(3.2) D= U {A, f5, (uo);, (ue);},

Jj=1

with the presumption that the learned smoothers have good generalization properties:
they can perform well on problems with much larger grids of different geometries.
As a motivating example, we consider the following diffusion problem:

(3-3) = V- (gVu(z,y)) = f(z,y),

where g is assumed to be constant in this section. We will consider the more general
form g(x,y) in the next section.

Since the stencils for discretizing (3.3) would be identical for constant g on struc-
tured meshes, the dynamics of the problems are spatial invariant and independent of
the specific location in the domain. Thus, we can parameterize the action of inverse
of the smoother (M(l))_1 by one single CNN, H®) with only convolutional layers.
This parameterization has several advantages. First, on an N x N grid, H® only
requires O(N?) computation and has a few parameters. Second, H®) can be readily
applied to problems defined on different grid sizes or geometries. Lastly, which is
more important, Theorem 3.2 justifies the use of this parameterization to construct
convergent smoothers.

THEOREM 3.2. For one fized matriz A, there exists a finite sequence of convolu-
tion kernels {w(j)}jzl such that the convolutional factorization H = w)x. .. w?) xw™)
satisfies ||I — HA||a < 1 indicating H is a convergent smoother.

Proof. Based on the universality property of deep CNN without fully connected
layers [47], we know that H can approximate the linear operator A~! to an arbitrary
accuracy measured by some norms when J is large enough. Thus, theoretically, H A
can be very close to an identity mapping if parameterized properly. Since all matrix
norms are continuous and equivalent, ||I — HA||4 can be less than 1 for certain J
measured in matrix A-norm. ]

3.2. Training and generalization. In this section, we propose several strate-
gies for training multigrid solvers using CNNs as smoothers. We will also discuss their
advantages and disadvantages.

The first training strategy is to train H") separately for each multigrid level
1=0,...,L — 1, where we construct a training set D) similar to (3.2) for the operator
AWM That is, we train H® to make iteration (2.3) convergent by minimizing the
error between the approximate solution obtained at iteration k and the ground truth
solution. As suggested in [24], we also choose different iteration number k, 1 < k < b,
in the training, so that H) learns to converge at each iteration, where larger b mimics
the behavior of solving problems to higher accuracy while smaller b mimics inexpensive
smoothing steps in multigrid.
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This training strategy is simple, and the trainings on different levels are totally
independent. However, we found the obtained H® usually does not exhibit a good
smoothing property of reducing high-frequency errors, especially when H® is a shal-
low neural network. This phenomenon is expected since the training strategy does
not consider the underneath coarser-grid hierarchy and tries to reduce errors over
the whole spectrum of AW, In contrast, a well-trained H" with high complexities,
deeper in the layers and larger in the convolution kernels, can approximate the action
of the inverse of A®) well, but using it as a smoother is not efficient nonetheless, and
moreover, the training cost will be significantly higher. We denote the smoothers
learned by this strategy by CNN smoothers.

A second training approach is to optimize the objective function (3.1) directly
over MW at all levels, I = 0,..., L —1. This approach targets optimizing convergence
of the overall multigrid V-cycles and considers both the smoothing and the coarse-
grid correction. However, training the CNNs at all levels together turns out to be
prohibitively expensive. Since this approach is not robust and stable in practice, we
exclude this approach in the experiments.

Finally, we propose an efficient adaptive training strategy that can impose the
smoothing property by recursively training the smoothing CNN at a fine level. We
denote the smoothers learned by this strategy by a-CNN smoothers. The training
process starts from the second coarsest level and is repeatedly applied to the finer
levels, given that the smoothers at coarser levels have been already trained, so that
the solve with the coarse-grid operator can be replaced with a V-cycle using the
available multigrid hierarchy at one level down. The adaptive training algorithm is
sketched in Algorithm 3.2. Figure 1 illustrates the procedure of adaptively training a
5-level multigrid solver in 4 stages, starting at level 3. The loss is given by

16 %H(I)(?)) ((Ug?)))j : (f(3)>j ,k;) — (u§<3)>j||27

where ®®) represents the 2-level multigrid with levels 3 and 4. In the second stage,
the training proceeds at level 2 for CNN H(?) utilizing the underlying 2-level hierarchy
obtained from the first stage. This procedure continues until H© is computed at the
finest level and the entire training is completed, so the resulting multigrid hierarchy
& can be used for solving systems of equations with A = A.

Another appealing property of the proposed training approach is the updatability
of smoothers using neural networks. The trained smoothers can be updated in another

H(
level 0 e e s e
H(i/
level 1 G L
/ H(Z/
level 2 e s e e »d -

level 3 - / S e
/ / / direct solver / )

level 4 :
Stage 1 Stage 2 Stage 3 Stage 4

Fic. 1. The proposed adaptive training strategy for k levels, which starts from level k — 2 and
proceeds upwards. When H®) is being trained, lower level H(]),j =1+4+1,...,k—2, is used for the
solve with coarse-grid operators and remains unchanged.
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Algorithm 3.2 Adaptive training of multigrid CNN smoothers

1: Input: Multigrid hierarchy: number of multigrid levels L+ 1, coarsest-grid solver
at level L, namely W) coefficient matrix A where A(®) = A, and interpolation
operator P for | = 0,...,L — 1. Size of training set Q. Maximum allowed
number of smoothing steps b

2: Output: Smoothers H(©) .. HE-1

3: forl=L—-1,...,0do

Construct training set:

>

Q
l l l l
DO = | J{t;}, =140, 0 (), @)}
j=1

5. Initialize the weights of H®
Perform stochastic gradient descent to minimize loss function:

l l !
3 D (i), 17 k) — ()

0 eDO k~td(1,b)
With ®(ug, f,0) = ug, run forward propagation by

D (ug, f, k) = O (ug, f,k—1) + D (r_y),
1= f — AD®(ug, f,k - 1),
OO () =ty + HO(r_y — Aty_y),
toey = HO (rp_y) + POOEHD (PO 5 1),
Sk—1 = Th—_1 — AH(I)(rk_l),

and only update H® by back propagation
7. end for

training process by injecting the errors that cannot be effectively reduced by the cur-
rent multigrid solver back to the training set. Specifically, to improve the smoothers
in a trained multigrid solver ®(©) we can first apply ®© to homogeneous equation
Au = 0 for k steps with a random initial vector ug and get the approximate solution
U, i.e., up = @@ (ug, 0, k), then inject the (restricted) residual, r,(cl) = (P(l_l))Tr,(clfl)
with r,(co) = —Auy, to the training set at each level I, and finally retrain ®©) as be-
fore with the new augmented training sets using the existing H®) in the multigrid
hierarchy as the initial values.

4. Learning deep neural smoothers for variable coefficient PDEs. In this
section, we extend the adaptive training framework proposed in section 3 to design
optimal smoothers for solving variable coefficient PDEs:

To better illustrate the difficulty of dealing with variable coefficient PDEs, we

simplify our discussion and consider discretizing (4.1) using nine-point stencils with
grid spacing h. See the left subfigure of Figure 2 for a demonstration of the 3 x 3
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-0 OO0
00  O-0-O
OO0 OO

(a) Weight stencil (b) Grid point

F1G. 2. Demonstration of weight stencils and grid points.

neighborhood of the grid point uss. The equation corresponds to the grid point ugo
reads

1

- W(glull + gouis + gaus1 + gauss)

- W((gl + go)urz + (g2 + ga)uoz + (g3 + ga)usz + (g1 + g3)u21)

2
+ W(Ql + g2 + g3 + ga)u2e = foo,

which is equivalent to applying a 3 x 3 weight stencil to the 3 x 3 neighborhood of
U22,

Zwijuij = f2, 4,5 €{0,1,2},
irj

where w;; is computed according to the function g(x,y) and is shown in the right
subfigure of Figure 2. When g(x,y) is constant, the coefficients w;; corresponding to
each interior 3 x 3 stencil are identical. Thus, we can parameterize M ~! by a single
CNN as a stack of convolution kernels {¢;}. The weights of each convolution kernel ¢;
are shared over all grid points. However, when ¢(z,y) is variant, the weight stencils
W;; and Wi, at two different locations can have completely different dynamics (e.g.,
Wi;; can be strong in the z-axis and weak in the y-axis while Wi, is strong in the
y-axis and weak in the z-axis). In this case, a smoothing kernel H that is learned
to smooth the error at one grid point might be ineffective in smoothing the error at
another point. As a result, the optimal smoothing kernel H;; associated with each
grid point should be conditioned on the location for variable coefficient problems.

In order to generate unshared convolution kernels which are dimension-invariant,
we propose to learn a function which can adaptively adjust the kernels based on the
spatial information. In particular, we will design neural network architectures which
can map each grid representation to a stack of convolution kernels that can be used
to efficiently smooth the error at different locations.

We point out the main difference and connection between the design of the
smoothers of the variable coefficient case and the constant coefficient case described
in the previous section. In the constant coefficient case, the a-CNN smoothers are pa-
rameterized by neural networks directly, and the parameters learned by Algorithm 3.2
are the parameters of the smoothers. However, in the variable coefficient case, instead
of learning the parameters of the smoothers directly, we use Algorithm 3.2 to learn
the parameters of a mapping function parameterized by the neural networks which
generates the smoothers. The smoothers generated by the mapping function in the
variable coefficient case have the same structure (CNN structure) as in the constant
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KKK DNN
# KK s K K K

NPT
R

Fi1c. 3. The architecture of inferring the smoothing kernels for the central point in the stencil.
A fully connected neural network takes nine 3 X 3 stencils as input and outputs three convolution
smoothing kernels for the current grid point. DNN stands for deep neural networks.

‘ conv ‘ conv - fc

Stencils Smoothing kernels

Fic. 4. The framework of constructing 3 smoothing kernels by applying two convolutional
layers (conv) and one fully connected layer (fc) to a feature map. The feature maps have 9,6,3, and
3 channels, respectively, and each channel contains kernels of size 3 X 3.

coefficient case. We discuss two different parameterization methods of the mapping
function in the following sections.

4.1. Parameterization with fully connected layers. In the first approach,
we consider using multiple layer perceptron to construct the mapping from the grid
representation to the smoothing kernels at each grid point. Although the stencil at
each grid point has already contained the spatial information, we find that only us-
ing the stencil information as the representation is not sufficient to learn efficient
smoothing kernels and the generalization usually performs poorly. Instead, we sug-
gest incorporating the neighborhood information into the grid representation. More
specifically, we construct each grid representation as an 81 x 1 vector which consists
of the stencils in the 3 x 3 neighborhood of the current point under consideration. In
this case, the feature map M for an N x N grid has the size of N2 x 81. The mapping
is then parameterized by a fully connected neural network which takes the represen-
tation of each grid point as input and infers the weights of the k output smoothing
kernels of size 3 x 3. See Figure 3 for an illustration of this architecture. To smooth
the error at the central point in the stencil, we train a fully connected neural network
which takes nine 3 x 3 stencils with 81 parameters in total and outputs three 3 x 3
convolution kernels that are used to smooth the error at this point. On each level of
the multigrid solver, we only construct one such neural network based on the adaptive
training strategy discussed in section 3.2.

4.2. Parameterization with convolutional layers. Deep neural networks us-
ing fully connected layers often require a large amount of parameters in order to well
approximate a function and also have high training cost. In order to reduce the train-
ing cost, instead of constructing a feature map M € RV *x81 by flattening and stacking
the stencils and applying fully connected neural networks, an alternative approach is
to feed into the neural network with 9 channels with each channel corresponding to
one stencil in the 3 x 3 neighborhood of the point under consideration. The deep
neural network is parameterized by several convolution kernels followed by a fully
connected layer. The outputs of the neural network are k£ smoothing kernels. This
architecture is illustrated in Figure 4. We will show in numerical experiments that
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this approach can achieve a comparable performance with fully connected layers but
requires much fewer parameters.

Remark. The construction of a-CNN is similar to sparse approximate inverse pre-
conditioners [3, 13, 18]. However, instead of using techniques such as Frobenius norm
minimization, training of a-CNN is guided by the convergence from lower-level multi-
grid hierarchy. This generally leads to better smoothing properties in conjunction
with other AMG components. For constant coefficient problems, sparse approximate
inverse preconditioners can also be computed and applied in stencil forms without
forming the whole matrix. On the other hand, for variable coefficients, our approach
uses a neural network to produce, at each mesh point, the smoother stencils with-
out storing them. As such, an advantage of the proposed method is to be able to
generalize to problems of different sizes without reconstructions.

5. Interpretation of learned smoothers. In this section, we illustrate the
patterns of the learned smoothers. Notice that the experiements conducted in this sec-
tion are for visualization purposes and use a different set of parameters than those used
in the experiments in section 6. We consider the anisotropic rotated Laplacian prob-
lem (6.1) parameterized by the angle 6 of the anisotropy and conductivity . We fix
¢ = 100 and train smoothers for problems with a variety of § € {0, 5, = T T 57 7
For each problem, we use a two-grid solver, and on the fine level we train a smoother
which consists of one convolution kernel of size 9 x 9. We use linear activation in
order to illustrate the action of the convolution kernels as the smoothers. The trained
convolution kernels corresponding to different 6 are shown in Figure 5. The results
show that large values in each kernel are gathered symmetrically about the center and
the angles of the large values of each kernel also align with the angle of the anisotropy
of the problem. These patterns demonstrate that the learned smoothing kernels are
able to smooth the error in correct directions, which can be viewed as line smoothers
truncated in the convolution windows along the direction of strong couplings.

We also increase the number of convolutional layers and study the impact of
each convolutional layer on the final smoother. For each problem, we train three
convolution kernels of size 9 x 9 for better visualization (we use 3 x 3 kernels in
section 6 as they are more efficient in practice) and show the results in Figure 6. The
first row shows the kernels of the first convolutional layer for each problem, while the
second row and the third row show the second layer and the third layer, respectively.
The kernels at different layers exhibit different patterns which indicates that each
kernel is responsible for smoothing the error in different regions. Since applying three
9 x 9 convolution kernels sequentially is equivalent to applying a 25 x 25 convolution
kernel, we illustrate the patterns of the effective 25 x 25 kernels in the last row of
Figure 6. The kernels in the last row display similar patterns as in Figure 5 which
perfectly align with the anisotropy of the problem.

() 6=0 @0=7 o= (@6=73

12

FIG. 5. Patterns of the trained kernels for (6.1) with € = 100 and 6 € {0, &, =, T = 57 73
For each problem, the smoother only uses one kernel.
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Fic. 6. Patterns of the trained kernels for (6.1) with £ = 100 and 0 € {0, =

For each problem, the smoother uses three kernels. The first three rows represent the kernels on
the first, second, and third layers, respectively, and the last row combines the three kernels into one
single kernel for each problem.

6. Numerical experiments. In this section, we provide numerical examples to
demonstrate the smoothing effect of the proposed smoothers. All of the codes were
implemented in PyTorch 1.8.1' and run on an Intel Core i7-6700 CPU. We use a
batch size of 10 and employ the Adam optimizer with a learning rate of 10~3 for 500
epochs. The neural network training took roughly 5 hours for each constant coefficient
problem and roughly 4 hours for each variable coefficient problem.

6.1. Constant coefficient PDEs. We first consider the following two dimen-
sional anisotropic rotated Laplacian problem:

(6.1) =V - (TVu(z,y)) = f(x,y),
where 2 x 2 tensor field T is defined as

(6.2) T_ cos? 0 + Esin® 0 cosfsin (1 — &)
’ " |cos@sinf(1 — &) sin®6 4 Ecos?h |’

where 6 is the angle of the anisotropy and & is the conductivity. We discretize the

operators Au and ug, in (6.1) using the following stencils, where h is the grid spacing:

1 —1 -1 1

— -1 4 -1 and -1 2 -1
2
4h 1 1 -1

2h?

We use multigrid V-cycles to solve the resulting discretized linear system Au = f,
where the coefficient matrix A is parameterized with (6, &, n, G), where n is the grid
size and G is the geometry of the grid. We show the robustness and efficiency of
the proposed neural smoothers on a variety of sets of parameters (6,&,n,G). For
each set of the parameters, we train the neural smoothers on a dataset constructed
on square domains with small grid size and show that the trained neural smoothers

ICode for reproducing the experiments is available at https://github.com/jerryhuangru/

Learning-optimal-multigrid-smoothers-via-neural-networks.
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F1G. 7. Full/red-black coarsening. The fine points are red, and coarse points are black. Full
weighting restriction is shown by the arrows to the coarse point at the center.

can outperform standard ones such as weighted Jacobi. Furthermore, we demonstrate
that the trained neural smoothers can be applied to solve much larger problems and
problems with more complex geometries without retraining. Since our focus of this
work is on smoothers, we adopt standard algorithms for multigrid coarsening and
grid-transfer operators. Specifically, we consider full coarsening, which is illustrated
in Figure 7 for two dimensional grids, where grid points are coarsened in both z-
and y-dimensions. The associated restriction and interpolation are full weighting,
a weighted average in a 3 x 3 neighborhood. The stencils of the restriction and
interpolation operators are given by, respectively,

R 112
o2 42| aa |2 42
611 21 12 1

We also consider red-black coarsening that has a coarsening factor of about 2
shown in Figure 7 for the first 3 levels. Note that the coarsening on level 0 is essentially
a semicoarsening along the 45° angle, and on level 1 the coarsening is performed on
the 45°-rotated meshes, which generates the grid on level 2 that amounts to a semi-
coarsening along the y-dimension. The restriction and interpolation stencils used
associated with this coarsening are given by (see [35])

1 1
é141 andillll
1 1

To evaluate our method, we compare the performance of multigrid using Algo-
rithm 3.1 equipped with convolutional neural smoothers that are trained adaptively
(denoted by a-CNN), convolutional neural smoothers trained independently (denoted
by CNN), and weighted Jacobi smoothers (denoted by w-Jacobi) for solving a variety
of linear systems. These problems are generated by varying the parameters (&, 0, n,
(). The weight w is chosen to be % by heuristics for all experiments in this paper.

Training details. First, we train smoothers independently using the first strategy
discussed in section 3.2. For each smoother, we construct 50 problem instances of
size 162. Then, we use the adaptive training framework to train smoothers using
Algorithm 3.2. The training process for a 5-level multigrid has 4 stages. At each
stage we construct a training data set which contains 50 instances of the problem on
each level. All stages have the same size of the coarsest grid. In particular, under
the full coarsening scheme, at stage [ the problems are constructed on the (4 — [)th
level and have grid size of (272 — 1)2. Under the red-black coarsening scheme, at
stage 1 and stage 2 the problem instances have size of 92, and at stage 3 and stage
4 the problems have size of 172. This is because when we apply red-black coarsening
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to a regular grid, the grid becomes irregular; therefore we need to add zeros to the
irregular grid so that we can apply CNNs more efficiently.

Neural networks. We use CNNs to approximate the action of the inverse of the
smoothers. In particular, under the full coarsening scheme, for both CNN and a-CNN
smoothers, H® is parameterized as follows:

(6.3) HO = O (70 (- (7 (10)) ) + 1,

where each fi(l) is parameterized by a 3 x 3 convolution kernel gbl(-l). We initialize the

weights of (;Sgl), ce él) with small values and (;Sél) to be the inverse Jacobi stencil so
that H® is initialized as Jacobi. For red-black coarsening, H") is parameterized as

(6.4) HO = (7).

Note that we could use more convolutional layers and also, for each grid point, explore
a larger range of the neighborhood, which can typically lead to a faster convergence
rate at the price of more computational costs per iteration. The current settings are
found to give the best trade-off between convergence rate and time to solution.

Evaluation metrics. We train the smoothers on problems with small grid sizes
where the ground truth can be easily obtained. When we test on large-scale problems,
it is time consuming to obtain the ground truth. Therefore, when we evaluate the
performance, we use the convergence threshold relative residual W < 107% as
the stopping criterion which can avoid the requirement of exact solutions. We compare
both the number of iterations and the runtime for multigrid solvers using different
smoothers to reach the same accuracy. To reduce the effect of randomness, for each
test problem, we run the multigrid solvers to solve 10 problems with different random
right-hand sides and present the averaged numbers.

Convergence rate. Since coarser problems are usually better conditioned, the
smoothers on the finest level have the biggest impact on the overall convergence.
In this experiment we compare the spectral properties of the smoothers on the finest
level. We first compare the spectral radius of the iteration matrices (2.3) constructed
by w-Jacobi smoothers (w is fixed at % in all experiments) and a-CNN smoothers
and summarize the results in Table 1. These statistics are calculated on two sets
of test problems defined on one 16 x 16 grid. In the first set, 8 is fixed as 0 and
§ = 100,200, 300,400. In the second set, & is fixed at 100 and 6 = 0, {5, 5, 7. The
corresponding comparison of ideal convergence bounds (2.7) on these tests is provided
in Table 2. Since we initialize the neural network close to Jacobi, the training is sta-
ble. Take the rotated Laplacian problem with # = 0 and £ = 100 as an example.
We use the same learning rate, same number of epochs, and the Adam optimizer to
train 20 a-CNN smoothers. The ideal convergence bound has mean of 0.7672 with
standard deviation of 0.0042. The spectral radius of iteration matrix has mean of
0.7671 with standard deviation of 0.0041. Since the deviations are typically small, we
omit reporting them in the rest of the section.

The results in Table 1 and Table 2 show that for each rotated Laplacian problem,
the convergence measure associated with a-CNN smoothers are much smaller than
those with w-Jacobi smoothers and Gauss—Seidel smoothers which indicates a faster
convergence can be achieved by multigrid solvers equipped with a-CNN smoothers.

We use the same problem setting as the above tables. We consider the iterative
solvers x;, = Gzp_1, where G is the 5-level multigrid solver. We compare the spectral
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Jacobi with w =
with different 0 and &. The grid size is 16 X 16.

TABLE 1
Spectral radius of iteration matrices (2.3) of two-grid methods using full coarsening and w-
, Gauss—Seidel, and 6-layered a-CNN smoothers for rotated Laplacian problems

5213

6,¢) (0,100) | (0,200) | (0,300) | (0,400) | (w/12,100) | (w/6,100) | (w/4,100)
w-Jacobi 0.9886 0.9886 0.9886 0.9886 0.9913 0.9934 0.9942
Gauss—Seidel | 0.9662 0.9662 0.9662 0.9662 0.9735 0.9797 0.9823
a-CNN 0.7672 0.8060 0.8588 0.7883 0.7743 0.9652 0.9728
TABLE 2

Ideal convergence bound (2.7) for the same methods and problems in Table 1.

6,¢) (0,100) | (0,200) | (0,300) | (0,400) | (w/12,100) | (w/6,100) | (w/4,100)
w-Jacobi 0.9886 0.9886 0.9886 0.9886 0.9913 0.9934 0.9942
Gauss—Seidel | 0.9675 0.9675 0.9675 0.9675 0.9748 0.9807 0.9833
a-CNN 0.7671 0.8060 0.8588 0.7883 0.7743 0.9651 0.9728
TABLE 3

Spectral radius of the iteration matrices corresponding to the 5-level multigrid with full coars-
ening and w-Jacobi, w = %, Gauss—Seidel, and 6-layered a-CNN smoother for (6.1) with different
0 and . The mesh size is 16 x 16.

©,8) (0,100) | (0,200) | (0,300) | (0,400) | (x/12,100) | (r/6,100) | (w/4,100)
w-Jacobi 0.9853 | 0.9918 | 0.9940 | 0.9951 0.9436 0.8981 0.8837
Causs-Seidel | 0.9564 | 0.9755 | 0.9820 | 0.9853 0.8566 0.7776 0.7643
a-CNN 0.6816 | 0.8189 | 0.8805 | 0.8936 0.4534 0.4547 0.4216

radius of the iteration matrices G of 5-level multigrid solvers equipped with different
smoothers and summarize the results in Table 3. The results show that the smoothers
can not only efficiently smooth the finest-level errors but also have faster convergence
overall as a 5-grid solver compared to w-Jacobi and Gauss—Seidel. Since w-Jacobi
smoothers have better parallel efficiency than Gauss—Seidel smoothers, we will only
compare neural smoothers with w-Jacobi smoothers in the remaining section.

Smoothing property. To show that our proposed method can learn the optimal
smoother with the best smoothing property, for each eigenvector v (that has the unit
2-norm) of the fine-level operator A associated with parameters § = %, ¢ = 100,
N = 16 on a square domain, we compute its convergence factor ||v — H® (Av)|,
where H(©) is the smoother on the finest level. An efficient smoother should lead to
small convergence factors for eigenvectors associated with large eigenvalues. The re-
sults are shown in Figure 8, where the eigenmodes are listed in the descending order of
the corresponding eigenvalues. The CNN smoother can reduce low-frequency errors
more rapidly than w-Jacobi; however, both of them have comparable performance
for damping high-frequency errors. In contrast, a-CNN has the best performance,
which exhibits a superior smoothing property, as the convergence factors correspond-
ing to the large eigenvalues are about 6 times smaller than those with the other two
smoothers.

Generalization property. To illustrate that our proposed method is useful, be-
sides showing the statistics, we present the actual iteration numbers and runtime for
multigrid solvers to converge. Also for a given PDE problem, we want to only train
the neural smoothers once, that is, the neural smoothers need not to be retrained if
we increase the grid size or change the geometry of the problem. In this experiment,
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Fia. 8. Convergence factors of w-Jacobi with w = %, CNN, and a-CNN smoothers to the
eigenvectors of A for (6.1) on a 16 x 16 grid, where 6 = %r and & = 100. The eigenvectors are

sorted in descending order of the corresponding eigenvalues.
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Fic. 9. Numbers of iterations and runtime required by multigrid with full coarsening to reach

convergence tolerance 10~% for solving (6.1) on 632, 1272, 2552, 5112, and 10232 grids with param-

eters £ = 100 and 60 = %r on square domains.

we first show that the trained smoothers can be generalized to different grid sizes
without retraining. We fix the parameter of the problems to be £ = 100 and 6 = %T
on one square domain. We show in Figure 9 that for problems of size 10232, multigrid
methods using a-CNN smoothers converge faster in terms of the number of iterations
than multigrid methods using CNN and w-Jacobi smoothers by factors of 1.5 and 3.5,
respectively. Since the cost of applying a-CNN smoothers is more than w-Jacobi, the
time for iterations of multigrid methods using a-CNN is only faster than that using
CNN and w-Jacobi by factors of 1.68 and 2.1, respectively.

Since the CNN smoothers were trained independently, they are not as successful as
a-CNN to capture the smoothing property of reducing errors that cannot be reduced
by lower levels of multigrid. Hence, we only compare a-CNN and w-Jacobi smoothers
in the rest of the paper. Next we fix the parameters of the problems to be 6 = 7,
& =100 and show that the trained a-CNN smoothers can be generalized to problems
with two different geometries (shown in Figure 10) without retraining.

The results for the two different domains are shown in Figure 11. We can see
that since we are using the convolutional layers to approximate the inverse of the
smoothers, a-CNN uses the information in the neighborhood information to smooth
the error at each grid point, and therefore without retraining, the smoother trained

on the square domain can still lead multigrid methods to converge 4.1 times faster
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Fic. 10. Ground truth solutions on square, cylinder, and L-shaped domains.
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Fic. 11. Numbers of iterations and runtime required by multigrid solvers for solving (6.1) with

parameters 0 = % and & = 100 on the cylinder domain (top two subfigures) and the L-shaped domain

(bottom two subfigures).

in terms of the number of iterations and 1.5 times faster in time to solution on the
cylinder domain for problems of size 10232. On the L-shaped domain for the same
sized problem, the performance improvement is 4.9 times and 1.8 times faster in terms
of the number of iterations and the time for iterations. We show in Figure 12 that
our proposed method can learn optimized smoothers for a variety of problems given
by different parameters on the square domain and is not restricted to the choice of
coarsening schemes in multigrid. In particular, for 8 = 51—’5, with full coarsening, the
multigrid method using a-CNN smoothers is 19.2 times faster in terms of the number
of iterations and achieves a speedup of factor 4.4 in the time for iterations. When
the red-black coarsening scheme is used, the multigrid solver with a-CNN smoothers
can still require much fewer iterations than the one with w-Jacobi by 1.9 times and
converges about 1.3 times faster in time.

Next, we show that a single smoother can be learned that works for all the prob-
lems discussed above. Instead of training a smoother for each problem individu-
ally, we construct a training set that contains the problems for 6 = [{5, &, T, 5, %]
and £ = 100. We show in Figure 13 that the performance of a single smoother for
all the problems is slightly worse than the individual training but still outperforms
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Fic. 12. Numbers of iterations and runtime required by multigrid solvers for solving (6.1)
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performance with full coarsening and red-black coarsening, respectively.
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Fic. 13. Numbers of iterations and runtime required by multigrid solvers with full coarsening

for solving (6.1) of size n = 5112 with 0 = [, %, %, %, %r] and £ = 100. The smoother is trained

from a dataset containing problems with different 0 and &.

w-Jacobi. Finally, Figure 14 shows the performance of a 5-level multigrid with w-
Jacobi smoothers and a-CNN smoothers using full and red-black coarsenings with
the same problem setting as in Figure 12. However, 6 convolutional layers were used
with full coarsening and 2 convolutional layers with red-black coarsening. For fair
comparison in terms of computational cost per iteration, in this experiment we run 6
Jacobi steps each iteration for full coarsening and 2 Jacobi steps for red-black coars-
ening.

6.2. Variable coefficient PDEs. We consider the following variable coefficient
problem:

(6.5) — V- ((sinkrzy + 1.1)Vu(z,y)) = f(z,y),

which is determined by the frequency k.
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performance with full coarsening and red-black coarsening, respectively.

TABLE 4
Numbers of iterations (runtime in seconds) required by multigrid for solving (6.5) of size n =

2552 with k = 0.1,1,10, 100 using a-CNN and w-Jacobi with w = 2.

3

k=0.1 k=1 k=10 x =100

w-Jacobi 17 (0.169) | 17(0.167) 20(0.191) 63( 0.500)
a-CNN-CNN 6(0.102) 7(0.114) 11( 0.151) 30(0.333)
a-FC-CNN 6(0.103) 6(0.101) 10(0.142) 28( 0.315)

In this experiment we consider solving the problems determined by « = 0.1, 1, 10,
and 100. For each problem we consider a 4-level multigrid solver. We use the two
approaches discussed in section 4 to learn one single convolution kernel of size 3 x 3
used for smoothing. We use 4 fully connected layers with 40 neurons for each layer
for the first approach which has 6,800 parameters to train in total, and we denote
this approach by a-FC-CNN. We then use 3 convolutional layers which have 7, 5,
and 3 channels for each layer and a fully connected layer of size 27 x 9 which has 378
parameters to train in total, and we denote this approach by a-CNN-CNN. We use
the Leaky ReLu activation function to perform a nonlinear mapping of the stencils
to the smoother. We train the smoothers on problems of size 31 x 31 and test the
performance on problems of size 255 x 255.

We compare the iteration numbers and runtime of using different approaches for
learning a-CNN smoothers with weighted Jacobi and show the results in Table 4.
We also show the spectral properties of each smoothers in Table 5 and Table 6. We
also show that the fully connected approach has similar performance in terms of both
iteration number and runtime compared to the convolutional approach while having
17 times more parameters. Both a-CNN approaches can achieve 2x speedup in terms
of iteration number and 1.6x speedup in terms of runtime.
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TABLE 5
Spectral radius of iteration matrices (2.3) of two-grid for solving (6.5) of size n = 162 using

w-Jacobi with w = %, a-CNN-CNN and a-FC-CNN smoothers.

K 0.1 1 10 100
w-Jacobi 0.9951 | 0.9955 | 0.9962 | 0.9962
a-CNN-CNN | 0.9856 | 0.9865 | 0.9888 | 0.9887
a-FC-CNN 0.9752 | 0.9762 | 0.9796 | 0.9784

TABLE 6
Ideal convergence bound (2.7) for the same methods and problems in Table 5.

K 0.1 1 10 100
w-Jacobi 0.9952 | 0.9955 | 0.9963 | 0.9962
a-CNN-CNN | 0.9858 | 0.9867 | 0.9893 | 0.9895
a-FC-CNN 0.9753 | 0.9762 | 0.9798 | 0.9790

TABLE 7
Numbers of iterations (runtime(s)) required by preconditioned Flexible GMRES to reach toler-
ance 1078 for solving (6.1) with different 6 and &. The grid size is 5112,

& =100 0=m/12 0=m/6 0=m/4 0=m/3 0 =5n/12
w-Jacobi | 37.0(3.48 ) | 30.2( 2.86) | 28.0( 2.74) | 30.0(2.65) | 37.0(3.46)
a-CNN 11.0(2.32) 12.0(2.52) 13.0( 2.56) 12.0(2.47) | 11.0(2.29 )

6.3. Incorporation with Flexible GMRES. In this section we use multigrid
solvers as preconditioners of flexible GMRES (see [35]) on the same group of problems
as in Figure 12. Notice that due to the use of nonlinear activation functions in the
neural smoothers, it is mandatory to use flexible GMRES instead of standard GMRES
as the accelerator. We compare the performance of using the a-CNN smoothers
trained before and using the w-Jacobi smoothers in terms of iteration numbers and
running time. We show the results in Table 7 that using a-CNN can achieve up to
3.36x improvement in terms of iteration number and up to 1.5X improvement in
terms of time compared to w-Jacobi.

6.4. Comparison with other smoothers. In this section, we compare the
performance of the proposed a-CNN smoothers with other smoothers. We first con-
sider the problem (6.1) with § = 0 and £ = 100. We train the a-CNN smoothers by
applying 3 convolution kernels sequentially on a 31 x 31 mesh. We compare the perfor-
mance of a-CNN smoothers with Chebyshev polynomial of degree 3 and 3 iterations
of conjugate gradient and show the results on problems of various sizes in Table 8.
Note that Chebyshev smoothers require estimates of spectral radius A} ,. and are
computed on interval (y1 A% ., Y225 ). The performance of Chebyshev smoothers
can be sensitive to the choice of v; and 5. In our experiment, a-CNN smoothers
performed better than the Chebyshev smoothers with v; = 1/30 and 2 = 1.1 that
are the default in PyAMG [32].

Next, we consider the following convection diffusion problem:

(6.6) —vAu+7-grad(u) = f, —v=10"* 7= [v,,v,] = [100,100].
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TABLE 8
Number of iterations required by w-Jacobi, a-CNN smoothers, Chebyshev smoothers, and con-
jugate gradient (CG) smoothers to reach the convergence tolerance 106 for solving the rotated
Laplacian problems with different grid sizes, where § = 0 and £ = 100.

637 ] 1277 [ 2557 | 5117
w-Jacobi 568.9 | 599.7 | 593.5 | 576.2
Chebyshev (m = 1,n=1.1) | 229.6 | 242.8 | 240.0 | 233.0
Chebyshev (m = 35,n=1.1) | 92.0 97.1 96.0 93.0
CcG 59.5 58.5 60.5 59.5

a-CNN 47.0 48.5 49.1 50.0

30°

TABLE 9
Number of iterations required by w-Jacobi, a-CNN, and GMRES smoothers to reach the con-
vergence tolerance 10~6 for solving the convection-diffusion problem.

632 [ 1272 | 2552 | 5112
w-Jacobi Div Div Div Div
GMRES | 30.4 | 28.1 | 37.7 | 52.5
o-CNN | 12.0 | 11.1 | 140 | 17.3

We use the upwind finite difference discretization on a regular grid with uniform mesh
size h in all directions [31]. The resulting stencil is the following:

s
_ V. _ Vg 4l+vw+“y _ v
h2 h  h? R h2
_ v _ Yy
h2 h

We train the a-CNN smoother by applying 2 convolution kernels sequentially to 31 x31
problems. Since the matrix is nonsymmetric, Chebyshev smoothers cannot be used.
We show the results comparing with GMRES polynomials of degree 2 in Table 9.

7. Conclusion. In this work we propose an efficient framework for training
smoothers in the form of multilayered CNNs that can be equipped by multigrid meth-
ods for solving linear systems arising from PDE problems. The training process of
the proposed smoothing algorithm, called a-CNN, is guided by multigrid convergence
theories and has the desired property of minimizing errors that cannot be efficiently
annihilated by coarse-grid corrections. Experiments on rotated Laplacian problems
show the superior smoothing property of a-CNN smoothers that leads to better perfor-
mance of multigrid convergence when combined with standard coarsening and inter-
polation schemes compared with classical relaxation-based smoothers. We also show
that well-trained a-CNN smoothers on small problems can be generalized to problems
of much larger sizes and different geometries without retraining. The training cost of
the proposed approach is still much higher than using standard methods for solving
a single PDE problem or a few of them. However, in the context of solving a large
number of different problems (potentially with different grid sizes) arising from the
same class of PDEs or from the same PDE operator with various right-hand sides, this
high training cost can be amortized. Moreover, with the rapid development of deep
learning technologies, the training time can be further reduced, and the framework
will be more practical in the future. For future work, we plan to use graph convo-
lution networks to extend the current framework to unstructured meshes and study
how to optimize other components in multigrid solvers such as coarsening algorithms
and grid-transfer operators.
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Appendix A. Proof of equivalent conditions for convergent smoothers.
The following result shows a sufficient and necessary condition for having a convergent
smoother M in the energy norm.

THEOREM A.l. Assuming A is SPD, each step of iteration (2.3) is convergent in
the energy norm, i.e., |lexi1lla = ||Gerlla < |lexlla, if and only if M + MT — A is
SPD.

Proof. We have the following identity,

lexr1lla = I — M~ A)ex|%
= llellh — 2(er, M~  Aey)a + [|M ™ Aey |5
= [lexl|% — ((2M — A)M ' Aey, M~ Aey,),
50 |lex+1lla < |lek||a for any e, if and only if 2M — A is positive definite or equivalently
M+ MT — Ais SPD. O
A similar result can also be shown in the 2-norm.

THEOREM A.2. Assuming A is SPD, each step of iteration (2.3) is convergent
in the 2-norm, i.e., |lext1ll2 = ||Gerllz < |lekll2 for any ex if and only if A1 M +
MTA=' — I is SPD.

Proof. We have the following identity:

lex+1l13 = llexll3 — 2(ex, M~ Aek) + (| M~ Ae|3
= llexll3 — ((2A™'M — I)M " Aey,, M~ Aey,) .
So, |lex+1ll < llex] if and only if 2A71M — I is positive definite, or equivalently
A7'M + MTA™Y —I'is SPD. 0

Moreover, we can show that if A=*M + MTA~T — I is SPD, the numerical radius
v(G) < 1, for which we first state the following lemma.

LEMMA A.3. Suppose C is SPD and (Bxz,z) > (aCx,x) for any x and some
a>0. Then, B~' + B~ is SPD and
(A1) 0< (aB™tz,x) < (C'a,2).

Proof. Since C is SPD and (Bz,z) > (aCx,x) > 0, B is positive definite and so is
B~ ie., B~'+ BT is SPD. For (A.1), we have (aB~ 'z, z) = (aC'/2B~ 12, C~/2x),
from which and from the Cauchy—Schwarz inequality, it follows that

(aB™'z,x)* < a||CY2B a|5|C 223
= (aCB 'z, B ') (C ™ 2, 2)
< (B 'z, x)(C e, ).

The result is given by dividing both sides by (B~ 'z, z). d

THEOREM A.4. Assuming A~*M+MTA~T—1 is SPD, then the numerical radius
v(G) < 1.

Proof. By the assumption (A~'Mux,z) > (2/2,z), so by Lemma A.3, we have
0< (M~ Az, z) < 2(z,x), i.e., the numerical radius v(G) < 1. d

COROLLARY A.5. Assuming A~*M+MTA~T —1 is SPD, then the spectral radius
p(G) < 1.
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Appendix B. Proof of convolutional network as convergent smoother.
LEMMA B.1. Norms are continuous functions in R™.

Proof. Suppose z and y are two vectors in R™. Define u = z — y, and write u in
the canonical basis as u = Z?:l d;e;. Then we have

n n
lall =11 Sieall < > I6illlel] < max |6:]les]).
i=1 i=1

Setting M = Y7 | [les]| we get
Jull < Mmax|6;| = M|z = yl|oo-

Let € be given, and take x,y such that ||z — y|lcc < 7. Then, by using the triangle
inequality we obtain

€
llzll = llglll < llz =yl < Mmaxd; < M7 =e.

This means that we can make ||y|| arbitrarily close to ||z|| by making y close enough
to x in the sense of the defined metric. Therefore, norms are continuous functions. 0

LEMMA B.2. In R™ all norms are equivalent.

Proof. We only need to show that for ®; = | - || some norm and @3 = || - ||o. All
other cases will follow from this one.

First we can show that for some scalar o we have ||z|| < a||z|/s. Express z in
the canonical basis of R™ as x = 2?21 z;e;. Then

n n

n
lzll = 11D wiesl <D lzallles]| < maxa] Y el < Jlzf e,
i=1 i=1 i=1
where a = >"1 | [|e; .

We then show that there is a § such that |z| > f||z||s. Assume z # 0, and
consider u = z/||z|l«. Note that u has infinity norm equal to one. Therefore it
belongs to the closed and bounded set Soo = {v|||v]|c = 1}. Based on Lemma B.1,
the minimum of the norm ||u|| for all uw’s is reachable in the sense that there is a
ug € So such that

min [ul] = juo].

Let us call 8 this minimum value. Since this value cannot be zero, we then have

x
=11 = 8.
[E41PS
This implies that ||z|| > B||z|lcc- This completes the proof. 0

THEOREM B.3. Suppose H is a convolutional network with k convolutional layers.
For one fized matriz A, if parameterized properly, H can be a convergent smoother.

Proof. Based on the universality property of deep CNNs without fully connected
layers [47], we know that H can approximate the linear operator A~! to an arbitrary
accuracy measured by some norms when k is large enough. Thus, theoretically, HA
can be very close to an identity mapping if parameterized properly. Based on Lemmas
B.1 and B.2, we know matrix induced norms are continuous functions; thus || I—H A|| 4
can be less than 1 for certain k& measured in matrix A-norm.
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Appendix C. Finite difference discretization of PDEs. We discretize the
operators Au and ug, in (6.1) using the following stencils:

-1 -1 1

14 -1 and o -1 2 -1,
o 2h

L
an?

where h is the grid spacing.

Appendix D. Numerical results of spectral radius. We fix the parameters
of the rotated Laplacian problems to be # = 0, and we train the neural smoothers
for £ = 100, 200, 300,400 on the square domain. Then we fix the parameters to be

TABLE 10
Spectral radius of the iteration matrices corresponding to the 5-level multigrid methods with
full coarsening and w-Jacobi and 6-layered a-CNN smoother for rotated Laplacian problems with
different 8 and §. The mesh size is 16 X 16.

G=0 | €=100 ] £€=200 | £€=2300 | € =400
w-Jacobi 0.9853 0.9918 0.9940 0.9951
a-CNN 0.6816 0.8189 0.8805 0.8936
& =100 0=0 | 0=7/12 | 0=7/6 | 0 =x/4
w-Jacobi | 0.9853 0.9436 0.8981 0.8837
a-CNN 0.6816 0.4534 0.4547 0.4216
0 \ \ \
E 80 + y 10| \ / 7
=
5 — — e
£ 60 8 N
3 g 5 - g a
é - u
ga0| . E
Z 20| " ! ! ! - O ! ! ! L
n/12 7w/6 w/4 w/3 b5m/12 w/12 w/6 «w/4 «/3 bmw/12
Rotation angle 0 Rotation angle
2 80| T T T ] T T T T
; °l \
=
) —~
= 60| - N .\.\\\'/////
kK E 5| T B
— =1
£ 40 |- a i
E ~
Ei -
Z 0r .

| | | | |
w/12 w/6 w/4 w/3 bw/12
Rotation angle 6

’ —e— w-Jacobi —#— a-CNN ‘

7r/12 7r‘/6 77)4 Tl"/3 57r‘/12

Rotation angle 6

‘ —o— w-Jacobi —#— a-CNN ‘

F1G. 15. Numbers of iterations and runtime required by multigrid solvers for solving the rotated
Laplacian problems of size n = 5112 with 6 = (158> 1> 3+ %"] and & = 100. The top two subfigures
show the performance of multigrid with full coarsening, and the bottom two subfigures show the
performance of multigrid with red-black coarsening.
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§ = 100, and we train the neural smoothers for # = 0,...,%. We compare the

spectral radius of the iteration matrices of 5-level multigrid solvers equipped with
different smoothers and summarize the results in Table 10.

Appendix E. More numerical results.

Figure 15 shows the performance of 5-level multigrid with w-Jacobi smoothers
and a-CNN smoothers using full coarsening and red-black coarsening with the same
problem setting as in Figure 12. However, here we are using 6 convolutional layers
with full coarsening and 2 convolutional layers with red-black coarsening. For fair
comparison in terms of computational flops per iteration, in this experiment we run
6 Jacobi steps each iteration for full coarsening and 2 Jacobi steps for red-black
coarsening.
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REFERENCES

[1] A. H. BAKER, R. D. Farcour, T. V. KOLEV, AND U. M. YANG, Multigrid smoothers for
ultraparallel computing, SIAM J. Sci. Comput., 33 (2011), pp. 2864—2887.

[2] R. E. BANK AND C. C. DouGLAs, Sharp estimates for multigrid rates of convergence with
general smoothing and acceleration, STAM J. Numer. Anal., 22 (1985), pp. 617-633.

[3] M. BENzI AND M. TUMA, A comparative study of sparse approzimate inverse preconditioners,
Appl. Numer. Anal., 30 (1999), pp. 305-340.

[4] J. BERG AND K. NYSTROM, A unified deep artificial neural network approach to partial differ-
ential equations in complex geometries, Neurocomputing, 317 (2018), pp. 28-41.

[5] M. BoLTEN AND K. KAHL, Using block smoothers in multigrid methods, PAMM. Proc. Appl.
Math. Mech., 12 (2012), pp. 645-646.

[6] A. BRANDT, Algebraic multigrid (AMG) for sparse matriz eqations, in Sparsity and Its
Applications, D. J. Evans, ed., Cambridge University Press, Cambridge, UK, 1984,
pp. 257-284.

[7] A. BrRANDT, Algebraic multigrid theory: The symmetric case, Appl. Math. Comput., 19 (1986),
pp. 23-56.

[8] A. BRANDT, S. MCCORMICK, AND J. RUGE, Algebraic multigrid (AMG) for sparse matriz
equations, in Sparsity and its Applications, D. J. Evans, ed., Cambridge University Press,
Cambridge, UK, 1985, pp. 257-284.

[9] M. BREzINA, A. J. CLEARY, R. D. FaLcouT, V. E. HENSON, J. E. JONES, T. A. MANTEUFFEL,
S. F. McCORMICK, AND J. W. RUGE, Algebraic multigrid based on element interpolation
(AMG@Ge), SIAM J. Sci. Comput., 22 (2001), pp. 1570-1592.

[10] W. L. Briaas, V. E. HENSON, AND S. F. McCoRMICK, A Multigrid Tutorial, STAM, Philadel-
phia, 2000.

[11] D. Car, E. CHOw, L. ERLANDSON, Y. SAAD, AND Y. X1, SMASH: Structured matriz approzi-
mation by separation and hierarchy, Numer. Linear Algebra Appl., 25 (2018), €2204.

[12] B. CuANG, L. MENG, E. HABER, F. TUNG, AND D. BEGERT, Multi-level residual networks
from dynamical systems view, in Proceedings of the International Conference on Learning
Representations, 2018.

[13] J. COSGROVE, J. DiAz, AND A. GRIEWANK, Approzimate inverse preconditionings for sparse
linear systems, Int. J. Comput. Math., 44 (1992), pp. 91-110.

(14] H. DE STERCK, T. A. MANTEUFFEL, S. F. MCCORMICK, K. MILLER, J. RUGE, AND G. SANDERS,
Algebraic multigrid for markov chains, STAM J. Sci. Comput., 32 (2010), pp. 544-562.

[15] D. J. EvANS AND W. S. YousIF, The ezplicit block relazation method as a grid smoother in
the multigrid v-cycle scheme, Int. J. Comput. Math., 34 (1990), pp. 71-78.

[16] R. D. FALGouT AND P. S. VASSILEVSKI, On generalizing the algebraic multigrid framework,
SIAM J. Numer. Anal., 42 (2004), pp. 1669-1693.

[17] D. GREENFELD, M. GALUN, R. BAsRI, I. YAVNEH, AND R. KIMMEL, Learning to optimize multi-
grid PDE solvers, in Proceedings of the International Conference on Machine Learning,
2019, pp. 2415-2423.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/30/22 to 107.130.114.139 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

S224 RU HUANG, RUIPENG LI, AND YUANZHE XI

M. J. GROTE AND T. HUCKLE, Parallel preconditioning with sparse approzimate inverses, STAM
J. Sci. Comput., 18 (1997), pp. 838-853.

T. GupMUNDSSON, C. S. KENNEY, AND A. J. LAUB, Small-sample statistical estimates for
matriz norms, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 776-792.

E. HABER, L. RutHoTTO, E. HOLTHAM, AND S.-H. JUN, Learning across scales—multiscale
methods for convolution neural networks, in Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 2018.

J. HaN, A. JENTZEN, AND E. WEINAN, Solving high-dimensional partial differential equations
using deep learning, Proc. Natl. Acad. Sci. USA, 115 (2018), pp. 8505-8510.

J. HE AND J. XU, MgNet: A unified framework of multigrid and convolutional neural network,
Sci. China Math., 62 (2019), pp. 1331-1354.

P. HoLr, N. THUEREY, AND V. KOLTUN, Learning to control PDEs with differentiable physics,
in Proceedings of the International Conference on Learning Representations, 2019.

J.-T. HsieH, S. ZHAo, S. EisMANN, L. MIRABELLA, AND S. ERMON, Learning neural PDE
solvers with convergence guarantees, in Proceedings of the International Conference on
Learning Representations, 2019.

A. KATRUTSA, T. DAULBAEV, AND 1. OSELEDETS, Deep Multigrid: Learning Prolongation and
Restriction Matrices, preprint, arXiv:1711.03825 [math.NA], 2017.

1. E. LacARis, A. Likas, AND D. 1. FoTIADIS, Artificial neural networks for solving ordinary
and partial differential equations, IEEE Trans. Neural Netw., 9 (1998), pp. 987-1000.

P. T. LiN, J. N. SHADID, AND P. H. TsuJi, Krylov Smoothing for Fully-Coupled AMG Pre-
conditioners for VMS Resistive MHD, Springer International Publishing, Cham, 2020,
pp- 277-286.

I. Luz, M. GALUN, H. MARON, R. BASrI, AND I. YAVNEH, Learning algebraic multigrid us-
ing graph neural networks, in Proceedings of the International Conference on Machine
Learning, 2020, pp. 6489-6499.

S. MIsHRA, A machine learning framework for data driven acceleration of computations of
differential equations, Math. Engrg., 1 (2018), pp. 118-146.

E. NATHAN, G. SANDERS, V. E. HENSON, AND D. A. BADER, Numerically approzimating cen-
trality for graph ranking guarantees, J. Comput. Sci., 26 (2018), pp. 205-216.

Y. NoTAY, Aggregation-based algebraic multigrid for convection-diffusion equations, SIAM J.
Comput. Sci., 34 (2012), pp. A2288-A2316.

L. N. OLsoN AND J. B. SCHRODER, PyAMG: Algebraic Multigrid Solvers in Python v4.0, 2018,
https://github.com/pyamg/pyamg.

O. RONNEBERGER, P.FISCHER, AND T. BROX, U-net: Convolutional networks for biomedical
image segmentation, in Medical Image Computing and Computer-Assisted Intervention
(MICCALI), Lecture Notes in Comput. Sci. 9351, Springer, 2015, pp. 234-241.

J. W. RUCE, Algebraic multigrid (AMG) for geodetic survey problems, in Preliminary Proceed-
ings of the International Multigrid Conference, Fort Collins, CO, 1983.

Y. SAAD, Iterative Methods for Sparse Linear Systems, 2nd ed., STAM, Philadelphia, 2003.

Y. SAAD, Iterative Methods for Linear Systems of Equations: A Brief Historical Journey,
preprint, arXiv:1908.01083 [math.HO], 2020.

J. ScamITT, S. KUCKUK, AND H. KOSTLER, Optimizing Geometric Multigrid Methods with
Evolutionary Computation, preprint, arXiv:1910.02749 [math.NA], 2019.

J. SIRIGNANO AND K. SPILIOPOULOS, DGM: A deep learning algorithm for solving partial dif-
ferential equations, J. Comput. Phys., 375 (2018), pp. 1339-1364.

H. D. STERCK, V. E. HENSON, AND G. SANDERS, Multilevel aggregation methods for small-
world graphs with application to random-walk ranking, Comput. Informatics, 30 (2011),
pp. 225-246.

M. Sun, X. YAaN, AND R. ScCLABASSI, Solving partial differential equations in real-time using
artificial neural network signal processing as an alternative to finite-element analysis, in
Proceedings of the International Conference on Neural Networks and Signal Processing,
IEEE, 2003, pp. 381-384.

W. Tang, T. SHaN, X. DanG, M. Li, F. Yang, S. Xu, anD J. Wu, Study on a Pois-
son’s equation solver based on deep learning technique, in Proceedings of the IEEE Elec-
trical Design of Advanced Packaging and Systems Symposium (EDAPS), IEEE, 2017,
pp. 1-3.

U. TROTTENBERG, C. W. OOSTERLEE, AND A. SCHULLER, Multigrid, Elsevier, New York, 2000.

A. J. WATHEN, Preconditioning, Acta Numer., 24 (2015), pp. 329-376.

] S. WEIL, X. JiN, AND H. L1, General solutions for nonlinear differential equations: A rule-

based self-learning approach using deep reinforcement learning, Comput. Mech., 64 (2019),
pp. 1361-1374.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://github.com/pyamg/pyamg

Downloaded 09/30/22 to 107.130.114.139 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

OPTIMAL MULTIGRID SMOOTHERS VIA NEURAL NETWORKS S225

[45] G. WITTUM, On the robustness of ILU smoothing, SIAM J. Sci. Statist. Comput., 10 (1989),
pp. 699-717.

[46] J. XU AND L. ZIKATANOV, Algebraic multigrid methods, Acta Numer., 26 (2017), p. 591-721.

[47] D.-X. ZHOU, Universality of deep convolutional neural networks, Appl. Comput. Harmon.
Anal., 48 (2020), pp. 787-794.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



	Introduction
	Related work

	Preliminaries and theoretical background
	Relaxation methods
	Multigrid methods

	Learning deep neural smoothers for constant coefficient PDEs
	Formulation
	Training and generalization

	Learning deep neural smoothers for variable coefficient PDEs
	Parameterization with fully connected layers
	Parameterization with convolutional layers

	Interpretation of learned smoothers
	Numerical experiments
	Constant coefficient PDEs
	Variable coefficient PDEs
	Incorporation with Flexible GMRES
	Comparison with other smoothers

	Conclusion
	Appendix A. Proof of equivalent conditions for convergent smoothers
	Appendix B. Proof of convolutional network as convergent smoother
	Appendix C. Finite difference discretization of PDEs
	Appendix D. Numerical results of spectral radius
	Appendix E. More numerical results
	Acknowledgments
	References

