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Abstract 7 

The sensitivity of recrystallization kinetics in metals to the heterogeneity of microstructure and 8 

deformation history is a widely accepted experimental fact. However, most of the available 9 

recrystallization models employ either a mean field approach or use grain-averaged parameters, 10 

and thus neglecting the mesoscopic heterogeneity induced by prior deformation. In the present 11 

study, we investigate the impact of deformation-induced dislocation (subgrain) structure on the 12 

kinetics of recrystallization in metals using the phase-field approach. The primary focus here is 13 

upon the role of dislocation cell boundaries. The free energy formulation of the phase-field model 14 

accounts for the heterogeneity of the microstructure by assigning localized energy to the resulting 15 

dislocation microstructure realizations generated from experimental data. These microstructure 16 

realizations are created using the universal scaling laws for the spacing and the misorientation 17 

angles of both the geometrically necessary and incidental dislocation boundaries. The resulting 18 

free energy is used into an Allen-Cahn based model of recrystallization kinetics, which are solved 19 

using the finite element method. The solutions thus obtained shed light on the critical role of the 20 

spatial heterogeneity of deformation in the non-smooth growth of recrystallization nuclei and on 21 

the final grain structure. The results showed that, in agreement with experiment, the morphology 22 

of recrystallization front exhibits protrusions and retrusions. By resolving the subgrain structure, 23 

the presented algorithm paves the way for developing predictive kinetic models that fully account 24 

for the deformed state of recrystallizing metals.  25 
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1.  Introduction 26 

Thermomechanical treatment has been widely used to control the microstructure, texture, and 27 

properties of metals and alloys in industrial processes. Customarily, this starts by work hardening 28 

the material via mechanical deformation, followed by thermal annealing at high temperature [1–29 

5]. During plastic deformation, a small fraction of the mechanical energy is stored in the form of 30 

crystalline defects, mainly dislocations, while the rest is released in the form of heat [6].  On the 31 

other hand, annealing leads to microstructural changes driven by stored energy minimization. 32 

Stored energy release occurs mainly by three mechanisms: recovery, recrystallization, and grain 33 

coarsening [1,5]. Microscopically, these mechanisms comprise rearrangement and annihilation of 34 

crystal defects and can take place simultaneously or at different timescales. Recovery includes all 35 

processes that do not require high angle grain boundaries movement [6–9]. Grain coarsening, on 36 

the other hand, is the growth of the mean grain size driven by the reduction in grain boundary area. 37 

Recrystallization is the intermediate mechanism and can be defined as the formation and migration 38 

of high angle grain boundaries (with misorientation angle > 10-150) driven by the stored energy of 39 

deformation [10–16]. Recrystallization consists of two stages, nucleation and growth, and ends by 40 

eliminating almost all the dislocations induced by the plastic deformation. 41 

Several models exist to capture the recrystallization phenomena, including mainly analytical 42 

and mesoscale approaches. Analytical methods employing mean-field approach, such as Johnson-43 

Mehl-Avrami-Kolmogorov (JMAK) and its extensions or the cellular stability model [5,17,18], 44 

give mainly a qualitative description of recrystallization behavior that can provide some insights 45 

about recrystallization kinetics. Meanwhile, pursuing mesoscopic approaches for quantitative 46 

prediction of microstructural evolution during recrystallization of a given deformed state sounds 47 

achievable. In this regard, several techniques are sought to handle the spatial complexity of the 48 

problem [18–33]. Each of these topological models has its own capabilities and limitations. Monte 49 
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Carlo (Potts model) approach [5,18–20] and phase-field modeling [25–36] are among the leading 50 

models. Cellular automata models [5,19,24] are closely related to the Potts model with advantage 51 

of direct control of boundary mobility. Other topological approaches include vertex or network, 52 

moving finite element, level set, computer Avrami, and neural network models [4]. 53 

Modeling challenges to be addressed in mesoscale approaches to recrystallization are abound. 54 

For example, realistic input data such as deformation structures, boundary properties, and 55 

constitutive descriptions are in general lacking. Deformed microstructure heterogeneity requires 56 

modeling features that are very small relative to the structure scale (~ 100 nm), such as local and 57 

nonlocal dislocation interactions, for accurate evaluation of local variation in the stored energy, 58 

which is still missing. Inadequate representation of some underlying physical processes is another 59 

example. i.e., a physics-based model for recrystallization nucleation is absent. As such, empirical 60 

rules are usually used for nucleation and simplifying assumptions about recovery are dictated. This 61 

leads to the fact that most recrystallization models are basically growth models. Moreover, the 62 

strong dependence of nuclei survival and growth propensity on their instantaneous location relative 63 

to the grain boundaries poses yet another modeling difficulty. The adequate accountability of these 64 

issues controlling nucleation and growth is critical for realistic representation of the heterogeneous 65 

aspect of this phenomenon. Capturing crystallographic texture, anisotropy in grain boundary 66 

properties (e.g., mobility and energy), and local misorientations of sub-grains represent additional 67 

levels of complexity to mesoscopic models. To overcome some of these challenges, a robust 68 

algorithm to construct deformation microstructure based on realistic data is needed. This is 69 

essential to determine the potential of preexisting embryos to transform into recrystallization 70 

nucleus and eventually form a new grain. 71 

Advanced experimental techniques have been used extensively to investigate deformation 72 

microstructure in metals [9,37–43], which demonstrated the key role played by dislocations in the 73 
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structural evolution leading to grain subdivision. Dislocation substructure evolution is driven by 74 

two processes, dislocation multiplication followed by dynamic recovery. This eventually leads to 75 

formation of dislocation cell structure via dislocations rearrangement into dislocation walls with 76 

small fraction forming a Frank network in the cell [37]. Cell structure is characterized by two 77 

different types of dislocation boundaries with distinct attributes, namely, geometrically necessary 78 

boundaries (GNBs) and incidental dislocation boundaries (IDBs) [6,37]. Figure 1 illustrates 79 

sketches of typical deformation microstructure observed in a medium-high stacking fault energy 80 

metal for strain values below 1 (Fig. 1a) and larger than 2 (Fig. 1b) [44]. As strain increases, planar 81 

GNBs spacing and the cell size decrease and IDBs become relatively straight. These characteristics 82 

of microstructure refinement are observed at high strains. Figure 1c shows a typical distribution of 83 

the elastic energy density in deformed copper at a small strain determined using continuum 84 

dislocation dynamics (CDD), with the geometrically necessary dislocations (GND) density 85 

overlayed on the energy map [45]. CDD is becoming more predictive of the deformation 86 

microstructure as well as the elastic strain field of the dislocation system, hence the elastic energy. 87 

It can shed light on the energy density distribution in the system in connection with the dislocation 88 

patterns. Figure 1c also shows that the magnitude of the elastic energy is not negligible in the cell. 89 

This indicates the importance of accounting for the background energy distribution in the cell 90 

along with the dislocation core energy stored in the boundaries themselves. Furthermore, 91 

experimental evidence demonstrated the complex morphological evolution of the recrystallization 92 

front with local protrusions/retrusions adding a driving force for recrystallization comparable in 93 

magnitude to the stored energy contribution [39,42,43,46]. This causes the migration of 94 

recrystallization boundaries to exhibit stop-go behavior and kinetics that deviate significantly from 95 

classical models’ prediction, which depend on averaged measures for stored energy and 96 

recrystallization boundary velocity.   97 
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 98 
 99 
Fig. 1. Dislocation structure and distribution of elastic energy density in a rolled medium-high stacking 100 

fault energy metals. (a) At small strains (< 1) and (b) at large strains (> 2) [44]. (c) A continuum dislocation 101 

dynamics simulation result for a [001] tensile-loaded copper crystal at 1% strain viewed on (010) plane, 102 

showing the elastic energy being primarily concentrated near the GND walls followed by small packets of 103 

energy concentrated in the cells formed by the dislocations [45]. In (a) and (b), dashed and solid lines 104 

represent IDB and GNB, respectively. 105 

 106 

Inspired by available detailed structural analysis of deformation microstructure observed 107 

experimentally and CDD findings, the current study presents a novel phase-field model for static 108 

recrystallization of plastically deformed metals accounting for deformation-energy field 109 

heterogeneity. Unlike previous works [46,47], the present model is the first-of-its-kind to 110 

incorporate realistic deformed microstructure by employing a statistical approach to represent local 111 

variation in the deformation-energy field due to dislocation cell structure using universal scaling 112 

laws and similitude relations [13,14]. The primary goal is to investigate the ability of this subgrain 113 

structure-informed model to reproduce the morphological evolution of recrystallization front with 114 

the experimentally observed protrusions/retrusions and investigate the impact of local variation in 115 

deformation field on recrystallization kinetics and final grain structure. The description of the 116 

stored energy field takes into consideration cell’s interior energy variation. The effects of strain 117 

level and temperature are also investigated and the sensitivity of the model predictions to the 118 

statistical parameters representing the deformation-energy field is examined. The rest of the paper 119 

is organized as follows. The developed dislocation microstructure-informed model will be detailed 120 
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in Sec. 2. The phase-field method for recrystallization modelling will be discussed in Sec. 3. The 121 

results are presented and discussed in Sec. 4, followed by the summary and outlook in Sec. 5. 122 

2. Dislocation Microstructure-Informed Recrystallization Model  123 
2.1. Plastic deformation structures in metals 124 

When grain subdivision is accompanied by easy three-dimensional mobility of dislocations via 125 

cross slip, dislocation cell structure is observed, which involves the formation of rotated volume 126 

elements [7,8,48]. The basic unit in this microstructure is the cell block, with long and nearly 127 

planar dislocation walls lying on special planes (GNBs) delineating these elongated cell blocks. 128 

Every cell block consists of approximately equiaxed cells, and each of these cells is bounded by 129 

short boundaries (IDBs). The dislocation density in the interior of these cells is much lower than 130 

the average dislocation density in the deformed matrix. Being formed by different mechanisms, 131 

cell block boundaries and cell boundaries have different characteristics [7,8,48]. GNBs 132 

accommodate the difference between macroscopic strain and cell block strain caused by slip 133 

pattern, so angular misorientations are controlled by the difference in glide-induced lattice 134 

rotations in the adjoining volume. At small strains, GNBs appear as dense dislocation walls, while 135 

at large strains, a single, nearly planar boundary enclosing a narrow cell block forms what is known 136 

as lamellar boundary (LB). On the other hand, IDB is a dislocation boundary formed by the mutual 137 

and statistical trapping of glide dislocations and supplemented by forest dislocations. At large 138 

strains, a Bamboo incidental dislocation boundary is observed, which is connected to GNBs (i.e., 139 

LBs) at the two ends. It separates two nearly empty volumes that are rotated from each other. The 140 

combination of lamellar and Bamboo boundaries together comprises the so-called lamellar 141 

structure. For the sake of demonstrating ideas, the present investigation will primarily focus on the 142 

lamellar structure.  143 
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Microstructural analysis using available TEM and EBSD data has been used to quantitatively 144 

describe the deformed state in terms of microstructural parameters [13,14]. Important 145 

microstructural parameters include boundary type, crystal orientation with respect to deformation 146 

axes, boundary plane, spacing, misorientation angle, and width. Cottrell was the first to suggest 147 

the relation between the local misorientation angle and recrystallization nucleation propensity [2]. 148 

Later, extensive experimental evidence supported his idea that nucleation occurs only at regions 149 

in microstructure with high local misorientation [7,8,48–55]. Although average dislocation 150 

boundaries spacing and average misorientation angle across them are continuously changing with 151 

strain, a scaling law has been observed for each boundary type independently. A universal 152 

probability distribution function can be used to represent the spatial distribution of these 153 

parameters in FCC metals. The scaling behavior applies when the universal function is normalized 154 

by the average value of the microstructural parameter for a given deformed state, which is usually 155 

determined using the equivalent von Mises strain (𝜀𝜀). Rayleigh distribution is used to express this 156 

universal function. For example, the probability distribution function of misorientation angle 𝜃𝜃 for 157 

a given average misorientation angle 𝜃𝜃(𝜀𝜀) across specific boundary type (i.e., GNB or IDB) is 158 

given by [16] 159 

 𝑓𝑓 �
𝜃𝜃 
𝜃𝜃
� =

π
2 �
𝜃𝜃
𝜃𝜃
� exp�−

π
4 �
𝜃𝜃
𝜃𝜃
�
2

�. (1) 

Similarly, the probability distribution function of boundary spacing 𝐷𝐷 for each of the two 160 

boundary types at a given average spacing 𝐷𝐷(𝜀𝜀) is given by 161 

 𝑓𝑓 �
𝐷𝐷 
𝐷𝐷
� =

π
2 �
𝐷𝐷
𝐷𝐷
� exp�−

π
4 �
𝐷𝐷
𝐷𝐷
�
2

�. (2) 

From the microstructural analysis of GNBs and IDBs data, similar trends were found such as 162 

decrease (increase) of the average spacing (misorientation angle) with increasing the equivalent 163 
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strain. However, GNBs and IDBs exhibit some different characteristic behaviors. For example, the 164 

average misorientation angle across GNBs �𝜃𝜃GNB� does not saturates with higher strain, in contrast 165 

to IDBs, i.e., �𝜃𝜃IDB�. Furthermore, misorientation angle distribution of GNBs does not necessarily 166 

follow the scaling law at high strains [7,48]. Two similitude relations were also observed for 167 

microstructural parameters [48]. The first gives the interrelationship between boundary spacing 168 

(D), misorientation angle (𝜃𝜃), and Burgers vector (b). It takes the form 169 

 
𝐷𝐷𝐷𝐷
𝑏𝑏

= 𝐶𝐶, (3) 

where 𝐶𝐶 is a constant. The second gives the relation between dislocation wall thickness (𝑤𝑤) and 170 

GNBs average spacing 171 

 𝑤𝑤 = 𝑓𝑓w𝐷𝐷GNB. (4) 

In this relation, 𝑓𝑓w is a small fraction. To construct the lamellar structure, typical experimental 172 

values for this fraction [7,48] will be used in the developed model to fix individual boundaries 173 

width in terms of average spacing. This relation will be also assumed true for IDBs. 174 

2.2. Deformation energy representation & lamellar structure construction algorithm 175 

Driven by energy minimization, the tangled dislocations tend to rearrange themselves in certain 176 

patterns. Theoretically, these rearrangements can be interpreted in the context of the theory of Low 177 

Energy Dislocation Structures (LEDS). In LEDS theory, the assumption of elastic distortion being 178 

restricted to a region close to the boundary [14–16] leads, in the absence of long-range stresses, to 179 

Frank's formula for the relationship between dislocation content of a boundary and its angle axis 180 

pair (R/θ) [7]. Burgers vectors net content, B, in small angle boundary is given by [7] 181 

 𝐁𝐁 = (𝐫𝐫 × 𝐑𝐑)2 sin �
𝜃𝜃
2�

 (5) 
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where, r is a vector lying in the boundary containing dislocations network and intersecting them 182 

all. The low-energy structures assumption also leads to Read-Shockley equation for the relation 183 

between elastic energy per unit area of the boundary, 𝐸𝐸a, and the misorientation angle [16] 184 

 𝐸𝐸a = �𝛾𝛾m �
𝜃𝜃

𝜃𝜃max
� �1 − ln �

𝜃𝜃
𝜃𝜃max

�� , 𝜃𝜃 ≤ 𝜃𝜃max

𝛾𝛾m, 𝜃𝜃 > 𝜃𝜃max

. (6) 

In the above, 𝛾𝛾m is the high angle-grain boundary energy, which is independent of 185 

misorientation angle. Here, 𝜃𝜃max for a low-angle boundary is taken as 15°. Scaling laws, similitude 186 

relations, and Read-Shockley equations are used here to create a realization of the deformation-187 

energy field associated with lamellar structure. Typical values for FCC metals are used to 188 

parametrize the algorithm, which is used as initial configuration in recrystallization model. 189 

Lamellar structure is represented in 2-D. Nevertheless, extending the algorithm to 3-D is 190 

straightforward. Cell blocks are created using horizontal GNBs extended over the entire domain. 191 

GNBs spacing is randomly sampled from Rayleigh distribution, i.e., 192 

 𝐷𝐷
𝐷𝐷

 = �−�
4
π�

ln(1 − 𝑢𝑢), (7) 

with 𝑢𝑢 being a pseudo-random number sampled from a uniform distribution defined on the period 193 

[0, 1]. To constrain sampled boundary spacing values within the range employed in the 194 

microstructural analysis, 1
3
≤ 𝐷𝐷

𝐷𝐷
≤ 3 inequality is imposed. Similarly, spacing between contiguous 195 

IDBs belonging to the same cell block is sampled from Rayleigh distribution. IDBs are represented 196 

by straight lines that are inclined at an angle from the domain vertical axis and randomly chosen 197 

from arbitrary range: 15° − 35°. Successive IDBs in each cell block tilt in alternate directions and 198 

bridges only two LBs, i.e., do not extend beyond cell block boundary. For smaller von Mises 199 

strains (< 1), IDBs curvature is represented using a parabola equation.  200 
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The misorientation angle across each dislocation boundary is chosen such that the first 201 

similitude relation, Eq. (3), holds true. Accordingly, the deformation-energy field at any point with 202 

Cartesian coordinates (x, y) in deformed matrix takes the form 203 

 𝑓𝑓def(𝑥𝑥,𝑦𝑦) = � � max �𝐸𝐸a,𝑖𝑖𝛿𝛿(𝑦𝑦 − 𝑦𝑦𝑖𝑖),𝐸𝐸a,𝑗𝑗𝛿𝛿��𝑟𝑟⊥,𝑗𝑗(𝑥𝑥,𝑦𝑦)��� + 𝐶𝐶cell

𝑁𝑁IDB

𝑗𝑗=1

𝑁𝑁GNB

𝑖𝑖=1

 (8) 

In Eq. (8), total number of GNBs and IDBs are labelled by 𝑁𝑁GNB and 𝑁𝑁IDB, respectively. The 204 

energy per unit area of the ith GNB (defined by the equation: 𝑦𝑦 = 𝑦𝑦𝑖𝑖) and the jth IDB are denoted 205 

by 𝐸𝐸a,𝑖𝑖 and 𝐸𝐸a,𝑗𝑗, respectively. The deformation-energy consists of two terms, the first is attributed 206 

to lamellar structure, while the second, 𝐶𝐶cell, represents the elastic energy stored in individual cells 207 

interior and is assumed to be constant within each cell. Inspired by CDD results, the value of this 208 

constant varies from one cell to another depending on the individual cell area. Assuming inverse 209 

proportionality between the cell area and the elastic energy density, the smallest and the largest 210 

cells in the domain are assigned the highest and the lowest values for the deformation-energy 211 

density, respectively. Linear interpolation is then used to determine the magnitude of 𝐶𝐶cell for all 212 

other cells. In addition to zero value for this constant, three different ranges for cell’s interior 213 

energy density are considered, which were chosen to be a fraction of the highest sampled GNB 214 

deformation-energy density. Using Eq. (6), the energy per unit area of each boundary is calculated 215 

in terms of its misorientation angle. The truncated distribution functions 𝛿𝛿(𝑦𝑦 − 𝑦𝑦𝑖𝑖) and 216 

𝛿𝛿��𝑟𝑟⊥,𝑗𝑗(𝑥𝑥,𝑦𝑦)�� represent energy smearing across the dislocation boundary width for GNBs and 217 

IDBs, respectively, with contours taken to be parallel to the corresponding dislocation boundary, 218 

e.g., �𝑟𝑟⊥,𝑗𝑗(𝑥𝑥, 𝑦𝑦)� is the normal distance between the point and the corresponding IDB. To keep 219 

deformation-energy localized about dislocation boundaries, the smearing factor is set to one half 220 

of the boundary width �𝑤𝑤𝑖𝑖
2
� . In addition, GNBs screen the stress field associated with IDBs, so 221 



   
 

Page | 11 
 

IDBs distribution function is set to zero for points outside the same cell block. In this regard, the 222 

role of the maximum function appearing in the expression is to handle the special situation where 223 

the point lies close to the corner of the dislocation cell with possible contribution from both the 224 

nearby GNB and IDB. Unit pulse function is employed to represent the distribution function in the 225 

present study. It takes the form 226 

 𝛿𝛿(𝑦𝑦 − 𝑦𝑦𝑖𝑖) = �
1
𝑤𝑤𝑖𝑖

, if |𝑦𝑦 − 𝑦𝑦𝑖𝑖| ≤
𝑤𝑤𝑖𝑖
2

0, otherwise          
. (9) 

For comparison, Gaussian distribution is also examined. The lamellar structure model is 227 

parameterized for two different strain levels listed in Table 1 [7]. 228 

Table 1. Average microstructural parameters for lamellar structure model. 229 

Parameter ε 𝑫𝑫𝐆𝐆𝐆𝐆𝐆𝐆(𝜺𝜺) [µm] 𝑫𝑫𝐈𝐈𝐈𝐈𝐈𝐈(𝜺𝜺) [µm] 𝜽𝜽𝐆𝐆𝐆𝐆𝐆𝐆(𝜺𝜺) 𝜽𝜽𝐈𝐈𝐈𝐈𝐈𝐈(𝜺𝜺) 𝒇𝒇𝐰𝐰 
State 1 2.5 0.20          0.4 13.8° 2.6° 0.04 
State 2 4.5 0.16          0.3 19.5° 3.0° 0.04 

 230 
3. Phase-Field Modeling of Recrystallization 231 

The phase-field method is a versatile mathematical tool for studying interfacial evolution in 232 

materials. Its flexibility makes it powerful in tracking quantitatively the coevolution of the 233 

microstructure and properties of the dynamic system, while consistently imposing 234 

thermodynamics constrains on the kinetics of the problem [4,25–27]. Several researchers 235 

employed phase-field to model recrystallization [4,29–34,46,47]. Following Landau’s approach, 236 

Moelans et al. [27–30] developed a model for grain growth that can account phenomenologically 237 

for anisotropic grain boundary properties, assuming constant molar volume and thermal 238 

equilibrium. This grain growth model was used to study the recrystallization of isotropic system 239 

[29]. For this purpose, the different terms of the free energy density, see Eq. (15), were formulated 240 

as 241 
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 𝑓𝑓local =
6𝜎𝜎gb
𝑙𝑙gb

���
𝜂𝜂𝑖𝑖4

4
−
𝜂𝜂𝑖𝑖2

2
�

𝑁𝑁

𝑖𝑖=1

+
3
2
��𝜂𝜂𝑖𝑖2𝜂𝜂𝑗𝑗2

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

+
1
4
�, (10) 

 𝑓𝑓gradient =
3
8
𝜎𝜎gb𝑙𝑙gb�(∇𝜂𝜂𝑖𝑖)2

𝑁𝑁

𝑖𝑖=1

, (11) 

 𝑓𝑓stored = 𝑓𝑓def(𝑥𝑥, 𝑦𝑦)𝜌𝜌eff(𝜂𝜂1, 𝜂𝜂2, . . . , 𝜂𝜂𝑁𝑁). (12) 

Respectively, the above are the local or multi-well energy, gradient energy, and the stored 242 

energy density. The former two components are associated with the boundaries between the nuclei 243 

and the deformed matrix, with the latter carrying the stored energy. Here, 𝜂𝜂1, 𝜂𝜂2, . . . , 𝜂𝜂𝑁𝑁 are order 244 

parameters representing nuclei embedded in the matrix, while the order parameter 𝜂𝜂0 represents 245 

the deformed matrix. The order parameter, for example, 𝜂𝜂1 equals 1 in the nuclei 1, while all other 246 

fields equal 0. At the grain boundaries, all the fields smoothly vary between their equilibrium 247 

values in the adjacent grains. 𝜎𝜎gb and 𝑙𝑙gb are the model parameters representing the grain boundary 248 

energy and diffuse interface width, respectively. An analytical function 𝑓𝑓def(𝑥𝑥, 𝑦𝑦) was used in Eq. 249 

(12) to represent the deformation-energy field in the matrix multiplied by an interpolating function 250 

𝜌𝜌eff(𝜂𝜂1, 𝜂𝜂2, . . . , 𝜂𝜂𝑁𝑁) ensuring smooth variation of the deformation energy from the background 251 

matrix values to zero in the nuclei. A proper account of the mechanics of the medium shows that 252 

zero deformation energy density in the nuclei is an approximation worth further investigation. The 253 

interpolation function, named local deformation fraction, is given by 254 

 𝜌𝜌eff(𝜂𝜂1, 𝜂𝜂2, . . . , 𝜂𝜂𝑁𝑁) =
� 𝜂𝜂𝑖𝑖2I𝐷𝐷𝐷𝐷𝐷𝐷(𝑖𝑖)

𝑁𝑁

𝑖𝑖=1

� 𝜂𝜂𝑗𝑗2
𝑁𝑁

𝑗𝑗=1

, I𝐷𝐷𝐷𝐷𝐷𝐷(𝑖𝑖) = �1, 𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷
0, otherwise, (13) 



   
 

Page | 13 
 

where Def denotes the set of deformed grain indices. Using a single value for nuclei boundary 255 

mobility 𝑀𝑀, the time-dependent Ginzburg–Landau equations of the order parameters take on the 256 

form  257 

     𝜕𝜕𝜂𝜂𝑖𝑖
𝜕𝜕𝜕𝜕

= −
4
3
�
𝑀𝑀
𝑙𝑙gb
� �

𝛿𝛿𝛿𝛿
𝛿𝛿𝜂𝜂𝑖𝑖

�, 
 (14) 

where 𝐹𝐹 is the free energy functional given by the integral of the three energy components 258 

discussed earlier over the materials volume, 259 

 𝐹𝐹 = ∫ �𝑓𝑓local + 𝑓𝑓gradient + 𝑓𝑓stored�𝑑𝑑𝑑𝑑. (15) 

Moelans et al. [29] applied their model on a 2-D system consisting of a single grain 260 

representing the deformed matrix and a single grain representing the recrystallized grain. Isotropic 261 

values for model parameters were taken from experiments for Ni and Al. The grain boundary was 262 

assumed to be initially planar, and the migration of the boundary was studied in one direction only, 263 

while periodic boundary conditions was assumed in the other direction. The main goal of the study 264 

was to investigate the impact of the local variation of deformation energy field on the local 265 

migration of recrystallization boundary in deformed metals. For this purpose, three different forms 266 

of sinusoidal function were tested, and the morphology of the recrystallization front was analyzed. 267 

The study clearly showed the sensitivity of the morphology of recrystallization boundary to the 268 

local variation of the deformation-energy over its course of evolution, which introduced regions 269 

of protrusions and extrusions to the originally flat boundary. A subsequent study was conducted 270 

by the same authors [30] that allowed a two-dimensional variation in the deformation energy, 271 

which lead to the development of a more complex morphology of the recrystallization front. 272 

Although the results obtained from these studies agree with experimental observations, the use of 273 

analytical functions to represent deformation-energy field (instead of considering realistic 274 

description) renders the agreement qualitative and of theoretical interest. 275 
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Very recently, Yadav et al. [46,47] used an idealized deformed structure comprising different 276 

sets of GNBs to study the effect of the heterogeneous deformed microstructure on the migration 277 

of the recrystallization front into the deformed region and its morphology. In one study, the authors 278 

varied the spacings between the GNBs, while keeping the average stored energy constant. In 279 

another study, they examined the effect of geometric alignment of two sets of intersecting GNBs 280 

with respect to the flat recrystallization front, corresponding to low strain, on the morphology of 281 

the recrystallization front and the average velocity. They also used a single set of parallel GNBs 282 

to represent the deformed structure for a high strain scenario. Yadav et al. [46] elucidated the 283 

anisotropic migration of different segments of a recrystallized nucleus in the deformed 284 

microstructure by varying the alignment of the GNBs in front of the flat recrystallization boundary. 285 

Stop and go motion of the recrystallization front boundaries was observed in the simulations, and 286 

the results revealed that the morphology of the recrystallization front and the velocity strongly 287 

depend on the deformed microstructure. It was also reported [47] that the roughness of the 288 

recrystallization front and its average velocity increased with the increase in the spacing between 289 

the GNBs and the stored energy. However, the average velocity increase with the increase in 290 

spacing implies that the migration velocity is faster in low strain scenarios, which contradicts 291 

experiment. This discrepancy could be attributed to the inadequate treatment of GNB spacing and 292 

the stored energy as two independent parameters and the lack of accountability to the variation in 293 

the deformation-energy across different GNBs (by using average stored energy). IDBs were not 294 

considered in these studies. 295 

Gentry and Thornton [31] modified Moelan’s model to parametrize a phenomenological model 296 

of static recrystallization of plastically deformed commercially pure titanium. The simulated 297 

kinetics of recrystallization were used to parameterize the Avrami equation 298 
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𝑋𝑋 = 1 − exp �−𝛽𝛽 �

𝑡𝑡
𝑡𝑡0.5

�
𝑛𝑛
�, 

(16) 

which yields the fraction of the recrystallized volume 𝑋𝑋 as a function of the annealing time. In this 299 

equation, 𝛽𝛽 = ln 0.5, 𝑛𝑛 is the time exponent, and 𝑡𝑡0.5 is the time required for the recrystallization 300 

fraction to reach the value of 0.5. Experimental data for commercially pure titanium compressed 301 

by 20% at room temperature and annealed at a temperature of 800 oC were used for Moelan’s 302 

model parametrization. In addition, the deformation-energy was defined as the dislocation core 303 

energy, and described in terms of the shear modulus, the Burgers vector, and the grain-averaged 304 

dislocation density. In that study, initial recrystallized nuclei were added at the beginning of 305 

simulation to model static recrystallization of polycrystals in 2-D and assumed to be dislocation-306 

free. 307 

The impact of deformation mode on recrystallization kinetics and microstructural evolution 308 

was investigated by Athreya et al [32]. This study employed both experimental and computational 309 

techniques. For this purpose, materials subjected to the same equivalent plastic strain were 310 

deformed by torsion and rolling. The phase-field approach was used to study the recrystallization 311 

kinetics of the highly deformed matrix through the growth of preexisting strain-free nuclei. A 312 

multi-phase field model was used to simulate the coarsening of the grains driven by the stored 313 

energy as well as the grain boundary curvature. Since phase-field mobility parameters should be 314 

supplemented as an input, a mean field model for recrystallization, which assumes the strain-free 315 

nuclei growing in a uniform stored-energy field (taken to be time dependent) was utilized to extract 316 

these parameters from experiment for different deformation structures. Instead of using the 317 

potential well with multiple degenerate minima along with an explicit term for the stored energy 318 

(as in Moelan’s model), they used a multi-well potential with unequal heights/depths for this 319 

purpose. The unequal heights/depths is supposed to capture the stored energy differences between 320 
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the grains. Although the study used a mean field parameter, it succeeded to capture the sensitivity 321 

of recrystallization kinetics to the local variation of the deformation structure, by considering the 322 

impact of the deformed state on the mobility.  323 

In all the above models, the contribution of the non-local term of the long-range dislocation 324 

strain field to the elastic energy density was never considered. Sreekala and Haataja [33] developed 325 

a dislocation density model coupled to the phase-field method to simulate the growth of an isolated 326 

recrystallized grain (within a cold-worked matrix) in 2-D. Dislocation long-range interactions were 327 

modeled based on linear elasticity theory, using a coarse-grained dislocation density description 328 

(continuous Burgers vector field). In addition, the short-range (core) interactions are accounted for 329 

using constitutive relations for local dislocation reactions. As before, the initialization assumed a 330 

recovered state with nuclei formed (recovery stage is not considered) and isotropic medium (grain 331 

boundary). Moreover, the average dislocation density was kept constant during the simulations, 332 

but different idealized dislocation structures were tested. In Sreekala and Haataja [33], the relation 333 

between the strain and the stress tensors was developed using the mechanical equilibrium 334 

equations, within linear elasticity framework, by applying the closure failure relation. The elastic 335 

energy was derived in terms of the Airy stress function. Abrivard et al [56,57] developed a coupled 336 

phase-field and crystal plasticity framework to study different aspects of static and dynamic 337 

recrystallization. In that study, high stacking fault energy material was considered to investigate 338 

the role played by the strain induced boundary migration. However, the effect of the grain 339 

dislocations substructures was absent. 340 

4. Numerical Scheme, Results and Discussion 341 

The recrystallization model developed here is used to study the temporal evolution of the 342 

morphology of recrystallization front for several recrystallization nuclei embedded in a deformed 343 
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matrix with a size equivalent to a single grain. Recrystallization kinetics are assessed in terms of 344 

the fitting parameters of the Avrami equation. In addition, the influence of the relative location of 345 

recrystallization nuclei embryo with respect to dislocation walls on the grain structure after the 346 

completion of the primary recrystallization stage and consequently on the surviving grains over 347 

the course of grain coarsening (which determines the final texture) is discussed. Moreover, the 348 

effect of several deformed state parameters on recrystallization kinetics are analyzed. This includes 349 

the amount of mechanical/deformation work (via average boundary spacing and misorientation 350 

angles at a given von Mises strain) and temperature (via grain boundary mobility). Furthermore, 351 

the sensitivity of the results to different mathematical representations of the heterogeneous 352 

deformation-energy field is investigated. For example, the impact of the statistical distribution 353 

used in the sampling of the dislocation wall spacing is assessed by comparing the results for a 354 

Rayleigh (R) distribution with those corresponding to an equispaced (E) distribution. Moreover, 355 

the effect of two different energy smearing methods across the dislocation boundaries, namely, 356 

unit pulse (U) and Gaussian distribution (G) is also studied. Finally, the influence of the 357 

background energy inside the dislocation cell on the observed dynamics is also analyzed by 358 

considering four different cases represented by different ranges in terms of the highest possible 359 

GNB energy density, with the first being zero energy and the rest have the following ranges: 0.5%-360 

1.5%, 2.5%-7.5%, and 5%-15%. This corresponds to four different levels, namely, zero (Z), low 361 

(L), medium (M), and high (H), respectively. For convenience, the deformation-energy field 362 

associated with different variants of the parameters is labelled using a quadruple index notation. 363 

From the leftmost index, the first index stands for the statistical distribution used in the random 364 

sampling (R or E), the second index signifies the strain level (𝜀𝜀2.5 or 𝜀𝜀4.5), the third index labels 365 

the used energy smearing method (U or G), and the fourth index labels the level of energy assigned 366 

to the interiors of cells (Z, L, M, or H). For example, the deformation-energy field referenced 367 
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by Rε2.5UZ is constructed using the Rayleigh distribution for the sampling of GNB and IDB 368 

spacing corresponding to a von Mises strain of 2.5 with the energy across the boundaries smeared 369 

according to the unit pulse function and no deformation-energy assigned to the cells. Since by 370 

model construction the initial deformation-energy field is independent of grain boundary mobility, 371 

this variable is reported separately and not included in the indicial notation. Unless stated 372 

otherwise, grain boundary mobility is selected to be 2 × 10−12 m4/J⋅s.    373 

Table 2. Model parameters. 374 

Parameter 𝝈𝝈𝐠𝐠𝐠𝐠 [J/m2] 𝑴𝑴 [m4/J.s] 𝒍𝒍𝐠𝐠𝐠𝐠[nm] 

Value 0.8   2 × 10−13, 
2 × 10−12 40 

 375 

 376 

 377 

Fig. 2 Initial configurations. (a) Planar recrystallized front initialized at 𝑥𝑥 = 10 in a 4 × 4 micron 2-D 378 
deformed matrix. (b) Initial arrangement of the 10 recrystallized nuclei embryos in a 4 × 4 micron 2-D 379 
deformed matrix. The nuclei vary in size and are indexed in the order of increasing y-coordinate. The radius 380 
of the embryos, arranged in an ascending order according to their index, is as follows: 1→150 nm; 2→220 381 
nm; 3→140 nm; 4→190 nm; 5→140 nm; 6→220 nm; 7→160 nm; 8→200 nm; 9→170 nm; and 10→210 nm. 382 

 383 
4.1. Numerical scheme and model parameters 384 

The phase-field model used in the present study employs Eqs. (10)-(12) to calculate the free energy 385 

density and assumes isotropic properties for the grain growth. Table 2 lists all model parameters. 386 

The heterogenous deformation-energy field is represented by Eq. (8). To track the kinetics of the 387 
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system, the Allen-Cahn equation, Eq. (14), is solved using the Finite Element Method (FEM). 388 

Specifically, the continuous Galerkin method is invoked via the phase-field module available in 389 

the simulation package MOOSE framework [58]. Moreover, the Preconditioned Jacobian-Free 390 

Newton-Krylov method (PJFNK) was sought for solving the formed nonlinear equation system of 391 

the weighted residuals. A new object was implemented within MOOSE to incorporate the lamellar 392 

structure as an initial configuration for the deformation-energy field description in the deformed 393 

matrix, according to Sec. 2.2. Adaptive timesteps with a maximum size of 2 ms were used. The 2-394 

D deformed matrix is taken to be a square with initially small, circular recrystallized nuclei 395 

embryos embedded into it. In all simulations, the recrystallized nuclei embryos are assumed to be 396 

dislocation-free with zero stored energy. A square mesh (QUAD4 elements) was utilized to 397 

discretize the spatial domain, with the mesh spacing set to 5 nm. The deformed matrix size was set 398 

to 4 μm × 4 μm in all simulations. In this study, we selected two initial configurations for the 399 

recrystallized nuclei to understand the morphology evolution of the front and kinetics of the 400 

recrystallization phenomena under varied heterogeneous deformation-energy fields. Figure 2(a) 401 

shows a planar recrystallization front initialized at 𝑥𝑥 = 10 which is supposed to capture the front 402 

evolution of a large nuclei. Dirichlet boundary conditions are assumed for the fields along X-axis, 403 

while periodic boundary conditions along Y-axis. Figure 2(b) shows the initial configuration of 404 

the seeded recrystallized nuclei embryos embedded in the 2-D deformed matrix, with each embryo 405 

assigned a unique order parameter and a certain radius within the range 140–220 nm. The nuclei 406 

are arranged in the domain such that their centers are separated by at least 800 nm. Periodic 407 

boundary conditions were imposed for the latter configuration. For the sake of comparison, 408 

classical nucleation theory is utilized to calculate the critical radius 𝑟𝑟crit in terms of the average 409 

deformation-energy density of the deformed matrix 𝑓̄𝑓def and the surface energy per unit area 𝜎𝜎gb, 410 

using the relation  411 
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 𝑟𝑟crit =
𝜎𝜎gb
𝑓̄𝑓def

. (17) 

 412 

Fig. 3. Different deformation-energy density fields chosen for the study in a 4 × 4 micron domain. The 413 
white circles outline the boundary of the nuclei shown in Fig. 2(b). The horizontal lines represent the GNBs, 414 
and the vertical lines represent IDBs. The cell enclosed by the GNBs and IDBs is undeformed with zero 415 
energy density. (a) Equispaced IDBs and GNBs at 𝜀𝜀 = 2.5 with boundary energy distributed evenly across 416 
the interface width using a unit pulse function (Eε2.5UZ). (b-c) Rayleigh distribution sampled spacing for 417 
IDBs and GNBs at 𝜀𝜀 = 2.5 with boundary energy across the interface width sampled from statistical 418 
distribution using (b) a unit pulse function and (c) a gaussian function, i.e., Rε2.5UZ and Rε2.5GZ, 419 
respectively. (d) Rayleigh distribution sampled spacing for IDBs and GNBs at 𝜀𝜀 = 4.5 with a unit pulse 420 
function used to assign boundary energy across the interface width (Rε4.5UZ). The average deformation-421 
energy density in cases (a), (b) and (c) is kept fixed at around 4.63 MJ/m3, and in case (d) at 7.7 MJ/m3. 422 

 423 

The values for the different levels of cell’s interior energy assignment are reported in Table 3 424 

along with the relevant domain-averaged parameters. From this comparison, it is obvious that 425 

classical nucleation theory predicts the largest seeded recrystallization nuclei embryos to grow in 426 

all cases, while the smallest ones shrink and disappear in the two lowest levels for cell’s interior 427 

energy. i.e., the selected range for recrystallization nuclei radius is about the critical radius. Figures 428 

3 and 4 illustrate the initial deformation-energy field associated with the different simulated cases 429 
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(as indicated in the caption of each figure). As highlighted earlier, all simulations consider solely 430 

static recrystallization under the assumptions that neither recovery processes nor deformation-431 

energy relaxation (within the deformed region) occurs during simulation time. 432 

 433 

 434 

Fig. 4. Different cell energy distributions for a Rayleigh distributed spacing between the boundaries at 𝜀𝜀 =435 
2.5 in a 4 × 4 micron domain. The horizontal lines represent the GNBs, and the vertical lines represent 436 
IDBs. The magnitude of the energy density in the cell’s interior is area dependent with the smallest cell 437 
assigned highest possible value and the largest cell with lowest possible value. The maximum and minimum 438 
energy densities of a cell is chosen to be a fraction of highest possible GNB energy density with the ranges 439 
being (a) 0.5%-1.5% (Rε2.5UL), (b) 2.5%-7.5% (Rε2.5UM), and (c) 5%-15% (Rε2.5UH). (d) Line plot 440 
showing the variation of the energy density across the diagonal, as shown in (a), for the configurations (a-441 
c). 442 
 443 
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 444 

Fig. 5. Recrystallization front morphology. (a) Recrystallization front profile of a planar front growing into 445 
a deformed matrix for the deformation energy state Rε4.5UZ. (b) Migrating recrystallized boundary formed 446 
in 50% cold rolled pure Al at room temperature, followed by annealing at 250 °C for 10 min, adopted from. 447 
[29]. (c) Recrystallization front profiles growing into a deformed matrix for the deformation energy state 448 
Rε2.5UZ. (d) An optical micrograph showing the recrystallized nuclei growing along a transition band in a 449 
heavily rolled iron-3% silicon, followed by annealing at 600 °C for 25 min, adopted from [9].  450 

 451 
Although the initial circular morphology of the recrystallized nuclei is not generally accurate, 452 

it is to be noted that this work is not primarily concerned with the nucleation mechanism of the 453 

recrystallization process but with capturing the morphological evolution of the recrystallization 454 

front in a realistic deformed microstructure using the phase-field modeling technique. However, 455 

since the microstructure development is very sensitive to the arrangement of dislocations, it is 456 

imperative to get the initial configuration accurate. There exist many possibilities in achieving the 457 

latter and one such approach involves generating the initial structures based on the microstructural 458 

images and another approach requires performing continuum dislocation dynamics simulations 459 

that gives the three-dimensional arrangement of the dislocations. However, as of now, the latter is 460 
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not adequately mature.  461 

Table 3. Parameters characterizing the deformed state. 462 
Deformed state Rε2.5UZ Rε2.5UL Rε2.5UM Rε2.5UH 

(MJ/m3) 4.63 5.42 8.55 12.43 
Cell’s interior energy contribution 0% 14.58% 45.85% 62.75% 
Critical radius (nm) 173 148 94 64 

 463 

4.2 Recrystallization front morphology and microstructure evolution 464 

To observe the evolution of well-established recrystallization front, we initialized a planar front 465 

on the left side of a domain in the deformed state Rε4.5UZ. Figure 5(a) shows the structure of the 466 

recrystallized front at time ~ 70 ms. The front was found to exhibit protrusions/retrusions 467 

configuration like was experimentally observed and shown in Fig. 5(b) [29]. The 468 

protrusion/retrusion configuration depends on the density of the boundaries ahead of the front and 469 

is rather a collective effect of many boundaries. By comparing the morphology of the recrystallized 470 

front with the deformation-energy field for the state Rε4.5UZ, shown in Fig. 3(d), it is evident that 471 

the protrusions have formed in the regions where the density of boundaries was high relative to 472 

the neighboring regions, and retrusions formed in the regions where the density was low relative 473 

to its surroundings. As shown in Fig. 5(b), the experimental result supports this observation. Figure 474 

5(c) shows the morphology of a number of recrystallized nuclei prior to impingement for the 475 

deformation energy state Rε2.5UZ. The heterogeneous dislocation structure causes the appearance 476 

of the protrusion as a sharp cusp along the boundaries into the deformed matrix, while retrusion 477 

with a concave shape curved into the nuclei. Note that the morphology of the recrystallization front 478 

appears different at the two scales, i.e., Fig. 5(a) and Fig. 5(c), suggesting that the evolution of the 479 

front differs between small nuclei and well-established fronts. This difference is being captured 480 

here for the first time. The recrystallization front at the scale of a single cell protrudes along the 481 

dislocation boundary thus forming a relatively sharp cusp into the matrix at every single boundary. 482 
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At a larger scale, however, the average curvature can be quite the opposite in spite of the behavior 483 

at the individual boundaries. In addition, Fig. 5(c) shows the nuclei growing primarily along the 484 

GNBs as they are relatively high in energy density compared to IDBs, explaining the shape of the 485 

nuclei in Fig. 5(d). 486 

 487 

Fig. 6. Recrystallization front profile dependence on various energy distributions in the interiors 488 
of a cell for the nucleus #4. (a) Rε2.5UZ, (b) Rε2.5UL, (c) Rε2.5UM, and (d) Rε2.5UH. 489 

 490 

To investigate the impact of the cell energy on the observed protrusions, Fig. 6 depicts the 491 

morphology of nuclei 4 early in time during the recrystallization stage for different levels of energy 492 

in the dislocation cell, namely, Rε2.5UZ, Rε2.5UL, Rε2.5UM, and Rε2.5UH. The initial boundary of 493 

this nucleus intersects with several IDBs and GNBs.  It is evident that as the energy density in the 494 

cell increases, smoothing of protrusions takes place, i.e., reduction in curvature of the boundary 495 

line at the protrusion, as shown for the protrusion point marked with a white arrow in Figs. 6a-d. 496 

The improved mobility of the recrystallization front into the dislocation cell partially compensates 497 

for the preferential growth along the dislocation boundaries and lead to a reduction in the curvature 498 

at the protrusion. To quantitatively characterize this effect, the curvature at the marked point is 499 



   
 

Page | 25 
 

estimated for each case using the ImageJ software [59]. The curvature significantly decreased from 500 

835.87 μm-1, for the case with zero cell energy, to the value of 275.98 μm-1 when the cell-energy 501 

distribution belongs to the highest level considered.  502 

 503 
Fig. 7. Effects of the heterogeneity in the underlying deformed structure on the growth of nuclei 504 
in both recrystallization and grain coarsening stages. Rows from the top corresponds to 505 
deformation states Rε2.5UZ, Rε4.5UZ, and Eε2.5UZ, respectively (see Fig. 3).  506 

 507 

To better visualize the effect of deformation-energy field heterogeneity on the observed 508 

dynamics the evolution of individual recrystallization nuclei into the deformed matrix over the 509 

simulation time is tracked and the grain structure is analyzed. Snapshots of the microstructural 510 

evolution during recrystallization and grain coarsening stages at different times are displayed in 511 

Figs. 7 and 8 for different deformation-energy field configurations. There exist two types of 512 

boundaries: one between the recrystallized nuclei which is flat and the other being the  513 

recrystallization front of the nuclei with a non-smooth signature. Given the fact that the initial 514 

recrystallization nuclei configuration is identical, the considerable variation in the obtained final 515 

grain structure serves as evidence of the strong sensitivity of the recrystallization to local variation 516 
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in the deformation-energy field. For example, Fig. 7 shows how accounting for average 517 

deformation-energy density is not enough to capture the microstructural evolution, due to the high 518 

dependence on the arrangement of the dislocation walls.  519 

 520 

Fig. 8. Effects of varying deformation-energy density in the cells on the growth of nuclei in both 521 
recrystallization and grain coarsening stages. Each row, starting from the top, depicts the microstructure 522 
evolution when the cell is assigned an energy density value that fall in the range 0.5%–1.5%, 2.5%–523 
7.5%, and 5%–15% of the highest GNB energy density in the domain. The corresponding deformation 524 
states are mentioned on the far-left side of each row (see Fig. 4). 525 

 526 

Furthermore, Fig. 7 indicates that the use of the average dislocation boundary spacing to 527 

capture the heterogeneity of the deformation-energy field, as was done by Yadav et al. [47], is not 528 

sufficient for a reliable prediction of the microstructural evolution during the recrystallization. 529 

Accounting for the statistical variation in the dislocation boundary spacing is imperative. As would 530 

be expected, increasing the magnitude of deformation-energy density, by increasing the strain level 531 

(as in Fig. 7) or the cell energy level (as in Fig. 8), accelerates the kinetics and can result in a 532 

completely different microstructure development. For example, smaller nuclei like 1 and 5 (Fig. 533 

2(b)) survive in the larger strain and highest cell-energy levels, whereas they shrink to zero size in 534 
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all the other scenarios. It is worth mentioning that faster kinetics was also obtained when the higher 535 

grain boundary mobility was used. However, due to the decoupling between the deformation-536 

energy density and the grain boundary mobility, no effect on the final microstructure was observed. 537 

 538 

4.3 Recrystallization kinetics 539 

The sensitivity of the recrystallization model to various parameters characterizing the underlying 540 

heterogeneous deformation structure is assessed by comparing the kinetic coefficients. The 541 

analysis was performed by fitting the temporal evolution of the recrystallized fraction to the 542 

Avrami equation and extracting the half recrystallization fraction time for the different cases, as 543 

shown in Fig. 9. From this, several notes can be discerned. The first is in regard of the influence 544 

of the distribution sought to sample the boundary spacing. Unlike the Rayleigh distribution case, 545 

the equispaced dislocation wall simulation exhibits an initial decrease in the recrystallized fraction, 546 

followed by an increase to the asymptotic value of 1 because 5 out of the 10 seeded 547 

recrystallization nuclei embryos shrunk and disappeared, before a single recrystallized grain grows 548 

to occupy the entire deformed matrix. The latter can be interpreted considering the remarkable 549 

difference in the local stored energy in the vicinity of a single dislocation boundary with values 550 

higher by an order of magnitude than the homogenous case allowing the growth of recrystallized 551 

nuclei embryos with radius lower than the critical radius estimated for the case of a homogenous 552 

field. The increase in the magnitude of the deformation-energy across the dislocation boundary is  553 

more pronounced in the case of the Rayleigh distribution due to the statistical variation in the 554 

boundary spacing resulting in higher stored energy across the GNBs or increasing the number of 555 

GNBs intersecting the boundary of a single recrystallization nuclei. The second note to be made 556 

concerns the fast kinetics obtained by using the heterogeneous deformation-energy field as 557 

compared to the homogenous field. In this regard, the use of equispaced dislocation walls shows 558 
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behaviors closer to the homogenous deformation field. For example, the half recrystallization 559 

fraction time in this case is larger than the Rayleigh distribution sampled spacing by a factor of 560 

three. In addition, the recrystallization front seems smoother, and the growth seems more 561 

symmetric, i.e., the preferential recrystallization front growth along the GNBs is less obvious. The 562 

third note is about the kinetic parameters being sensitive to the smearing method of the 563 

deformation-energy across the boundary, which evidences the importance of characterizing the 564 

dislocation structure inside the boundaries to substantiate the energy representation across the 565 

boundary based on real microstructure data. The last note concerns the one order of magnitude 566 

decrease in the half recrystallization fraction time by assigning the cell a deformation-energy in 567 

the high range. This suggests a crossover to a regime with the kinetics completely controlled by 568 

the cell’s interior energy instead of the dislocation boundary structure. This last note seems 569 

consistent and in conformity with the asymptotic prediction based on the calculated values for the 570 

domain-averaged deformation-energy density. In general, the half recrystallization fraction time is 571 

found to increase exponentially with the deformation-energy density. On the same note, an 572 

additional simulation was performed to investigate the impact of the IDB curvature on the 573 

recrystallization kinetics at the lower strain, and no difference was observed. This suggests 574 

recrystallization nuclei growth at low levels of strain is less sensitive to the morphology of the 575 

IDBs and is mainly controlled by GNBs. It is worth mentioning that the simulated kinetics are 576 

about one order of magnitude faster than some reported experimental values [31]. This could be 577 

attributed to the use of a high initial nuclei density. 578 

 579 
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580 
Fig. 9. Impact of various factors on the kinetics of recrystallization. (a) Boundary-spacing distribution for 581 
a given deformation energy density. (b) Energy smearing method across the boundaries. (c) Strain and (d) 582 
cell- energy density. 583 
 584 

 585 
Fig. 10. Effect of the underlying deformed structure on the kinetics of the four nuclei shown in Fig. 586 
2(b) for the initial arrangement of dislocation boundaries shown in Fig. 3. 587 

 588 

The temporal evolution of the recrystallized fraction elucidates how in an overall sense 589 

recrystallization kinetics is dependent on microstructure heterogeneity, but to thoroughly 590 

understand the effects on individual nuclei we should track the temporal growth of the area fraction 591 

of individual nuclei, which are plotted in Fig. 10 and Fig. 11. The study of the kinetics of each 592 

nucleus helps in visualizing the impact of the recrystallization stage on the coarsening stage. Fig. 593 

10(a,c) show the impact of energy smearing method across the boundaries on the individual nuclei 594 

and it is clear that the nuclei 4 and nuclei 2 are the active nuclei, among the reported, with the 595 

growth rate being higher in gaussian smearing method. The latter could be due to the larger spread 596 

of the elastic strain energy into the interiors of the cells leading to greater driving force for the 597 
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motion of the recrystallization front of the nuclei. Fig. 10(a,b) show the impact of spacing 598 

distribution on the kinetics of individual nuclei at the lower strain. As reported earlier, the 599 

dislocation boundary energies from Rayleigh spacing distributions provides greater driving force 600 

for the nuclei in comparison to the equispaced distribution, explaining the observed kinetics of 601 

individual nuclei. In Fig. 10(a,d) it is clear that increase in overall strain lead to growth of some 602 

nuclei, which shrunk to zero size in lower strain, due to reduced spacing between the boundaries 603 

and an increased boundary energy providing greater driving force for growth. As is clear from Fig. 604 

11, assigning a non-zero energy density to the interiors of the cells can result in a completely 605 

different microstructure development in comparison to the case of zero deformation-energy 606 

density. For example, nuclei 2 only grows significantly in area when the values of the energy 607 

density assigned to the cell crosses some threshold value, which is evident from Fig. 11(c,d).  608 

 609 

 610 

Fig. 11. Impact of non-zero deformation energy density in the interiors on the kinetics of 611 
individual nuclei for a Rayleigh distributed dislocation spacing and misorientation angles shown 612 
in Fig. 3b and Fig. 4(a-c). 613 

 614 

From the presented results, it is comprehensible how the recrystallization kinetics and the 615 

recrystallization front are very sensitive to the local variation of the deformation-energy field. In 616 

addition, the heterogeneity in deformation-energy field plays a crucial role in determining the 617 

potential of recrystallization nuclei embryos to grow, and hence determines the final texture. All 618 
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these observations assert the extreme importance of the accurate description of the initial 619 

configuration of the heterogeneous deformation-energy field for reliable prediction of the 620 

microstructural evolution. The presented model for the deformation energy field successfully 621 

captures the observations made in experiments and sheds light on the influence that different 622 

variables have on the grain coarsening stage long after the end of the primary recrystallization 623 

stage. The findings from our work also captured the dependence of kinetics and final texture 624 

evolution on various parameters characterizing the heterogeneous deformation field. Thus, 625 

emphasizing the urgent need to incorporate a realistic representation for the initial configuration 626 

of the recrystallized nuclei instead of the wide-spread approach of choosing simple structures. This 627 

of course suggests adopting experimental data characterizing the size and orientation distribution 628 

of the initial nuclei as well as their preferred sites. Moreover, as was demonstrated by the 629 

simulation results, the lack of accountability to the misorientation dependence of the grain 630 

boundary mobility can lead to the prediction of drastically different microstructures. 631 

 632 

5. Summary and Outlook 633 

To summarize, the dislocation patterns observed experimentally after the recovery stage of 634 

plastically deformed metals (deformation structures) can be described quantitatively in terms of 635 

microstructural parameters associated with the deformed state. These patterns determine the local 636 

variation of the deformation-energy field, which is proven to play a vital rule controlling the 637 

recrystallization kinetics, any emerging texture, and the final grain structure. Deformation induces 638 

a dislocation cell structure in metals with medium to high SFE. The scaling behavior of the spatial 639 

distributions of dislocation wall spacing (IDBs and GNBs, delineating the equiaxed cells and the 640 

cell blocks, respectively) and their misorientation angles makes it possible to capture the 641 

heterogeneity in real deformation microstructures by merely determining the average 642 
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misorientation angles and wall spacings, which are functions of the strain. By applying these 643 

scaling laws, an initial configuration for recrystallization simulation can be derived on a physical 644 

basis. Consequently, the sensitivity of recrystallization kinetics to the local spatial variation of 645 

deformation-energy can be accurately modelled at the length scale of the dislocation cell size for 646 

the plastic strain range studied. This, in turn, paves the way for reliable prediction of the 647 

microstructural evolution during recrystallization through developing more realistic models that 648 

can accommodate the heterogenous nature of recrystallization nucleation. 649 

The model developed here is unique in its way to make a direct connection with the universal 650 

scaling laws and the sampling of the deformation-energy from the experimentally observed 651 

statistical distributions, instead of grain-averaged parameters, thus resolving sub-grain structure. 652 

Thus, the model makes a better use of the available experimental data by resolving more details 653 

and provides flexibility in the assignment of the deformation-energy field allowing a realistic 654 

representation of the underlying structure. The model is parameterized using typical experimental 655 

values for FCC metals.  656 

The present study demonstrates the direct connection between the heterogeneity of the 657 

deformation-energy field and several characteristic aspects of recrystallization phenomena 658 

observed experimentally, which are captured successfully in the simulation results. For example, 659 

the non-smooth morphology of recrystallization front exhibiting protrusions and retrusions was an 660 

obvious feature in all simulations. In addition, the results show the existence of preferential 661 

orientations for the growth of recrystallization nuclei along the GNBs, particularly at the lower 662 

strain where the energy across the GNBs is comparably higher with respect to IDBs. Moreover, 663 

the heterogenous representation of the deformation-energy-field reveals the sensitivity of the 664 

preexisting recrystallization nuclei to the local environment, which controls their growth rate and 665 
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survival odds. This, in turn, determines the final texture and grain structure, which is demonstrated 666 

to be a function of the deformed state. 667 

The current investigation made it evident that accounting for deformation state is crucial in 668 

modelling recrystallization phenomena. However, several improvements are still needed to render 669 

any model predictions quantitatively reliable. For example, the contribution of long-range 670 

dislocation interaction to the deformation-energy field should be considered. For this purpose, an 671 

approach coupling phase-field and elasticity theory can be sought. In addition, a statistical model 672 

to describe the initial recrystallization nuclei configuration based on experimental findings needs 673 

to be developed. Future directions can also include the consideration of the anisotropy of the grain 674 

boundary mobility and its dependence on the misorientation angle. It is worth noting the anisotropy 675 

of grain boundary mobility could be important in the case of a highly anisotropic system and 676 

special grain boundaries. The relation between the orientations of the deformation-induced 677 

dislocation microstructure/boundaries and the sample crystallographic orientations, the dislocation 678 

contents of these boundaries, and the extent of the deformation-energy field across the boundaries, 679 

and last but not least, cell-energy, are all among the crucial parameters that need reliable 680 

determination. Furthermore, from a numerical perspective, assessing the sensitivity of the 681 

simulated kinetics to the choice of the interpolation function employed in the definition of the 682 

stored energy in the phase-field model and uncertainty quantification of the computed results 683 

should be eventually conducted. 684 
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