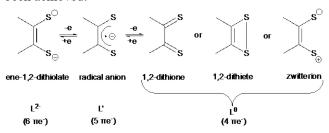
Activation of Ammonia by a Carbene-Stabilized Dithiolene Zwitterion

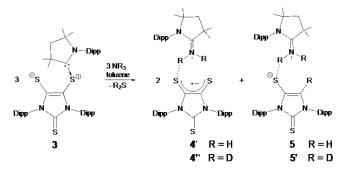
Yuzhong Wang, Phuong M. Tran, Mitchell E. Lahm, Yaoming Xie, Pingrong Wei, Earle R. Adams, John N. Glushka, Vladimir V. Popik, Henry F. Schaefer III, and Gregory H. Robinson*

Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556 (USA)

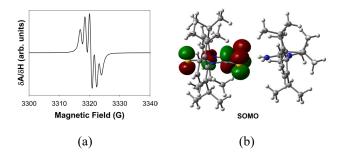
ABSTRACT: A carbene-stabilized dithiolene zwitterion (3) activates ammonia, affording 4° and 5, through both single-electron transfer (SET) and hydrogen atom transfer (HAT). Reaction products were characterized spectroscopically and by single-crystal X-ray diffraction. The mechanism of the formation of 4° and 5 was probed by experimental and computational methods.

Utilizing ammonia as a carbon-free alternative fuel and in homogeneous catalysis is intriguing due to its high energy density, low cost, and substantial global production¹ (presently exceeding 150 million tons annually).²⁻⁴ Although transition metal complexes have demonstrated the capability to activate a number of E-H bonds (such as E = H, B, Si, and C), their utility in ammonia activation is still limited. This is largely due to the pronounced tendency of ammonia to form stable Werner-ammine coordination complexes with transition metals coupled with the considerable N-H bond dissociation energy⁵ (107 kcal mol⁻¹) of ammonia.² Transition metal-mediated N-H bond cleavage of ammonia may involve oxidative addition, 6-15 deprotonation, 16 and hydrogen atom transfer¹⁷⁻¹⁹ (HAT) reactions.⁶⁻³³ Considering the lower toxicity, higher natural abundance of main group species, mimicking the reactivity of transition metals with main group elements represents a remarkable research field.³⁴ Bertrand previously reported cyclic (alkyl)(amino)carbene (CAAC)-mediated ammonia activation through oxidative addition.³⁵ A series of heavier group 14 analogues of carbenes, 36-42 m-terphenylanchored Ga(I) species, 43 and P(III) pincer complexes 44-⁴⁷ were subsequently employed to activate ammonia. ⁴⁸⁻⁵¹ An iminodisilene was shown to activate ammonia either via an anti-addition pathway (giving the hydroamination product) or through the Si=Si bond cleavage (giving the oxidative addition product of the silvlene unit).⁵² Interestingly, both an N-heterocyclic carbene and a cationic P(III)-pincer complex have been reported to conduct reversible NH₃ activation.^{53,54} In addition, frustrated Lewis pairs (FLPs) have been reported to activate ammonia via deprotonation.⁵⁵⁻⁵⁸ Notably, metal-free ammonia activation via hydrogen atom transfer has not been achieved.



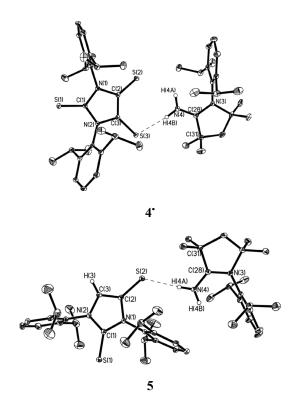

Figure 1. Redox states of dithiolene ligands.

The non-innocence of dithiolene ligands (Figure 1) has played a pivotal role in the abundant redox chemistry of transition metal dithiolene complexes.⁵⁹ In contrast to ene-1,2-dithiolates (L²-, containing 6π -electrons), the 4π e-containing neutral dithiolenes (L⁰) are electrondeficient and may serve as an electron-acceptor.⁶⁰ In addition to the well documented 1,2-dithiones and 1,2dithietes, 60-63 neutral dithiolenes (L⁰) may also exist as a zwitterion (Figure 1) through Lewis base coordination. Indeed, this laboratory recently reported carbenecomplexed dithiolene (L⁰) zwitterions [such as 3 (Scheme 1), in which carbene is MeCAAC⁶⁴ (1)] by reactions of carbenes with an imidazole-based dithione dimer. 65 Herein, we report the unusual capability of 3, as a metal-free molecular system, to activate ammonia via both single-electron transfer (SET) and hydrogen atom transfer (HAT).


Scheme 1. Synthesis of 2, 4', 4'', 5, and 5' (Dipp = 2,6-diisopropylphenyl).

Ammonia activation via oxidative addition:

Ammonia activation via SET and HAT:



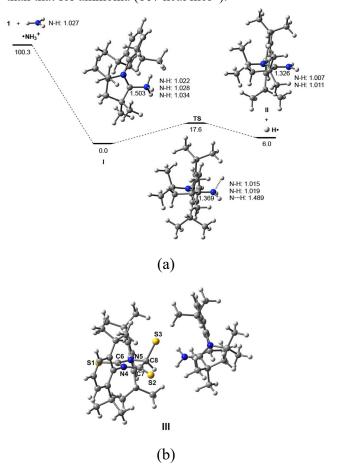
As Bertrand's discovery,³⁵ the oxidative-addition (Scheme 1) occurs when **1** is combined with ammonia in toluene, quantitatively giving **2** as colorless crystals³⁵ (Figure S1).⁶⁶ The ¹H NMR spectrum of **2** (in C₆D₆) exhibits a doublet resonance at 0.93 ppm for the NH₂ unit and a triplet at 4.40 ppm for the proton at the carbene carbon atom. In contrast, the room-temperature reaction of **3** with NH₃ results in a mixture containing both **4** and **5** (Scheme 1), which can be separated by multiple-step recrystallization. Radical **4** (dark purple crystals) and compound **5** (colorless crystals) were isolated in 85.2% yield and in 70.4% yield, respectively. The formation of H₂S as a by-product (Scheme 1) was confirmed by the lead acetate paper analysis technique.⁶⁷ (Figure S4).⁶⁶

Figure 2. (a) Room-temperature X-band EPR spectrum of **4**° in THF. The spectrum was recorded at 9.358 GHz with a modulation amplitude of 0.2 G and a microwave power of 1.0 mW. (b) SOMO of **4**°.

The paramagnetic nature of **4**° was probed by EPR spectroscopy. The EPR spectrum of **4**° in THF at 298 K (Figure 2a) exhibits a S = $\frac{1}{2}$ quintet (g_{av} = 2.014) due to hyperfine coupling with two equivalent 14 N (I = 1) nuclei, $A_{av}(^{14}$ N) = 4.3 MHz. It compares well to those of compounds containing the same "naked" dithiolene radical unit [g_{av} = 2.017, $A_{av}(^{14}$ N) = 4.1 MHz for **6**° (with an imidazolium counter-cation)⁶⁸; g_{av} = 2.014, $A_{av}(^{14}$ N) = 4.4 MHz for **9**° (with a Cp* $_2$ Co $_2$ ° counter-cation)⁶⁶]. The DFT computations of **4**° at the B3LYP/6-311G** level reveals that the SOMO (Figure 2b) involves both C–C π -bonding and S–C π -antibonding character. The unpaired electron is mainly localized on the C $_2$ S $_2$ unit in **4**° (the spin density of the C $_2$ S $_2$ unit = 0.82).

Figure 3. Molecular structures of **4***, and **5**. Thermal ellipsoids represent 30% probability. Hydrogen atoms on carbon atoms [except for C(3) in **5**] have been omitted for clarity. Selected bond distances (Å) and angles (deg): For **4***, S(1)−C(1), 1.659(2); C(2)−C(3), 1.421(3); C(2)−S(2), 1.671(2); C(28)−N(3), 1.314(3); C(28)−C(31), 1.506(3); C(28)−N(4), 1.304(3); S(2)−C(2)−C(3), 130.61(15); C(31)−C(28)−N(3), 112.67(17); C(31)−C(28)−N(4), 124.2(2); N(3)−C(28)−N(4), 123.1(2). For **5**, S(1)−C(1), 1.678(3); C(2)−C(3), 1.352(4); C(2)−S(2), 1.713(3); C(28)−N(3), 1.315(3); C(28)−C(31), 1.496(4); C(28)−N(4), 1.313(3); S(2)−C(2)−C(3), 131.1(2); C(31)−C(28)−N(4), 124.2(3).

X-ray structural analysis (Figure 3) shows that 4° exists as a (MeCAAC-based iminium cation/dithiolene radical anion) adduct in the solid state.⁶⁶ The hydrogen atoms on the N(4) atom were located from difference Fourier map. While being consistent with the corresponding theoretical values $[d_{C=N} = 1.303 \text{ Å}, d_{C-C} = 1.431 \text{ Å}, d_{C-S}]$ (av) = 1.697 Å],66 the structural parameters of the iminium fragment $[d_{C(28)=N(4)} = 1.304(3) \text{ Å}]$ and the C_2S_2 unit of the anionic dithiolene moiety $[d_{C-C} = 1.421(3) \text{ Å}, d_{C-S}]$ $_{(av)} = 1.674(2) \text{ Å}$ in 4° are comparable with those for ([MeCAAC=NH₂]N₃)₂·H₂O (7)⁶⁹ [d_{C=N} = 1.3037(19) Å]and for 6^{68} [d_{C-C} = 1.420(2) Å, d_{C-S (av)} = 1.667(2) Å], respectively. The Wiberg bond indices (WBIs) of S-C bonds in the C₂S₂ unit of 4° (1.36, av) indicate their partial double bond character. Each of the two sulfur atoms in the C₂S₂ unit of 4° bears a negative charge of ca. -0.26. Besides the predominant electrostatic forces, there also exists the N(4)-H(4B)···S(3) hydrogen bonding interaction $[d_{H(4B)\cdots S(3)} = 2.301(17) \text{ Å}, d_{N(4)\cdots S(3)} = 3.175(2)$ Å, $\theta_{N(4)-H(4B)\cdots S(3)} = 169.0(2)^{\circ}$] between the anionic dithi-


olene moiety and the iminium cation in 4.70,71 Compound 5 may be regarded as a derivative of 4° by formally replacing one neutral sulfur atom from the C₂S₂ unit in 4° with one hydrogen atom (i.e., H°). The hydrogen atoms on the C(3) and N(4) atoms in 5 were located from difference Fourier map (Figure 3). The anionic moiety of 5 is the same as that of the reported lithium monothiolate (8).⁷² Both 5 and 8 exhibit similar bonding parameters [for 5, $d_{C=C} = 1.352(4)$ Å, $d_{C(2)-S(2)} = 1.713(3)$ Å; for **8**, $d_{C=C} = 1.355(5)$ Å, $d_{C(3)-S(2)} = 1.716(4)$ Å]. By comparison with those [WBI_{C-S} = 1.36, av; charge on each sulfur atom = ca. -0.26] for the C_2S_2 unit of 4, compound 5 has a decreased WBI value (1.17) of the C(2)-S(2) bond and increased negative charge of -0.50 on the S(2) atom. Similar to 4°, there exists a N(4)-H(4A)···S(2) hydrogen bond between the iminium cation and the thiolate unit in 5 $[d_{H(4A)\cdots S(2)} = 2.37(2) \text{ Å},$ $d_{N(4)\cdots S(2)} = 3.230(3) \text{ Å}, \ \theta_{N(4)-H(4A)\cdots S(2)} = 167.0(3)^{\circ}].^{70,71}$

The room-temperature ¹H NMR spectrum (in THF-d₈) of 5 exhibits a singlet imidazole resonance at 6.09 ppm, which is similar to that (6.14 ppm) of $8.^{72}$ However, the iminium proton resonance of 5 can only be observed at temperatures decreased according to variabletemperature (VT) ¹H NMR spectroscopic study of 5 (Figure S11).⁶⁶ The ¹H NMR spectrum of **5** (in THF-d₈, at -40 °C, Figure S10)66 exhibits two broad singlet resonances (7.79 ppm and 12.75 ppm) for the two iminium protons. The same MeCAAC-based iminium salt (with an azide counter-anion) (7) exhibits a broad iminium (and H₂O) ¹H NMR resonance at 6.2 ppm (in CDCl₃).⁶⁹ The significant downfield shift of the iminium proton resonance (12.75 ppm) of 5 should be ascribed to the N-H···S- hydrogen bond in 5 (Figure 3).⁷³ The infrared (IR) spectra⁶⁶ of both 4° and 5 exhibit a H-N-H scissoring (mixed with C=N stretching) absorption at 1655 cm⁻¹, indicating the existence of a C=NH₂ fragment in 4° and 5.74 Considering the significant red-shift effect of the N-H···S- hydrogen bond on the N-H stretch, 75 for both 4° and 5, only the absorption at 3379 cm⁻¹ was assigned to the N-H stretch.

The 3-to-4° conversion indicates that the electrondeficient dithiolene core (containing $4\pi e$) may act as an electron reservoir to accept one electron from ammonia via single electron transfer (SET), giving an ammoniumyl radical cation (i.e., NH3°+) as an elusive intermediate. Notably, the formation of NH₃*+ involving an electron transfer (ET) mechanism has been proposed for electrochemical ammonia oxidation.⁷⁶ As a zwitterion, 3 exhibits a 2.08 eV HOMO-LUMO energy gap.65 The low-lying LUMO (-2.35 eV) of 3,65 involving mainly C_{CAAC}-N π-antibonding character, may serve as the electrophilic site to initiate the SET reaction of ammonia. Interestingly, our computations show that single electron reduction of 3 results in its dissociation, giving a "naked" anionic dithiolene radical and a free MeCAAC (1) ligand. This is further confirmed by Cp*2Comediated single electron reduction of **3**, which gives the anionic "naked" dithiolene radical (**9***) (Dipp = 2,6-disopropylphenyl, Scheme 2).⁶⁶

Scheme 2. Synthesis of 9'.

Our computations⁶⁶ (Figure 4a) show that the subsequent reaction of the in-situ released MeCAAC (1) (as a nucleophile) with the highly reactive NH₃^{*+} species is energetically favored and would give a [carbene-NH₃]^{*+} adduct (i.e., intermediate I). Dissociation of intermediate I, via a transition state (TS) with an energy barrier of 17.6 kcal mol⁻¹, results in the MeCAAC-based iminium cation (II) (which will couple with the already-formed "naked" dithiolene radical anion to give 4') and one hydrogen atom. The N–H bond dissociation energy (BDE) for the intermediate I (6.0 kcal mol⁻¹) is drastically lower than that for ammonia (107 kcal mol⁻¹).⁵

Figure 4. (a) Calculated relative energies (kcal mol⁻¹) for the reaction of ^{Mc}CAAC (1) with NH₃⁺⁺ at the B3LYP/6-311G** level and drawings of intermediate I, transition

state, iminium II (the cationic moiety of **4**°) with selected bond distances (Å). (b) The optimized structure of intermediate **III** (at the B3LYP/6-311G** level) Selected bond distances (Å): C(6)–S(1), 1.658; C(7)–C(8), 1.510; C(7)–S(2), 1.669; C(8)–S(3), 1.841.

While the elusive hydrogen atom (H[•]) may dimerize to evolve H₂ gas, isolation of 5 (in 70.4% yield) and detection of H₂S as the major by-product (Scheme 1) revealed that the hydrogen atoms produced from the dissociation of I (Figure 4a) may mainly (ca. 70% hydrogen atoms) participate in multiple hydrogen-atom-transfer (HAT) processes involved in the 4'-to-5 conversion (formation of one equivalent of 5 need consume three equivalents of hydrogen atoms, see eq. 1 and 2). Although the mechanistic details of the 4'-to-5 conversion remain unclear, our computations⁶⁶ suggest that the energeticallyfavored radical coupling reaction ($\Delta E = -54.7 \text{ kcal mol}^{-1}$. eq. 1) of 4° with one equivalent of hydrogen atom (H°) may give an intermediate III (Figure 4b), in which the hydrogen atom bonds to one backbone-carbon (i.e., C8) of the imidazole ring. Subsequent reaction of III with two equivalents of H^{*}, producing one equivalent of 5 and one equivalent of H₂S (eq. 2), is also thermodynamically favored ($\Delta E = -124.6 \text{ kcal mol}^{-1}$).

4* + H*
$$\longrightarrow$$
 III $\Delta E = -54.7 \text{ kcal mol}^{-1} \text{ (eq. 1)}$
III + 2H* \longrightarrow **5** + H₂S $\Delta E = -124.6 \text{ kcal mol}^{-1} \text{ (eq. 2)}$

To further experimentally investigate whether the imidazole proton [i.e., H(3)] of 5 is transferred from NH₃, the parallel reaction of 3 with ND₃ (99 atom % D) was investigated, which gave both 4" and 5' (Scheme 1), the deuterium analogues of 4° and 5, respectively. The obviously weakened strength of imidazole (at 6.09 ppm) and iminium proton resonances (at 7.82 and 12.78 ppm) observed in the ¹H NMR spectrum of 5' (in THF, -40 °C, Figure S17)⁶⁶ supports that the imidazole proton of **5** is acquired from ammonia. In addition, this result also reveals that there exists the H/D exchange⁷⁷ between ND₃ and the reaction mixture during the reaction. The IR spectroscopic study⁶⁶ reveals the N–D stretches⁷⁸ [2504 cm⁻¹ and 2234 cm⁻¹ (involving the N-D···S⁻ bond)⁷⁵] for 4° and the C-D stretch⁷⁹ (2203 cm⁻¹), N-D stretches [2488 cm⁻¹ and 2153 cm⁻¹ (involving the N-D···S⁻ bond)] for 5'. Observation of the C-H stretching band (with a decreased strength) at 3379 cm⁻¹ in the IR spectra (Figure S14 and S15)⁶⁶ of 4" and 5' provides further evidence for the H/D exchange involving ND₃ and the reaction mixture.⁷⁷

While MeCAAC (1) activates ammonia *via* oxidative addition, the MeCAAC-stabilized dithiolene (L⁰) zwitterion (3) exhibits its unique capability of activating ammonia to give both 4' and 5 *via* single-electron transfer (SET) and hydrogen atom transfer (HAT) processes. This discovery reveals that carbene (or other Lewis bases)-stabilized dithiolene (L⁰) zwitterions may be employed as a new type of metal-free bi-functional molecu-

lar systems: while the $4\pi e$ dithiolene (L⁰) unit serves as an electron reservoir, the in-situ released Lewis base species [due to single-electron reduction of the dithiolene (L⁰) ligand] may act as a nucleophile. Their unique synergic interaction may result in unusual application for small molecule activation.

ASSOCIATED CONTENT

Supporting Information.

The supporting information is available free of charge on the ACS Publications website at DOI: xxxxxx.

Syntheses, computations, and X-ray crystal determination (PDF)

Crystallographic data for compound 2 (CIF)

Crystallographic data for compound 4° (CIF)

Crystallographic data for compound 4" (CIF)

Crystallographic data for compound 5 (CIF)

Crystallographic data for compound 5' (CIF)

Crystallographic data for compound 9° (CIF)

Cartesian coordinates for the calculated structures (XYZ)

AUTHOR INFORMATION

Corresponding Author

robinson@uga.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We are grateful to the National Science Foundation for support: (CHE-1855641 and CHE-2153978 to G.H.R. and Y.W.) (CHE-2134792 to H.F.S.) (CHE-1900464 VVP). The EPR instrument was obtained with funds from the NSF Major Research Instrumentation (MRI) Grant No. 1827968.

REFERENCES

- 1. Smil, V., Enriching the earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production. MIT Press: Cambridge, MA, 2001.
- 2. van der Vlugt, J. I., Advances in Selective Activation and Application of Ammonia in Homogeneous Catalysis. Chem. Soc. Rev. **2010**, 39, 2302-2322.
- 3. Dunn, P. L.; Cook, B. J.; Johnson, S. I.; Appel, A. M.; Bullock, R. M., Oxidation of Ammonia with Molecular Complexes. J. Am. Chem. Soc. **2020**, 142, 17845-17858.
- 4. Roundhill, D. M., Transition-Metal and Enzyme Catalyzed-Reactions Involving Reactions with Ammonia and Amines. Chem. Rev. **1992**, 92, 1-27.
- 5. Mcmillen, D. F.; Golden, D. M., Hydrocarbon Bond-Dissociation Energies. Annu. Rev. Phys. Chem. **1982**, 33, 493-532.
- 6. Zhao, J.; Goldman, A. S.; Hartwig, J. F., Oxidative Addition of Ammonia to Form a Stable Monomeric Amido Hydride Complex. Science **2005**, 307, 1080-1082.
- 7. Braun, T., Oxidative Addition of NH₃ to a Transition-Metal Complex: A Key Step for the Metal-Mediated Derivatization of Ammonia? Angew. Chem. Int. Ed. **2005**, 44, 5012-5014.

- 8. Fafard, C. M.; Adhikari, D.; Foxman, B. M.; Mindiola, D. J.; Ozerov, O. V., Addition of Ammonia, Water, and Dihydrogen across a Single Pd-Pd Bond. J. Am. Chem. Soc. **2007**, 129, 10318-10319.
- 9. Morgan, E.; MacLean, D. F.; McDonald, R.; Turculet, L., Rhodium and Iridium Amido Complexes Supported by Silyl Pincer Ligation: Ammonia N-H Bond Activation by a [PSiP]Ir Complex. J. Am. Chem. Soc. **2009**, 131, 14234-14236.
- 10. Hillhouse, G. L.; Bercaw, J. E., Reactions of Water and Ammonia with Bis(Pentamethylcyclopentadienyl) Complexes of Zirconium and Hafnium. J. Am. Chem. Soc. **1984**, 106, 5472-5478.
- 11. Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D., N-H Activation .1. Oxidative Addition of Ammonia to Iridium(I) Isolation, Structural Characterization, and Reactivity of Amidoiridium Hydrides. Inorg. Chem. **1987**, 26, 971-973.
- 12. Koelliker, R.; Milstein, D., Facile N-H Cleavage of Ammonia. Angew. Chem. Int. Ed. **1991**, 30, 707-709.
- 13. Hulley, E. B.; Bonanno, J. B.; Wolczanski, P. T.; Cundari, T. R.; Lobkovsky, E. B., Pnictogen-Hydride Activation by (silox)₃Ta (silox = 'Bu₃SiO); Attempts to Circumvent the Constraints of Orbital Symmetry in N₂ Activation. Inorg. Chem. **2010**, 49, 8524-8544.
- 14. Nakajima, Y.; Kameo, H.; Suzuki, H., Cleavage of Nitrogen-Hydrogen Bonds of Ammonia Induced by Triruthenium Polyhydrido Clusters. Angew. Chem. Int. Ed. **2006**, 45, 950-952.
- 15. Salomon, M. A.; Jungton, A. K.; Braun, T., Activation of Ethylene and Ammonia at Iridium: C-H versus N-H Oxidative Addition. Dalton Trans. **2009**, 7669-7677.
- 16. Klinkenberg, J. L.; Hartwig, J. F., Slow Reductive Elimination from Arylpalladium Parent Amido Complexes. J. Am. Chem. Soc. **2010**, 132, 11830-11833.
- 17. Bezdek, M. J.; Guo, S.; Chirik, P. J., Coordination-Induced Weakening of Ammonia, Water, and Hydrazine X-H Bonds in a Molybdenum Complex. Science **2016**, 354, 730-733.
- 18. Hoover, J., Ammonia Activation at a Metal. Science **2016**, 354, 707-708.
- 19. Margulieux, G. W.; Bezdek, M. J.; Turner, Z. R.; Chirik, P. J., Ammonia Activation, H₂ Evolution and Nitride Formation from a Molybdenum Complex with a Chemically and Redox Noninnocent Ligand. J. Am. Chem. Soc. **2017**, 139, 6110-6113.
- 20. Betore, M. P.; Casado, M. A.; Garcia-Orduna, P.; Lahoz, F. J.; Polo, V.; Oro, L. A., Oxidative Addition of the N-H Bond of Ammonia to Iridium Bis(phosphane) Complexes: A Combined Experimental and Theoretical Study. Organometallics **2016**, 35, 720-731.
- 21. Brown, R. M.; Garcia, J. B.; Valjus, J.; Roberts, C. J.; Tuononen, H. M.; Parvez, M.; Roesler, R., Ammonia Activation by a Nickel NCN-Pincer Complex featuring a Non-Innocent N-Heterocyclic Carbene: Ammine and Amido Complexes in Equilibrium. Angew. Chem. Int. Ed. **2015**, 54, 6274-6277.
- 22. Margulieux, G. W.; Turner, Z. R.; Chirik, P. J., Synthesis and Ligand Modification Chemistry of a Molybdenum Dinitrogen Complex: Redox and Chemical Activity of a Bis(imino)pyridine Ligand. Angew. Chem. Int. Ed. **2014**, 53, 14211-14215.
- 23. Gutsulyak, D. V.; Piers, W. E.; Borau-Garcia, J.; Parvez, M., Activation of Water, Ammonia, and Other Small Molecules by PC_{carbene}P Nickel Pincer Complexes. J. Am. Chem. Soc. **2013**, 135, 11776-11779.
- 24. Chang, Y. H.; Nakajima, Y.; Tanaka, H.; Yoshizawa, K.; Ozawa, F., Facile N-H Bond Cleavage of Ammonia by an Iridium Complex Bearing a Noninnocent PNP-Pincer Type Phosphaalkene Ligand. J. Am. Chem. Soc. **2013**, 135, 11791-11794.
- 25. Kimura, T.; Koiso, N.; Ishiwata, K.; Kuwata, S.; Ikariya, T., H-H and N-H Bond Cleavage of Dihydrogen and Ammonia with a Bifunctional Parent Imido (NH)-Bridged Diiridium Complex. J. Am. Chem. Soc. **2011**, 133, 8880-8883.
- 26. Mena, I.; Casado, M. A.; García-Orduña, P.; Polo, V.; Lahoz, F. J.; Fazal, A.; Oro, L. A., Direct Access to Parent Amido Complexes of Rhodium and Iridium through N-H Activation of Ammonia. Angew. Chem. Int. Ed. **2011**, 50, 11735-11738.

- 27. Khaskin, E.; Iron, M. A.; Shimon, L. J. W.; Zhang, J.; Milstein, D., N-H Activation of Amines and Ammonia by Ru via Metal-Ligand Cooperation. J. Am. Chem. Soc. **2010**, 132, 8542-8543.
- 28. Kanzelberger, M.; Zhang, X. W.; Emge, T. J.; Goldman, A. S.; Zhao, J.; Incarvito, C.; Hartwig, J. F., Distinct Thermodynamics for the Formation and Cleavage of N-H Bonds in Aniline and Ammonia. Directly-Observed Reductive Elimination of Ammonia from an Isolated Amido Hydride Complex. J. Am. Chem. Soc. **2003**, 125, 13644-13645.
- 29. Kläring, P.; Pahl, S.; Braun, T.; Penner, A., Facile Oxidative Addition of Water at Iridium: Reactivity of Trans-[Ir(4- C_5NF_4)(H)(OH)($PiPr_3$)₂] towards CO₂ and NH₃. Dalton Trans. **2011**, 40, 6785-6791.
- 30. Koelliker, R.; Milstein, D., Evidence for an Unprecedented $Ir(H)(NH_3) \rightleftharpoons Ir(H_2)(NH_2)$ Equilibrium and Hydrogen Exchange between NH and CH Bonds. J. Am. Chem. Soc. 1991, 113, 8524-8525.
- 31. Sü β -Fink, G., N-H Activation on Os $_3$ Clusters Preparation and Characterization of Os $_3$ (Co) $_{11}$ (NH $_3$), Os $_3$ (Co) $_{11}$ (NHC $_6$ H $_{10}$) and Os $_3$ (Co) $_{10}$ (μ -H)(μ -NC $_6$ H $_{10}$). Z. Naturforsch B **1980**, 35, 454-457.
- 32. Bryan, E. G.; Johnson, B. F. G.; Lewis, J., 1,1,2,2,2,2,3,3,3,3-Decacarbonyl-1-(η-Cyclohexa-1,3-Diene)-Triangulo-Triosmium: A Novel Intermediate in Synthetic Osmium Cluster Chemistry. J. Chem. Soc., Dalton Trans. 1977, 1328-1330.
- 33. Armor, J. N., Homogeneous Dehydrogenation of Amines by μ - $(\eta^1:\eta^5$ -Cyclopentadienyl)-Tris $(\eta$ -Cyclopentadienyl)Dititanium (Ti-Ti). Inorg. Chem. **1978**, 17, 203-213.
- 34. Power, P. P., Main-Group Elements as Transition Metals. Nature **2010**, 463, 171-177.
- 35. Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G., Facile Splitting of Hydrogen and Ammonia by Nucleophilic Activation at a Single Carbon Center. Science **2007**, 316, 439-441.
- 36. Jana, A.; Schulzke, C.; Roesky, H. W., Oxidative Addition of Ammonia at a Silicon(II) Center and an Unprecedented Hydrogenation Reaction of Compounds with Low-Valent Group 14 Elements Using Ammonia Borane. J. Am. Chem. Soc. **2009**, 131, 4600-4601.
- 37. Hadlington, T. J.; Abdalla, J. A. B.; Tirfoin, R.; Aldridge, S.; Jones, C., Stabilization of a Two-Coordinate, Acyclic Diaminosilylene (ADASi): Completion of the Series of Isolable Diaminotetrylenes, $:E(NR_2)_2$ (E = Group 14 Element). Chem. Commun. **2016**, 52, 1717-1720.
- 38. Meltzer, A.; Inoue, S.; Prasang, C.; Driess, M., Steering S-H and N-H Bond Activation by a Stable N-Heterocyclic Silylene: Different Addition of H_2S , NH_3 , and Organoamines on a Silicon(II) Ligand versus Its $Si(II) \rightarrow Ni(CO)_3$ Complex. J. Am. Chem. Soc. **2010**, 132, 3038-3046.
- 39. Usher, M.; Protchenko, A. V.; Rit, A.; Campos, J.; Kolychev, E. L.; Tirfoin, R.; Aldridge, S., A Systematic Study of Structure and E-H Bond Activation Chemistry by Sterically Encumbered Germylene Complexes. Chem. Eur. J. **2016**, 22, 11685-11698.
- 40. Protchenko, A. V.; Bates, J. I.; Saleh, L. M. A.; Blake, M. P.; Schwarz, A. D.; Kolychev, E. L.; Thompson, A. L.; Jones, C.; Mountford, P.; Aldridge, S., Enabling and Probing Oxidative Addition and Reductive Elimination at a Group 14 Metal Center: Cleavage and Functionalization of E-H Bonds by a Bis(boryl)stannylene. J. Am. Chem. Soc. **2016**, 138, 4555-4564.
- 41. Peng, Y.; Ellis, B. D.; Wang, X. P.; Power, P. P., Diarylstannylene Activation of Hydrogen or Ammonia with Arene Elimination. J. Am. Chem. Soc. **2008**, 130, 12268-12269.
- 42. Peng, Y.; Guo, J. D.; Ellis, B. D.; Zhu, Z. L.; Fettinger, J. C.; Nagase, S.; Power, P. P., Reaction of Hydrogen or Ammonia with Unsaturated Germanium or Tin Molecules under Ambient Conditions: Oxidative Addition versus Arene Elimination. J. Am. Chem. Soc. **2009**, 131, 16272-16282.
- 43. Zhu, Z. L.; Wang, X. P.; Peng, Y.; Lei, H.; Fettinger, J. C.; Rivard, E.; Power, P. P., Addition of Hydrogen or Ammonia to a

- Low-Valent Group 13 Metal Species at 25 °C and 1 Atmosphere. Angew. Chem. Int. Ed. **2009**, 48, 2031-2034.
- 44. Abbenseth, J.; Townrow, O. P. E.; Goicoechea, J. M., Thermoneutral N-H Bond Activation of Ammonia by a Geometrically Constrained Phosphine. Angew. Chem. Int. Ed. **2021**, 60, 23625-23629.
- 45. Robinson, T. P.; De Rosa, D. M.; Aldridge, S.; Goicoechea, J. M., E-H Bond Activation of Ammonia and Water by a Geometrically Constrained Phosphorus(III) Compound. Angew. Chem. Int. Ed. **2015**, 54, 13758-13763.
- 46. McCarthy, S. M.; Lin, Y. C.; Devarajan, D.; Chang, J. W.; Yennawar, H. P.; Rioux, R. M.; Ess, D. H.; Radosevich, A. T., Intermolecular N-H Oxidative Addition of Ammonia, Alkylamines, and Arylamines to a Planar σ^3 -Phosphorus Compound via an Entropy-Controlled Electrophilic Mechanism. J. Am. Chem. Soc. **2014**, 136, 4640-4650.
- 47. Cui, J. J.; Li, Y. X.; Ganguly, R.; Inthirarajah, A.; Hirao, H.; Kinjo, R., Metal-Free σ -Bond Metathesis in Ammonia Activation by a Diazadiphosphapentalene. J. Am. Chem. Soc. **2014**, 136, 16764-16767.
- 48. Abbenseth, J.; Goicoechea, J. M., Recent Developments in the Chemistry of Non-trigonal Pnictogen Pincer Compounds: from Bonding to Catalysis. Chem. Sci. **2020**, 11, 9728-9740.
- 49. Yadav, S.; Saha, S.; Sen, S. S., Compounds with Low-Valent p-Block Elements for Small Molecule Activation and Catalysis. ChemCatChem **2016**, 8, 486-501.
- 50. Fujimori, S.; Inoue, S., Small Molecule Activation by Two-Coordinate Acyclic Silylenes. Eur. J. Inorg. Chem. **2020**, 2020, 3131-3142.
- 51. Power, P. P., Interaction of Multiple Bonded and Unsaturated Heavier Main Group Compounds with Hydrogen, Ammonia, Olefins, and Related Molecules. Acc. Chem. Res. **2011**, 44, 627-637.
- 52. Wendel, D.; Szilvasi, T.; Henschel, D.; Altmann, P. J.; Jandl, C.; Inoue, S.; Rieger, B., Precise Activation of Ammonia and Carbon Dioxide by an Iminodisilene. Angew. Chem. Int. Ed. **2018**, 57, 14575-14579.
- 53. Moerdyk, J. P.; Blake, G. A.; Chase, D. T.; Bielawski, C. W., Elucidation of Carbene Ambiphilicity Leading to the Discovery of Reversible Ammonia Activation. J. Am. Chem. Soc. **2013**, 135, 18798-18801.
- 54. Volodarsky, S.; Dobrovetsky, R., Ambiphilic Geometrically Constrained Phosphenium Cation. Chem. Commun. **2018**, 54, 6931-6934.
- 55. Feld, J.; Wilson, D. W. N.; Goicoechea, J. M., Contrasting E-H Bond Activation Pathways of a Phosphanyl-Phosphagallene. Angew. Chem. Int. Ed. **2021**, 60, 22057-22061.
- 56. Abdalla, J. A. B.; Riddlestone, I. M.; Tirfoin, R.; Aldridge, S., Cooperative Bond Activation and Catalytic Reduction of Carbon Dioxide at a Group 13 Metal Center. Angew. Chem. Int. Ed. **2015**, 54, 5098-5102.
- 57. Jana, A.; Objartel, I.; Roesky, H. W.; Stalke, D., Cleavage of a N-H Bond of Ammonia at Room Temperature by a Germylene. Inorg. Chem. **2009**, 48, 798-800.
- 58. Chase, P. A.; Stephan, D. W., Hydrogen and Amine Activation by a Frustrated Lewis Pair of a Bulky N-Heterocyclic Carbene and $B(C_6F_5)_3$. Angew. Chem. Int. Ed. **2008**, 47, 7433-7437.
- 59. Stiefel, E. I., Ed., Dithiolene Chemistry: Synthesis, Properties, and Applications. John Wiley & Sons: Hoboken, NJ, 2004.
- 60. Basu, P.; Colston, K. J.; Mogesa, B., Dithione, the Antipodal Redox Partner of Ene-1,2-Dithiol Ligands and Their Metal Complexes. Coord. Chem. Rev. **2020**, 409, 213211.
- 61. Kusters, W.; Mayo, P. D., Thione Photochemistry Preparation of an α-Dithione and α-Dithione-1,2-Dithiete Equilibrium. J. Am. Chem. Soc. **1973**, 95, 2383-2384.
- 62. Servaas, P. C.; Stufkens, D. J.; Oskam, A.; Vernooijs, P.; Baerends, E. J.; Deridder, D. J. A.; Stam, C. H., Structural,

- Spectroscopic, and Theoretical-Studies of Novel d⁶ *fac*-Re(CO)₃LBr (L = Dithiooxamide)Complexes. Inorg. Chem. **1989**, 28, 4104-4113.
- 63. Shimizu, T.; Murakami, H.; Kobayashi, Y.; Iwata, K.; Kamigata, N., Synthesis, Structure, and Ring Conversion of 1,2-Dithiete and Related Compounds. J. Org. Chem. **1998**, 63, 8192-8199
- 64. Müller, C.; Andrada, D. M.; Bischoff, I. A.; Zimmer, M.; Huch, V.; Steinbrück, N.; Schäfer, A., Synthesis, Structure, and Bonding Analysis of Tin(II) Dihalide and Cyclopentadienyltin(II) Halide (Alkyl)(amino)carbene Complexes. Organometallics **2019**, 38, 1052-1061.
- 65. Wang, Y.; Tran, P. M.; Xie, Y.; Wei, P.; Glushka, J. N.; Schaefer, H. F., III; Robinson, G. H., Carbene-Stabilized Dithiolene (L⁰) Zwitterions. Angew. Chem. Int. Ed. **2021**, 60, 22706-22710.
- 66. See the supporting information for synthetic, computational, and crystallographic details.
- 67. Rosolina, S. M.; Carpenter, T. S.; Xue, Z. L., Bismuth-Based, Disposable Sensor for the Detection of Hydrogen Sulfide Gas. Anal. Chem. **2016**, 88, 1553-1558.
- 68. Wang, Y.; Xie, Y.; Wei, P.; Blair, S. A.; Cui, D.; Johnson, M. K.; Schaefer, H. F., III; Robinson, G. H., A Stable Naked Dithiolene Radical Anion and Synergic THF Ring-Opening. J. Am. Chem. Soc. **2020**, 142, 17301-17305.
- 69. Goettel, J. T.; Gao, H. P.; Dotzauer, S.; Braunschweig, H., (Me)CAAC=N: A Cyclic (Alkyl)(Amino)Carbene Imino Ligand. Chem. Eur. J. **2020**, 26, 1136-1143.
- 70. Chmutova, G. A.; Kataeva, O. N.; Ahlbrecht, H.; Kurbangalieva, A. R.; Movchan, A. I.; Lenstra, A. T. H.; Geise, H. J., Derivatives of 1-Phenyl-3-Methylpyrazol-2-In-5-Thione and Their Oxygen Analogues in the Crystalline Phase and Their Tautomeric Transformations in Solutions and in the Gas Phase. J. Mol. Struct. **2001**, 570, 215-223.
- 71. Jetti, R. K. R.; Boese, R.; Thakur, T. S.; Vangala, V. R.; Desiraju, G. R., Proton transfer and $N^{(+)}$ – $H\cdots S^{(-)}$ Hydrogen Bonds in the Crystal Structure of 4-Aminothiophenol. Chem. Commun. **2004**, 2526-2527.
- 72. Wang, Y.; Hickox, H. P.; Xie, Y.; Wei, P.; Blair, S. A.; Johnson, M. K.; Schaefer, H. F., III; Robinson, G. H., A Stable Anionic Dithiolene Radical. J. Am. Chem. Soc. **2017**, 139, 6859-6862.
- 73. Berg, N.; Bergwinkl, S.; Nuernberger, P.; Horinek, D.; Gschwind, R. M., Extended Hydrogen Bond Networks for Effective Proton-Coupled Electron Transfer (PCET) Reactions: The Unexpected Role of Thiophenol and Its Acidic Channel in Photocatalytic Hydroamidations. J. Am. Chem. Soc. **2021**, 143, 724-735.
- 74. Bircsak, Z.; Harrison, W. T. A., (CN₃H₆)₂·(VO₂)₃(PO₄)(HPO₄), a Layered Guanidinium Vanadium(V) Phosphate Related to Hexagonal Tungsten Oxide. Inorg. Chem. **1998**, 37, 3204-3208.
- 75. Biswal, H. S.; Wategaonkar, S., Nature of the N-H···S Hydrogen Bond. J. Phys. Chem. A **2009**, 113, 12763-12773.
- 76. Schiffer, Z. J.; Lazouski, N.; Corbin, N.; Manthiram, K., Nature of the First Electron Transfer in Electrochemical Ammonia Activation in a Nonaqueous Medium. J. Phys. Chem. C. **2019**, 123, 9713-9720.
- 77. Reed, D. R.; Kass, S. R., Hydrogen-Deuterium Exchange at Non-labile Sites: A New Reaction Facet with Broad Implications for Structural and Dynamic Determinations. J. Am. Soc. Mass. Spectrom. **2001**, 12, 1163-1168.
- 78. Limbach, H. H.; Hennig, J.; Stulz, J., IR-Spectroscopic Study of Isotope Effects on the NH/ND-Stretching Bands of Meso-Tetraphenylporphine and Vibrational Hydrogen Tunneling. J. Chem. Phys. **1983**, 78, 5432-5436.
- 79. Kinnaman, C. S.; Cremeens, M. E.; Romesberg, F. E.; Corcelli, S. A., Infrared Line Shape of an α -Carbon Deuterium-Labeled Amino Acid. J. Am. Chem. Soc. **2006**, 128, 13334-13335.

TOC Graphic

(For Table of Contents Only)

Activation of Ammonia by a Carbene-Stabilized Dithiolene Zwitterion

Yuzhong Wang, Phuong M. Tran, Mitchell E. Lahm, Yaoming Xie, Pingrong Wei, Earle R. Adams, John N. Glushka, Vladimir V. Popik, Henry F. Schaefer III and Gregory H. Robinson*

Department of Chemistry, Center for Computational Chemistry, and Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-2556 (USA)