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ABSTRACT: A carbene-stabilized dithiolene zwitterion (3)
activates ammonia, affording 4° and 5, through both single-
electron transfer (SET) and hydrogen atom transfer (HAT).
Reaction products were characterized spectroscopically and
by single-crystal X-ray diffraction. The mechanism of the
formation of 4° and 5 was probed by experimental and
computational methods.

Utilizing ammonia as a carbon-free alternative fuel
and in homogeneous catalysis is intriguing due to its
high energy density, low cost, and substantial global
production' (presently exceeding 150 million tons annu-
ally).>* Although transition metal complexes have
demonstrated the capability to activate a number of E-H
bonds (such as E = H, B, Si, and C), their utility in am-
monia activation is still limited. This is largely due to the
pronounced tendency of ammonia to form stable Wer-
ner-ammine coordination complexes with transition
metals coupled with the considerable N-H bond dissoci-
ation energy® (107 kcal mol') of ammonia.> Transition
metal-mediated N—H bond cleavage of ammonia may
involve oxidative addition,!> deprotonation,'® and hy-
drogen atom transfer'’-!? (HAT) reactions.®3* Consider-
ing the lower toxicity, higher natural abundance of main
group species, mimicking the reactivity of transition
metals with main group elements represents a remarka-
ble research field.** Bertrand previously reported cyclic
(alkyl)(amino)carbene (CAAC)-mediated ammonia acti-
vation through oxidative addition.?> A series of heavier
group 14 analogues of carbenes,’** m-terphenyl-
anchored Ga(I) species,” and P(III) pincer complexes**
47 were subsequently employed to activate ammonia. 83!
An iminodisilene was shown to activate ammonia either
via an anti-addition pathway (giving the hydroamination
product) or through the Si=Si bond cleavage (giving the
oxidative addition product of the silylene unit).’? Inter-
estingly, both an N-heterocyclic carbene and a cationic
P(Ill)-pincer complex have been reported to conduct
reversible NH3 activation.’>>* In addition, frustrated
Lewis pairs (FLPs) have been reported to activate am-
monia via deprotonation.’>>® Notably, metal-free am-

monia activation via hydrogen atom transfer has not
been achieved.
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Figure 1. Redox states of dithiolene ligands.

The non-innocence of dithiolene ligands (Figure 1) has
played a pivotal role in the abundant redox chemistry of
transition metal dithiolene complexes.® In contrast to
ene-1,2-dithiolates (L*, containing 6m-electrons), the
4rne-containing neutral dithiolenes (L) are electron-
deficient and may serve as an electron-acceptor.’’ In
addition to the well documented 1,2-dithiones and 1,2-
dithietes,®-%3 neutral dithiolenes (L°) may also exist as a
zwitterion (Figure 1) through Lewis base coordination.
Indeed, this laboratory recently reported carbene-
complexed dithiolene (L°) zwitterions [such as 3
(Scheme 1), in which carbene is M*CAAC® (1)] by reac-
tions of carbenes with an imidazole-based dithione di-
mer.% Herein, we report the unusual capability of 3, as a
metal-free molecular system, to activate ammonia via
both single-electron transfer (SET) and hydrogen atom
transfer (HAT).

Scheme 1. Synthesis of 2, 4°, 4", 5, and 5' (Dipp = 2,6-
diisopropylphenyl).

Ammonia activation via oxidative addition:
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As Bertrand’s discovery,® the oxidative-addition
(Scheme 1) occurs when 1 is combined with ammonia in
toluene, quantitatively giving 2 as colorless crystals®®
(Figure S1).° The '"H NMR spectrum of 2 (in C¢Ds) ex-
hibits a doublet resonance at 0.93 ppm for the NH; unit
and a triplet at 4.40 ppm for the proton at the carbene
carbon atom. In contrast, the room-temperature reaction
of 3 with NH3 results in a mixture containing both 4" and
5 (Scheme 1), which can be separated by multiple-step
recrystallization. Radical 4° (dark purple crystals) and
compound 5 (colorless crystals) were isolated in 85.2%
yield and in 70.4% yield, respectively. The formation of
H,S as a by-product (Scheme 1) was confirmed by the
lead acetate paper analysis technique.®” (Figure S4).66
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Figure 2. (a) Room-temperature X-band EPR spectrum of
4" in THF. The spectrum was recorded at 9.358 GHz with a
modulation amplitude of 0.2 G and a microwave power of
1.0 mW. (b) SOMO of 4".

The paramagnetic nature of 4° was probed by EPR
spectroscopy. The EPR spectrum of 4° in THF at 298 K
(Figure 2a) exhibits a S = !4 quintet (gav = 2.014) due to
hyperfine coupling with two equivalent N (I = 1) nu-
clei, A, ("*N) = 4.3 MHz. It compares well to those of
compounds containing the same “naked” dithiolene rad-
ical unit [gay = 2.017, Aay(**N) = 4.1 MHz for 6" (with an
imidazolium counter-cation)®®; g,y = 2.014, Aa.('*N) =
4.4 MHz for 9* (with a Cp*>Co* counter-cation)®¢]. The
DFT computations of 4° at the B3LYP/6-311G** level
reveals that the SOMO (Figure 2b) involves both C—C
n-bonding and S—C m-antibonding character. The un-
paired electron is mainly localized on the C,S; unit in 4°
(the spin density of the C»S; unit = 0.82).
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Figure 3. Molecular structures of 4°, and 5. Thermal ellip-
soids represent 30% probability. Hydrogen atoms on car-
bon atoms [except for C(3) in 5] have been omitted for
clarity. Selected bond distances (A) and angles (deg): For
4, S(1)-C(1), 1.659(2); C(2)-C(3), 1.421(3); C(2)-S(2),
1.671(2); C(28)-N(3), 1.314(3); C(28)-C(31), 1.506(3);
C(28)-N(4), 1.304(3); S(2)-C(2)-C(3), 130.61(15); C(31)-
C(28)-N(3), 112.67(17); C(31)-C(28)-N(4), 124.2(2);
N(3)-C(28)-N(4), 123.1(2). For 5, S(1)-C(1), 1.678(3);
C(2)-C(3), 1.352(4); C(2)-S(2), 1.713(3); C(28)-N(3),
1.315(3); C(28)-C(31), 1.496(4); C(28)-N(4), 1.313(3);
S(2)-C(2)-C(3), 131.1(2); C(31)-C(28)-N(3), 112.5(2);
C(31)-C(28)-N(4), 123.2(2); N(3)-C(28)-N(4), 124.2(3).

X-ray structural analysis (Figure 3) shows that 4° ex-
ists as a (M*CAAC-based iminium cation/dithiolene radi-
cal anion) adduct in the solid state.®® The hydrogen at-
oms on the N(4) atom were located from difference Fou-
rier map. While being consistent with the corresponding
theoretical values [dc—x = 1.303 A, dc-c = 1.431 A, dcs
@ = 1.697 A1,% the structural parameters of the imini-
um fragment [dces)-n@) = 1.304(3) A] and the C2S; unit
of the anionic dithiolene moiety [dc-c = 1.421(3) A, dc-s
@) = 1.674(2) A] in 4" are comparable with those for
([McCAAC=NH]N3)>-H,0 (7)® [de~ = 1.3037(19) A]
and for 6'68 [dc_c = 1.420(2) A, dc_s (av) — 1.667(2) A],
respectively. The Wiberg bond indices (WBIs) of S—C
bonds in the C,S; unit of 4° (1.36, av) indicate their par-
tial double bond character. Each of the two sulfur atoms
in the C>S; unit of 4° bears a negative charge of ca. -
0.26. Besides the predominant electrostatic forces, there
also exists the N(4)-H(4B)---S(3) hydrogen bonding in-
teraction [duun)--s@) = 2.301(17) A, dnwy--se) = 3.175(2)
A, @ynes)-se) = 169.0(2)°] between the anionic dithi-



olene moiety and the iminium cation in 4°.7%"" Com-
pound 5 may be regarded as a derivative of 4° by formal-
ly replacing one neutral sulfur atom from the C,S; unit
in 4° with one hydrogen atom (i.e., H"). The hydrogen
atoms on the C(3) and N(4) atoms in 5 were located
from difference Fourier map (Figure 3). The anionic
moiety of 5 is the same as that of the reported lithium
monothiolate (8).”> Both 5 and 8 exhibit similar bonding
parameters [for 5, dc=c = 1.352(4) A, dc)-s@) = 1.713(3)
A; for 8, dc=c = 1.355(5) A, dc(3)_s(2) = 1.716(4) A] By
comparison with those [WBIc.s = 1.36, av; charge on
each sulfur atom = ca. -0.26] for the C,S, unit of 4°,
compound 5 has a decreased WBI value (1.17) of the
C(2)-S(2) bond and increased negative charge of -0.50
on the S(2) atom. Similar to 4°, there exists a N(4)—
H(4A)---S(2) hydrogen bond between the iminium cation
and the thiolate unit in 5 [du@a)-se) = 2.37(2) A,
dN(4)»~s(2) = 3230(3) A, 9N(4%H(4A)~-S(2) = 167.0(3)0].70’71

The room-temperature 'H NMR spectrum (in THF-ds)
of 5§ exhibits a singlet imidazole resonance at 6.09 ppm,
which is similar to that (6.14 ppm) of 8.7 However, the
iminium proton resonance of 5 can only be observed at
decreased temperatures according to  variable-
temperature (VT) '"H NMR spectroscopic study of 5
(Figure S11).° The 'H NMR spectrum of 5 (in THF-ds,
at -40 °C, Figure S10)% exhibits two broad singlet reso-
nances (7.79 ppm and 12.75 ppm) for the two iminium
protons. The same M(CAAC-based iminium salt (with an
azide counter-anion) (7) exhibits a broad iminium (and
H>0) 'H NMR resonance at 6.2 ppm (in CDCl3).® The
significant downfield shift of the iminium proton reso-
nance (12.75 ppm) of 5 should be ascribed to the N—
H---S" hydrogen bond in 5 (Figure 3).”3 The infrared (IR)
spectra®® of both 4° and 5 exhibit a H-N-H scissoring
(mixed with C=N stretching) absorption at 1655 cm!,
indicating the existence of a C=NH; fragment in 4° and
5.74 Considering the significant red-shift effect of the N—
H---S" hydrogen bond on the N-H stretch,” for both 4°
and 5, only the absorption at 3379 cm™' was assigned to
the N-H stretch.

The 3-to-4° conversion indicates that the electron-
deficient dithiolene core (containing 4me) may act as an
electron reservoir to accept one electron from ammonia
via single electron transfer (SET), giving an ammoni-
umyl radical cation (i.e., NH3™") as an elusive intermedi-
ate. Notably, the formation of NH3™ involving an elec-
tron transfer (ET) mechanism has been proposed for
electrochemical ammonia oxidation.”® As a zwitterion, 3
exhibits a 2.08 eV HOMO-LUMO energy gap.®® The
low-lying LUMO (-2.35 €V) of 3.%° involving mainly
Ccaac—N m-antibonding character, may serve as the
electrophilic site to initiate the SET reaction of ammo-
nia. Interestingly, our computations show that single
electron reduction of 3 results in its dissociation, giving
a “naked” anionic dithiolene radical and a free M\CAAC
(1) ligand. This is further confirmed by Cp"Co-

mediated single electron reduction of 3, which gives the
anionic “naked” dithiolene radical (9°) (Dipp = 2,6-
diisopropylphenyl, Scheme 2).

Scheme 2. Synthesis of 9°.
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Our computations®® (Figure 4a) show that the subse-
quent reaction of the in-situ released M*CAAC (1) (as a
nucleophile) with the highly reactive NH3™ species is
energetically favored and would give a [carbene-NH3]™"
adduct (i.e., intermediate I). Dissociation of intermediate
I, via a transition state (TS) with an energy barrier of
17.6 kcal mol!, results in the M* CAAC-based iminium
cation (II) (which will couple with the already-formed
“naked” dithiolene radical anion to give 4°) and one hy-
drogen atom. The N—H bond dissociation energy (BDE)
for the intermediate I (6.0 kcal mol™') is drastically lower
than that for ammonia (107 kcal mol').>
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Figure 4. (a) Calculated relative energies (kcal mol!) for
the reaction of M*CAAC (1) with NH;"" at the B3LYP/6-
311G** level and drawings of intermediate I, transition



state, iminium II (the cationic moiety of 4°) with selected
bond distances (A). (b) The optimized structure of interme-
diate III (at the B3LYP/6-311G** level) Selected bond
distances (A): C(6)-S(1), 1.658; C(7)-C(8), 1.510; C(7)—
S(2), 1.669; C(8)-S(3), 1.841.

While the elusive hydrogen atom (H*) may dimerize to
evolve H, gas, isolation of 5 (in 70.4% yield) and detec-
tion of H»S as the major by-product (Scheme 1) revealed
that the hydrogen atoms produced from the dissociation
of I (Figure 4a) may mainly (ca. 70% hydrogen atoms)
participate in multiple hydrogen-atom-transfer (HAT)
processes involved in the 4'-to-5 conversion (formation
of one equivalent of 5 need consume three equivalents
of hydrogen atoms, see eq. 1 and 2). Although the mech-
anistic details of the 4°-to-5 conversion remain unclear,
our computations®® suggest that the energetically-
favored radical coupling reaction (AE = -54.7 kcal mol',
eq. 1) of 4° with one equivalent of hydrogen atom (H")
may give an intermediate IIT (Figure 4b), in which the
hydrogen atom bonds to one backbone-carbon (i.e., C8)
of the imidazole ring. Subsequent reaction of III with
two equivalents of H®, producing one equivalent of 5 and
one equivalent of H»S (eq. 2), is also thermodynamically
favored (AE = -124.6 kcal mol™").

£ + H — 1 AE =-54.7 kcal mol't (eq. 1)

Ml + 2H" — 5 + H,S AE=-124.6 kcal mol™ (eq. 2)

To further experimentally investigate whether the im-
idazole proton [i.e., H(3)] of 5 is transferred from NH3,
the parallel reaction of 3 with ND3 (99 atom % D) was
investigated, which gave both 4" and 5' (Scheme 1), the
deuterium analogues of 4° and 5, respectively. The obvi-
ously weakened strength of imidazole (at 6.09 ppm) and
iminium proton resonances (at 7.82 and 12.78 ppm) ob-
served in the '"H NMR spectrum of 5' (in THF, -40 °C,
Figure S17)% supports that the imidazole proton of 5 is
acquired from ammonia. In addition, this result also re-
veals that there exists the H/D exchange”” between ND;
and the reaction mixture during the reaction. The IR
spectroscopic study® reveals the N-D stretches’® [2504
cm’! and 2234 ¢cm! (involving the N-D---S” bond)”®] for
4" and the C-D stretch” (2203 c¢cm), N-D stretches
[2488 cm™! and 2153 c¢m?! (involving the N-D---S
bond)] for 5'. Observation of the C—H stretching band
(with a decreased strength) at 3379 cm! in the IR spec-
tra (Figure S14 and S15)% of 4" and 5' provides further
evidence for the H/D exchange involving ND3 and the
reaction mixture.”’

While M*CAAC (1) activates ammonia via oxidative
addition, the M*CAAC-stabilized dithiolene (L°) zwitter-
ion (3) exhibits its unique capability of activating am-
monia to give both 4° and 5 via single-electron transfer
(SET) and hydrogen atom transfer (HAT) processes.
This discovery reveals that carbene (or other Lewis ba-
ses)-stabilized dithiolene (L°) zwitterions may be em-
ployed as a new type of metal-free bi-functional molecu-

lar systems: while the 4re dithiolene (L°) unit serves as
an electron reservoir, the in-situ released Lewis base
species [due to single-electron reduction of the dithio-
lene (L) ligand] may act as a nucleophile. Their unique
synergic interaction may result in unusual application
for small molecule activation.
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