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ABSTRACT

We analyse how drag forces modify the orbits of objects moving through extended gaseous distributions. We consider how
hydrodynamic (surface area) drag forces and dynamical friction (gravitational) drag forces drive the evolution of orbital
eccentricity. While hydrodynamic drag forces cause eccentric orbits to become more circular, dynamical friction drag can cause
orbits to become more eccentric. We develop a semi-analytic model that accurately predicts these changes by comparing the total
work and torque applied to the orbit at periapse and apoapse. We use a toy model of a radial power-law density profile, p o« r~7, to
determine that there is a critical y = 3 power index, which separates the eccentricity evolution in dynamical friction: orbits become
more eccentric for y < 3 and circularize for y > 3. We apply these findings to the infall of a Jupiter-like planet into the envelope
of its host star. The hydrostatic envelopes of stars are defined by steep density gradients near the limb and shallower gradients
in the interior. Under the influence of gaseous dynamical friction, an infalling object’s orbit will first decrease in eccentricity
and then increase. The critical separation that delineates these regimes is predicted by the local density slope and is linearly
dependent on polytropic index. More broadly, our findings indicate that binary systems may routinely emerge from common
envelope phases with non-zero eccentricities that were excited by the dynamical friction forces that drove their orbital tightening.

Key words: celestial mechanics — planets and satellites: dynamical evolution and stability — planet-star interactions —binaries:

general —stars: kinematics and dynamics.

1 INTRODUCTION

Gravitationally bound objects follow Keplerian trajectories in the
classical two-body problem. In an ambient gaseous medium; how-
ever, orbits evolve under the friction that the gas exerts on the
embedded bodies. Gaseous friction changes the orbital parameters
through apsidal precession, orbital migration, eccentricity change,
and inclination damping (Grishin & Perets 2015). We will discuss
mechanisms of gas—object interaction focusing on gaseous dynam-
ical friction, also investigating hydrodynamic drag but neglecting
gaseous feedback (like e.g. Thun et al. 2016). Both the hydrodynamic
drag force and the dynamical friction force oppose the direction
of motion of the orbiting body, transferring energy and angular
momentum to the gas. As a consequence, the semimajor axis shrinks
and the orbital eccentricity may change as well. The resulting orbital
evolution therefore depends on the properties of the gas and the
parameters of the system orbit.

The response of gaseous surroundings to the passage of a grav-
itating object is described by the Bondi—Hoyle—Lyttleton accretion
theory (Hoyle & Lyttleton 1939; Bondi & Hoyle 1944; Bondi 1952;
Edgar 2004). Further, the overdense wake left by a passing object im-
plies a momentum exchange (Hunt 1971; Shima et al. 1985; Ruffert
1994, 1995, 1996, 1999; Ruffert & Arnett 1994; Thun et al. 2016)
much like that in collisionless dynamical friction (Chandrasekhar
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1943). Ostriker (1999) derived gaseous dynamical friction force
formulae using time-dependent linear perturbation theory.

More broadly, the theory of gaseous dynamical friction has ap-
plications throughout astrophysics, where gas and gravitating bodies
frequently intermingle. Some particularly rich applications have in-
cluded the dynamics of young stars, and clusters embedded in molec-
ular clouds (e.g. Stahler 2010; Leigh et al. 2014; Sanchez-Salcedo &
Chametla 2014; Antoni, MacLeod & Ramirez-Ruiz 2019; Rozner &
Perets 2022); the interactions and capture of stars and compact
objects by discs in active galactic nuclei (e.g. Syer, Clarke & Rees
1991; Artymowicz, Lin & Wampler 1993; Narayan 2000; Miralda-
Escudé & Kollmeier 2005; Baruteau, Cuadra & Lin 2011; Kennedy
et al. 2016; Bartos et al. 2017; Stone, Metzger & Haiman 2017; Se-
cunda et al. 2019; MacLeod & Lin 2020; Tagawa, Haiman & Kocsis
2020; McKernan et al. 2022; Jermyn et al. 2022); and common enve-
lope phases (Paczynski 1976) in which a star engulfs its companion
star, planets or a compact object within its gaseous envelope and dy-
namical friction drives orbital inspiral (e.g. Iben & Livio (e.g. Iben &
Livio 1993; Villaver & Livio 2007; Ivanova et al. 2013; MacLeod &
Ramirez-Ruiz 2015; Staff et al. 2016; MacLeod et al. 2017,
MacLeod, Cantiello & Soares-Furtado 2018; De et al. 2020; Everson
et al. 2020; Ginat et al. 2020). Hydrodynamic drag and dynamical
friction contribute to the capture and migration of planetesimals in
molecular clouds (e.g. Pfalzner et al. 2021; Moro-Martin & Norman
2022); protoplanetary discs (e.g. Grishin & Perets 2015, 2016;
Grishin, Perets & Avni 2019) and debris around white dwarfs can
also capture dust and planetesimals, triggering white dwarf pollution
(e.g. O’Connor & Lai 2020; Malamud, Grishin & Brouwers 2021).
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Following Ostriker (1999), subsequent authors examined various
aspects of orbital evolution both numerically and analytically in
different astrophysical contexts (see MacLeod et al. 2017; Antoni
et al. 2019, for a recent discussion of this literature). Of particular
relevance to our subsequent discussion is work that considered
the effect of dynamical friction on orbits. For example, Sanchez-
Salcedo & Brandenburg (2001) used numerical simulations to study
the orbital evolution of objects in different models of gaseous spheres.
Later, Kim & Kim (2007) studied the gravitational torque exerted
on a single perturber on circular orbits by dynamical friction of
a uniform gaseous medium using a semi-analytic approach. Kim,
Kim & Sanchez-Salcedo (2008) extended the method of Kim & Kim
(2007) to double perturbers on circular orbits. Sdnchez-Salcedo &
Chametla (2014) also studied the morphology of the binary case
and the torque on the centre of mass. Grishin & Perets (2016)
applied the problem of dynamical friction to intermediate-sized
binary planetesimals, analogous to binaries in active galactic nuclei
discs. Sanchez-Salcedo (2019) examined the evolution of eccentric
orbits, comparing analytic and numerical results. Vicente, Cardoso &
Zilhao (2019) studied dynamical friction in slab-like geometries such
as accretion discs and provided refined analytic expressions for force
in both the supersonic and subsonic regimes. Bonetti et al. (2020)
considered the implications of prograde and retrograde motion in
rotating media. Furthermore, Glanz & Perets (2021) investigated
the common envelope evolution of initially eccentric binaries using
hydro-dynamical simulations. They found that the eccentric orbits
only partially circularize during the common envelop inspiral.
Recently, Desjacques, Nusser & Biihler (2022) have used Liénard-
Wiechert potentials to derive force expressions for a circularly
moving point mass in a gaseous medium. They found that the steady-
state is reached after only one sound-crossing time. Yarza et al.
(2022), however, used hydrodynamic simulations to integrate orbital
evolution in the context of planetary engulfment, considering both
the ram pressure and gravitational drag. Among the shared questions
are the characteristic length scale over which gravitational wakes
extend (defining the Coulomb logarithm term) and how accelerated,
rather than linear, motion affects the forces.

In this paper, we focus particularly on the eccentricity evolution
of two-body systems. We adopt a model in which a less massive
secondary object orbits in the gaseous envelope of a more massive,
extended primary object. We use both (i) a simple numerical
integrator to solve the equations of motion, reconstruct the orbital
path, and measure the eccentricity evolution; and (ii) a semi-analytic
approach to directly estimate the eccentricity evolution from the
orbital parameters and drag forces. In Section 2, we introduce
the equations of motion and our numerical technique. Then we
outline our semi-analytic formalism in Section 3. We demonstrate the
application of our formalism in a toy model first, in Section 4.1, where
the primary object is an isothermal sphere with a power-law density
profile. Then we use both numerical and semi-analytic techniques
to calculate the eccentricity evolution of a Jupiter-like planet within
the stellar envelope of a red giant star in Section 4.2. We examine a
series of different polytropic models and show how the eccentricity
evolution depends on the polytropic density profile of the envelope.
We summarize our conclusions in Section 5.

2 METHOD

2.1 Equations of motion

We start with a simple model of a two-body system where a more
massive object (primary) is represented by an extended, static,
spherically symmetric gaseous halo, and a less massive companion
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(secondary) is orbiting within the gas. In this picture, the acceleration
of the secondary originates from both the gravitational force of the
enclosed mass (m,) and the external force (F.y) that the gas exerts
on it

m,r  Fex
a=-G—— .

e (1)
Here, G is the gravitational constant, r is the position, and m is the
mass of the secondary. We only examine the orbital evolution of
the secondary and neglect its back-reaction on the gas. The external
forces are considered to be either the hydrodynamic drag force or
the gas dynamical friction. The hydrodynamic drag force (Villaver &
Livio 2009) is

_ Lo Rt
thd = C4R TToV™ —, (@)
2 v

where R is the radius, v is the velocity of the secondary, and we
use Cq = 1.0." p is the local density in the gas. The gas dynamical
friction force by Ostriker (1999) is

Fy = —4m(Gm> 222, 3)

vi v

where / is the Mach-number dependent parameter, i.e. Ig,, = 0.5In [(1
+ vleg)/(1 — v/eg)] — v/cg in the subsonic regime and Iy, = 0.5In (1
— (v/cg)™2) — In(#/R) in the supersonic regime. c is the local sound
speed in the gas, r is the characteristic size of the system (here, we
adopt the separation of the secondary object).

The compactness of the secondary object determines the relative
importance of the above drag forces. Grishin & Perets (2015), for
example, calculated the critical size of the secondary (given its
density) below which the dynamical friction becomes the domi-
nant external force in forming the orbital evolution. Similarly, by
comparing equations (2) and (3), we define approximate critical
compactness (a mass to radius ratio) above which the dynamical
friction is dominant over hydrodynamic drag:

m 2 [Cy

A 4
R 26V a1 @)

One implicit assumption in equations (2) and (3) is that force
depends on the local conditions (those in the vicinity of the orbiting
object). In principle, this might not be satisfied if there are changes in
quantities like the density over the characteristic length scale of the
Coulomb logarithm (see Sanchez-Salcedo 2019, for a more detailed
description of the applicability and limits of this local formalism as
compared to hydrodynamic simulations).

Although we neglect including feedback as an additional source
of external force in our model, it is important to note that there
are certain astrophysical scenarios in which gas accretion on to
the secondary potentially leads to non-negligible feedback that can
change the morphology of a gaseous wake significantly, even altering
the sign of the net force (e.g. Gruzinov, Levin & Matzner 2020, and
references therein).

2.2 Numerical integration

We solve equation (1) with a simple leapfrog algorithm, applying
either the hydrodynamic drag or the dynamical friction as the source
of the external force to reconstruct the orbital path. The r; position
of the object is stepped by the following algorithm:

'We note that Cy4 depends on Reynolds and Mach numbers (Perets & Murray-
Clay 2011), but in the ram pressure regime, it can be well approximated by a
constant (Grishin & Perets 2015), e.g. unity for large Reynolds numbers.

220z Jequieydas 0g uo 1sanb Aq 80YY8S9/SIYS/H/E L S/Al0IME/SeIuW /W00 dno-ojwapede/:sdy Wwoly papeojumoq



At
Vip12 =0 —|—a,-7, (5)
Fig1 =T+ Vig12AL (6)
Gm, F
Qi = ——— + —, )
Tit m
At

(®)

Vi) = Vig12 + @iy 5
where a is the acceleration and Atz is a fixed time-step of the integra-
tion. m, = 47 [ p(r)r’dr is the enclosed mass of the envelope at
the r position. We integrate the trajectory until the secondary object
either (i) approaches a certain fraction of the initial orbital separation
e.g. 10 percent of the initial semimajor axis, or (ii) the enters the
subsonic regime of the dynamical friction. In the dynamical friction
simulations, we focus on the eccentricity evolution in the supersonic
regime only. After integrating the entire orbital trajectory (up to the
above separation criteria), we measure the eccentricity per orbit as
ej = (ry;j — 1p)(ra; + r4) where r,; = max (r); and r,; = min (7);
are the local ith maxima and minima of the oscillating separation.
Similarly, the local semimajor axis is measured as a; = (74, ; + 1,5, )/2.

3 SEMI-ANALYTIC MODEL

The orbital eccentricity changes due to the external forces that the
gas exerts on the secondary as it travels through the medium. The
gas—object interaction both leads to the dissipation of the specific
orbital energy (¢) and the change in the specific angular momentum
(h). We estimate the eccentricity following changes in these values
to be

2 Ae)(h Ah)?
e%eo—kAe:\/l—f— o+ Ae)ho + ARY ©)

(GM)?

GM
where gy = ~ ho = /GMay(1 — e(z)), are the initial values of
a
¢ and h with a being the semimajor axis and e being the eccentricity.
M = m, + m s the total mass. To simplify equation (9), we introduce
ug = e2 — 1 and u = * — 1 variables and express the change as
Au  Ae  2Ah
~ +

—_— —

, 10
uo &0 h() ( )

where we neglect quadratic terms in the energy and angular momen-
tum changes as

(60 + Ae)(ho + AR)®  eoh | Ae N 2Ah
(GM) (GM)? .

(1)

&o ho
The source of the energy change is the dissipative external force

-F
Ae = LA, (12)
m

where At is the time window in which we estimate the transfer
of orbital energy to the gas. Similarly, the loss of specific angular
momentum comes from the torque that the gas exerts on the
companion for At time

_ |r><Fext|At.
m

Ah 13)

For the approximation of equation (9) to hold, we need to choose a
time interval, Az, such that |Ae/eg| < 1 and Ah/hy < 1. In that case,
the resulting change in eccentricity will be small and the expansion
of equation (9) will be justified. In practice, we use the orbit as
a representative time unit. For systems with slowly varying orbital
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elements due to dynamical friction (equivalently where |Fex/Fgray|
< 1) changes over an orbital period will be small enough to apply
equation (9).

Additionally, for an eccentric orbit, the gaseous conditions and
relative motion of the object through the gas change as a function of
orbital phase. Therefore, applying the local conditions at a single
position cannot represent the whole orbit (e.g. Sanchez-Salcedo
2019). Instead, we consider the local conditions at the two extremes
of periapse and apoapse. Thus,

Ae =~ Ag, + Ag, (14)
and
Ah ~ Ahy + Ah,, (15)

where we introduce the lower index notation for periapsis (p) and
apoapsis (a). To do so, we must approximate the time spent at the
orbital locations of periapse, Af,, and apoapse At,.

Given these approximations, we calculate e of equation (9) using
equations (12) and (13) for hydrodynamic drag and gas dynamical
friction forces, respectively, in the sections that follow.

3.1 Hydrodynamic drag

In the case of a pure hydrodynamic drag, the energy dissipation and
the change of angular momentum are

C

Ae = ——LmpR%PA (16)
2m

and
Cu 2 2

Ah = ——mpR|r x v°|At. (17)
2m

We evaluate these terms only at the peri- and apoapsis where the
position is
Tp,a =a(l Fe), (18)

and the velocity is

BNIGED)
R T (19)

At these locations in the orbit, the position and velocity are perpen-
dicular. We substitute these expressions into equation (10):

Ay, 1+
up, :apao(lqEZZ—l), (20)

C
where we introduced o = TR?2—2 and applied the approximation
nm

that Az, , &~ alvp ,. The eccentricity at the peri- and apoapsis is

apagll — e — (1 £ ep)?] — e. (21

ep,a =

This yields a net eccentricity following a complete orbit of e ~ e, +
.

3.2 Dynamical friction

Similarly, we outline the effect of gaseous dynamical friction on the
eccentricity evolution. The specific orbital energy and the specific
angular momentum changes are

1
Ae = —4TtG2m,01;At, (22)

[r x v|

Ah = —47G?’mpl At. (23)
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We evaluate these terms at the apses again, and substitute them into
equation (10):

1Feo 1 Feo 2

1+ €n 1+ €n

where we introduced B = 87tml/M? and At,, = £alv,,. We note that
& ~ 1 but can be fit by comparing the prediction with the numerical
results. Then

Aty o

= Bpays (24)

Uo

1 3
Cpa = \/ Bpale {(lqETe:O) —aF 30)2] —a (25)

is the eccentricity at the peri- and apoapsis. Just as in the case
of hydrodynamic drag, the net eccentricity after an orbit can be
computed as e ~ e, + e,.

4 RESULTS

4.1 Isothermal, power-law density distribution

We use the numerical simulations and the above semi-analytic
formalism to measure and predict the rate of eccentricity change
of a secondary object in an isothermal gas sphere of mass m, as a
model of an extended primary object. The density profile of the gas
is chosen to be a power-law function of the radius as p(r) = por="
where

(3 - )/)m*
Po = T s, o\
47 (R; Y — R V)

R, and R, are the inner and outer edges of the density profile. We use
R, = 1 au as the unit of distance and the total enclosed mass at R, as
the unit of mass m,(R,) = 1 Mg and also R, = 107°R,.

In Fig. 1, we show the orbital paths of a simulation with a y =
1.75 isothermal density profile on the top panels. Here, we chose a
secondary with mass m = 107> M, with initial semimajor axis a =
0.94 au and initial eccentricity e = 0.05. The radius of the secondary
object is chosen to be R = 2 - 1073 au and sound speed is a constant
as ¢ = /1.4kg T /my; ~7.6kms™! with T = 10*K, kg being the
Boltzmann constant, and myy, being the mass of molecular hydrogen.
The Mach number decreases from its initial value of M = 3.97 to
M = 3.31 (where the simulation was stopped) because the orbital
velocity decreases during the inspiral since the enclosed mass is
getting smaller as the orbit tightens. These initial parameters set
the secondary to orbit within the density profile (r < R,). The top
left-hand and right-hand panels show the simulated inspiral of the
secondary object under either purely dynamical friction (with blue)
or purely hydrodynamic drag (with green), respectively, in the x—y
plane of the motion. Solid circles indicate R, (the outer cut-off of the
gas) and 0.1ag (i.e. 10 per cent of the initial semimajor axis) radii.
We ran the simulations between r = 0.09 — 0.94 au radius range.
The inspiral times are tqr = 11.7 yr and #,,y¢ = 109.1 yr, respectively.
The bottom panel shows the eccentricity change during the inspiral.
With y = 1.75 density profile, the dynamical friction causes the orbit
to become more eccentric while hydrodynamic drag circularizes the
orbit.

Using the same mass ratio but ap = 0.5 au, we further analysed
the effect of dynamical friction on the eccentricity evolution for the
entire range of initial eccentricities. We predict if the eccentricity
is about to be excited or damped as a function of y and ¢, at the
first orbit for both apses. We show the ratio between Ae, = e, — ¢y
and Ae, = e, — ¢ in Fig. 2 where the colours indicate the initial
eccentricities of the systems from ey = 0 up to 1.

(26)
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Figure 1. Top panels: Planar view of the orbital path of an orbiter in an
isothermal gas sphere with a power-law density profile with p(r) = por—'7>.
The companion spirals inward due to gas dynamical friction (DF with blue)
on the top left-hand panel, and due to hydrodynamic drag force (HD with
green) on the top right-hand panel, until the orbit reaches 0.1ag in both cases.
Bottom panel: Orbital eccentricity as a function of semimajor axis calculated
per orbit. The mass ratio is 0.001, the initial eccentricity is 0.05, and the
initial semimajor axis is 0.94R, in both DF and HD simulations. Under the
influence of dynamical friction, the orbit becomes more eccentric, while under
the influence of the hydrodynamic drag it circularizes.

2.0 1.0
15 0.8
ﬁ 0.6
%1.0 S
s 0.4
0.5 0.2
005 1 2 3 4 5 00
¥

Figure 2. The ratio between the eccentricity change at peri- and apoapses
as a function of the slope (y) of the isothermal density profile in dynamical
friction. The ratio of change of the orbital eccentricity is shown for 20 different
realizations of a system. Colours indicate the initial eccentricities of the 20
systems. For all eccentricities, y = 3 is a critical value that divides greater
eccentricity change at periapse and apoapse. The signs of Ae}, and Ae, imply
that when y < 3 orbits become more eccentric, while when y > 3, they the
become less.

Because forces at periapse tend to circularize the orbit while those
at apoapse tend to make it more eccentric, the ratio Aey/Ae, is an
important indicator of the orbital evolution. We find that Aep/Ae, < 1
for y < 3, which means that the orbits tend to become more eccentric
in shallow gas density profiles. By contrast, orbits circularize in cuspy
density profiles for y > 3. More eccentric the initial orbits are, the
more eccentric they get (y < 3) or the more they circularize (y > 3).
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Figure 3. The fitting parameter & on which we approximate the apses transit
(At = &alv) as a function of initial eccentricity for 3 models of power-law
density profiles (y = 0.0, 1.5, 3.5) for dynamical friction simulations.

We have compared the above semi-analytic results with the
numerical simulations and found that & scaling parameter can be
fitas & ~ 7(1 — e(z)) in case of dynamical friction. Note that £ is a
fitting parameter that defines the time window Ar = £a/v in which
we approximate the apses transit in equations (12) and (13). & is
measured by comparing the discrepancy between the eccentricity
change in the numerical simulations versus the eccentricity change
in the semi-analytic model with & = 1. In Fig. 3, we show how
we measured the deviations at 9 points of initial eccentricities for 3
models (y =0, 1.5, 3.5).

4.2 Common envelope inspiral

A ubiquitous feature of simulations of hydrodynamic simulations
of common envelope inspiral is the development of moderate
eccentricity — even when these models are initialized in circular
orbits. This is seen clearly, for example in fig. 2 of Ricker & Taam
(2012), fig. 11 of Passy et al. (2012), and figs 1 of Ohlmann et al.
(2016) and Chamandy et al. (2019). The analysis of Chamandy
et al. (2019) progresses much further and analyses the drag forces
applied to the infalling bodies and discusses the similarity (in the
early inspiral) and departure (after the envelope has been disturbed)
of these forces from those predicted by gaseous dynamical friction
and an undisturbed profile. Yet, results appear quite varied across
the models presented by different groups and initial conditions.
For example, the eccentricity seen in the models of (Sand et al.
2020) is quite small compared to that of Ohlmann et al. (2016) when
the same code but different initial conditions are employed. To our
knowledge, no clear explanation for this eccentricity, or why it differs
across simulation models, has been outlined. We explore this question
further in this section by examining the eccentricity evolution in a
subset of hypothetical model common envelope inspiral episodes.
We simulate the eccentricity evolution of a Jupiter-like planet
engulfed by a Sun-like giant star at its late, red giant evolutionary
phase (e.g. Soker, Livio & Harpaz 1984; Sandquist et al. 1998;
Siess & Livio 1999a,b; Carlberg, Majewski & Arras 2009; Metzger,
Giannios & Spiegel 2012; Zhang & Penev 2014; Aguilera-Gémez
et al. 2016; Staff et al. 2016; MacLeod et al. 2018; Qureshi, Naoz &
Shkolnik 2018; Stephan, Naoz & Gaudi 2018; Popkov & Popov 2019;
Jimenez, Grae J@rgensen & Verde 2020; Stephan et al. 2020; Glanz &
Perets 2021; Soares-Furtado et al. 2021; Yarza et al. 2022). The total
mass of the star is m, = 1 Mg and its radius is R, = 1 au, the planet

Eccentricity evolution in dynamical friction

5469

has a mass of m = 107> Mg, and a radius of R =2-10"%au (or
approximately 4.28 Jupiter radii). The star comprises two structural
parts: the core, which makes up 1/3 of its total mass; and a polytropic
envelope, which extends up to R, and has a polytropic index n = 1.5.
For the sake of simplicity, we treat the stellar core as a point mass
in the centre, and construct the envelope solution according to the
Lane-Emden equation for n = 1.5 polytropic index:

1 d ,dOY o a7
AN

where ¢ is a distance parameter. We numerically integrate this
differential equation and express the density as:

max(s)’
8/3m [;" ©(¢)¢2ds

where we apply the variable transformation » = ¢/max () such that
max (¢) is the zero of the ®(¢) function. This normalization meets
the requirement that the total mass of the envelope is 2/3 and its
radius is 1 since we chose G = M iy = Rypiy = 1 unit system, which
can be rescaled to any physical dimension. We note that the inner
boundary condition of a point-mass core does not affect the orbital
evolution of the planet through its inspiral in the stellar envelope
because the planet’s acceleration only depends on the gravity of the
enclosed mass and the local density of the envelope in our simplified
model.

In the case of dynamical friction, however, the orbital evolution
also strongly depends on the system’s Mach-number. We only
examine the first, rapid evolutionary phase of the orbit where the
planet orbits in the supersonic regime, i.e. v > c¢,. Here, we evaluate
the corresponding I parameter of equation (3) locally as Iy, =
0.5In (1 — [v/c]™%) — In(#/R). The second term is also known as
the Coulomb-logarithm in which r is the separation between the
planet and the stellar core. In the first term, we approximate the local
sound speed as ¢; = cp+/(1 4+ 1/n)p!/"(r) where ¢y = 29.7kms™!
is a unit conversion parameter.

In Fig. 4, we show the orbital paths of the planet on the top panels
(similarly to Fig. 1). The left-hand panel shows the case in which
the planet’s orbit evolves under the effect of dynamical friction only.
Similarly, the right-hand panel shows the same hypothetical case
where the orbit of the planet shrinks under the influence of hydro-
dynamic drag only. The simulations were started at ap = 0.94 au
with e¢p = 0.05 initial eccentricity. In both cases, the planet migrates
inward and its orbit starts to circularize. The inspiral times are #4f =
13.1yr and fhyg = 96.1yr, respectively. In the case of dynamical
friction, we observe a transitional phase in which the circularization
stops between a &~ 0.5-0.7 au where the planet’s orbit becomes more
eccentric. These changes reflect the changing steepness of the density
profile within the polytropic structure — near the stellar limb, the
scale height is small and the density gradient is very steep, leading to
orbital circularization. Deeper in the stellar interior, the scale height
can be much larger and the orbit becomes more eccentric under
the influence of the shallow density profile. Just before entering
the subsonic regime (at which point we stop the simulation), the
dynamical friction force drops as the Mach-number approaches unity
Fy o< In(1 — M™2). At this limit, the orbit starts to circularize again,
and that continues in the subsonic regime.

After investigating one specific configuration, we extend our
analysis to understand how the observed transition point in the
eccentricity evolution depends on the density profile of the stellar en-
velope. We generate 35 independent density profiles with polytropic
indexes ranging from n = 0.1 up to n = 3.5 evenly. We show the
enclosed masses of the different polytropic envelopes with coloured

0"(r), (28)

p(r) =
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Figure 4. Top panels: Planar view of the orbital path of a companion in
a polytropic envelope of a giant star with n = 1.5 polytropic index and R,
radius. The companion spirals inward due to gas dynamical friction (DF with
blue) on the top left-hand panel, and due to hydrodynamic drag force (HD
with green) on the top right-hand panel, respectively, until the orbit reaches
the subsonic regime of dynamical friction, i.e. where v(r) = ¢s(r) (for which r
~ 0.5R,). Bottom panel: Orbital eccentricity as a function of semimajor axis
calculated per orbit. The mass ratio is 0.001, the initial eccentricity is 0.05,
and the initial semimajor axis is 0.94R, in both DF and HD simulations.
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Figure S. Left-hand panel: The enclosed mass of the stellar envelope as
a function or radius for different polytropic model. Right-hand panel: The
dIn p/dIn r derivative of the density as a function of radius. A horizontal line
compares to the critical value of —dIn p/dln r = 3 identified in the context of
power-law density profiles. The simulated range of polytropic indexes varies
from n = 0.1 up to n = 3.5 see the colourbar. Important n = 1.5 and 3 models
are emphasized with solid and dashed black curves. Note that simulations
adopted a point mass-like stellar core with mass 1/3 of the total mass.

curves as a function of radius on the left-hand panel of Fig. 5. We
emphasize important polytropes, i.e. n = 1.5 and 3 with solid and
dashed black curves, respectively. (In all figures from Fig. 5, colours
and solid and dashed black curves represent the same polytropic
indexes of the corresponding stellar envelopes.) In all models, we
use the same point mass-like stellar core with mass 1/3Mg. We
also show the slope, i.e. —dln p/dInr of the radial density profiles
of each polytropic model as a function of radius on the left-hand
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Figure 6. Left-hand panels: The orbital separation (top panel) and velocity
(bottom panel) of the planet as a function of enclosed mass for a series
different of polytropic models indicated by the colourmap. Right-hand panels:
The local sound speed (top panel) and Mach number (bottom panel) as a
function of enclosed mass for the same series of polytropic models. Solid and
dashed black curves emphasize models with n = 1.5 and 3. Simulations are
stopped either when the planet reaches 10 per cent of the initial semimajor
axis or enter the subsonic regime in the envelope.

panel of Fig. 5. The corresponding power-law exponents increase
from the core to the surface for polytropes as a function of radius.
The diverging exponents at the boundaries are the consequences of
the smooth transition feature of the polytropic density profiles at
the core and the surface. For comparison, the horizontal black line
shows —dln p/dln» = 3 which corresponds to the critical y = 3
case of the power-law density profiles, which separates the quality
of eccentricity evolution in isothermal models.

We ran 35 simulations that are shown in Fig. 6 using the same
initial eccentricity (ep = 0.05) for the planet but different stellar
envelope profiles and different initial semimajor axes. We set the
initial semimajor axes in such a way that the initial periapsis is at the
radius corresponding to 0.95 Mg, enclosed mass. Panels on the right
show the separation (top panel) and the velocity (bottom panel) of
the planet as a function of enclosed mass. Simulations are stopped
either when the planet reaches 10 per cent of the initial semimajor
axis (e.g. n < 0.5 or 3.2 < n) or enters the subsonic regime (e.g. 0.5
< n < 3.2) in the envelope.

Fig. 7 shows our results regarding the eccentricity evolution of
a planet’s orbit during its inspiral in various models of a stellar
envelope. The top panel shows the eccentricity as a function of
enclosed mass in the numerical simulation (dots) and in the semi-
analytic estimate (solid curves). Here, we calculate e; | by taking
the local (g9, o) values of the numerical simulation in equation (9).
Similarly, we calculate A¢ of equation (22) and Ah of equation (23)
under the local conditions in each model. The bottom panel shows
the differential values from the top panel, i.e. Ae; = ¢; | — ¢; of the
numerical simulation. The horizontal line indicates Ae = 0 below
which orbits tend to circularizes and above which orbits become
more eccentric. Our results show that after initial circularization the
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Figure 7. Top panel: Eccentricity as a function of enclosed masses during the
inspiral of the planet in the stellar envelope. Colour scale labels the polytropic
index of the 35 different models. Solid and dashed black curves emphasize
important n = 1.5 and 3 models. Dots show the measured eccentricities
per orbit from the numerical simulations, while solid curves show the
corresponding semi-analytic prediction. Bottom panel: The differential values
of the data from numerical simulation from the top panel, i.e. the eccentricity
change between two consecutive orbits in the given polytrope. The horizontal
black line separates regimes in which the orbit circularizes (below zero) or
becomes more eccentric (above zero).

orbital eccentricity start to increase in various models before either
approaching 0.1ay or entering the subsonic regime. This is most
prominent for polytropes with n < 2 or n 2 3 for which simulations
never enters the subsonic regime but appears in all models.

In our model polytropes, we measure the first transition points
where the initial circularization turns into eccentricity growth as a
function of semimajor axis, Fig. 8. We observe that our numerical
integrations and semi-analytic predictions are in very close agree-
ment, and trace a relationship that defines the fractional critical
radius as a function of the envelope’s polytropic index. We note,
however, that polytropes with a different core mass fraction would
lead to a different result. We note that our result can be fitted
with the linear relation n(a/R,) = —4.53a/R, + 4.54. Finally, we
compare this relationship to a criterion based on the local density

Eccentricity evolution in dynamical friction
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Figure 8. The transition points from circularization to eccentricity growth in
different polytropes as function of semimajor axis as a fraction of the stellar
radius. Both numerical results (with red x-s) and semi-analytic predictions
(with blue dots) are shown together with a linear fit (black solid line) to the
numerical results. The orange curve shows the transition points corresponding
to dln p/dlnr = 3 in Fig. 5.

slope, dln p/dlnr = —3. We find that this approximation, while
not as accurate as the full semi-analytic theory (because it neglects
the dependence of the dynamical friction drag force on the local
Mach number), provides useful context for the resulting eccentricity
evolution.

Given these findings, we argue that the ubiquitous presence of
eccentricity in simulated common envelope inspirals can be traced
to gaseous dynamical friction on the extended envelope. In the early
inspiral, the steep gradient of the outer envelope (—dIn p/dInr 2 3)
damps any orbital eccentricity, while in the later inspiral, eccentricity
can be enhanced by interaction with the comparatively homogeneous
envelope interior (—dIn p/dInr < 3).

5 CONCLUSIONS

In this paper, we examined the eccentricity evolution of an object
orbiting in an extended gaseous medium due to hydrodynamic drag
or gas dynamical friction. We built a simple numerical integrator
to calculate the orbital path of the companion under the influence
of the gravity of the primary and the frictional forces exerted by
the gas. We measured the eccentricity evolution during the inspiral
of the companion and compared the results with the prediction of
a semi-analytic approach. We compared the relative importance of
hydrodynamic drag and gas dynamical friction in the eccentricity
evolution. We focused our analysis on dynamical friction dominated
regimes. Some key findings of our study are:

(i) Drag forces applied to the system at periapse tend to make
orbits more circular, while those applied at apoapse tend to make
orbits more eccentric.

(1) In all centrally concentrated mass distributions, hydrodynamic
drag causes orbital eccentricity to decrease because the drag increases
with increasing velocity (e.g. at periapse in an eccentric orbit), see
equation (2) and Fig. 1.

(iii) Because the gaseous dynamical friction drag force decreases
with increasing velocity in the supersonic regime, equation (3),
whether orbits become more or less eccentric under the influence
of gaseous dynamical friction depends on the density profile.
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(iv) We find that the critical value for a radial power-law density
distribution p o r~7 is y = 3, where lower values of y < 3 drive
orbital eccentricity increase while higher values of y > 3 drive orbital
eccentricity decrease (Fig. 2).

(v) Both the sign and rate of change of orbital eccentricity can
be be accurately predicted by our semi-analytic theory of Section 3
when coupled with the numerical coefficient £ ~ 7/2(1 — €?), as
reported in Fig. 3.

We apply this theory of eccentricity evolution under the influence
of gaseous dynamical friction to the orbital evolution of engulfed
objects in common envelope phases. Here we consider an example
of a Jupiter-like planet interacting with the envelope of a Sun-
like star at its late, red giant evolutionary phase. The hydrostatic
mass distribution of the stellar envelope has a steep density gradient
(lower temperature and smaller scale height) near the surface and
a shallower density gradient (higher temperature and larger scale
height) in the deep interior. We show that as orbiting objects pass
through these mass distributions, they experience circularization in
the outer envelope and eccentricity excitation in the inner envelope.
For polytropes of varying index, n, we demonstrate the eccentricity
evolution and the inflection between eccentricity decrease in the
outer envelope and increase in the inner envelope (Fig. 7). The
inflection between eccentricity decrease and growth can be mod-
elled accurately with our semi-analytic model or approximately by
finding the radius within the stellar model where dln p/dlnr = —3
(Fig. 8).

Conceptually, our results provide a framework for understanding
the evolution of eccentricity in objects being dragged inward in
gaseous distributions. In particular, we demonstrate that the devel-
opment of orbital eccentricity in global hydrodynamic simulations
of common envelope phases is indeed realistic, rather than being an
artefact of numerics or initial conditions. Similarly, runaway growth
of eccentricity was observed in non-gaseous dynamical friction for
unequal mass binaries in stellar background (e.g. Meiron & Laor
2012). Our semi-analytic model adopts the Mach-number dependent
coefficients of Ostriker (1999), but could equally be extended to
coefficients of dynamical friction that depend on the local density
gradient or other properties (e.g. MacLeod et al. 2017; De et al.
2020). Our results further suggest that the emergence of objects from
common envelope phases with moderate, non-zero eccentricities
may be a natural consequence of the physics of gaseous dynamical
friction. There are many other applications of our results, including
the formation of Thorne-Zytkow objects (Thorne & Zytkow 1975),
the migration of stars in accretion flows around black holes, and
the prediction of gravitational wave emissions of eccentric compact
binaries (see e.g. Macedo et al. 2013; Ginat et al. 2020; Cardoso,
Macedo & Vicente 2021). Our model can be extended towards
including feedback, which could have a potential effect on the orbital
evolution by damping or reversing the gaseous dynamical friction
(see e.g. Gruzinov et al. 2020) in certain astrophysical scenarios
with high outflow rates.
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