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A B S T R A C T 

We analyse how drag forces modify the orbits of objects moving through extended gaseous distributions. We consider how 

hydrodynamic (surface area) drag forces and dynamical friction (gravitational) drag forces drive the evolution of orbital 
eccentricity. While hydrodynamic drag forces cause eccentric orbits to become more circular, dynamical friction drag can cause 
orbits to become more eccentric. We develop a semi-analytic model that accurately predicts these changes by comparing the total 
work and torque applied to the orbit at periapse and apoapse. We use a toy model of a radial power-law density profile, ρ ∝ r −γ , to 

determine that there is a critical γ = 3 power index, which separates the eccentricity evolution in dynamical friction: orbits become 
more eccentric for γ < 3 and circularize for γ > 3. We apply these findings to the infall of a Jupiter-like planet into the envelope 
of its host star. The hydrostatic envelopes of stars are defined by steep density gradients near the limb and shallower gradients 
in the interior. Under the influence of gaseous dynamical friction, an infalling object’s orbit will first decrease in eccentricity 

and then increase. The critical separation that delineates these regimes is predicted by the local density slope and is linearly 

dependent on polytropic index. More broadly, our findings indicate that binary systems may routinely emerge from common 

envelope phases with non-zero eccentricities that were excited by the dynamical friction forces that dro v e their orbital tightening. 

Key words: celestial mechanics – planets and satellites: dynamical evolution and stability – planet-star interactions – binaries: 
general – stars: kinematics and dynamics. 
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 INTRODUCTION  

ravitationally bound objects follo w K eplerian trajectories in the 
lassical two-body problem. In an ambient gaseous medium; how- 
 ver, orbits e volve under the friction that the gas e x erts on the
mbedded bodies. Gaseous friction changes the orbital parameters 
hrough apsidal precession, orbital migration, eccentricity change, 
nd inclination damping (Grishin & Perets 2015 ). We will discuss
echanisms of gas–object interaction focusing on gaseous dynam- 

cal friction, also investigating hydrodynamic drag but neglecting 
aseous feedback (like e.g. Thun et al. 2016 ). Both the hydrodynamic
rag force and the dynamical friction force oppose the direction 
f motion of the orbiting body, transferring energy and angular 
omentum to the gas. As a consequence, the semimajor axis shrinks

nd the orbital eccentricity may change as well. The resulting orbital 
volution therefore depends on the properties of the gas and the 
arameters of the system orbit. 
The response of gaseous surroundings to the passage of a grav- 

tating object is described by the Bondi–Hoyle–Lyttleton accretion 
heory (Hoyle & Lyttleton 1939 ; Bondi & Hoyle 1944 ; Bondi 1952 ;
dgar 2004 ). Further, the o v erdense w ak e left by a passing object im-
lies a momentum exchange (Hunt 1971 ; Shima et al. 1985 ; Ruffert
994 , 1995 , 1996 , 1999 ; Ruffert & Arnett 1994 ; Thun et al. 2016 )
uch like that in collisionless dynamical friction (Chandrasekhar 
 E-mail: akos.szolgyen@ttk.elte.hu 

2  

G  

a
(

2022 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. Th
ommons Attribution License ( http://cr eativecommons.or g/licenses/by/4.0/), whic
rovided the original work is properly cited. 
943 ). Ostriker ( 1999 ) derived gaseous dynamical friction force
ormulae using time-dependent linear perturbation theory. 

More broadly, the theory of gaseous dynamical friction has ap- 
lications throughout astrophysics, where gas and gravitating bodies 
requently intermingle. Some particularly rich applications have in- 
luded the dynamics of young stars, and clusters embedded in molec-
lar clouds (e.g. Stahler 2010 ; Leigh et al. 2014 ; S ́anchez-Salcedo &
hametla 2014 ; Antoni, MacLeod & Ramirez-Ruiz 2019 ; Rozner &
erets 2022 ); the interactions and capture of stars and compact
bjects by discs in active galactic nuclei (e.g. Syer, Clarke & Rees
991 ; Artymowicz, Lin & Wampler 1993 ; Narayan 2000 ; Miralda-
scud ́e & Kollmeier 2005 ; Baruteau, Cuadra & Lin 2011 ; Kennedy
t al. 2016 ; Bartos et al. 2017 ; Stone, Metzger & Haiman 2017 ; Se-
unda et al. 2019 ; MacLeod & Lin 2020 ; Tagawa, Haiman & Kocsis
020 ; McKernan et al. 2022 ; Jermyn et al. 2022 ); and common enve-
ope phases (Paczynski 1976 ) in which a star engulfs its companion
tar, planets or a compact object within its gaseous envelope and dy-
amical friction drives orbital inspiral (e.g. Iben & Livio (e.g. Iben &
ivio 1993 ; Villaver & Livio 2007 ; Ivanova et al. 2013 ; MacLeod &
amirez-Ruiz 2015 ; Staff et al. 2016 ; MacLeod et al. 2017 ;
acLeod, Cantiello & Soares-Furtado 2018 ; De et al. 2020 ; Everson

t al. 2020 ; Ginat et al. 2020 ). Hydrodynamic drag and dynamical
riction contribute to the capture and migration of planetesimals in 
olecular clouds (e.g. Pfalzner et al. 2021 ; Moro-Mart ́ın & Norman

022 ); protoplanetary discs (e.g. Grishin & Perets 2015 , 2016 ;
rishin, Perets & Avni 2019 ) and debris around white dwarfs can

lso capture dust and planetesimals, triggering white dwarf pollution 
e.g. O’Connor & Lai 2020 ; Malamud, Grishin & Brouwers 2021 ). 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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1 We note that C d depends on Reynolds and Mach numbers (Perets & Murray- 
Clay 2011 ), but in the ram pressure regime, it can be well approximated by a 
constant (Grishin & Perets 2015 ), e.g. unity for large Reynolds numbers. 
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Following Ostriker ( 1999 ), subsequent authors examined various
spects of orbital evolution both numerically and analytically in
ifferent astrophysical contexts (see MacLeod et al. 2017 ; Antoni
t al. 2019 , for a recent discussion of this literature). Of particular
ele v ance to our subsequent discussion is work that considered
he effect of dynamical friction on orbits. For example, S ́anchez-
alcedo & Brandenburg ( 2001 ) used numerical simulations to study

he orbital evolution of objects in different models of gaseous spheres.
ater, Kim & Kim ( 2007 ) studied the gravitational torque e x erted
n a single perturber on circular orbits by dynamical friction of
 uniform gaseous medium using a semi-analytic approach. Kim,
im & S ́anchez-Salcedo ( 2008 ) extended the method of Kim & Kim

 2007 ) to double perturbers on circular orbits. S ́anchez-Salcedo &
hametla ( 2014 ) also studied the morphology of the binary case
nd the torque on the centre of mass. Grishin & Perets ( 2016 )
pplied the problem of dynamical friction to intermediate-sized
inary planetesimals, analogous to binaries in active galactic nuclei
iscs. S ́anchez-Salcedo ( 2019 ) examined the evolution of eccentric
rbits, comparing analytic and numerical results. Vicente, Cardoso &
ilh ̃ ao ( 2019 ) studied dynamical friction in slab-like geometries such
s accretion discs and provided refined analytic expressions for force
n both the supersonic and subsonic regimes. Bonetti et al. ( 2020 )
onsidered the implications of prograde and retrograde motion in
otating media. Furthermore, Glanz & Perets ( 2021 ) investigated
he common envelope evolution of initially eccentric binaries using
ydro-dynamical simulations. They found that the eccentric orbits
nly partially circularize during the common envelop inspiral.
ecently, Desjacques, Nusser & B ̈uhler ( 2022 ) have used Li ́enard-
iechert potentials to derive force expressions for a circularly
oving point mass in a gaseous medium. They found that the steady-

tate is reached after only one sound-crossing time. Yarza et al.
 2022 ), ho we ver, used hydrodynamic simulations to integrate orbital
volution in the context of planetary engulfment, considering both
he ram pressure and gravitational drag. Among the shared questions
re the characteristic length scale o v er which gravitational w ak es
xtend (defining the Coulomb logarithm term) and how accelerated,
ather than linear, motion affects the forces. 

In this paper, we focus particularly on the eccentricity evolution
f two-body systems. We adopt a model in which a less massive
econdary object orbits in the gaseous envelope of a more massive,
xtended primary object. We use both (i) a simple numerical
nte grator to solv e the equations of motion, reconstruct the orbital
ath, and measure the eccentricity evolution; and (ii) a semi-analytic
pproach to directly estimate the eccentricity evolution from the
rbital parameters and drag forces. In Section 2 , we introduce
he equations of motion and our numerical technique. Then we
utline our semi-analytic formalism in Section 3 . We demonstrate the
pplication of our formalism in a toy model first, in Section 4.1 , where
he primary object is an isothermal sphere with a power-law density
rofile. Then we use both numerical and semi-analytic techniques
o calculate the eccentricity evolution of a Jupiter-like planet within
he stellar envelope of a red giant star in Section 4.2 . We examine a
eries of different polytropic models and show how the eccentricity
volution depends on the polytropic density profile of the envelope.
e summarize our conclusions in Section 5 . 

 METHOD  

.1 Equations of motion 

e start with a simple model of a two-body system where a more
assive object (primary) is represented by an extended, static,

pherically symmetric gaseous halo, and a less massive companion
NRAS 513, 5465–5473 (2022) 
secondary) is orbiting within the gas. In this picture, the acceleration
f the secondary originates from both the gravitational force of the
nclosed mass ( m � ) and the external force ( F ext ) that the gas e x erts
n it 

a = −G 

m � 

r 2 

r 
r 

+ 

F ext 

m 

. (1) 

ere, G is the gravitational constant, r is the position, and m is the
ass of the secondary. We only examine the orbital evolution of

he secondary and neglect its back-reaction on the gas. The external
orces are considered to be either the hydrodynamic drag force or
he gas dynamical friction. The hydrodynamic drag force (Villaver &
ivio 2009 ) is 

F hyd = −1 

2 
C d R 

2 πρv 2 
v 

v 
, (2) 

here R is the radius, v is the velocity of the secondary, and we
se C d = 1.0. 1 ρ is the local density in the gas. The gas dynamical
riction force by Ostriker ( 1999 ) is 

F df = −4 π( Gm ) 2 
ρI 

v 2 

v 

v 
, (3) 

here I is the Mach-number dependent parameter, i.e. I sub = 0.5ln [(1
 v/ c s )/(1 − v/ c s )] − v/ c s in the subsonic regime and I sup = 0.5ln (1
( v/ c s ) −2 ) − ln ( r / R ) in the supersonic regime. c s is the local sound

peed in the gas, r is the characteristic size of the system (here, we
dopt the separation of the secondary object). 

The compactness of the secondary object determines the relative
mportance of the abo v e drag forces. Grishin & Perets ( 2015 ), for
xample, calculated the critical size of the secondary (given its
ensity) below which the dynamical friction becomes the domi-
ant external force in forming the orbital evolution. Similarly, by
omparing equations ( 2 ) and ( 3 ), we define approximate critical
ompactness (a mass to radius ratio) abo v e which the dynamical
riction is dominant o v er hydrodynamic drag: 

m 

R 

> 

v 2 

2 G 

√ 

C d 

2 I 
. (4) 

One implicit assumption in equations ( 2 ) and ( 3 ) is that force
epends on the local conditions (those in the vicinity of the orbiting
bject). In principle, this might not be satisfied if there are changes in
uantities like the density o v er the characteristic length scale of the
oulomb logarithm (see S ́anchez-Salcedo 2019 , for a more detailed
escription of the applicability and limits of this local formalism as
ompared to hydrodynamic simulations). 

Although we neglect including feedback as an additional source
f external force in our model, it is important to note that there
re certain astrophysical scenarios in which gas accretion on to
he secondary potentially leads to non-negligible feedback that can
hange the morphology of a gaseous w ak e significantly, even altering
he sign of the net force (e.g. Gruzinov, Levin & Matzner 2020 , and
eferences therein). 

.2 Numerical integration 

e solve equation ( 1 ) with a simple leapfrog algorithm, applying
ither the hydrodynamic drag or the dynamical friction as the source
f the external force to reconstruct the orbital path. The r i position
f the object is stepped by the following algorithm: 



Eccentricity evolution in dynamical friction 5467 

v

a

v

w  

t  

t
e
e  

s
s
r  

a  

e
a  

S  

3

T
g  

g
o  

(  

t

e

w  

ε  

M  

u

w
t

�

w  

o  

m  

c

�

 

t  

t
o  

a

e  

�  

e

r  

o
p
2  

o

�

a

�

w  

a  

o
 

e  

f

3

I  

t

�

a

�

W  

p

r

a

v

A  

d

w

t

e

T  

e

3

S  

e
a

�

�

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/513/4/5465/6584408 by guest on 30 Septem
ber 2022
 i+ 1 / 2 = v i + a i 
�t 

2 
, (5) 

r i+ 1 = r i + v i+ 1 / 2 �t, (6) 

 i+ 1 = −Gm � 

r 2 i+ 1 

+ 

F ext 

m 

, (7) 

 i+ 1 = v i+ 1 / 2 + a i+ 1 
�t 

2 
, (8) 

here a is the acceleration and � t is a fixed time-step of the integra-
ion. m � = 4 π

∫ r 
0 ρ( r ) r 2 d r is the enclosed mass of the envelope at

he r position. We integrate the trajectory until the secondary object 
ither (i) approaches a certain fraction of the initial orbital separation 
.g. 10 per cent of the initial semimajor axis, or (ii) the enters the
ubsonic regime of the dynamical friction. In the dynamical friction 
imulations, we focus on the eccentricity evolution in the supersonic 
e gime only. After inte grating the entire orbital trajectory (up to the
bo v e separation criteria), we measure the eccentricity per orbit as
 i = ( r a, i − r p, i )/( r a, i + r a, i ) where r a , i = max ( r ) i and r p , i = min ( r ) i 
re the local i th maxima and minima of the oscillating separation.
imilarly, the local semimajor axis is measured as a i = ( r a , i + r p , i )/2.

 SEMI-ANALYTIC  MODEL  

he orbital eccentricity changes due to the external forces that the 
as e x erts on the secondary as it trav els through the medium. The
as–object interaction both leads to the dissipation of the specific 
rbital energy ( ε) and the change in the specific angular momentum
 h ). We estimate the eccentricity following changes in these values
o be 

 ≈ e 0 + �e = 

√ 

1 + 

2( ε 0 + �ε)( h 0 + �h ) 2 

( GM) 2 
, (9) 

here ε 0 = −GM 

2 a 0 
, h 0 = 

√ 

GMa 0 (1 − e 2 0 ) , are the initial values of

 and h with a being the semimajor axis and e being the eccentricity.
 = m � + m is the total mass. To simplify equation ( 9 ), we introduce
 0 = e 2 0 − 1 and u = e 2 − 1 variables and express the change as 

�u 

u 0 
≈ �ε 

ε 0 
+ 

2 �h 

h 0 
, (10) 

here we neglect quadratic terms in the energy and angular momen- 
um changes as 

( ε 0 + �ε)( h 0 + �h ) 2 

( GM) 2 
≈ ε 0 h 

2 
0 

( GM) 2 

[
1 + 

�ε 

ε 0 
+ 

2 �h 

h 0 

]
. (11) 

The source of the energy change is the dissipative external force 

ε = 

v · F ext 

m 

�t, (12) 

here � t is the time window in which we estimate the transfer
f orbital energy to the gas. Similarly, the loss of specific angular
omentum comes from the torque that the gas e x erts on the

ompanion for � t time 

h = 

| r × F ext | 
m 

�t. (13) 

For the approximation of equation ( 9 ) to hold, we need to choose a
ime interval, � t , such that | �ε / ε 0 | � 1 and � h / h 0 � 1. In that case,
he resulting change in eccentricity will be small and the expansion 
f equation ( 9 ) will be justified. In practice, we use the orbit as
 representative time unit. For systems with slowly varying orbital 
lements due to dynamical friction (equi v alently where | F ext / F grav |
1) changes o v er an orbital period will be small enough to apply

quation ( 9 ). 
Additionally, for an eccentric orbit, the gaseous conditions and 

elative motion of the object through the gas change as a function of
rbital phase. Therefore, applying the local conditions at a single 
osition cannot represent the whole orbit (e.g. S ́anchez-Salcedo 
019 ). Instead, we consider the local conditions at the two extremes
f periapse and apoapse. Thus, 

ε ≈ �ε p + �ε a (14) 

nd 

h ≈ �h p + �h a , (15) 

here we introduce the lower index notation for periapsis (p) and
poapsis (a). To do so, we must approximate the time spent at the
rbital locations of periapse, � t p , and apoapse � t a . 
Given these approximations, we calculate e of equation ( 9 ) using

quations ( 12 ) and ( 13 ) for hydrodynamic drag and gas dynamical
riction forces, respectively, in the sections that follow. 

.1 Hydrodynamic drag 

n the case of a pure hydrodynamic drag, the energy dissipation and
he change of angular momentum are 

ε = − C d 

2 m 

πρR 
2 v 3 � (16) 

nd 

h = − C d 

2 m 

πρR 
2 | r × v 2 | �t. (17) 

e e v aluate these terms only at the peri- and apoapsis where the
osition is 

 p , a = a(1 ∓ e) , (18) 

nd the velocity is 

 p , a = 

√ 

GM(1 ± e) 

a(1 ∓ e) 
. (19) 

t these locations in the orbit, the position and velocity are perpen-
icular. We substitute these expressions into equation ( 10 ): 

�u p , a 

u 0 
= αρa 0 

(
1 ± e 0 

1 ∓ e 0 
− 1 

)
, (20) 

here we introduced α = πR 
2 C d 

m 

and applied the approximation 

hat � t p, a ≈ a / v p, a . The eccentricity at the peri- and apoapsis is 

 p , a = 

√ 

αρa 0 [1 − e 2 0 − (1 ± e 0 ) 2 ] − e 2 0 . (21) 

his yields a net eccentricity following a complete orbit of e ≈ e p +
 a . 

.2 Dynamical friction 

imilarly, we outline the effect of gaseous dynamical friction on the
ccentricity evolution. The specific orbital energy and the specific 
ngular momentum changes are 

ε = −4 πG 
2 mρI 

1 

v 
�t, (22) 

h = −4 πG 
2 mρI 

| r × v | 
v 3 

�t. (23) 
MNRAS 513, 5465–5473 (2022) 
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Figure 1. Top panels : Planar view of the orbital path of an orbiter in an 
isothermal gas sphere with a power-law density profile with ρ( r ) = ρ0 r −1.75 . 
The companion spirals inward due to gas dynamical friction (DF with blue) 
on the top left-hand panel, and due to hydrodynamic drag force (HD with 
green) on the top right-hand panel, until the orbit reaches 0.1 a 0 in both cases. 
Bottom panel: Orbital eccentricity as a function of semimajor axis calculated 
per orbit. The mass ratio is 0.001, the initial eccentricity is 0.05, and the 
initial semimajor axis is 0.94 R � in both DF and HD simulations. Under the 
influence of dynamical friction, the orbit becomes more eccentric, while under 
the influence of the hydrodynamic drag it circularizes. 

Figure 2. The ratio between the eccentricity change at peri- and apoapses 
as a function of the slope ( γ ) of the isothermal density profile in dynamical 
friction. The ratio of change of the orbital eccentricity is shown for 20 different 
realizations of a system. Colours indicate the initial eccentricities of the 20 
systems. For all eccentricities, γ = 3 is a critical value that divides greater 
eccentricity change at periapse and apoapse. The signs of � e p and � e a imply 
that when γ < 3 orbits become more eccentric, while when γ > 3, they the 
become less. 

 

a  

i  

f  

i  

d  

m  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/513/4/5465/6584408 by guest on 30 Septem
ber 2022
e e v aluate these terms at the apses again, and substitute them into
quation ( 10 ): 

�u p , a 

u 0 
= βρa 3 0 ξ

[ 

1 ∓ e 0 

1 ± e 0 
−

(
1 ∓ e 0 

1 ± e 0 

)2 
] 

, (24) 

here we introduced β = 8 πmI / M 
2 and � t p,a = ξa / v p,a . We note that

≈ 1 but can be fit by comparing the prediction with the numerical
esults. Then 

 p , a = 

√ 

βρa 3 0 ξ

[
(1 ∓ e 0 ) 3 

1 ± e 0 
− (1 ∓ e 0 ) 2 

]
− e 2 0 (25) 

s the eccentricity at the peri- and apoapsis. Just as in the case
f hydrodynamic drag, the net eccentricity after an orbit can be
omputed as e ≈ e p + e a . 

 RESULTS  

.1 Isothermal, power-law density distribution 

e use the numerical simulations and the abo v e semi-analytic
ormalism to measure and predict the rate of eccentricity change
f a secondary object in an isothermal gas sphere of mass m � as a
odel of an extended primary object. The density profile of the gas

s chosen to be a power-law function of the radius as ρ( r ) = ρ0 r −γ

here 

0 = 

(3 − γ ) m � 

4 π
(
R 

3 −γ
� − R 

3 −γ
c 

) , (26) 

 c and R � are the inner and outer edges of the density profile. We use
 � = 1 au as the unit of distance and the total enclosed mass at R � as

he unit of mass m � ( R � ) = 1 M � and also R c = 10 −5 R � . 
In Fig. 1 , we show the orbital paths of a simulation with a γ =

.75 isothermal density profile on the top panels. Here, we chose a
econdary with mass m = 10 −3 M � with initial semimajor axis a =
 . 94 au and initial eccentricity e = 0.05. The radius of the secondary
bject is chosen to be R = 2 · 10 −3 au and sound speed is a constant
s c s = 

√ 

1 . 4 k B T /m H2 ≈7.6 km s −1 with T = 10 4 K, k B being the
oltzmann constant, and m H2 being the mass of molecular hydrogen.
he Mach number decreases from its initial value of M = 3 . 97 to
 = 3 . 31 (where the simulation was stopped) because the orbital

elocity decreases during the inspiral since the enclosed mass is
etting smaller as the orbit tightens. These initial parameters set
he secondary to orbit within the density profile ( r < R � ). The top
eft-hand and right-hand panels show the simulated inspiral of the
econdary object under either purely dynamical friction (with blue)
r purely hydrodynamic drag (with green), respectively, in the x –y
lane of the motion. Solid circles indicate R � (the outer cut-off of the
as) and 0.1 a 0 (i.e. 10 per cent of the initial semimajor axis) radii.
e ran the simulations between r = 0 . 09 − 0 . 94 au radius range.

he inspiral times are t df = 11.7 yr and t hyd = 109.1 yr, respectively.
he bottom panel shows the eccentricity change during the inspiral.
ith γ = 1.75 density profile, the dynamical friction causes the orbit

o become more eccentric while hydrodynamic drag circularizes the
rbit. 
Using the same mass ratio but a 0 = 0 . 5 au , we further analysed

he effect of dynamical friction on the eccentricity evolution for the
ntire range of initial eccentricities. We predict if the eccentricity
s about to be excited or damped as a function of γ and e 0 at the
rst orbit for both apses. We show the ratio between � e p = e p − e 0 
nd � e a = e a − e 0 in Fig. 2 where the colours indicate the initial
ccentricities of the systems from e 0 = 0 up to 1. 
NRAS 513, 5465–5473 (2022) 
Because forces at periapse tend to circularize the orbit while those
t apoapse tend to make it more eccentric, the ratio � e p / � e a is an
mportant indicator of the orbital evolution. We find that � e p / � e a < 1
or γ < 3, which means that the orbits tend to become more eccentric
n shallow gas density profiles. By contrast, orbits circularize in cuspy
ensity profiles for γ > 3. More eccentric the initial orbits are, the
ore eccentric they get ( γ < 3) or the more they circularize ( γ > 3).

art/stac1294_f1.eps
art/stac1294_f2.eps
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Figure 3. The fitting parameter ξ on which we approximate the apses transit 
( � t = ξa / v) as a function of initial eccentricity for 3 models of power-law 

density profiles ( γ = 0.0, 1.5, 3.5) for dynamical friction simulations. 
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We have compared the above semi-analytic results with the 
umerical simulations and found that ξ scaling parameter can be 
t as ξ ≈ π

2 (1 − e 2 0 ) in case of dynamical friction. Note that ξ is a
tting parameter that defines the time window � t = ξa / v in which
e approximate the apses transit in equations ( 12 ) and ( 13 ). ξ is
easured by comparing the discrepancy between the eccentricity 

hange in the numerical simulations versus the eccentricity change 
n the semi-analytic model with ξ = 1. In Fig. 3 , we show how
e measured the deviations at 9 points of initial eccentricities for 3
odels ( γ = 0, 1.5, 3.5). 

.2 Common envelope inspiral 

 ubiquitous feature of simulations of hydrodynamic simulations 
f common envelope inspiral is the development of moderate 
ccentricity – even when these models are initialized in circular 
rbits. This is seen clearly, for example in fig. 2 of Ricker & Taam
 2012 ), fig. 11 of Passy et al. ( 2012 ), and figs 1 of Ohlmann et al.
 2016 ) and Chamandy et al. ( 2019 ). The analysis of Chamandy
t al. ( 2019 ) progresses much further and analyses the drag forces
pplied to the infalling bodies and discusses the similarity (in the 
arly inspiral) and departure (after the envelope has been disturbed) 
f these forces from those predicted by gaseous dynamical friction 
nd an undisturbed profile. Yet, results appear quite varied across 
he models presented by different groups and initial conditions. 
 or e xample, the eccentricity seen in the models of (Sand et al.
020 ) is quite small compared to that of Ohlmann et al. ( 2016 ) when
he same code but different initial conditions are employed. To our 
nowledge, no clear explanation for this eccentricity, or why it differs
cross simulation models, has been outlined. We explore this question 
urther in this section by examining the eccentricity evolution in a 
ubset of hypothetical model common envelope inspiral episodes. 

We simulate the eccentricity evolution of a Jupiter-like planet 
ngulfed by a Sun-like giant star at its late, red giant evolutionary
hase (e.g. Soker, Livio & Harpaz 1984 ; Sandquist et al. 1998 ;
iess & Livio 1999a , b ; Carlberg, Majewski & Arras 2009 ; Metzger,
iannios & Spiegel 2012 ; Zhang & Penev 2014 ; Aguilera-G ́omez

t al. 2016 ; Staff et al. 2016 ; MacLeod et al. 2018 ; Qureshi, Naoz &
hkolnik 2018 ; Stephan, Naoz & Gaudi 2018 ; Popkov & Popov 2019 ;
imenez, Gr ̊ae JØrgensen & Verde 2020 ; Stephan et al. 2020 ; Glanz &
erets 2021 ; Soares-Furtado et al. 2021 ; Yarza et al. 2022 ). The total
ass of the star is m � = 1 M � and its radius is R � = 1 au , the planet
as a mass of m = 10 −3 M � and a radius of R = 2 · 10 −3 au (or
pproximately 4.28 Jupiter radii). The star comprises two structural 
arts: the core, which makes up 1/3 of its total mass; and a polytropic
nv elope, which e xtends up to R � and has a polytropic inde x n = 1.5.
or the sake of simplicity, we treat the stellar core as a point mass

n the centre, and construct the envelope solution according to the
ane-Emden equation for n = 1.5 polytropic index: 

1 

ζ 2 

d 

dζ

(
ζ 2 d� 

dζ

)
= −� 

n , (27) 

here ζ is a distance parameter. We numerically integrate this 
ifferential equation and express the density as: 

( r ) = 

max ( ζ ) 3 

8 / 3 π
∫ max ( ζ ) 

0 � 
n ( ζ ) ζ 2 dζ

� 
n ( r ) , (28) 

here we apply the variable transformation r = ζ /max ( ζ ) such that
ax ( ζ ) is the zero of the � ( ζ ) function. This normalization meets

he requirement that the total mass of the envelope is 2/3 and its
adius is 1 since we chose G = M unit = R unit = 1 unit system, which
an be rescaled to any physical dimension. We note that the inner
oundary condition of a point-mass core does not affect the orbital
volution of the planet through its inspiral in the stellar envelope 
ecause the planet’s acceleration only depends on the gravity of the
nclosed mass and the local density of the envelope in our simplified
odel. 
In the case of dynamical friction, ho we ver, the orbital e volution

lso strongly depends on the system’ s Mach-number . We only
xamine the first, rapid evolutionary phase of the orbit where the
lanet orbits in the supersonic regime, i.e. v > c s . Here, we e v aluate
he corresponding I parameter of equation ( 3 ) locally as I sup =
.5ln (1 − [ v/ c s ] −2 ) − ln ( r / R ). The second term is also known as
he Coulomb-logarithm in which r is the separation between the 
lanet and the stellar core. In the first term, we approximate the local
ound speed as c s = c 0 

√ 

(1 + 1 /n ) ρ1 /n ( r) where c 0 = 29.7 km s −1 

s a unit conversion parameter. 
In Fig. 4 , we show the orbital paths of the planet on the top panels

similarly to Fig. 1 ). The left-hand panel shows the case in which
he planet’s orbit evolves under the effect of dynamical friction only.
imilarly, the right-hand panel shows the same hypothetical case 
here the orbit of the planet shrinks under the influence of hydro-
ynamic drag only. The simulations were started at a 0 = 0 . 94 au
ith e 0 = 0.05 initial eccentricity. In both cases, the planet migrates

nward and its orbit starts to circularize. The inspiral times are t df =
3.1 yr and t hyd = 96.1 yr, respectively. In the case of dynamical
riction, we observe a transitional phase in which the circularization 
tops between a ≈ 0 . 5 –0 . 7 au where the planet’s orbit becomes more
ccentric. These changes reflect the changing steepness of the density 
rofile within the polytropic structure – near the stellar limb, the 
cale height is small and the density gradient is very steep, leading to
rbital circularization. Deeper in the stellar interior, the scale height 
an be much larger and the orbit becomes more eccentric under
he influence of the shallow density profile. Just before entering 
he subsonic regime (at which point we stop the simulation), the
ynamical friction force drops as the Mach-number approaches unity 
 df ∝ ln (1 − M 

−2 ). At this limit, the orbit starts to circularize again,
nd that continues in the subsonic regime. 

After investigating one specific configuration, we extend our 
nalysis to understand how the observed transition point in the 
ccentricity evolution depends on the density profile of the stellar en-
elope. We generate 35 independent density profiles with polytropic 
nde x es ranging from n = 0.1 up to n = 3.5 evenly. We show the
nclosed masses of the different polytropic envelopes with coloured 
MNRAS 513, 5465–5473 (2022) 
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M

Figure 4. Top panels: Planar view of the orbital path of a companion in 
a polytropic envelope of a giant star with n = 1.5 polytropic index and R � 
radius. The companion spirals inward due to gas dynamical friction (DF with 
blue) on the top left-hand panel, and due to hydrodynamic drag force (HD 

with green) on the top right-hand panel, respectively, until the orbit reaches 
the subsonic regime of dynamical friction, i.e. where v( r ) = c s ( r ) (for which r 
≈ 0.5 R � ). Bottom panel: Orbital eccentricity as a function of semimajor axis 
calculated per orbit. The mass ratio is 0.001, the initial eccentricity is 0.05, 
and the initial semimajor axis is 0.94 R � in both DF and HD simulations. 

Figure 5. Left-hand panel: The enclosed mass of the stellar envelope as 
a function or radius for different polytropic model. Right-hand panel: The 
dln ρ/dln r deri v ati ve of the density as a function of radius. A horizontal line 
compares to the critical value of −dln ρ/dln r = 3 identified in the context of 
power-law density profiles. The simulated range of polytropic indexes varies 
from n = 0.1 up to n = 3.5 see the colourbar. Important n = 1.5 and 3 models 
are emphasized with solid and dashed black curves. Note that simulations 
adopted a point mass-like stellar core with mass 1/3 of the total mass. 

c  

e  

d  

a  

i  

u  

a  

o  

Figure 6. Left-hand panels: The orbital separation (top panel) and velocity 
(bottom panel) of the planet as a function of enclosed mass for a series 
different of polytropic models indicated by the colourmap. Right-hand panels: 
The local sound speed (top panel) and Mach number (bottom panel) as a 
function of enclosed mass for the same series of polytropic models. Solid and 
dashed black curves emphasize models with n = 1.5 and 3. Simulations are 
stopped either when the planet reaches 10 per cent of the initial semimajor 
axis or enter the subsonic regime in the envelope. 
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urves as a function of radius on the left-hand panel of Fig. 5 . We
mphasize important polytropes, i.e. n = 1.5 and 3 with solid and
ashed black curv es, respectiv ely. (In all figures from Fig. 5 , colours
nd solid and dashed black curves represent the same polytropic
nde x es of the corresponding stellar envelopes.) In all models, we
se the same point mass-like stellar core with mass 1 / 3 M �. We
lso show the slope, i.e. −dln ρ/dln r of the radial density profiles
f each polytropic model as a function of radius on the left-hand
NRAS 513, 5465–5473 (2022) 
anel of Fig. 5 . The corresponding power-la w e xponents increase
rom the core to the surface for polytropes as a function of radius.
he diverging exponents at the boundaries are the consequences of

he smooth transition feature of the polytropic density profiles at
he core and the surface. For comparison, the horizontal black line
hows −dln ρ/dln r = 3 which corresponds to the critical γ = 3
ase of the power-law density profiles, which separates the quality
f eccentricity evolution in isothermal models. 
We ran 35 simulations that are shown in Fig. 6 using the same

nitial eccentricity ( e 0 = 0.05) for the planet but different stellar
nvelope profiles and different initial semimajor axes. We set the
nitial semimajor axes in such a way that the initial periapsis is at the
adius corresponding to 0 . 95 M � enclosed mass. Panels on the right
how the separation (top panel) and the velocity (bottom panel) of
he planet as a function of enclosed mass. Simulations are stopped
ither when the planet reaches 10 per cent of the initial semimajor
xis (e.g. n � 0.5 or 3.2 � n ) or enters the subsonic regime (e.g. 0.5
 n � 3.2) in the envelope. 
Fig. 7 shows our results regarding the eccentricity evolution of

 planet’s orbit during its inspiral in various models of a stellar
nvelope. The top panel shows the eccentricity as a function of
nclosed mass in the numerical simulation (dots) and in the semi-
nalytic estimate (solid curves). Here, we calculate e i + 1 by taking
he local ( ε 0 , h 0 ) values of the numerical simulation in equation ( 9 ).
imilarly, we calculate �ε of equation ( 22 ) and � h of equation ( 23 )
nder the local conditions in each model. The bottom panel shows
he dif ferential v alues from the top panel, i.e. � e i = e i + 1 − e i of the
umerical simulation. The horizontal line indicates � e = 0 below
hich orbits tend to circularizes and abo v e which orbits become
ore eccentric. Our results show that after initial circularization the
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Figure 7. Top panel: Eccentricity as a function of enclosed masses during the 
inspiral of the planet in the stellar envelope. Colour scale labels the polytropic 
index of the 35 different models. Solid and dashed black curves emphasize 
important n = 1.5 and 3 models. Dots show the measured eccentricities 
per orbit from the numerical simulations, while solid curves show the 
corresponding semi-analytic prediction. Bottom panel: The differential values 
of the data from numerical simulation from the top panel, i.e. the eccentricity 
change between two consecutive orbits in the given polytrope. The horizontal 
black line separates regimes in which the orbit circularizes (below zero) or 
becomes more eccentric (abo v e zero). 
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Figure 8. The transition points from circularization to eccentricity growth in 
different polytropes as function of semimajor axis as a fraction of the stellar 
radius. Both numerical results (with red ×-s) and semi-analytic predictions 
(with blue dots) are shown together with a linear fit (black solid line) to the 
numerical results. The orange curve shows the transition points corresponding 
to dln ρ/dln r = 3 in Fig. 5 . 
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rbital eccentricity start to increase in various models before either 

pproaching 0.1 a 0 or entering the subsonic regime. This is most
rominent for polytropes with n � 2 or n � 3 for which simulations
ever enters the subsonic regime but appears in all models. 
In our model polytropes, we measure the first transition points 

here the initial circularization turns into eccentricity growth as a 
unction of semimajor axis, Fig. 8 . We observe that our numerical
ntegrations and semi-analytic predictions are in very close agree- 

ent, and trace a relationship that defines the fractional critical 
adius as a function of the envelope’s polytropic index. We note, 
o we ver, that polytropes with a different core mass fraction would
ead to a different result. We note that our result can be fitted
ith the linear relation n ( a / R � ) = −4.53 a / R � + 4.54. Finally, we

ompare this relationship to a criterion based on the local density 
lope, dln ρ/dln r = −3. We find that this approximation, while
ot as accurate as the full semi-analytic theory (because it neglects
he dependence of the dynamical friction drag force on the local

ach number), provides useful context for the resulting eccentricity 
volution. 

Given these findings, we argue that the ubiquitous presence of 
ccentricity in simulated common envelope inspirals can be traced 
o gaseous dynamical friction on the extended envelope. In the early
nspiral, the steep gradient of the outer envelope ( −dln ρ/dln r � 3)
amps any orbital eccentricity, while in the later inspiral, eccentricity 
an be enhanced by interaction with the comparatively homogeneous 
nvelope interior ( −dln ρ/dln r � 3). 

 CONCLUSIONS  

n this paper, we examined the eccentricity evolution of an object
rbiting in an extended gaseous medium due to hydrodynamic drag 
r gas dynamical friction. We built a simple numerical integrator 
o calculate the orbital path of the companion under the influence
f the gravity of the primary and the frictional forces e x erted by
he gas. We measured the eccentricity evolution during the inspiral 
f the companion and compared the results with the prediction of
 semi-analytic approach. We compared the relative importance of 
ydrodynamic drag and gas dynamical friction in the eccentricity 
volution. We focused our analysis on dynamical friction dominated 
egimes. Some key findings of our study are: 

(i) Drag forces applied to the system at periapse tend to make
rbits more circular, while those applied at apoapse tend to make
rbits more eccentric. 
(ii) In all centrally concentrated mass distributions, hydrodynamic 

rag causes orbital eccentricity to decrease because the drag increases 
ith increasing velocity (e.g. at periapse in an eccentric orbit), see

quation ( 2 ) and Fig. 1 . 
(iii) Because the gaseous dynamical friction drag force decreases 

ith increasing velocity in the supersonic regime, equation ( 3 ),
hether orbits become more or less eccentric under the influence 
f gaseous dynamical friction depends on the density profile. 
MNRAS 513, 5465–5473 (2022) 
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(iv) We find that the critical value for a radial power-law density
istribution ρ ∝ r −γ is γ = 3, where lo wer v alues of γ < 3 drive
rbital eccentricity increase while higher values of γ > 3 drive orbital
ccentricity decrease (Fig. 2 ). 

(v) Both the sign and rate of change of orbital eccentricity can
e be accurately predicted by our semi-analytic theory of Section 3
hen coupled with the numerical coefficient ξ ≈ π/2(1 − e 2 ), as

eported in Fig. 3 . 

We apply this theory of eccentricity evolution under the influence
f gaseous dynamical friction to the orbital evolution of engulfed
bjects in common envelope phases. Here we consider an example
f a Jupiter-like planet interacting with the envelope of a Sun-
ike star at its late, red giant evolutionary phase. The hydrostatic

ass distribution of the stellar envelope has a steep density gradient
lower temperature and smaller scale height) near the surface and
 shallower density gradient (higher temperature and larger scale
eight) in the deep interior. We show that as orbiting objects pass
hrough these mass distributions, they experience circularization in
he outer envelope and eccentricity excitation in the inner envelope.
or polytropes of varying index, n , we demonstrate the eccentricity
volution and the inflection between eccentricity decrease in the
uter envelope and increase in the inner envelope (Fig. 7 ). The
nflection between eccentricity decrease and growth can be mod-
lled accurately with our semi-analytic model or approximately by
nding the radius within the stellar model where dln ρ/dln r = −3
Fig. 8 ). 

Conceptually, our results provide a framework for understanding
he evolution of eccentricity in objects being dragged inward in
aseous distributions. In particular, we demonstrate that the devel-
pment of orbital eccentricity in global hydrodynamic simulations
f common envelope phases is indeed realistic, rather than being an
rtefact of numerics or initial conditions. Similarly, runaway growth
f eccentricity was observed in non-gaseous dynamical friction for
nequal mass binaries in stellar background (e.g. Meiron & Laor
012 ). Our semi-analytic model adopts the Mach-number dependent
oefficients of Ostriker ( 1999 ), but could equally be extended to
oefficients of dynamical friction that depend on the local density
radient or other properties (e.g. MacLeod et al. 2017 ; De et al.
020 ). Our results further suggest that the emergence of objects from
ommon envelope phases with moderate, non-zero eccentricities
ay be a natural consequence of the physics of gaseous dynamical

riction. There are many other applications of our results, including
he formation of Thorne-Zytkow objects (Thorne & Zytkow 1975 ),
he migration of stars in accretion flows around black holes, and
he prediction of gra vitational wa ve emissions of eccentric compact
inaries (see e.g. Macedo et al. 2013 ; Ginat et al. 2020 ; Cardoso,
acedo & Vicente 2021 ). Our model can be extended towards

ncluding feedback, which could have a potential effect on the orbital
volution by damping or reversing the gaseous dynamical friction
see e.g. Gruzinov et al. 2020 ) in certain astrophysical scenarios
ith high outflow rates. 
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