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Abstract

The evolution of many close binary and multiple star systems is defined by phases of mass exchange and
interaction. As these systems evolve into contact, tidal dissipation is not always sufficient to bring them into
circular, synchronous orbits. In these cases, encounters of increasing strength occur while the orbit remains
eccentric. This paper focuses on the outcomes of close tidal passages in eccentric orbits. Close eccentric passages
excite dynamical oscillations about the stars’ equilibrium configurations. These tidal oscillations arise from the
transfer of orbital energy into oscillation mode energy. When these oscillations reach sufficient amplitude, they
break near the stellar surface. The surface wave-breaking layer forms a shock-heated atmosphere that surrounds the
object. The continuing oscillations in the star’s interior launch shocks that dissipate into the atmosphere, damping
the tidal oscillations. We show that the rapid, nonlinear dissipation associated with the wave breaking of
fundamental oscillation modes therefore comes with coupled mass loss to the wave-breaking atmosphere. The
mass ratio is an important characteristic that defines the relative importance of mass loss and energy dissipation and
therefore determines the fate of systems evolving under the influence of nonlinear dissipation. The outcome can be
rapid tidal circularization (q= 1) or runaway mass exchange (q? 1).

Unified Astronomy Thesaurus concepts: Hydrodynamical simulations (767); Tidal interaction (1699); Close binary
stars (254); Common envelope evolution (2154)

Supporting material: animation

1. Introduction

In binary and multiple star systems, the combined evolution
of the stars and the orbits they share can drive separated
systems to direct interaction. The resulting interactions include
stable and unstable mass transfer, common envelope phases in
which one object engulfs its companion, and complete mergers
of two or more objects. Indeed, these sorts of interactions
define the evolution of more than half of all massive stars (Sana
et al. 2012; Duchêne & Kraus 2013; Moe & Di Stefano 2017).
In order to model how populations of multiple stars evolve and
produce remnants, we need predictive theories to map systems
through these phases. With so many possible outcomes,
performing and validating these theoretical models has been
challenging and many open questions remain (e.g., Pac-
zyński 1971; Hurley et al. 2002; Ivanova et al. 2013;
Pavlovskii & Ivanova 2015; Broekgaarden et al. 2021).

The properties that describe the initial conditions for the
mapping of multiple star systems through phases of interaction
are (1) the initial state of the system orbit and (2) the structural
properties of the objects themselves. Together, these properties
define the outcome of a subsequent hydrodynamic interaction.
In this paper, we focus on the property of initial orbital
eccentricity at the outset of mass exchange. Pairs of stars within
multiple systems are formed with a wide distribution of initial
orbital eccentricities. These initial distributions are modified by
processes of tidal dissipation into the stellar interiors,
gravitational torques from other bodies (e.g., secular torques

in hierarchical multiples), and impulsive mass-loss phases like
supernovae.
For any of these reasons, a system might evolve toward a

phase of mass exchange while in an eccentric orbit (e.g.,
Dosopoulou & Kalogera 2016a, 2016b). In these situations,
tidal dissipation competes with that evolutionary process to
determine whether a mass exchange interaction begins in a
circular or eccentric orbit (Verbunt & Phinney 1995; Hurley
et al. 2002). Vigna-Gómez et al. (2020) identified, for example,
that in pre-common-envelope phases involving systems that go
on to produce merging double neutron star systems, the
characteristic timescales for tidal circularization and spin
synchronization are often longer than the radius growth
timescale of the giant star in the system, apparently driving
the system toward a common envelope phase while still in an
eccentric orbit (Staff et al. 2016; Shishkin & Soker 2020; Glanz
& Perets 2021; Schreier et al. 2021). Vick et al. (2021)
analyzed this scenario with more sophisticated models of tidal
dissipation into convective stellar envelopes (Vick & Lai 2020)
and found that the action of tides circularizes some systems, but
many remain eccentric and asynchronous by the time the giant
star evolves to overflow its Roche lobe at periapse. Another
representative example of this class of interaction comes when
secular torques drive a system toward Roche lobe overflow in
an eccentric orbit; in this case tidal dissipation competes with
the torque on the orbit to determine the orbital properties (Naoz
& Fabrycky 2014; Naoz 2016; Salas et al. 2019).
As a system evolves toward the extreme of mass transfer in

an eccentric or asynchronous orbit, the primary star experiences
dynamical tides of increasing strength. These tides are
dynamical because they cannot be in equilibrium with the
time-varying tidal potential as viewed from the stellar fluid
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frame. In this paper, we show that as these tides increase in
amplitude and waves associated with the tidal oscillations
break. In even closer passages, the amplitude becomes so large
that mass is transferred from the primary to the perturber. Wave
breaking dissipates the organized motion of the oscillation into
random motions, through a turbulent cascade, producing heat.

Wave breaking, therefore, dissipates the energy deposited
into dynamical tides when the oscillations reach an amplitude
that leads them to become nonlinear. We perform hydro-
dynamic models of the excitation of fundamental oscillation
modes by an eccentric tidal passage, and demonstrate the wave
breaking that occurs when these waves reach unsustainable
amplitudes. We extend our models for many dynamical times
of the primary star after the periapse passage in order to
quantify the rate and spatial distribution of energy dissipation
associated with the damping of the fundamental mode by wave
breaking. Through this dissipation, wave breaking shapes the
crucial initial conditions of the systems’ orbits and the
structures of tidally excited stars at the onset of Roche lobe
overflow for eccentric systems approaching mass exchange.

In Section 2, we describe our hydrodynamic simulation
methodology and the linear theory that forms a baseline for
interpreting our numerical results. In Section 3, we describe the

process of tidal wave breaking and the dissipation of mode
energy into turbulence. In Section 4, we discuss some potential
implications of our results, and in Section 5, we conclude.

2. Methods

2.1. Hydrodynamic Models

The simulations presented in this work are performed using
the Athena++ software (Stone et al. 2020). Our method is
based on that of MacLeod et al. (2018a), MacLeod et al.
(2018b), MacLeod et al. (2019), MacLeod & Loeb (2020a),
and MacLeod & Loeb (2020b). We model the interaction of a
tidally perturbed stellar envelope with two point masses, one
representing the excised center of the star, and the other
representing the perturbing object. Our simulations are three-
dimensional, and are conducted in spherical polar coordinates
with the origin at the center of the star.
The Eulerian approach of our Athena++ simulations allows

high resolution in the low-mass regions at the limb of the star.
This high resolution is important because it allows us to capture
the shock heating that results from wave breaking and the
formation of a low-mass, high-entropy atmosphere around the
star. Though there are many advantages to Lagrangian
hydrodynamics in stellar modeling, these mass-based methods
do not have the ability to resolve the crucial features that we
study in this work.
The total mass of the star is M1=m1+mg, where m1 is the

excised core mass and mg is the gaseous envelope mass. The
perturber has mass M2 and the mass ratio is q=M2/M1= 0.1.
The original radius of the star is R1. Our calculations are
performed in units where G=M1= R1= 1, but may be
rescaled to any characteristic stellar M1 and R1. The unit
velocity is =v GM R1 1 1 and the unit time is =t R GM1 1

3
1.

The initial condition of the stellar envelope is a nonrotating
spherically symmetric polytropic envelope surrounding the
excised core, which has a mass of m1= 0.1M1. This envelope
is constructed by choosing a pressure and density at 0.1 R1,
then integrating outward to R1 following the equations of of
hydrostatic equilibrium closed by the polytropic index rµ GP s,
where Γs= γ= 1.35 or 5/3, thus implying that the envelope is
isentropic in either case. The initial density and pressure are
iteratively chosen such that M1= 1 at R1= 1. Figure 1 shows
the structure of our model objects. Qualitatively, these models
represent giant-like stars with central condensations of mass
and isentropic envelopes with differing degrees of central
condensation. Outside of R1, the solution is joined with a low-
density hydrostatic background with a constant sound speed of
v1/3.
Our frame of reference orbits with m1 and is therefore

accelerated, but is nonrotating. The coupled equations of
inviscid gas dynamics that we solve are

· ( ) ( )r r¶ +  =v 0, 1at

( ) · ( ) ( )r r r¶ +  + = -v vv IP a , 1bt ext

· [( ) ] · ( )r¶ +  + = -v vE E P a , 1ct ext

expressing mass continuity, the evolution of gas momenta, and
the evolution of gas energies, respectively. In the above
expressions, ρ is the mass density, ρv is the momentum density,
and E= ò+ ρv · v/2 is the total energy density where ò is the
internal energy density. Additionally, P is the pressure, I is the
identity tensor, and aext is an external acceleration term (source

Figure 1. Structure of two model polytropic stars used in our simulations. The
upper panel shows density, the middle shows the central enclosed mass, and the
lower shows the radial wavenumber kr ≈ ωα/cs, adopting the frequency of the
l = 2 fundamental mode. Both objects have a core mass of 0.1 M1 enclosed
within 0.1 R1, surrounded by polytropic envelopes with structural indices of
Γs = 1.35 and 5/3. The Γs = 1.35 case is more centrally concentrated, with
less mass in its outer envelope while the Γs = 5/3 case is more homogeneous.
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term). The equations above are closed by an ideal gas equation
of state, ( )g= - P 1 , in which γ is the gas adiabatic index or
ratio of specific heats.

The acceleration source term on the right-hand side of
Equations (1), aext, represents the forces associated with the
binary, as well as fictitious accelerations associated with our
choice to perform the calculation in a non-inertial frame of
reference. The source term contains the gravitational accelera-
tions from point masses m1 and m2. The acceleration of m2 is
softened across 0.1 R1, using a spline kernel (Hernquist &
Katz 1989). It also contains the self-gravitational acceleration
of the gas on itself. This we model via a monopole
approximation by summing the enclosed mass within a given
radius from m1, and setting the self-gravitational term
acceleration equal to−Gmg(< r)/r2. Finally, we include the
inverse of the acceleration of m1 to compensate for our choice
of non-inertial reference frame. A more detailed account of
these terms is given in Equations (7)–(12) of MacLeod et al.
(2018a).

Our mesh extends over the full 4π steradians of solid angle
and from 0.1 R1 to 100 R1. The zones are uniformly spaced in θ
and f coordinates but logarithmically spaced in r so that the
zone shapes remain roughly cubic across a wide range of radial
scales. The base mesh is made up of 480× 192× 384 zones in
r, θ, and f. A nested layer of static mesh refinement increases
the resolution by a factor of two between 0.7 R1 and 1.3 R1.
This mesh is divided into blocks of 323 zones for
parallelization.

The inner radial boundary surrounding m1 is located at
0.1 R1, and is reflecting. The outer radial boundary at 100 R1

allows outflow from the mesh but not inflow onto the mesh.
The boundaries at θ= 0 and θ= π are polar boundaries that
allow material to flow through the coordinate singularity at the

poles. The boundary at f= 0 and f= 2π is periodic, to
represent the continuous flow across this coordinate transition.
Near the θ= 0 and θ= π coordinate singularities we average
conserved quantities across multiple zones in the f direction to
create effectively larger, more cubical zones that avoid extreme
aspect ratios near the poles. This averaging preserves the data
structure of the mesh while preventing excessive f resolution,
which can severely restrict the courant limit on the time step, in
the immediate vicinity of the polar boundary.
The orbit of the perturber and star are initialized such that the

perturber follows an eccentric orbit with a= 100 and
rp= a(1− e) in the range of 1.1 R1–1.9 R1. We integrate the
orbit from apoapse to a separation of 10 R1 treating both masses
as point masses, then initialize the hydrodynamic model.
Particle–gas interactions are computed by direct summation
over the simulation zones, and time integration is done by a
leap-frog method with a timestep equal to the hydrodynamic
timestep. As the model is initialized, we relax the hydrostatic
profile onto the mesh, progressively turning off a damping term
for 5 t1, then turn on m2 over the subsequent 0.1 t1. The orbital
integration then begins and the star proceeds toward its
periapse passage with the perturber.
At our fiducial resolution, these choices allow us sufficient

fidelity to capture exchanges of energy and angular momentum
with dimensionless amplitudes 10−6. Figure 2 shows the
exchange of angular momentum (top panel) and energy
(bottom panel) between the stellar fluid and the orbit in our
model. We plot this exchange in the weakest encounter for
Γs= 1.35, which has the smallest amplitude exchange of the
models we report. Because conservation is not guaranteed in
our algorithm, the departure of these quantities from perfect
conservation traces the accumulation of error in our algorithm.
The overall conservation of system angular momentum in our
simulations is less well preserved than the exchange, with an
accumulated error in the overall integration of the orbital
motion accumulating into an angular momentum error at the
∼10−4 level after 100 t1.
We incorporate scalar fields that are advected with the flow

in order to provide Lagrangian diagnostics of the changes in
energy and momenta imparted to particular fluid parcels. At the
end of the relaxation period of damping the initial profile onto
the mesh, we assign scalar tracers to represent material
originating within the stellar envelope (to distinguish from
the numerical background material). We also trace the initial r0,
θ0, f0, coordinates, as well as the initial potential, kinetic, and
internal energies. These tracers then passively follow the flow,
allowing us to measure Lagrangian displacements of the fluid
in either physical or energy space despite our Eulerian method
of solving the fluid equations.

2.2. Linear Theory

We compare our numerical results with predictions for the
radial velocity field from linear tidal theory (see Figure 4). In
linear theory, the response of the object to a tidal potential is
the sum of the response of each eigenmode. Eigenmodes are
indexed α= {nr, l, m}. We use the stellar oscillation code
GYRE to calculate the l= 2–10 f-modes (nr= 0) of the stellar
model (Townsend & Teitler 2013). The tidal energy transfer in
a pericenter passage, ΔEα, is given by Equation (21) of Vick
et al. (2019) assuming a nonrotating object. This calculation is
similar to those of Press & Teukolsky (1977) and Lee &
Ostriker (1986) but allows for an eccentric orbit rather than a

Figure 2. Exchange of angular momentum and energy in the encounter
between the Γs = 1.35 star and a perturber at rp = 1.9 R1—the weakest tidal
encounter of our simulated cases. Our fiducial resolution and model parameters
allow the exchange of energy and angular momentum to be accurately captured
for dimensionless amplitudes 10−6.
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parabolic encounter. We compute the mode mass Mα using
Equation (9) of MacLeod et al. (2019). Equation (3) of that
paper relates ΔEα and Mα to the radial velocity perturbation
δvα(R1). The predicted power spectrum from the linear theory
is then given by the sum

( ) ( ) ( )åp
d= a

=-

S l v R
1

4
, 2ff

m l

l

,lt
2

1

where the factor of (4π)−1 arises from the normalization of the
spherical harmonics.

Important points of reference for comparison of Lagrangian
perturbations to the oscillating stellar fluid include the
displacement, ξ, relative to the local mode wavenumber, k,
and the velocity, δv, relative to the local sound speed. The
dispersion relation of plane acoustic waves is w=k cs

2 2 2,
which relates k to the oscillation frequency and local sound
speed. We will focus near the stellar surface, where the radial
component of k is most important. We make the order of
magnitude approximation that we can treat the mode near the
surface as a plane wave, for which

( )w~ ak c r R, for . 3r s 1

Appendix E of Aerts et al. (2010) includes a more complete
derivation of the local wavenumber in the asymptotic regime
where the wave properties vary rapidly against the background,

which is satisfied near the stellar surface. We find that
Equation (3) is an accurate approximation in the region of
interest near the stellar limb, and adopt this simplification in
what follows. The value of kr, approximated by Equation (3), is
plotted for our model objects in Figure 1. Although the
fundamental mode has no nodes, near the stellar sur-
face  -k Rr 1

1.

3. Wave Breaking in Close, Eccentric Passages

In a close tidal passage, the time-dependent gravitational
potential of the perturber excites tidal oscillations in the stellar
fluid. In the extreme of this case, fundamental modes excited
by the tide break—implying the irreversible deformation of the
wavelike motion of the oscillation—as the perturbing force is
removed and the tidal-wave peak crashes back to the stellar
surface. As we discuss, the result of this irreversible
deformation is dissipation.

3.1. Periapse Passage

Figure 3 shows one such periapse passage with tidal wave
breaking. In this case, a perturber of M2= 0.1M1 passes at a
minimum distance rp= 1.3 R1. For context, this system would
overflow its Roche lobe in a synchronous, circular orbit at
a≈ 1.7 R1 (in an eccentric, asynchronous orbit the critical

Figure 3. Wave breaking during a close periapse passage. These panels show slices through the equatorial plane. Top panels show gas density, center panels show
velocity divergence, and lower panels show specific entropy. Contours in each panel are at ρ = 10−5, 10−4, and - M R10 3

1 1
3. The dashed line and cross marker

indicate the orbital path and position of the perturbing object, respectively. In this case, the perturber passes at a periapse distance of 1.3 R1, giving rise to a large
amplitude tidal wave, which collapses on itself and breaks, forming shocks. These shocks are traced by purple regions of strong velocity convergence. Shocks increase
the entropy of some of the initially isentropic stellar material.
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separation for Roche lobe overflow is smaller; Sepinsky et al.
2007). In the isentropic envelope, modes without radial nodes,
the fundamental modes of various degree and azimuthal order,
l, m, are the primary modes excited by a tidal passage. These
modes have eigenfunctions with peak amplitude at the object’s
surface.

The amplitude of the tidal wave that is excited during the
periapse passage is so large that the associated radial velocities
of the oscillation are greater than the local gas sound speed.
With this supersonic motion, the wave loses phase coherence
causing material to self-intersect and crash back to the star’s
surface as the perturbing force is reduced. This fall back
launches shocks through the star’s outer layers, highlighted by
purple regions of strong velocity convergence in the center
panels of Figure 3. Their effect is to increase the specific
entropy of the shocked material, traced by ( )rgPln in the
lower panels.

We examine the process of fundamental-mode wave break-
ing in this same rp= 1.3 R1 model in more detail by analyzing
the star’s fluid motion in a spherical surface at its’ original
radius of r= R1. Figure 4 decomposes the radial velocity field
at r= R1 into its spherical harmonic components. We plot the
power in each angular order l summed over azimuthal orders m

( ) ( )å=
=-

S l v , 4ff
m l

l

lm
2

where

( ) ( ) ( )ò òp
q f q f q q f=

p p
v v R Y d d

1

4
, , , sin . 5lm r lm

0

2

0
1

Figure 4 shows a transformation of the power spectrum near the
time of periapse, tp. The initial mode spectrum, as observed
from (t− tp)/t1=−2 to 0, mirrors the spectral shape predicted
by linear theory, with increasing amplitude as periapse
approaches. At (t− tp)/t1> 1, the spectral shape has trans-
formed. The peak still lies in the l= 2 quadrupole mode, but
the power at higher l falls off roughly as a power law. We find
that the l−5/3 scaling predicted by Kolmogorov turbulence
(Kolmogorov 1941) provides an approximate description of the
mode spectrum for l> 2. We caution, however, that our
preliminary investigations have found that this power law is not
universal. For example, in cases of much larger mass ratios,
where the tide is very symmetric, we see a pronounced even–
odd pattern in the mode power spectrum, with substantially
more power in the even modes, even after wave breaking.

This transformation of the mode power spectrum by wave
breaking represents the extraction of coherent energy in lower-
degree modes (l= 2 and l= 3) and its deposition into
disordered motion that adds power to higher l modes. Before
periapse, the energies in all of the modes are increasing, with
their relative powers remaining nearly constant. Near the
periapse passage, while the l= 2 and l= 3 powers continue to
rise, the l> 4 power momentarily flattens then dramatically
increases near (t− tp)/t1= 2, as the tidal wave begins to break
and shocks are launched through the material, modifying the
wavelike radial velocity pattern. The slices at r= R1 of radial
velocity, labeled a, b, and c in Figure 4, visualize the smoothly
varying wave pattern in panel (a), the beginning of wave
breaking and shocking in the abrupt transition in panel (b), and
the transfer of power smaller-scale velocity features, or higher
l, m modes, in panel (c).

3.2. Conditions for Wave Breaking

Figure 5 explores the conditions for tidal wave breaking of
the fundamental l= 2 mode in simulations with different
periapse distances from rp= 1.1 R1 to rp= 1.9 R1. The left
panels show the distortion of the star’s surface by the passage
of the tidal perturber. Near periapse (left panel) we see a tidally
excited wave, lagging the position of the perturbing body, that
increases in amplitude the closer the periapse distance. In the
second panel, taken when the orbital phase has advanced
slightly, we see that the surface contours in the rp= 1.1, 1.3,
1.5, and 1.7 R1 cases are no longer smoothly wavelike, but
instead host sharp reversals and multiple peaks. By comparison
to the fluid properties seen in Figure 3, we see that these surface
discontinuities are the signatures of wave breaking. By
contrast, the contours of the rp= 1.9 R1 case remain smoothly
wavelike. For this particular scenario, we therefore see wave
breaking occurring at periapse distances less than the
separation where a synchronously-rotating star would overflow
its Roche lobe in a circular orbit.
In the right-hand panels of Figure 5, we look at the mass

distributions of stellar material in radial Lagrangian perturba-
tion, ξr, measured in snapshots that are within a half dynamical

Figure 4. The transformation of the spherical harmonic mode spectrum during
the periapse passage due to wave breaking, in the rp = 1.3 R1 case. The upper
panel compares the mode spectrum to that predicted by linear theory. In the
lead-in to periapse, the simulated mode spectrum mirrors the linear prediction.
In the immediate aftermath the mode spectrum is transformed to a power law,
similar to l−5/3, by wave breaking. In the lower panel, we see how, as the
power in low-degree modes grows, wave breaking transforms the radial
velocity field at r = R1, extracting power from the coherent, wavelike motion
and depositing it in higher-degree modes and turbulence.
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time of periapse, 0< (t− tp)/t1< 0.5. Closer periapse passages
yield larger stellar distortions and ξr. As described in
Section 2.2, a point of comparison for ξr is the radial
wavenumber, kr∼ ωα/cs, where the approximation is valid
near the star’s surface (Aerts et al. 2010). The condition
|kξ|> 1 is often written as an approximate criterion for wave
breaking, implying that waves tend to break when their
amplitudes become large relative to their scale length (Barker
& Ogilvie 2010; Barker 2011; Su et al. 2020). In our case,
wave breaking is driven by the large radial displacements of the
tide near the surface, so the condition becomes |ξr| 1/kr or
|krξr| 1. The mode velocities implied are |δvr|= ωα|ξr|,
which means that the the wave-breaking condition can be
reexpressed as a condition on supersonic radial mode
velocities, |krξr|≈ |δvr|/cs.

The right-hand panels of Figure 5 compare ξr to the inverse
surface radial wavenumber, 1/kr(R1), and examine the
distribution of |krξr|. We see that in each of the cases where
we note the presence of wave breaking (rp� 1.7 R1), there is
material with ξr> 1/kr(R1). Further, the distributions of |krξr|
show that the amount of stellar mass exceeding the breaking
condition of |krξr|> 1 increases in stronger periapse passages.
By contrast, in the rp= 1.9 R1 case without wave breaking,
|krξr|< 1 for all of the star’s material. It is, however, worth
noting that even when some material exceeds the breaking
condition, the vast majority of the stellar material remains in

the linear regime where |krξr|= 1. For example, in the
strongest encounter we simulate (rp= 1.1 R1), only ∼10−3M1

is involved in the wave breaking.

3.3. Shock-heated Atmosphere

Just as wave breaking leads to dissipation in ocean waves,
wave breaking on the surface of the star limits the maximum
sustainable amplitude, |ξr| 1/kr(R1) (or, equivalently,
|δvr| cs(R1)), and dissipates tidal oscillations. The wave-
breaking layer damps the still-coherent linear oscillations
deeper in the star’s interior. The snapshots of Figure 6
visualize the rp= 1.3 R1 model across the 80 dynamical times
following its periapse passage. In the leftmost panels, at 10
dynamical times after periapse passage, there are still abundant
waves on the object’s surface, and the surrounding atmosphere
is quite chaotic. From the velocity divergence, we see that
oscillations in the object’s interior drive shock waves into the
atmosphere. These form spiral patterns as they propagate both
radially outward and azimuthally around the object with the
pattern speed of the mode. As these shocks dissipate into the
atmosphere, they develop a pattern of coherent rotation at
vf∼ 0.4 v1.
The spherical averages of Figure 7 exhibit the development

of the rotating atmosphere layer surrounding the star, from
snapshots approximately 80 dynamical times after the periapse

Figure 5. Contours indicating the stellar surface (left panels) and mass distributions with respect to Lagrangian displacement ξr (right panels). Through more distorted
surface contours and larger ξr, we observe that closer tidal passages lead to larger amplitude tidal waves near the star’s surface. In the rp = 1.1 R1 through rp = 1.7
cases, this wave breaks, and we see abrupt distortions of the wavelike profile of the surface contours. The weakest, rp = 1.9 R1 case features a sufficiently small wave
amplitude that it does not break, and the object’s surface retains its oscillatory motion. From the mass distributions, we see that the condition |krξr| > 1 distinguishes
the wave breaking cases from those that remain linear.
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passage. Dotted lines show the profile of the initial conditions
of our simulations, which include the physical object’s interior
and an artificial hydrostatic atmosphere that is included because
vacuum conditions are not permitted in our hydrodynamic
method. In each of the periapse passages with rp� 1.7 R1, an
atmosphere that is significantly denser than the initial condition
develops overlying a relatively unmodified interior of the star.
Because this layer is shock-heated, it has specific entropies
higher than the initially isentropic interior of the star. The
atmospheres also have similar profiles of Mach number
(  1) and azimuthal velocity (vf∼ 0.4 v1). Meanwhile,
the interior of the star maintains nearly its initial profile of
density, constant specific entropy, and no coherent rotation.

Shock waves launched by the nodes of the oscillatory waves
in the star, as visualized by Figure 6, create these shared
properties of atmospheric mach number and rotation. The l= 2
fundamental mode propagates around the star at an azimuthal
velocity of vf= ω2R1≈ 2.26 v1. This represents the azimuthal
velocity of the shock. Taking the strong shock limit, the post-
shock velocity would be at least vf= ω2 R1(γ− 1)/(γ+ 1)≈

0.34 v1. Thus, the development of rotation in the atmosphere is
related to the shock-heating process and is a direct consequence
of the dissipative action of shocks launched by the oscillation.
Although we have focused on the spherically averaged
properties for simplicity, this net rotation represents angular
momentum in the atmosphere, which forms into a thick torus
(scale height divided by radius of h/r∼ 1).
The mass of the atmosphere layer can be measured by

several criteria involving the transformation of properties from
the interior to the atmosphere. In the right-hand panel of
Figure 7, we compare the masses exceeding the wave-breaking
criterion to the mass that forms the emergent atmosphere. At
late times, approximately 80 dynamical times after periapse
passage, we measure the shock-heated and supersonic
( > 1) atmosphere masses. The shock-heated masses are
determined by a specific entropy jump equivalent to a shock of

 2. These atmosphere masses are compared to masses of
material that exceed wave-breaking criteria at periapse, as
visualized by the mass distributions of Figure 5. We find that
the nonlinear mass, |krξr|> 1, at periapse is very similar to the

Figure 6. Damping of oscillatory motions by dissipation into the turbulent atmosphere. While wave breaking during the periapse passage initially increases the
specific entropy of the surface layer, the subsequent interaction of the primary l = 2 oscillatory mode in the interior with this overlying atmosphere drives the damping
of the oscillation, and the development of a coherently rotating surface layer subject to spiral shock waves that propagates azimuthally with the l = 2 mode pattern
speed.
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supersonic atmosphere mass at late times. The linear theory
prediction of the mass with |krξr|> 1 is similar, but lower by a
factor of a few, and does not predict wave breaking in the
rp= 1.7 R1 case. This difference represents the importance of
nonlinearity in these strong tidal passages.

Meanwhile, the total shock-heated atmosphere mass at late
times is more closely traced by |kr(R1)ξr|> 1 at periapse, which
adopts the wavenumber at the star’s surface. This criterion
implies |δvr| cs(R1), or that oscillatory motion is more rapid
than the surface sound speed. The qualitative explanation
appears to be that when tidal waves break and fall back to the

surface, they shock the layers of material with a sound speed
lower than their characteristic velocity.

3.4. Dissipation

Figure 8 shows the power in the l= 2 modes over the
simulation durations, evaluated at the original donor radius,
r= R1. After reaching a peak shortly after periapse, the mode
power displays some variations about an overall decrease over
time. When we measure the mode power at other locations in
the star’s interior, we see that it changes in proportion. Thus,

Figure 7. Spherically averaged profiles at approximately 80 dynamical times after periapse passage (left panels). We see that wave breaking has disturbed the outer
layer of the object’s profile adding kinetic energy (which has both rotational and turbulent components) and heat, as traced by the specific entropy. The right panel
shows the mass of the late-time atmosphere compared to the nonlinear mass by several measures. We find that the linear theory prediction and simulated periapse mass
with |krξr| > 1 correlate with the late-time mass with > 1. The total late-time shock-heated mass correlates with the periapse mass with |kr(R1)ξr| > 1, which
implies |δvr| > cs(R1).

Figure 8. Power in the l = 2 mode as a function of time and its damping. After periapse passage, we see that the mode decays exponentially, with a characteristic
timescale that is shortest in the strongest encounters. This effect is so extreme that after ∼40 dynamical times, the closest periapse passage has weaker ongoing
oscillations than the furthest periapse passage. These strong encounters generate shorter dissipation timescales due to the larger masses of shocked atmosphere material
generated by the initial wave breaking. The second panel shows the dissipation rate associated with the exponential fits (the rp = 1.9 R1 case is shown with a lower
limit because of background material in our hydrodynamic models). The overall behavior is similar to that of our estimate of the dissipation efficiency, with òth ∼ 1
and matm equal to the wave-breaking mass at periapse (|krξr| > 1).
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the decrease over time represents a dissipation of the mode’s
energy, rather than a local change at r= R1. The variations
come from exchanges between modes. One such example can
be seen clearly in Figure 4, where at t− tp≈ 6 t1 the l= 3
power increases as the l= 2 power decreases, then they reverse.

The deepest periapse passages, which experience the most
extreme wave breaking, undergo the most rapid dissipation,
even once their oscillatory amplitude has decreased. This
means that the hierarchy of mode power by the end of the
simulations is reversed. The initially strongest tides of the
rp= 1.1 R1 model have the smallest residual amplitude after 80
dynamical times. The dissipation is exponential, following a
constant decay time, τdiss. In Figure 8, we overplot best-fit
exponential models for the mode power for t− tp> 2t1. In
these fits, ( ) [ ( ) ]g= µ - -S l t t2 expff p nl . The right-hand
panel of Figure 8 shows that γnl is largest (most rapid
dissipation) for rp= 1.1 R1 and becomes progressively smaller
for the larger periapse distances, following a roughly
exponential trend with periapse distance. We note here that
our measurement for rp= 1.9 R1 is numerically dominated, in
that it comes primarily from the background material in the
initial condition of our hydrodynamic models rather than
material generated by wave breaking (see the angle-averaged
density in Figure 7).

Understanding how shocks dissipate energy from the
oscillation into the atmosphere can lead us to a prediction for
how the oscillatory modes dissipate energy over time. The
oscillation energy of a fundamental mode indexed by

{ }a = l m, is defined as

( ) ( )d=a aE M v R , 6r 1
2

where Mα is the mode mass, an integral quantity of the mode
eigenfunction and stellar density profile, and δvr(R1) is the
characteristic velocity amplitude of the mode at the star’s
equator. Because the mode amplitude and also the torus density
decrease toward the poles, dissipation is equatorially concen-
trated. However, we might expect a prefactor of the order of
unity to represent this geometric arrangement. Therefore, in
cases where wave breaking occurs, if shock waves dissipate a
fraction òth∼ 1 of the specific energy of ( )dv R 2r 1

2 , we can
estimate
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where matm is the rate that shocks sweep through atmosphere
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where m is the azimuthal order of the mode (and thus the
number of shocks launched around the circumference of the
star), and Ωatm is the atmosphere rotation frequency. The
characteristic decay rate of the mode due to this nonlinear
dissipation, γnl, can then be estimated as
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In our case, the most excited modes are the l= 2, m=± 2
fundamental modes, and Ωatm 0.3, so we estimate
γnl∼ 0.15òth(matm/Mα).

We use our estimates of the wave-breaking mass at periapse,
with |krξr|> 1, as reported in Figure 5, and Mα(l= 2)≈
5.5× 10−4M1, to estimate the dissipation timescales. We find
that a factor of òth≈ 1 provides a good fit for the normalization
and overall trend of our models with differing periapse
distances. Thus, damping of mode energy comes about as
waves that propagate freely in the stellar interior convert to
dissipative shock waves at the atmosphere boundary. The
relative masses of the mode, Mα, and the dissipative
atmosphere, matm∼m(|krξr|peri> 1), determine the damping
rate. The predicted atmosphere masses from linear theory also
exhibit a similar trend and normalization to the simulation
models, but do not capture the presence of wave breaking in the
rp= 1.7 R1 case.

3.5. Dependence on Stellar Structure

In this section, we briefly examine the sensitivity of our
conclusions to the structure of the star, using its polytropic
index as a proxy. We compare the Γs= 1.35 models that have
been the basis for our discussion so far to an otherwise-
identical polytrope model with Γs= γ= 5/3. This less-
compressible polytrope has a less centrally concentrated
density profile, and serves as a comparison to study how
object structure affects the energy deposition and wave-
breaking mass.
We use our simulated periapse passages to measure the

energy exchange between the mode and the tide along with the
wave-breaking mass that results as a function of a given mode
energy. These quantities are shown in Figure 9. In the upper
panel, we show the energy deposited in a single periapse
passage, ΔE, and wave-breaking mass mwb, as a function of
periapse distance for each of our simulated objects. In this
panel mwb is the mass that has |krξr|> 1 at periapse (see
Figure 7). We compare (in dotted lines of matching color) to
linear theory predictions, summing modes from l= 2 to l= 10.
At a given periapse distance, more energy is deposited into
oscillations of the Γs= 5/3 models, because these less centrally
concentrated structures have more mass in the outer layers that
are most perturbed by the tidal potential. In both cases, linear
theory provides an accurate description of ΔE(rp). By contrast,
linear theory underpredicts the mass in the wave-breaking
layer, because this mass arises from the high-energy tail of
nonlinearly perturbed material, as shown in the periapse
distributions of Figure 5. This is particularly evident in the
more mass-rich outer layers of the Γs= 5/3 model.
The lower panel of Figure 9 shows the mass in the wave-

breaking layer as a function of energy deposited into tides.
Interestingly, both polytropic structures arrive at similar results,
in which we observe a roughly linear dependence between the
wave-breaking mass and mode energy, above a certain
nonlinearity threshold. This linear dependence can be cast in
terms of a specific energy, as shown by the background
contours in Figure 9, which shows that the ratio of energy
deposited over wave-breaking mass is between the GM1/R1

and 10GM1/R1. This, however, does not imply that the specific
energy of material in the wave-breaking layer is that high, in
fact it is usually at least one to two orders of magnitude lower
because most of ΔE is deposited in the more mass-rich lower
layers at specific energies in the linear regime, and the mass
exceeding the wave-breaking condition represents the tail of
the energy distribution.
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These results imply that there may be a relationship between
energy deposited into the tidal oscillation and mass in the
wave-breaking layer that does not depend on stellar structure.
In the lower panel of Figure 9 we contextualize this finding
with a linear approximating form
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where Cwb= 0.25 is a constant and » ´ -E GM R2 10nl
5

1
2

1 is
the mode saturation energy that implies wave breaking at
higher energies. The upper limits in Figure 9 represent
estimated mass-resolution limits for our simulations in which
we do not observe wave breaking. In principle unresolved
wave breaking could occur if the outer scale heights of the
object were more finely resolved. In practice, there is likely
some transition around the branches of the approximation
above. An exponential cutoff of the wave-breaking mass is a
physically likely case due to the exponential density profile of
the outer layers of the stellar models (and the behavior of the
linear theory predictions). However, it is not possible to
constrain the shape of this cutoff with our current models, so
we focus on the two clearly defined regimes of Equation (10).

4. Discussion

4.1. Comparison to Linear Tidal Dissipation: Location and
Magnitude

How tidal dissipation occurs, and precisely where the
dissipation is located in a tidally excited object have long been
seen as crucial questions in the fate of tidally circularizing
objects (Fabian et al. 1975; Podsiadlowski 1996). For many
objects, such as giant planets around their host stars, or stars
around more-massive black hole companions, the tidal object
must mediate more than its own binding energy in orbital and
oscillation energy exchange (e.g., Ivanov & Papaloizou 2004;
Michaely & Perets 2016; Naoz et al. 2016; Klencki et al. 2017;
Wu 2018). In these cases, dissipation in the deep interior would
quickly lead to runaway tidal inflation (Bodenheimer et al. 2001;
Gu et al. 2003, 2004). By contrast, dissipation exclusively on the
surface allows for the possibility of an unperturbed interior of the
object, even as large amounts of energy are exchanged (e.g.,
Wu 2018). Our results are indicate that wave-breaking
dissipation occurs exclusively in a surface layer, and further,
that this overlying layer damps the oscillations of the interior
without heat dissipating into the interior.

It is useful to compare these properties to various kinds of linear
tidal dissipation. We have so far considered objects with
convective envelopes, but when a radiative envelope is present,
the principle dissipation mechanism is the radiative damping of
oscillations. Here radiative losses near the object’s surface deplete
mode energy. These losses occur because of the low optical depth
in these outermost regions (though we note that this dissipation
can also occur at an interior radiative–convective boundary). For
low-frequency g-modes, it can be the case that γrad>ωα, which
implies complete damping of the mode every cycle, and a
continuous torque as it is re-excited. Zahn (1975) shows that in
this limit, a crucial factor is the overlap integral between the mode
and the tidal potential, which is generally very small for high-
order g-modes. For fundamental modes, while the overlap integral

is large, dissipation is inefficient, such that γrad=ωα. One way to
understand this result is that the mode eigenfunctions are such that
there is significant mode energy in the objects’ opaque deep
interiors, while sufficiently high-order g-modes might concentrate
the mode energy closer to the surface (e.g., Fuller & Lai 2012a).
Thus, although radiative damping results in the surface dissipation
of mode energy, it is thought to be an inefficient driver of tidal
orbit change in many circumstances.
By contrast, dissipation of oscillatory motions into the random

velocity field of convection can be very efficient, especially for
modes that couple strongly to the tidal potential, like
fundamental modes. In this case, the turbulent viscosity
dissipates mode energy at a depth that depends on the mode
eigenfunction, the density profile, and the turbulent viscosity as a
function of radius (Zahn 1977; Sun et al. 2018; Vick &
Lai 2020, Equation (19)). The turbulent viscosity is ν∼ vH
where, v and H describe the characteristic velocity and length
scale of eddies, respectively. Because the relevant stellar
properties of the sound speed and pressure scale height decrease
near the stellar surface, convective dissipation is maximized
within the object’s interior, where radiation must diffuse outward
over the thermal timescale. The diffusion time of the most
dissipative layers and the adjustment of the object remain topics
of intense interest (e.g., Podsiadlowski 1996; Barker &
Ogilvie 2010; Barker 2011; Ogilvie 2014; Wu 2018; Su et al.
2020). Turbulent dissipation can be very strong, however, with
estimated values of ( )( )g ~ -M M MR Lturb conv

2 1 3. Scaled to

Figure 9. Simulation results for the orbital energy exchanged with tides in
eccentric passages of varying periapse distance (top panel) and the wave
breaking mass as a function of oscillation energy (lower panel). The dotted
lines in the upper panel show the predictions of linear theory for each of the
Γs = γ = 1.35 and Γs = γ = 5/3 isentropic polytropes. The lower shows that
despite differing levels of central concentration, the wave-breaking mass as a
function of mode energy is similar, and follows a linear relationship implying
approximately constant specific energy, as traced by contours in units
of =v GM R1

2
1 1.
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the dynamical timescale of the object

⎜ ⎟⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

( )
/

g ~ -M

M

L R

G M
t . 11turb

conv
2 5

3 5

1 6

1
1

For example, Vick & Lai (2020) and Vick et al. (2021) report
g ~ - -t10turb

5
1

1 for the Sun’s relatively low-mass mild

convective layer (∼0.1 Me), while g ~ -t0.04turb 1
1 for the

Sun once it ascends to the tip of the giant branch, or for the
vigorous convection of near-Eddington massive stars with fully
convective envelopes.

We can therefore conclude that for fundamental modes,
radiative damping is inefficient relative to nonlinear damping
driven by wave breaking, and γrad= γnl. However, for giants
and supergiants with deep convective envelopes, it can be the
case that γturb∼ γnl. This comparison carries implications for
the occurrence of wave breaking and the evolution of systems
under the combination of linear and nonlinear dissipation. We
discuss these properties in the following two subsections.

4.2. Conditions for Wave Breaking

Our discussion so far has focused exclusively on our model
stars, but the lessons derived can be extended to fundamental
modes in a variety of stellar and planetary bodies. We find that the
criterion |krξr|> 1, evaluated at the object’s surface at periapse,
reliably determines whether wave breaking occurs. By contrast, we
note that wave breaking of lower-frequency g-modes can happen in
the deep interior of an object (Barker &Ogilvie 2010; Barker 2011),
or at the surface (Fuller & Lai 2011, 2012b, 2012c, 2013; Vick
et al. 2017), depending on the object’s structure. In terms of typical
stellar parameters, and again adopting kr(R1)∼ω/cs(R1), this
implies wave breaking for a mode amplitude of
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where Teff is the surface effective temperature and
Tvir= (μmp/kb)GM1/ R1 is the virial temperature and, for the
Sun, Teff≈ 4× 10−4 Tvir. In terms of the energy deposited by
tides into a fundamental mode
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Where, for context, we note that the l= 2 mode masses of our
model polytropes are 5× 10−4M1 and 10−2M1, respectively,
for our Γs= 1.35 and Γs= 5/3 cases (see Section 3). Thus,
depositing a tiny fraction of the object’s binding energy into
dynamical tidal oscillations can be sufficient to drive wave
breaking at the surfaces of realistic stars.

Which systems evolve into wave breaking depends on their
orbital and stellar evolution, which are coupled through tidal
dissipation (for a related discussion of dissipation and chaos, see
Vick & Lai 2018). When γlinPorb= 1, dissipation removes only a
small fraction of oscillation energy each orbit and modes can
accumulate over many orbital cycles. Here γlin represents the
relevant linear dissipation mechanism. In this way, a star with
either a radiative or small convective envelope might experience a
mode energy that grows over many orbital cycles until Eα∼Enl.
At that point, wave breaking occurs, and the nonlinear dissipation
rate γnl becomes relevant. Because γnlPorb 1 for many systems,
the mode energy saturates and subsequent orbital evolution is

driven by nonlinear wave breaking. By contrast, in systems with
vigorous, fully convective envelopes, γlin∼ γnl. This indicates that
mode energies saturate at a level dictated by γlinPorb and do not
necessarily grow over many orbits. This implies that when
nonlinear wave breaking occurs in these systems, it is because the
single periapse passage energy deposition exceeds the nonlinear
wave-breaking condition, ΔEαEnl, which is the case in our
hydrodynamic simulations. This scenario occurs in systems
experiencing rapid stellar radius evolution, such that they remain
highly eccentric while evolving toward stronger tidal passages and,
eventually, mass exchange (Vick et al. 2021).

4.3. Orbital Evolution Driven by Nonlinear Wave Breaking

As discussed in the previous subsections, wave breaking has the
crucial property of dissipating heat into the atmosphere surround-
ing an object, rather than its interior. This feature of wave breaking
may be crucial in allowing objects to survive tidal circularization
with nonlinear dissipation, even when the total energy dissipated is
larger than the binding energy of the star or planet. We find that
mass loss to the wave-breaking layer is an important additional
process. As a system evolves through many orbits, we can imagine
wave-breaking atmospheres forming when EαEnl. Because the
atmosphere extends several times the object’s radius, it seems
likely that a large fraction will be stripped in the subsequent
periapse passage. When nonlinear dissipation is the primary driver
of orbital evolution, the rate of change of the mode energy, γnl, is
accompanied by a rate of change of the object’s mass, through the
formation and subsequent removal of wave-breaking layers.
The comparison of Figure 9 provides crucial guidance. We

observe that for two different polytropic envelope structures,
there is an approximately linear relation between Eα and mwb,
as described by Equation (10). In the limit where nonlinear
dissipation is the dominant mechanism (γnl? γlin) we can then
express the relationship between orbital energy change and
stellar mass change as

* *⎛
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which allows one to estimate the fractional mass loss implied
for the orbital energy to change by of order itself, and where
Cwb≈ 0.25 in our simulations (Equation (10)).
The relationship between mass loss and orbital change is

therefore crucial to the outcome of the nonlinear dissipation phase.
For sufficiently small Cwb or q, Equation (14) shows that the
orbital energy can undergo large changes as the object loses small
amounts of mass. If Cwb or q are larger, we can have

*∣ ∣d M d Eln ln 1orb , and the nonlinear phase is dominated
by mass loss from the wave-breaking layer. Because many stars
and planets become less dense upon mass loss, mass-loss-driven
evolution can lead to runaway tidal excitation and eccentric Roche
lobe overflow rather than circularization. This is precisely the
behavior that was observed in the simulations of nonlinear tidal
excitation on giant planets by Guillochon et al. (2011). In these
models, tides evolved to nonlinear amplitudes, through phases of
fundamental-mode wave breaking (see their Figure 4, for
example), and into a runaway of increasing tidal excitation and
mass loss (Guillochon et al. 2011).

4.4. Radiative Cooling and Observable Signatures

Wave breaking converts tidal energy to heat through the
disordered motions of turbulence. We can estimate the radiative
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diffusion times through a wave-breaking atmosphere on the
basis of its optical depth, τ≈ ρκL, where L∼ R1 is the size
scale of the atmosphere and κ is the opacity. As a simple
example, we take M1=Me, R1= Re, and κ≈ 0.34 cm2 g−1,
and adopting the approximation, r ~ m Ratm 1

3. Under these
conditions, for a relatively strong encounter with
matm= 10−4M1, we find τ∼ 107, and the diffusion timescale is
tcool∼ τR1/c∼ 1 yr, or approximately 104 times the dynamical
time of the object. The conclusion that we can draw from this
estimate is that for strong encounters, radiative diffusion
effectively cools atmosphere layers on timescales that are long
compared to the periapse passage and subsequent mode
damping, but extremely short compared to the nuclear
evolution of the star. However, a weaker encounter, such as
one where wave breaking occurs only near the photosphere,
where τ∼ 1, might experience cooling on a much shorter
timescale. If cooling causes the atmosphere to reintegrate with
the stellar surface layers, it could limit the dissipative efficacy
of these weakest wave-breaking cases.

The observable signatures of tidal wave breaking will
similarly be varied depending on the particular objects involved
along with the mass of the wave-breaking layer. Wave breaking
shock-heats atmosphere material to temperatures comparable to
the object’s virial temperature. Thus post-shock temperatures
may be of the order of 105 K for a 1Me, 100 Re giant, 107 K
for a main-sequence star, and 109 K for a white dwarf. In the
presence of an optically thin atmosphere, this hot material
would represent itself as an ultraviolet or X-ray excess, with
luminosity matching the mode decay rate. Scaling the example
of our rp= 1.7 R1 case (Figure 8), the dissipation rate peaks at
ΔE/τdiss. For a Sun-like star, this implies a dissipative power
of  ~E 1038 erg s−1, near the Eddington limit luminosity and
enough to drive a surface outflow (Quataert et al. 2016).
Scaling to our 100 Re giant, the dissipative power is  ~E 1033

erg s−1. Thus, the relative proportion of the dissipative power
can represent very different fractions of the nuclear burning
power of these different objects (which might be of the order of
1033 erg s−1 and 1036 erg s−1, respectively). Similarly, the
characteristic wavelength that this radiation emerges at will
be dependent upon the optical depth. For example, optically
thick dissipation in the presence of a dense atmosphere around
a giant star could form dust and emerge as an infrared excess.

More work is needed to clarify these many uncertainties.
However, the presence of a disturbed, perhaps shock-heated
surface and circumstellar material are likely to be universal—if
not unique—traces of surface wave breaking. The case of the
massive heartbeat binary system MACHO 80.7443.1718
provides one intriguing example. Here, transient emission lines
disappear as the star sweeps through periapse and reappear in
the aftermath (Jayasinghe et al. 2021), perhaps indicative of
nonlinear tidal wave breaking in action in this system.

5. Summary and Conclusion

We have performed simulations of close, eccentric tidal
passages involving a polytropic model star and a perturber of
one tenth its mass. Such a scenario might arise as a consequence
of stellar evolution increasing the radius of a star in a binary
system, or secular torques in a higher-order multiple system.
Indeed, recent work by Vigna-Gómez et al. (2020) and Vick et al.
(2021) has emphasized that, especially in systems involving
massive stars, the pace of stellar evolution can outstrip that of tidal
circularization implying that many such systems approach the

onset of mass exchange or a common envelope phase with high
eccentricities. Our simulations are relevant to what happens
following that phase of gradual evolution into encounters of
increasing strength. Some key findings of our study are:

1. In sufficiently close tidal passages, fundamental modes can
become large enough in amplitude to lose phase coherence
and break, shock heating the outermost layers of the tidally
perturbed star (Figure 3). Wave breaking dissipates the
coherent energy of the oscillatory mode into the disordered
motion of turbulence (Figure 4), and eventually, pro-
duces heat.

2. The typical nonlinearity condition on the local wave-
number and amplitude, |krξr| 1, evaluated at periapse,
provides a good description of the mass involved in wave
breaking (Figure 5). This mass forms a shock-heated
atmosphere layer around the star (Figures 6 and 7).

3. Ongoing oscillations in the stellar interior are damped as
they steepen into spiral shock waves in the atmosphere
and dissipate (Figure 6). The nonlinear dissipation rate is
set by the rate that these spiral shocks sweep through the
atmosphere mass (Figure 8), and thus depends linearly on
the atmosphere mass (Equation (9)).

4. Compared to linear dissipation mechanisms for fundamental
modes, nonlinear dissipation by wave breaking is similarly
efficient to turbulent dissipation in the fully convective
envelopes of giant and supergiant stars, and much more
efficient than radiative dissipation. Wave breaking removes
mass by lofting it into the atmosphere layer, but has the
crucial property of dissipating energy only on the surface,
leaving the interior unperturbed.

5. Systems evolving primarily under the influence of
nonlinear dissipation lose mass to wave breaking at a
rate that is linearly proportional to the total energy change
(Equation (14)). This relationship can predict the out-
come of these systems’ evolution under the influence of
nonlinear dissipation. When *∣ ∣ d M d Eln ln 1orb ,
wave breaking acts to circularize the system’s orbit
during the nonlinear phase (e.g., when q= 1). When

*∣ ∣ d M d Eln ln 1orb , runaway tidal mass loss is a
likely outcome (e.g., when q? 1).

There are many directions for future study. For example, different
orbital properties or rotation of the tidal star can change the phase
dependence of whether a mode propagates faster or slower than the
forcing applied by a perturber. Linear theory predicts different mode
spectra depending on the system’s mass ratio, orbital eccentricity,
and rotation. Although the general process of oscillation growth up
to breaking at a nonlinearity threshold will hold in these systems, the
particular modes and their dissipation might differ.
Because saturation at the wave-breaking limit seems to be a

characteristic feature of the evolution of systems over many
orbits, it would be useful to simulate the transition between
breaking and non-breaking tides with more fidelity (e.g., as
shown in Figure 9). Radiative cooling of the surface dissipation
layers over the course of an orbital period may be important in
the dissipative dynamics and fractional mass loss from the
wave-breaking atmosphere, especially in cases of a thin wave-
breaking atmosphere near the nonlinearity limit. Relatedly,
there is a broad array of astrophysical systems in which
fundamental-mode tidal wave breaking may shape the resultant
orbital evolution. In particular, systems in which the overall
change in orbital energy needed to circularize exceeds the
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binding energy of the objects themselves—including eccentric
formation channels for hot Jupiters and the black hole low-
mass X-ray binaries—might be particularly sensitive to the
details and outcome of nonlinear dissipation.

Reproduction Software and Data

Software and data to reproduce the results of this study are
publicly available in three repositories. The Athena++ simulation
setup is available in MacLeod (2022a), post-processing and
analysis software that reproduces the figures is available in
MacLeod (2022b), and selected data needed to reproduce the
figures along with simulation runtime parameters are available in
MacLeod (2022c).

We gratefully acknowledge the feedback of the anonymous
referee and many helpful discussions with colleagues that led to
this study, including with J. Goldstein, J. Guillochon, D. Lai, D.
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Science and Engineering Discovery Environment (XSEDE), which
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1548562. In particular, use of XSEDE resource Stampede2 at
TACC through allocation TG-AST200014 enabled this work.
Software: IPython (Perez & Granger 2007); SciPy (Virtanen

et al. 2020); NumPy (Van Der Walt et al. 2011); matplotlib
(Hunter 2007); Astropy (Astropy Collaboration et al. 2013);
Numba (Lam et al. 2015); Athena++ (Stone et al. 2020);
XSEDE (Towns et al. 2014). Reproduction software and data
for this study (MacLeod 2022a, 2022b, 2022c).

Appendix
Animated Figure

An animation of the wave breaking encounter for Γs= 1.35
and rp= 1.3 R1 is shown in Figure 10 (animated version
available in the online journal).

Figure 10. Sample frame from an animation of wave breaking in the rp = 1.3 R1 encounter with the Γs = 1.35 stellar model. The top panel shows the evolution of the
radial velocity at Rl. The bottom two panels show the midplane density (left) and entropy (right) similar to Figure 3. The animation begins at t − tp = −2 t1 and ends at
t − tp = 85 t1. The animation has a real-time duration of 38 s.

(An animation of this figure is available.)
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