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Abstract

For the past century, dislocations have been understood to be the carriers of
plastic deformation in crystalline solids. However, their collective behavior is still
poorly understood. Progress in understanding the collective behavior of
dislocations has primarily come in one of two modes: the simulation of systems of
interacting discrete dislocations and the treatment of density measures of varying
complexity which are considered as continuum fields. A summary of
contemporary models of continuum dislocation dynamics is presented. This
includes, in order of complexity, the two-dimensional statistical theory of
dislocations, the field dislocation mechanics treating the total Kröner-Nye tensor,
vector density approaches which treat geometrically necessary dislocations on
each slip system of a crystal, and high-order theories which examine the effect of
dislocation curvature and distribution over orientation. Each of theories contain
common themes, including statistical closure of the kinetic dislocation transport
equations and treatment of dislocation reactions such as junction formation. An
emphasis is placed on how these common themes rely on closure relations
obtained by analysis of discrete dislocation dynamics experiments. The outlook of
these various continuum theories of dislocation motion is then discussed.

1 Introduction
Almost one hundred years have passed since dislocations were first asserted to be

the carriers of plastic deformation in crystals [1–3]. And yet metal plasticity remains

very much an open problem. Why is this the case? Many interesting phenomena

regarding the plastic behavior of crystalline materials have their roots in the collec-

tive behavior of dislocations. While the behavior of individual dislocations has long

been well understood, as they begin to interact they give rise to complex emergent

behaviors.

Just as quantum theorists will never provide exact solutions to the many-body

Schrödinger equation, our community will never provide exact solutions to many

of the problems associated with the collective motion of dislocations. However, one

strategy that is proving useful is the description of the dislocation field in a crystal

using measures of increasing generality in the hopes of distilling relations between

particular behaviors and the dislocation structure at a particular length scale. The

purpose of this paper is to present several such efforts to describe the dislocation

system. In doing so, we will encounter problems whose solutions are within the
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grasp of these various theories as well as some horizons of dislocation dynamics

which remain puzzling.

Presented here are four models that describe the evolution of dislocation densities

in a crystal, that is four models of continuum dislocation dynamics (CDD). They

differ widely in their approaches, but all are instructive towards building a cohesive

picture of the collective behavior of dislocations. In this presentation we hope to

situate our own work on the vector density approach to dislocation dynamics in

the present field of CDD frameworks. Additionally, we will examine the strengths

and limits of each model, and try to understand how each can inform the other in

advancing our community’s understanding of plastic behavior.

However, models describing the evolution of various dislocation density fields by

no means have an exclusive claim to supremacy in plasticity theory. Rather contin-

uum approaches enjoy a healthy camaraderie with theories of discrete dislocation

dynamics (DDD) [4–8], which treat the evolution of a collection of discrete lines

in a crystal. DDD calculations show promise in revealing information about the

self-organization of dislocations, where the effect of short-range interactions such

as dislocation reactions have been found to be significant [9–11]. As the field has

progressed, novel phenomenological rules for these interactions as well as for the

mobility of dislocations have been developed which are typically informed from

lower scale atomistic calculations [6, 12–14]. Many novel situations benefit from the

specificity of considering the positions of individual dislocation lines. These include

studies of strain bursts and avalanche dynamics in finite crystals [15–17], interac-

tions of glide dislocations with other material defects such as stacking fault tetrahe-

dra, prismatic loops, voids, and secondary phases [18–20]. However, the downfall of

these discrete models is a computational complexity wall produced by the multipli-

cation of dislocations in a system as strain increases. While significant efforts have

been made in improving the computational efficiency of DDD using novel compu-

tational methods–e.g. multipole method for long range stress calculations [4, 21],

subcycling time integration schemes [22, 23], GPU-accelerated schemes [24], and fast

Fourier transform-based schemes [25]–computations become prohibitively expensive

beyond ∼1% strain. Even if this wall were not an issue, the kinematics of discrete

lines at such finite deformations begin to break down the assumptions on which

the entire method is based [26, 27]. As the field of discrete dislocation dynamics

advances and suitable boundary conditions are devised to compare DDD with the

mechanical environment of CDD [28], data gathered from DDD experiments helps

to inform CDD models. In addition to an overview of CDD methods, we hope to

give a glimpse into how discrete simulation data is used to inform these continuum

models of dislocation dynamics.

With all this in mind, we outline the paper as follows. We summarize: in section

2, the two-dimensional (2D) models pioneered by Groma, Zaiser, and coworkers;

in section 3, the field dislocation mechanics (FDM) of Acharya and coworkers; in

section 4, the vector density approach to CDD which we, the present authors, com-

monly employ; lastly in section 5, the most general kinematics of curved dislocations

developed by Hochrainer and associates. We hope to illustrate how all of these in-

form, extend, or generalize each other, as well as how each is in turn informed by

DDD experiments.
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2 Two-dimensional theories
The first forays into statistical considerations of dislocations were motivated by in-

terpreting x-ray diffraction line broadening in terms of the dislocation content of a

crystal [29–31]. In this line of thinking there arose a statistical model of straight,

parallel edge dislocations to deal more precisely with the x-ray line broadening prob-

lem [32], based on the Born-Bogoliubov-Green-Yvon-Kirkwood (BBGKY) density

hierarchy description of particle systems [33–35]. The analogy to particle systems

appears by considering these perfectly straight and parallel dislocations of Burgers

vector x̂ to be two species of particles located in a plane (which we will refer to

as the xy-plane). These two species (positive and negative) arise from the tangent

vector of the dislocation lying along +ẑ or −ẑ. The signed dislocation density mea-

sure, if chosen as the random variable of consideration, would cause cancellation in

some scenarios. As a result, the density field is often considered to be dependent on

the orientation space T, which in this case is simply T := −1,+1. The statistical

process of defining the continuum fields begins with the discrete dislocation system,

having density:

ρ
(D)
± (r) =

N±∑
i=1

δ(r − ri) (1)

where ri is the location of the ith of N± positive or negative dislocations, respec-

tively. Considering the average behavior of these discrete densities over many such

possible configurations results in a hierarchy of continuum densities (cf. BBGKY

hierarchies):

ρ±(r) :=
〈
ρ
(D)
± (r)

〉
(2)

ρ++(r, r′) :=
〈
ρ
(D)
+ (r)ρ

(D)
+ (r′)

〉
(3)

ρ+−(r, r′) = ρ−+(r′, r) :=
〈
ρ
(D)
+ (r)ρ

(D)
− (r′)

〉
(4)

ρ−−(r, r′) :=
〈
ρ
(D)
− (r)ρ

(D)
− (r′)

〉
(5)

. . .

A straightforward averaging of the equations of motion of the individual disloca-

tions results in the following evolution equations for the single point densities:

∂tρ+ = −M0b ∂x

[
ρ+(r)τext

+

∫
{ρ++(r, r′)− ρ+−(r, r′)}τint(r − r′) d2r′

]
(6)

∂tρ− = +M0b ∂x

[
ρ−(r)τext

−
∫
{ρ−−(r, r′)− ρ−+(r, r′)}τint(r − r′) d2r′

]
(7)

where M0 is a mobility constant, b the length of the Burgers vector, τext the ex-

ternally applied shear stress, and τint the kernel of the interaction stress between

two edge dislocations. These equations are not usable in their present form without
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a closure relation for the two-point densities. It is common practice in density hi-

erarchy approaches to factor out the dependence on the single-point densities [36],

expressing the two-point densities in the following manner

ρs1s2(r, r′) := ρs1(r)ρs2(r′) (1 + ds1s2(r − r′)) (8)

where s1, s2 are the desired species (positive or negative) of dislocation to be rep-

resented, and ds1s2 are the dislocation correlation functions. By assuming that the

correlation functions decay fast compared to the lengths on which ρ± varies, all

correlation effects can be expressed in terms of local field variables at r [37–40].

This approximation allows the evolution equations for the total dislocation den-

sity ρ(x, y) := ρ+ + ρ− and the geometrically-necessary dislocation (GND) density

κ(x, y) := ρ+ − ρ− to be expressed as [41]

∂tρ = −M0b∂x [κ (τmf − τb)− ρ τd] (9)

∂tκ = −M0b∂x

[
ρ

(
τmf − τb − τf

(
1−

(
κ

ρ

)2
))
− κ τd

]
(10)

where the dislocations evolve under the influence of the mean-field stress τmf , as

well as emergent effective stresses: the back stress τb, the flow stress τf , and the

diffusion stress τd. These quantities are defined as follows:

τmf = τext +

∫
κ(r′)τintd

2r′ (11)

τb =
D

ρ
∂xκ (12)

τf = α
√
ρ (13)

τd =
A

ρ
∂xρ (14)

where D, A, and α are dimensionless constants. More specifically, they are integral

moments of the correlation functions [40]. The effects of these effective stresses are

clearly seen in the behavior of equations (9,10) in the limit of |κ| � ρ, that is, a

nearly homogeneous system. In such a case, terms quadratic in |κ|/ρ are neglected:

the diffusion stress τd leads to diffusion in the evolution of ρ, the back stress τb

partially negates the mean-field stress and is related to pile-ups of dislocations,

while the flow stress τf represents the dynamic breaking and forming of dipoles and

results in a Taylor-type flow stress. From the outset, these correlation dependent

terms have been calibrated against 2D DDD simulations. These correlation functions

began to be calculated as measures of the dislocation microstructure [42, 43], and

were then co-opted for their kinetic relevance to these effective stresses [35, 38].

In recent years Groma and coworkers have stressed that the equations of motion

have a phase-field-type structure [44]. That is to say, they can be expressed as gradi-

ents of chemical potentials which are, in turn, variational derivatives of a potential

function with respect to a state variable. That is, these evolution equations can be
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expressed as follows for weakly polarized systems (κ� ρ) [41]:

∂t

(
ρ

κ

)
=

[
∂x

(
ζ(δP/δρ) δP/δκ

δP/δκ ζ(δP/δρ)

)](
ρ

κ

)
(15)

where a so-called “plastic potential” P is introduced, having the form:

P [χ, κ, ρ] := Pmf [χ, κ] + Pcorr[ρ, κ] (16)

Pmf [χ, κ] :=

∫
−1− ν

4µ
(∇2χ)2 + bχ ∂yκ d

2r (17)

Pcorr[ρ, κ] := Gb2
∫
Aρ ln

(
ρ

ρ0

)
+
D

2

κ2

ρ
d2r (18)

In the above expressions, χ represents the Airy stress potential; minimization of

Pmf with respect to χ gives τmf := ∂x∂yχ in terms of κ.

The only term in the plastic potential which does not naturally appear in the

elastic energy functional is a portion of the natural logarithm term which produces

the diffusion stress [37]. In the energy functional, this logarithm represents the self-

energy of the dislocation line and is free from any correlation dependence. However,

in the plastic potential (equation 18), an integral of the correlation (i.e. A) appears.

While this system may seem simplistic on the surface, it has many lessons to teach

about the role of statistical considerations in the collective motion of dislocations.

In the more than twenty years of comparative studies with DDD experiments, many

nuances of the statistical description have been discovered. These comparisons have

shown, for example, the aforementioned emergence of correlation dependent effec-

tive stresses [35, 38], a discrepancy between the mobility of the discrete dislocations

and dislocation density fields [45], and a dependence of the effective stresses on den-

sity resolution as well as on the local stress field [46]. Moreover, it has shed valuable

light on the role of the collective motion of dislocations in plasticity at inclusion

interfaces [47], the behavior of dislocation pile-ups [48], and the emergence of dis-

location patterns [40, 41, 49]. A recent stochastic implementation has shown useful

in describing problems related to intermittent dislocation flow [41, 49, 50]. This

simplified continuum model seems to be a veritable fount of interesting behavior,

and as such it will help inform directions of inquiry for 3D continuum methods, to

which we now turn our attention.

3 Field Dislocation Mechanics
Since dislocations were identified as the carriers of permanent deformation in a

solid, there has been a considerable interest in the internal mechanical fields they

produce. In the bulk, the stress field is a combination of the internal stress, which

depends on the spatial distribution of dislocations, and the external stress, which

arises from the applied boundary conditions. As a result, the evolution of the internal

dislocation microstructure should be accounted for in order to accurately predict

the mechanical response. The elastic theory of continuously distributed dislocations

(ECDD) [51] describes the internal mechanical fields in terms of the Kröner-Nye

dislocation density tensor α [52]. This tensor represents the geometrically necessary
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dislocations of each unique Burgers vector by considering:

α(r) :=
∑
γ

ρ
[γ]
GND(r)

(
ξ[γ](r)⊗ b[γ]

)
(19)

where ρ
[γ]
GND(r) is the total line length of GNDs at r due to slip system γ, ξ the net

direction of the GNDs, and b[γ] the Burgers vector of that slip system. Due to the

summation across slip systems, some information regarding the GND content is lost.

Some theories of plasticity have treated this problem by assuming the underlying

dislocations to be pure edge and screw type (Arsenlis et al., 2004; Leung et al.,

2015). Still, there are several theories which directly treat the evolution of α (see

the works of Gurtin [53], Zbib [54–56], and Acharya [57, 58]). We will focus on

the current form of field dislocation mechanics (FDM) due to Acharya [57]. The

geometrically linear version of FDM consists of the following basic equations [59],

∇× βP = −α, (20)

βP
‖ = β̃

P

‖ , (21)

ε :=
1

2

(
β + βT

)
, εP :=

1

2

(
βP + (βP)T

)
, (22)

σ = C(ε− εP), ∇ · σ = 0 (23)

∂tα = −∇× (α× V ) + s, (24)

∂tβ̃
P

= α× V . (25)

In the above, β is the displacement gradient, β̃
P

and βP are the slip and plastic

distortions, respectively. β̃
P

‖ and βP
‖ are their compatible parts, σ the stress tensor,

and C the fourth-order elastic modulus tensor. V is the dislocation velocity tensor,

and s is a dislocation source term. The plastic distortion is decomposed into an

incompatible part and a compatible part, which are determined by equations (20)

and (21), respectively. Equations (22) and (23) are the standard stress constitutive

equation and equilibrium equation. Equation (24) depicts the evolution of dislo-

cation density tensor, and its derivation is based on localizing an integral balance

law for the Burgers vector of dislocations that thread an arbitrary surface. Equation

(25) represents the evolution of the slip distortion due to the motion of dislocations.

The novel contribution of FDM is equation (21). It should be pointed out that

the decomposition of the plastic distortion into a compatible and incompatible

part is an important feature of FDM compared with other continuum dislocation

approaches. In ECDD [51], only equations (20), (22) and (23) are considered to

predict the internal stress field when the dislocation density field is known in a

configuration. Acharya [57] showed that the equations of ECDD are inadequate

for the unique determination of the physical displacement field due to the gauge

invariance of equation (20). In fact, the compatible part of plastic distortion depends

on the history of dislocation evolution, so equations (24) and (25) are required to

determine the physical displacement. The evolution of the dislocation density tensor

is motivated by the work of Mura [60] and Kosevich [61]. However, FDM adopts

a different stance with respect to the specification of the plastic deformation and
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the dislocation flux in comparison to these earlier works. In the first version of

FDM, the unphysical nonuniqueness of the plastic distortion field was solved by

using an orthogonal projection associated with an inner-product and an additional

field equation involving this projection [57]. It was later replaced by a more physical

formulation [62], which includes an additional position vector field. It has also shown

in a recent work [63] that the decomposition of plastic distortion as in FDM can

also help in reducing the numerical errors compared with direct time integration of

equation (25).

To close the FDM theory, a theoretical guideline to deriving constitutive closure,

driving forces for the dislocation velocity, and dislocation nucleation rates were de-

rived from minimal, but essential, thermodynamical grounds [62, 64]. These studies

showed the driving force is in accord with the Peach-Koehler force on a single dislo-

cation from the total local stress. A phenomenological mesoscopic field dislocation

mechanics (PMFDM) was also developed [58, 59] which results from an elementary

space-time averaging of the equations of FDM. PMFDM is able to study practical

problems of mesoscopic and macroscopic plasticity with linkage to the theory of

continuously distributed dislocations.

FDM theory has been analytically shown to possess the capability of predicting

fundamental features of dislocation plasticity in solids, for example, it predicts the

stress field of edge and screw dislocations in an isotropic medium [57]. Numeri-

cal schemes of FDM has also been implemented to study more complicated and

practical problems, for example, size effects [58], dislocation walls [65], the effect of

passivation and grain boundaries [66], as well as dislocation microstructures [67, 68].

The theory of FDM is more often compared to crystal plasticity models than to

DDD experiments [66, 67]. However, we include it among the discussion of contin-

uum models of dislocation dynamics because not only of its important link to the

classical theories of distributed dislocations, but also its importance to solutions of

the mechanical fields in continuum dislocation dynamics. In fact, solutions for the

mechanical fields based on the Kröner-Nye tensor α are beginning to be used even

in discrete dislocation mechanics [25, 69] due to a lower computational complexity

relative to the number of dislocation segments considered. However, the mechan-

ical fields due to α are analogous to the mean-field stress of equation (11), and

additional statistical effects would need to be considered [70] in a more complete

theory.

Because the total dislocation density tensor α is used in the dislocation evolu-

tion equation, the physical meaning of the associated dislocation velocity V is not

straightforward [71]. Moreover, it seems to be difficult to consider dislocation junc-

tion reactions between different slip systems when the evolution equation is only

based on the total dislocation density tensor. The source terms in equation (24)

are included to describe dislocation nucleation [64], but junction reactions would

require more nuance.

4 Vector-Density Based Theories
The representation that needs the least information to properly resolve the kinemat-

ics of curved dislocation lines is one which treats dislocations as vector densities and

distinguishes between densities on different slip systems [71]. This vector density
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approach has also been called the theory of purely geometrically necessary disloca-

tions [72, 73]. Its creation was motivated by a desire to study the onset of dislocation

patterning [74] and the emergence of lattice misorientations as sub-grains begin to

form [75]. In considering the basis of the vector density approach, it is helpful to

consider the problem of discrete dislocation dynamics as the evolution of a collec-

tion of line objects L[α] corresponding to the dislocation objects on each slip system

α. These line objects can be recast as discrete densities analogously to the 2D case

(equation 1):

ρ
(D)

L[α](r) =

∫
L[α]

δ(r − rl)dl (26)

where dl includes the tangent direction of the line object at rl. The smooth vector

density field is then obtained by means of any suitable ensemble average such that:

ρ[α](r) =
〈
ρ
(D)

L[α](r)
〉

(27)∣∣∣â · ρ[α](r)
∣∣∣ =

〈∣∣∣â · ρ(D)

L[α](r)
∣∣∣〉 (28)

where for any arbitrary constant vector â. The second requirement (28) is referred

to as the line bundle assumption [76] and is a formal definition of how the theory

considers only GNDs. This assumption implies that all the underlying discrete dis-

locations considered by the smooth vector density ρ[α] have tangent vector parallel

to the vector density. As a result, the ensemble average operation in equation (27)

has no cancellation (which would produce statistically stored dislocations), and the

magnitude of the vector density is equal to the total dislocation line density at each

point. In such a regime, the streamlines of the density field (Fig. 1) can be considered

as the approximate positions of the underlying discrete dislocations. The accuracy

of this approximate position is relative to the resolution on which the vector-density

is evaluated: at distances shorter than the chosen resolution, interactions must be

considered in a statistical manner. The behavior of these short-range interactions

has been seen to be strongly dependent on the chosen length scale used to describe

the density fields, as the line bundle assumption breaks down above the average

dislocation spacing [76].

By means of the line-bundle assumption, the transport equation can be expressed

as [73, 77, 78]

∂tρ
[α] = ∇×

〈
v[α] × ρ[α]

〉
+ ρ̇[α]source − ρ̇

[α]
sink (29)

where v[α] is the velocity of the line object L[α] and ρ̇[α]source, ρ̇
[α]
sink can be used to

transfer dislocation densities between slip systems, as in the case of dislocation reac-

tions or cross-slip. In the self-consistent field formulation (i.e. neglecting correlation

effects) the slip rate vector
〈
v[α] × ρ[α]

〉
is expressed by means of the Peach-Koehler

force:〈
v[α] × ρ[α]

〉
=
〈
v[α]

〉
× ρ[α]

=
(
Mbτ [α] v̂[α]

)
× ρ[α] (30)
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Fig. 1 Streamlines of the density field of dislocations on a single slip system in the line bundle
regime. Taken from a typical vector density-based CDD simulation of a (5x5x5.3) µm3 crystal
volume of steel strained to 0.6%. These streamlines represent the approximate position of the
underlying discrete dislocation objects.

where M is a mobility constant, b is the length of the Burgers vector, τ [α] is the

resolved shear stress on slip system α, and v̂ := n̂[α] × (ρ[α]/|ρ[α]|) is the direction

normal to the slip plane and the dislocation density vector.

The line-bundle assumption not only produces a simplified transport equation

(29), but also allows treatment of dislocation reactions by a conventional reaction

rate-type theory [79]. In this construction, two reacting slip systems β, γ produce a

product density on slip system α:

ρ̇[α]source = ρ[β] ·R[β,γ]→[α] · ρ[γ] (31)

allowing dislocations to leave the slip-system by means of their respective sink

terms. The rate constant R[β,γ]→[α] for this process is defined based on the relative

velocities of dislocations in the two reagent slip systems and a length scale parameter

which characterizes the effective junction length [79]. The reaction rate takes into

consideration the effect of orientation of the reacting dislocations based on an energy

criterion to decide whether the reaction is feasible or not. This is possible because

the orientation of the underlying dislocations is well-defined due to the line-bundle

assumption. These rate constants can then be calibrated against junction data from

DDD experiments [80, 81].

Moreover, while equation (30) allows for the consideration the transport equation

in a self-consistent field context, the dislocation correlation functions of the vector

density system has recently been shown [76] to have a simple form, whereby the

two-point density may be expressed (cf. equation 8):〈
ρ
(D)[α]
i (r)ρ

(D)[β]
j (r′)

〉
= ρ

[α]
i (r)ρ

[β]
j (r′)

(
1 + d(i,j)[α,β](r − r′)

)
(32)

where ρ
(D)[α]
i (r) represents the ith component of ρ

(D)

L[α](r). Due to a corollary of the

line bundle assumption, there is no tensor summation in the above equation. The
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correlation functions for the case of α = β were evaluated from DDD experiments

[76], and were seen to decay at length scales similar to the spatial gradients of ρ[α].

Incorporating these correlation-induced effects would still produce effects analogous

to the 2D effective stresses (equations 11-14), but a local density approximation (as

in [37]) would not be appropriate.

Because of the line bundle assumption which allows for such close analogy with

the underlying discrete dislocation lines, many of the closure relations in the vector

density formulation (e.g. correlation functions, reaction rate terms, etc.) are eas-

ily formulated in terms of statistics that can be gathered from DDD experiments

[76, 79–81]. However, this invites a possible accusation that the vector density dis-

location dynamics are simply a numeric approximation to DDD by which nothing is

gained. In practice, this is not the case. Before moving on we would like to highlight

several recent achievements of the vector density approach which go beyond the

capabilities of DDD.

Even in this line bundle regime, the dislocation density vector still describes the

collective motion of dislocations. As a result, the mechanical fields that result can

show the effect of their collective behavior. For instance, lattice misorientation pro-

vides information about the abrupt lattice direction change in a single crystal,

which demarcates subgrain structures in deformed metals. At these regions of con-

centrated misorientation, there arise so-called geometrically necessary boundaries

and incidental dislocation boundaries which are observed in transmission electron

microscopy experiments [82–84]. These structures, as well as other heterogeneities

in the GND field, play a vital role in the context of recrystallization [85]. Prelimi-

nary vector density dislocation dynamics studies have suggested that the emergence

of dislocation patterns and subgrains is tied to the introduction of cross-slip and

dislocation reactions [80, 86]. Upon introduction of reaction terms, subgrain struc-

tures began to emerge (cf. Fig. 2) [86]. These capabilities of predicting the onset of

subgrain formation will allow fruitful comparison with recent in-situ methods for

measuring the lattice rotations of subgrains [87]. It is comparisons such as these

that will advance our understanding of the effect of dislocation structures on the

plastic behavior of metals.

Additionally, it is worth noting that continuum dislocation dynamics models are

capable of accounting for the kinematics of finite deformation [67, 73, 88, 89]. We

omit for present consideration the numerous phenomenological crystal theories to

focus on theories which explicitly consider the kinematics of dislocation densities.

In this setting, the multiplicative decomposition of the deformation gradient is used

to introduce elastic and plastic effects on the body (cf. the decomposition of the

distortion field in equation 20-21). These models all leverage the use of the Kröner-

Nye dislocation density tensor, which Cermelli [90] showed to transform using Piola

type transformations by analyzing Burgers circuits in both reference and deformed

configurations. In FDM, the dislocation density tensor in the deformed configura-

tion represents the dislocation system and closure relations are formed with this in

mind. In the vector density approach, the dislocation density tensor is decomposed

into slip system parts and either a scalar or vector density representation of dislo-

cations are formed. Hochrainer and Weger [73] derive the transport equations for

the vector density in the intermediate configuration by decomposing the disloca-

tion density tensor in the microstructure configuration into slip system components.
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Fig. 2 Lattice rotations in a (5x5x5.3) µm3 crystal volume of copper at 0.6% strain shown as an
RGB plot where red, green and blue corresponds to the components of the normalized lattice
rotation vector along [100], [010], and [001], respectively. Visualization of (a) slice along (100)
plane, (b) the bulk. Two regions in (a) have beeny enlarged to show the GND density distribution
superimposed (black) on the lattice rotation fields.

Starkey et al. [88] derive not only the transport relations but driving forces as well

in both the deformed and reference configuration by using the two-point disloca-

tion density tensors. Consistency between these two vector density models can be

seen by taking the time derivative of the transformation relations between the ref-

erential and microstructure vector densities and plugging in the transport relations

for the referential densities. In all these works, the driving forces are obtained by

examining the free energy dissipation inequality for each of the corresponding con-

figurations. This allows the corresponding Mandel stress to drive the dislocation

motion in each configuration and in some cases, an additional contribution to the

driving force emerges from gradients of the free energy. Because the computational

complexity of the vector density system does not scale with the total dislocation

density and because the kinematics are preserved in the case of finite deformation,

the vector density approach is not constrained to the small strain regime as is the

case for DDD. Barring a breakdown of the line-bundle assumption at high strains,

there does not seem to be an upper strain limit on the efficacy of vector density

approaches. It is our opinion that in pushing dislocation dynamics to ever higher

strains, vector density dislocation dynamics will emerge as a useful tool in describing

microscopic plasticity.

5 Higher Order Theories
As with the 2D models of dislocation motion, to be truly length-scale agnostic the

dislocation density measures must retain some information regarding the under-

lying dislocations’ distribution over an orientation space [91]. First pioneered by

Hochrainer and associates [78, 92, 93], considerable work has been done on the

kinematics of curved line systems when this orientation distribution is taken into

account. This presentation of the kinematics will follow most closely [94]. The formu-

lation of these high-order kinematics of curved lines was motivated by the fact that

without the line bundle constraint mentioned previously, the transport equation for
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the density field (29) cannot be expressed in terms of the density vector because

the the average slip rate vector is no longer proportional to the cross product of the

average density and velocity fields, i.e.:〈
v[α] × ρ[α]

〉
�∝
〈
v[α]

〉
×
〈
ρ[α]

〉
(33)

To amend this issue, the dislocation density must be treated similarly to the 2D

case: as a distribution not only over real spaceM, but also over an orientation space

T, the unit circle parametrized by ϕ = [0, 2π). This orientation space defines the

line tangent l̂(ϕ) := cos(ϕ)b̂ + sin(ϕ)â, where by â we represent the positive edge

dislocation direction â := n̂× b̂. Rather than the ensemble average of space curves,

the high-order density represents an ensemble average of ‘lifted curves’ which are

represented at every point by the tuple of not only their line direction l but also

their curvature k, forming a 4-vector L which moves according to the 4-vector V :

L(r, ϕ) :=
(
l̂(ϕ), k(r, ϕ)

)
(34)

V (r, ϕ) :=
(
v(r, ϕ)̂l⊥(ϕ), ϑ(r, ϕ)

)
(35)

where l̂⊥(ϕ) := (̂l(ϕ)× n̂) and ϑ(r, ϕ) is an orientation velocity which captures the

rotation of the lines. As opposed to the vector-density measure, which represents a

spatial distribution times a line direction in real space, the high-order density also

retains a component in the orientation space:

ρHO(r, ϕ) := ρ(r, ϕ)(̂l(ϕ), k(r, ϕ)) (36)

After the averaging process, note that the k(r, ϕ) represents the average curvature

of all dislocation lines passing through r which have tangent direction l̂(ϕ), and so

the component of ρ
[α]
HO in the orientation ‘direction’ is referred to as the curvature

density q(r) := ρ(r, ϕ)k(r, ϕ). The key operation of this kinematic formulation is

that the orientation velocity, ϑ, is expressible as the directional derivative of the

real-space velocity, v, in 4-space along L:

ϑ(r, ϕ) = ∇̂Lv(r, ϕ)

=
[(
l̂(ϕ) ·∇

)
+ k(r, ϕ)∂ϕ

]
v(r, ϕ) (37)

where ∇̂ represents the 4-space gradient operator, and ∇ represents the conven-

tional gradient operator in the spatial dimensions.

The main result of this high-order dislocation density measure is that the evolu-

tion equation is expressible in terms of a single velocity field, even after ensemble

averaging. This is expressed rather simply in terms of the 4-space curl operator as:

∂tρHO = −Curl(V × ρHO) (38)

Because of unintuitive nature of the high-dimensional differential operators, it is

more simply expressed as two coupled evolution equations for the scalar dislocation
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density and the curvature density:

∂tρ = −
(
l̂⊥ ·∇

)
(ρv)− ∂ϕ(ρϑ) + qv (39)

∂tq =
(
l̂ ·∇

)
(ρϑ)−

(
l̂⊥ ·∇

)
(qv) (40)

These high-dimensional transport equations have been applied in the past to

some simplified scenarios, notably a simplified micro-bending geometry [95, 96],

where they have been seen to generate hardening behavior in the tension and shear

deformation of thin-films [97]. However, there has been much interest in simplifying

these evolution equations, as solutions of the high-dimensional transport equations

require discretizing the orientation space at every point in the crystal. As a result,

there have been efforts to create a reduced representation of the angular space. Early

attempts at this simplification [98, 99] began to integrate the dislocation density and

curvature density over configuration space, but this process was formalized in [100].

This formulation recasts the evolution equations (39, 40) as an infinite hierarchy of

coupled equations by taking successive integral moments of the dislocation density

tensor. These alignment tensors are expressed as:

ρ(0)(r) =

∫
dϕ ρ(r, ϕ) (41)

ρ(1)(r) =

∫
dϕ ρ(r, ϕ) l̂(ϕ) (42)

ρ(2)(r) =

∫
dϕ ρ(r, ϕ) l̂(ϕ)⊗ l̂(ϕ) (43)

ρ(n)(r) =

∫
dϕ ρ(r, ϕ) l̂(ϕ)⊗n (44)

The zeroth and first alignment tensors represent the total and geometrically nec-

essary dislocation content, respectively, at a point in the crystal. Their evolution

equations are expressed as follows:

∂tρ
(0) = ∇ ·

(
v n̂× ρ(1)

)
+ vQ(0) (45)

∂tρ
(n) =

[
∇×

(
v n̂⊗ ρ(n−1)

)
+ (n− 1)vQ(n)

− (n− 1)
(
n̂× ρ(n+1)

)
·∇v

]
sym

(46)

∂tq
(0) = ∇ ·

(
v Q(1) − ρ(2) ·∇v

)
(47)

where Q(n) are auxiliary curvature tensors of the form:

Q(n) =

∫
dϕ q(r, ϕ) l̂⊥(ϕ)⊗ l̂⊥(ϕ)⊗ l̂(ϕ)⊗n−2 (48)

These equations can be closed at order n if a sufficient form for ρ(n+1) and Q(n) in

terms of lower order terms [94, 101]. Comparisons to simplified DDD results showed

closure at n = 1 (i.e. kinematics of the total and GND densities) to be insufficient

to predict microstructure evolution [101, 102] in some cases. Nonetheless, closure of

the transport equations at first order seems to be the predominant usage [102–108].
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There has been significant work to compare these high-order kinematics of disloca-

tions with DDD experiments [94, 102, 106, 107, 109]. These equations show excellent

agreement in many problems regarding collections of expanding dislocation loops

[94, 102]. Moreover,many of the closure relations regarding the multipole expansion

seem obtainable from DDD as tools emerge to collect curvature and orientation

data from segment-based DDD experiments, especially when complemented by the

advent of machine learning techniques [102, 106, 107].

Nonetheless, all of the above considerations have regarded only the kinematics of

the system, with no regard to the kinetics. That is, they consider how the dislo-

cation density measures move under a prescribed velocity field, they do not give

a means of prescribing such a velocity field. The ubiquitous, zeroth-order kinetic

strategy is to use some analogy of field dislocation mechanics to solve the long-

range stress field resulting from the dislocation eigenstrain field [103, 110] (cf. the

mean-field stress in equation 11 or the self-consistent field formulation of equation

30). However, more nuanced kinetics have been proposed. Hochrainer has adapted

the free-energy strategy of the 2D plastic potential to this 3D system, introducing

back-stress-type driving forces as well as curvature dependent driving forces, albeit

in an in an ad-hoc manner [111, 112]. A rigorous coarse-graining of the elastic en-

ergy functional [37] shows no dependence on the curvature density, but does support

the introduction of back-stress terms, which have begun to be used in numerical

implementations of high-order CDD [104]. With the exception of the long-range

stress field, many of the kinetic effects depend on the dislocation correlation func-

tions. In the high-dimensional CDD equations, the correlation functions are fully

dependent on the angular coordinate. In the reduced representation, correlations

between many combinations of the alignment tensors and their respective compo-

nents must be considered [37]. As a result, correlation effects [37] have not been

assessed quantitatively at present.

Moreover, while the kinematics are notable for being length scale agnostic, this

is somewhat of a hindrance for implementing dislocation reactions. Two theories

have been developed to implement reactions, one due to Monavari [113] and an-

other due to Sudmanns [108]. Both involve enumerating possible reaction scenarios

(e.g. glissile junctions, frank-read sources, double cross-slip) and implementing them

individually. However, the heuristics by which source terms are derived differ sig-

nificantly. In the implementation by Sudamanns and coworkers [108, 109], reactions

create sources of scalar density and curvature. Considering for example glissile junc-

tions of slip systems β, γ resulting in dislocations of type α:

ρ̇
[α]
gj ∝ ρ

[β]v[β]
√
ρ[γ] + ρ[γ]v[γ]

√
ρ[β] (49)

q̇
[α]
gj ∝ sgn(v[γ])ρ̇

[α]
gj

√
ρt, (50)

the difficulties of implementation become apparent. The orientation of the reagent

slip systems have been seen to strongly affect glissile junction behavior [9], but this

information is unavailable in the high-order equations, and homogenization argu-

ments are needed to arrive at relevant reaction volumes dependent on the velocity

fields and average dislocation spacings 1/
√
ρ[α]. Models such as these show promise
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in introducing hardening behavior, but they require considerable statistical calibra-

tion from more finely resolved models [109].

In short, the higher order kinematics required to maintain a length-scale-agnostic

theory of continuum dislocation dynamics capture interesting and unforeseen con-

sequences of the evolution of the average curvature of a dislocation system [97]. It

represents a strong theory of the macroscopic effects of dislocation glide on plas-

tic behavior. As the kinematic formulation has reached a simplified and tractable

form, larger simulations have become feasible. Recent studies of the deformation

of tricrystals [104], microwires [105], and early signs of pattern formation [103],

demonstrate the utility of this descriptive framework. However, difficulties regard-

ing incorporation of short-range interactions [111, 112] as well as reaction processes

[72, 97, 108, 113, 114] suggest that this will never be a suitable first-principles theory

of dislocation motion at high strains.

6 Concluding Remarks
In this contribution, we have summarized several of the current models of continuum

dislocation dynamics. We have seen the simplified 2D theory of dislocation motion,

which, even if the physical system it considers is relevant only in specific bending

geometries, is noteworthy in the fact that it points to the importance of statistical

considerations in dislocation dynamics. Research into the 2D system is ongoing as

increasingly nuanced statistical considerations reveal new interesting behavior. We

examined field dislocation mechanics, which most closely follows the classical theory

of distributed dislocations and is notable for its powerful description of internal

mechanical fields and deformation kinematics. We considered the vector density

approach to dislocation dynamics, which is commonly used by the present authors,

with special emphasis on the implications of the line bundle assumption by which

it treats only geometrically necessary dislocations. While this approach preserves

more of the discrete line information than other continuum models due to its low-

level treatment of the dislocation dynamics, several applications which go beyond

the capabilities of DDD were discussed. Lastly, we discussed the high-order theory

of dislocation dynamics which is capable of describing dislocation glide across all

scales. Difficulties pertaining to the closure not only of the kinematics but also

the kinetics of the high-order dynamics were discussed; while it shows promise for

being a physically based plasticity theory at large scales, it will always be reliant

on lower-level theories of dislocation motion.

Throughout, an emphasis has been placed on the role of DDD experiments in

informing these continuum models. This is most often in the form of statistical

information, which produces virtual effective stresses which enter in the kinetic

closure of continuum theories. The 2D theories have the most straightforward rela-

tionship with DDD. Nonetheless, with a bit of statistical nuance, the vector density

approach obtains these effective stresses, as well as closure relations for dislocation

reactions. The high-order theory, as it requires homogenization arguments that have

yet to be definitively determined, may require statistical considerations which rely

on machine learning techniques to extract salient quantities from DDD.

The outlook for the methods of continuum dislocation dynamics is compelling, to

say the least. It seems poised to give us a physical basis for plasticity, not only at
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micron-scales, but also at the crystal level. As finite deformation methods for contin-

uum dislocation dynamics have now emerged, an entirely new regime of strains now

lie open to us. What new strengthening mechanisms might now be within our view?

Which outstanding plasticity problems might now be put to rest? In the opinion

of the present authors, continuum dislocation dynamics methods could represent a

new frontier in plasticity research.
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