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Abstract—Deep Learning models have shown incredible image
classification capabilities that extend beyond humans. However,
they remain susceptible to image perturbations that a human
could not perceive. A slightly modified input, known as an
Adversarial Example, will result in drastically different model
behavior. The use of Adversarial Machine Learning to generate
Adversarial Examples remains a security threat in the field of
Deep Learning. Hence, defending against such attacks is a studied
field of Deep Learning Security. In this paper, we present the
Adversarial Robustness of discriminative loss functions. Such loss
functions specialize in either inter-class or intra-class compact-
ness. Therefore, generating an Adversarial Example should be
more difficult since the decision barrier between different classes
will be more significant. We conducted White-Box and Black-
Box attacks on Deep Learning models trained with different
discriminative loss functions to test this.

Moreover, each discriminative loss function will be optimized
with and without Adversarial Robustness in mind. From our
experimentation, we found White-Box attacks to be effective
against all models, even those trained for Adversarial Robustness,
with varying degrees of effectiveness. However, state-of-the-art
Deep Learning models, such as Arcface, will show significant
Adversarial Robustness against Black-Box attacks while paired
with adversarial defense methods. Moreover, by exploring Black-
Box attacks, we demonstrate the transferability of Adversarial
Examples while using surrogate models optimized with different
discriminative loss functions.

Index Terms—Adversarial Machine Learning, Deep Learning,
Metric Learning, Discriminative Loss Function

I. INTRODUCTION

Since their discovery in 2014, Adversarial Examples [1]
have posed a significant security threat to Machine Learning
and Deep Learning models. Generating Adversarial Examples
typically use the back-propagation gradient information de-
rived from a target model [2] (White-Box attack) or a super-
vised attack model similar to the target model [3] (Black-Box
attack). Using this gradient information and gradient ascent, an
attacker can alter “clean” (un-altered) data instances in such a
way that is imperceptible to human observers. The resulting al-
tered data instances, known as Adversarial Examples, can then
be used to cause a target model to make targeted or untargeted
mistakes with great ease. Forming Adversarial Examples can
be done through a variety of adversarial attacks [2], [4]–[6].
Moreover, Adversarial Examples possess an ability known as
transferability: Adversarial Examples that are effective against
one model are typically effective against another. This property

will make even Black-Box attacks effective and difficult to
thwart.

As several types of adversarial attacks have been proposed,
the research community has investigated how to make models
robust to such attacks. The most successful and widely ac-
cepted method, Adversarial Training (AT) [6], was formally
proposed in 2017. AT involves generating Adversarial Exam-
ples during model training and using the Adversarial Examples
to train models rather than an original unmodified dataset.
Later in 2019, Adversarial Logit Pairing (ALP) [7] was pro-
posed. ALP involves training models with a mix of unmodified
Clean Examples and their corresponding Adversarial Exam-
ples. In addition to learning from both the clean and adversarial
versions of training examples, ALP adds a regression term
to loss functions to force models to make similar predictions
for both clean and adversarial versions of training examples.
Through this additional loss function term, ALP has achieved
state-of-the-art Adversarial Robustness results.

Besides the general AT and ALP approach, researchers have
investigated additional modifications that can be applied to
model training to offer increased Adversarial Robustness. In
2019, researchers proposed using a metric learning-based loss
function [8]. More specifically, they proposed using Triplet
Loss [9] (along with AT or ALP) for training adversarially
robust models. Triplet Loss’s use is quite intriguing as it aims
to combat Adversarial Example attacks using “discriminative”
features.

Triplet Loss was first proposed in 2015 for the task of face
recognition. In many face recognition tasks, facial features ex-
tracted from facial images must be “discriminative”. Features
are considered “discriminative” if, given two feature vectors,
it is easy to discern if the feature vectors belong to a class or
two different classes. This discriminative property is typically
achieved through training a Deep Learning model using a
metric-based loss function, such as Triplet Loss. Such metric
learning-based loss functions directly guide models in learning
intra-class compactness and inter-class distinguishability in the
feature space. Furthermore, these loss functions often even
ensure a margin of separation between classes in the feature
space. As a result, models trained using metric learning-based
loss functions can extract discriminative features.

This discriminative property is advantageous when combat-
ing Adversarial Examples. If the feature-space has robust intra-



class compactness and inter-class variability, it is difficult for
an attacker to trick the discriminative model through the use
of imperceptible adversarial attacks. This was shown in [8]
since their Triplet Loss models were more robust to adversarial
attacks than their Softmax models. Therefore, we further
investigate the use of metric learning-based loss functions
to provide Adversarial Robustness. The contributions of this
paper are as follows:
• We provide a comprehensive study of discriminative loss

functions versus adversarial attacks.
• We compare AT and ALP with each discriminative loss

function to test their effectiveness against adversarial
attacks.

• We compare each discriminative loss function’s trans-
ferability when used as surrogate models for adversarial
attacks.

• We demonstrate that White-Box attacks are typically
effective in every scenario while adversarial defense
techniques thwart Black-Box attacks.

Specifically, we evaluate advanced Euclidean distance-
based methods, such as Contrastive Loss (ConL) [10] and
Center Loss (CenL) [11], and a recently proposed angular
margin-based method, the Additive Angular Margin Loss
(AAML) [12]. The code used for this research can be found
on our github (https://github.com/rjhosler/arcface-pytorch).

The paper is organized as follows: Section 2 discusses
related works, section 3 explains the attacks used in our
experiments, section 4 describes the defense methods used
in our experiments, section 5 details the discriminative loss
functions that are tested for Adversarial Robustness, section
6 explains the experiments and their results, and section 7
provides concluding remarks.

II. RELATED WORKS

Deep Learning security threats and their implications have
been a recently researched topic since the discovery of Ad-
versarial Examples in [1]. However, current literature in Deep
Learning Security is not limited to attacks that affect model
performance. Another related topic, inference attacks, will
attempt to extrapolate a model’s training dataset. An example
of research in this area involves Nasr et al. investigating the
effectiveness of Membership Attacks [13].

A Membership Attack is a binary classification problem:
given a data point, determine if it belongs in the training data
set. This attack is easy to evaluate since it has a 50% baseline
(random guessing). Black-Box versions only have access to
the model’s probability vector; therefore, they exploit the
statistical difference between a model predicting unseen data
versus training data. Nasr et al. only managed 54.5% inference
accuracy when attacking DenseNet trained on CIFAR-100
[13]. However, a more potent White-Box attack utilizing
model gradients results in 74.3% inference accuracy.

Given the interest in Membership Attacks, there exists
current literature on privacy-preserving methods. For exam-
ple, Yu et al. utilize Differential Privacy [14]. Differential
Privacy implies that any input change should not alter an

algorithm’s output. Yu et al. implemented a general approach,
Concentrated Differential Privacy, that constrains cumulative
data points rather than each data point individually [14]. They
implemented data batching methods for this technique to allow
for easy implementation for Neural Network training.

While Privacy is a concern for Deep Learning Security, this
research focuses on Adversarial Examples. There exist various
methods for Adversarial Example generation motivated by
computational efficiency and attack effectiveness. Section III
describes the methods implemented for testing the robustness
of discriminative loss functions. Moreover, we implement
adversarial defense methods known for increasing Adversarial
Robustness for any image classification model. Specifically,
the baseline defenses for comparing discriminative loss func-
tions are AT and ALP. Those defense methods are detailed in
Section IV.

Regarding ArcFace (AAML) itself, there exist adversarial
attacks that are effective against the facial recognition model.
For example, Pautov et al. demonstrate an adversarial patching
method against ArcFace-100 [15]. Such an attack shows
potential real-world vulnerabilities with AAML as a facial
recognition method. However, such research does not compare
the Adversarial Robustness ArcFace to other discriminative
loss functions.

The focus of this research is comparing the Adversarial Ro-
bustness of differing discriminative loss functions. Previously,
Moa et al. used Triplet Loss, AT, and ALP to demonstrate the
effectiveness of Metric Learning for Adversarial Robustness
[8]. They determined that the discriminative features learned
by Triplet Loss reduced the effectiveness of Adversarial Exam-
ple Attacks. Since AAML [12] has been a more recent metric
loss function than Triplet Loss for facial recognition, it ought
to reduce the effectiveness of Adversarial Example Attacks
further. Moreover, we compare Triplet Loss and AAML to
other discriminative loss functions described in section V.

III. ATTACKS

In this section, we will review the Adversarial Example
attacks used for our experimentation. Specifically, we detail
the iterative and non-iterative methods used for conduction
White-Box attacks. Moreover, we explain how we conduct
Black-Box attacks.

A. Fast Gradient Sign Method (FGSM)

Non-iterative attacks only require one step for generating
an Adversarial Example. FGSM was the first method used for
creating an Adversarial Example [1] and act as a base attack
for other methods. Thus, it is the non-iterative method we
utilize here. FGSM creates an Adversarial Example by finding
the gradients of the neural network and using the gradients to
maximizing the loss, which is usually the cross-entropy loss
[2]. The objective function is summarised using the following
expression:

xadv = x+ ε ∗ sign(∆xL(x, y, θ)) (1)

https://github.com/rjhosler/arcface-pytorch


Here the gradients are taken concerning the original image,
so the gradients’ signs show the direction to maximize the
loss. Hence, the image is perturbed by a factor of θ to be
classified as an unspecified incorrect label. Since this method
only requires one iteration, it is the most computationally
efficient attack used in our experiments.

B. Basic Iterative Method (BIM)

In order to improve the effectiveness of an adversarial at-
tack, applying perturbations iteratively within given constraints
has been a typical solution. By performing multiple steps, the
Adversarial Example could cross a decision boundary that
FGSM could not. Since BIM is the iterative version of the
fast gradient sign method, it takes the gradients of the loss
and applies the gradients to the image several times [5]. Here
is the objective function:

xadv0 = x, xadvi+1 = clipx,ε{xadvi + ε ∗ sign(∆xadv
i
L(xadvi , y, θ))} (2)

Since Adversarial Examples should not deviate from orig-
inal images such that they are perceptible by a human, xadvi

is either clipped within the boundary of ε, and the size of
steps is set to be α/T where T is the number of iterations.
The iterative method is notably more potent than the one-step
FGSM; however, it is relatively costly in computational power.
Furthermore, according to the findings of Kurakin et al. [5],
BIM has less transferability (ability to generate an Adversarial
Example without accessing the underlying model) than FGSM.
This drawback could indicate that methods effective for White-
Box attacks may perform worse for Black-Box attacks.

C. Momentum Iterative Method (MIM)

Optimization methods typically benefit from utilizing mo-
mentum for faster convergence. MIM extends BIM by fol-
lowing this idea. Hence, in order to have a more optimal
convergence, MIM takes advantage of the momentum of
previous steps with a factor of µ [4]:

α = ε/T, gi+1 = µ ∗ gi +
∆xadv

i
L(xadvi , y, θ)

||∆xadv
i
L(xadvi , y, θ)||1

xadvi+1 = xadvi + α ∗ sign(gi+1)
(3)

Here the step size is set to α = ε/T to meet the L∞ norm
bound ||xadv − x||∞ < ε. With the momentum, the gradients
have a better chance to pass through poor local optimal and
converge faster. Compared with the basic iterative method,
MIM overcomes the weakness of overfitting.

D. Projected Gradient Descent (PGD)

Projected Gradient Descent(PGD) is a more general first-
order adversarial method for maximizing loss within some
constraints [6]. Due to its generality, Madery et al. [6] con-
cluded that any model robust to this adversarial attack ought
to be robust against all other first-order adversarial attacks.

α = ε/T, gi+1 = gi + α ∗ sign(∆giL((x+ gi), y, θ))

gi+1 = max(min(gi+1, ε),−ε)
xabv = x+ gT

(4)
In PGD, the Adversarial Example is generated after every

iteration, though the gradients move along the corresponding
directions for each step. Moreover, the gradients are clipped
within the specific boundary of ε to meet the request of L∞
norm bound.

We use three variants of this attack for experimentation:
seven iterations, twenty iterations (PGD 20), and twenty iter-
ations with twenty restarts (20PGD). The latter performs the
twenty iteration attack twenty times rather than increase the
number of iterations by a factor of twenty. Ideally, conducting
the attack in this manner will be more effective since, due to
convergence, running more than twenty iterations will have
diminishing returns.

The Adversarial Examples shown here assume the attacker
can use the back-propagation gradient information derived
from a target model. This assumption does not always hold
since a Deep Learning model could be an API that only returns
classification labels. Therefore, the attacker must generate an
Adversarial Example while treating the target model as a
Black-Box API.

E. Black-Box Attack (BB)

The BB attack used in this paper will use surrogate models
to create an Adversarial Example. Meaning, the attacker will
create their own model and use a White-Box attack on this
model to attack the target model. Since it may not be possible
for an attacker to access the model (for example, an API that
only returns predictions), surrogate models may be the next
best option.

A surrogate model is built for each discriminative loss
function. Moreover, FGSM and 20 restarts PGD 20 are the
conducted attacks. It is possible that an attack on certain
loss functions may have better transferability than other loss
functions. Also, it may be essential to match the loss function
to that of the target model. Furthermore, attacks more potent
in the White-Box setting may be more potent in the Black-Box
setting. Each of these points is discussed in section VI.

The Adversarial Example attacks mentioned here are able
to generate an image that forces an incorrect classification
while being imperceptible to a human. Therefore, an image
processing method to remove these subtle perturbations is a
non-trivial task. The following section will discuss defense
methods that take a different approach by altering a model’s
training process.

IV. DEFENSES

This section will explain the defenses used for improving a
model’s Adversarial Robustness. The idea is to make a model
exposed to Adversarial Examples during training to learn how
to classify Adversarial Examples correctly. The three methods



implemented for our experiments are as follows: Unmodified
training, Adversarial Training, and Adversarial Logit Pairing.

A. Unmodified Training (UM)

UM is the general training method where the model is
trained only using Clean Examples [6]. For a given underlying
data distribution D, over Clean Examples x ∈ R, which
corresponds to the label y ∈ [k], the aim is to minimize the
risk given by:

arg min
θ

E(x,y)∼D[L(x, y, θ)] (5)

where L is some suitable loss function such as cross-entropy
loss. θ ∈ Rp represents all the parameters of the model. The
goal is to correctly classify the input x to its corresponding
label y with minimum loss. The model is not robust against
adversarial attacks but tends to have better accuracy on Clean
Examples than adversarially robust models.

B. Adversarial Training (AT)

In [16], Athalye et al. conducted an intensive test on the
majority of the previously existing Adversarial Robustness
algorithms in an attempt to break the underlying method. They
found [6] to be the only method that withstood their severe
scrutiny. Madry et al. [6] suggest that PGD is a universal first-
order adversary; any robust model against a PGD adversary
will also be robust against all other first-order adversaries.
Their method works by treating the Adversarial Robustness
problem as an optimization problem, specifically a saddle point
problem, which specifies a quantitative measure of robustness:

arg min
θ

E(x,y)∼D[arg max
δ∈ε

L(x+ δ, y, θ)] (6)

Where D is the underlying training data distribution, L(θ,
x, y) is a loss function, x is a data point with a true class
y, θ is the set of model parameters, and δ is the permitted
perturbation allowed on an input image x, which is governed
by ε.

The saddle point problem is a combination of maximization
and minimization problems. The inner maximization attempts
to find strong Adversarial Examples, and the outer minimiza-
tion aims to enhance the model’s robustness.

C. Adversarial Logit Pairing (ALP)

ALP is built with AT [6] as the underlying basis. Instead of
solving the min-max problem in AT, they train their models on
a mixture of both Adversarial Examples and Clean Examples
to maintain the clean accuracy of the model. They are trained
in mini-batches of size N . ALP functions by matching the
logits of a clean image and its corresponding adversarial image
to be similar to each other:

LALP =
1

N

N∑
i

||f(xi)− f(xadvi )||2 (7)

here, f(xi) and f(xadvi ) are functions representing the
vector logits of clean image xi and its adversarial counterpart

xadvi . L2 loss is the loss function used in the equation. Such
logit pairing encourages similar embeddings of the clean and
adversarial version of the same example, guiding the model
towards better internal data representation.

V. DISCRIMINATIVE LOSS FUNCTIONS

Loss functions are essential for estimating how well a
Machine Learning model fits its training data set. For image
classification, a loss function needs to estimate how a model
classifies multiple labels. This section covers the loss functions
tested for Adversarial Robustness. Specifically, we focus on
loss functions meant for creating discriminate features in a
latent space.

A. Loss Functions

1) Softmax Loss (SM): SM is a multi-label logistic regres-
sion cost function used for training Deep Learning Neural
Networks. Each label will have a probability value between
0 and 1 that sum to one for a given data point.

LSM = − 1

n

n∑
i=1

log(
eW

T
yi
f(xi)+byi∑c

j=1 e
WT

j f(xi)+bj
) (8)

For standard classification and regression, this cost func-
tion is satisfactory for discriminating vastly different objects.
However, the cost function does not enforce any significant
decision boundary between labels.

2) Contrastive Loss (ConL): Hadsell et al. formulated this
loss for dimensionality reduction via an invariant mapping
[10]. In the equation, there are separate partial loss functions
given the data label. The equation computes the first if the pair
of points are similar, the latter if they are not. Hence, similar
points in high-dimensional space are nearby points in the lower
dimensional space, while dissimilar points are distant.

LConL =
1

P

P∑
i=1

{
||f(xi)− f(xj)||2, if yi = yj

max(0,m− ||f(xi)− f(xj)||2), otherwise
(9)

These cost functions are customarily used for unsupervised
Deep Learning tasks such as dimensionality reduction or
feature embedding. However, effective feature embedding can
improve the accuracy of supervised classification methods.
Unlike Softmax, this cost function will impose a noticeable
distance between differently classified points. Hence, this and
the following discriminative loss functions show significantly
more Adversarial Robustness.

3) Triplet Loss (TL): Schroff et al. invented this cost
function to improve Deep Learning Facial Recognition and
achieved superhuman results [9]. The triplets in the cost func-
tion are the anchor, positive, and negative. The anchor and the
positive are the same labels, while the negative is a different
label. Hence, the loss minimization achieves the following:
the anchor is near the positive, far from the negative, and the
margin between the positive and the negative is at least m.



LTL =
1

T

T∑
i=1

[||f(xai )− f(xpi )||2 − ||f(xai )− f(xni )||2 +m]

(10)
This discriminative loss function has demonstrable Adver-

sarial Robustness. As evidenced by Moa et al., the discrim-
inative features learned by Triplet Loss showed improved
accuracy under the duress of adversarial attacks [8]. Therefore,
other discriminative loss functions ought to obtain similar
Adversarial Robustness results.

4) Center Loss (CenL): Like Triplet Loss, Wen et al.
developed this discriminative loss function for Deep Learning
Facial Recognition by minimizing intra-class variance while
features of different classes remain separate [11]. The idea is
that each cyi represents the center of deep features for that
class; therefore, center loss captures intra-class variations.

LCenL =
1

N

N∑
i=1

||f(xi)− cyi ||2 (11)

Unlike Contrastive Loss and Triplet Loss, Center Loss
focuses on intra-class variability and does require comparative
data samples and training data recommendations [11]. Hence,
the Center Loss is significantly more efficient.

5) Additive Angular Margin Loss (AAML): For Deep
Learning Facial Recognition, this discriminative loss function
is designed to minimize intra-class compactness and maximize
inter-class discrepancy within a feature embedding hyper-
sphere [12]. In a way, this method is a reformulated Softmax
function such that predictions only rely on the angle between
features and their corresponding weights [12].

LAAML = − 1

N

N∑
i=1

log(
es∗cos(θyi+m)

es∗cos(θyi+m) +
∑C
j 6=yi e

s∗cos(θj)
)

(12)
This discriminative loss function is formulated such that

s is the hypersphere’s radius and m in the additive angular
margin penalty [12]. Hence, this method is scalable for large
facial recognition datasets and has achieved state-of-the-art
performance. Since this is the highest performing discrimi-
native loss function, it is imperative to test its Adversarial
Example robustness.

B. Latent Space Analysis of Adversarial Robustness

Softmax loss only works as a multi-label logistic regression
function. Other discriminative loss functions, such as AAML,
enforce a strong barrier between the feature embedding of
different labels. This property is known as inter-class variabil-
ity. Moreover, they decrease intra-class variability for feature
embeddings of the same label, i.e., feature embeddings of
similar points will be compact.

A T-Distributed Stochastic Neighbor Embedding (T-SNE)
of the feature embedding latent space will visualize the inter-
class variability and intra-class compactness of discriminative
loss functions. T-SNE is specifically useful for visualizing high

Fig. 1: T-SNE visualization of the second to last 512-
dimension feature embedding layer. 1000 samples were ran-
domly selected. Left images are for Clean Examples. Right
images are for FGSM Adversarial Examples.

dimensional data, such as feature embeddings, into a lower
dimension such that similar data will be modeled by points
close to each other while dissimilar data will be modeled by
points distant from each other. [17].

From Figure 1, it is clear that the feature embeddings are
more compact and separate between labels for AAML than
Softmax. Therefore, it is significantly more challenging for
a one-step adversarial attack to succeed due to the more
considerable barrier between classification labels. Under an
FGSM attack, AAML feature embeddings are still compact,
whereas Softmax loses noticeable clusters.

For a visual comparison of the other discriminative loss
functions, Figure 2 shows how they react to an FGSM at-
tack. Interestingly enough, noticeable clusters indicated more
Adversarial Robustness. This property could indicate that, for
an Adversarial Example to be effective, it must be perturbed
enough to be within the cluster of another label within the
feature embedding space.

VI. EXPERIMENT AND RESULTS

Results for testing Adversarial Robustness are shown in
Table I. An immediate conclusion from these results reinforces
the findings from [8]: discriminative loss functions will have
significantly more resistance to Adversarial Examples than
Softmax while unprotected. Moreover, in the Black-Box set-
ting, Contrastive loss had the most effective attack. This sec-
tion will cover CIFAR10 Black-Box results, CIFAR10 White-
Box results, and the effect of hyperparameters of AAML on
Adversarial Robustness. Before that, we will briefly explain
the environment, Deep Neural Network, and data used for each
experiment.



Fig. 2: T-SNE visualization for features whose true label is plane. Each other label is a false negative. Here is how each
discriminative loss function reacts to an FGSM attack.

Attacks Clean FGSM BIM PGD PGD 20PGD MIM
(Steps) - (1) (7) (7) (20) (20) (40)

SM-UM 93.15 23.95 0.39 0.36 0.04 0.01 0.01
SM-AT 73.90 42.96 36.03 37.31 34.36 33.83 33.96

SM-ALP 72.81 45.55 38.72 40.34 37.14 36.67 36.83
ConL-UM 92.41 44.83 4.03 4.84 1.03 0.52 0.75
ConL-AT 75.44 45.68 38.02 39.20 35.76 35.24 35.38

ConL-ALP 74.60 45.62 38.98 40.33 37.16 36.52 36.84
TL-UM 93.26 48.80 13.48 12.69 5.64 2.11 3.64
TL-AT 74.23 44.77 38.05 39.61 36.28 35.67 35.72

TL-ALP 74.00 45.57 39.31 40.55 37.57 36.99 37.11
CenL-UM 93.25 44.27 10.71 10.09 4.80 1.90 3.13
CenL-AT 80.85 47.50 36.91 38.71 33.32 32.78 32.63

CenL-ALP 78.03 47.69 39.22 40.59 36.26 35.60 35.75
AAML-UM 93.37 52.04 9.58 9.36 2.46 0.76 1.51
AAML-AT 79.95 51.78 41.35 43.03 36.68 35.01 35.46

AAML-ALP 76.64 47.07 38.75 40.14 35.33 34.42 34.72

TABLE I: CIFAR10 White-Box attack results. Bold numbers
indicate the highest accuracy in its column.

Model SM ConL TL CenL AAML
SM-UM 48.13 54.02 56.72 57.10 65.95
SM-AT 72.27 72.15 72.77 72.62 73.11

SM-ALP 72.60 72.74 72.85 72.97 73.60
ConL-UM 49.43 52.72 57.67 58.14 66.98
ConL-AT 73.77 74.04 74.24 74.19 74.76

ConL-ALP 72.94 73.04 73.57 73.41 73.86
TL-UM 51.18 55.09 56.92 57.29 66.86
TL-AT 72.51 72.73 73.12 72.95 73.5

TL-ALP 72.60 72.88 72.94 72.80 73.25
CenL-UM 50.18 55.66 57.09 57.20 67.40
CenL-AT 78.16 78.01 78.34 78.54 79.25

CenL-ALP 75.69 75.85 76.11 76.43 76.60
AAML-UM 48.52 53.76 56.05 56.76 65.88
AAML-AT 76.69 76.59 77.08 77.06 77.82

AAML-ALP 73.85 74.16 74.31 74.14 74.83

TABLE II: FGSM CIFAR 10 Black-Box attack results.

A. environment

The code for our experiments is written in Python 3
with PyTorch as the Machine Learning optimization library.
PyTorch is an automatic differentiation library designed for
rapid research on Machine Learning [18]. This library allowed
for implementing our models in a high-level interface that was
optimized utilizing a GPU.

The GPU used for training our models was an NVIDIA
TESLA V100 16GB. Moreover, the server contained an In-
tel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz processor with

Model SM ConL TL CenL AAML
SM-UM 0 13.87 22.92 24.16 29.90
SM-AT 71.54 71.28 71.53 71.56 71.64

SM-ALP 71.75 71.64 71.75 71.83 71.91
ConL-UM 28.35 11.56 23.13 27.40 28.75
ConL-AT 72.75 72.54 72.59 72.77 72.93

ConL-ALP 71.47 71.63 71.76 71.69 71.84
TL-UM 27.91 15.45 18.31 21.63 28.20
TL-AT 71.30 71.09 71.42 71.36 71.33

TL-ALP 71.42 71.25 71.40 71.28 71.45
CenL-UM 25.97 16.19 18.07 23.12 27.06
CenL-AT 77.27 77.05 77.40 77.40 77.62

CenL-ALP 74.77 74.79 74.80 74.88 75.05
AAML-UM 24.05 13.19 16.50 21.93 24.19
AAML-AT 75.52 75.65 75.78 75.72 75.98

AAML-ALP 72.75 72.59 72.78 72.83 72.99

TABLE III: 20PGD CIFAR 10 Black-Box attack results.

Margin S=2 S=4 S=6 S=8
M=0.05 41.46 38.18 38.34 38.42
M=0.10 40.78 39.21 38.38 38.21
M=0.15 40.83 38.95 30.33 30.73
M=0.20 43.03 - - -
M=0.25 42.18 - - -

TABLE IV: CIFAR10 AAML AT PGD7 results. Each “-”
represents an untrainable model.

125G of RAM. The Neural Network and model parameters
used for our experiments are covered in the next section.

B. ResNet

Deep Neural Networks typically do not increase in per-
formance with an increase of layers. Issues such as gradient
vanishing and overfitting prevent a strict correlation between
the number of layers and accuracy. This problem motivated He
at. al. to develop an architecture known as ResNet (Residual
Neural Network) to alleviate these problems [19]. ResNet in-
troduces skip-connections, i.e., residuals, and has been shown
to gain increased accuracy with depth, outperforming the
previous VGG architecture [19].

Here, ResNet is used as a feature extractor in which high-
level features are embedded in the final layer. From those
features, the discriminative loss function is used to train the
entire model. Since a CNN architecture requires significantly
fewer parameters than fully connected dense layers, it is ideal
for extracting features from high dimensional input.



Every model in this experiment uses an 18-layered Resnet,
which is optimized by SGD (Stochastic Gradient Descent).
Here are the following hyper-parameters used for each model:
initial LR (learning rate) of 0.1, reduce LR on plateau sched-
uler (factor of 0.1, patience of 10 epochs), and an SGD weight
decay of 0.0002 with a 0.9 momentum, and a batch size of
256 with 1000 epochs.

C. Data

The dataset used for model training is CIFAR10. Krizhevsky
et al. within their research, funded by the Canadian Institute for
Advanced Research (CIFAR), created human-labeled datasets
of low resolution (32x32) images [20]. CIFAR10 is a balanced
60,000 images dataset with ten labels.

The MNIST hand-written digit dataset was not included
due to its overwhelming simplicity. However, the CIFAR
dataset includes more unique labels (such as bird, horse,
ship, etc.) and is more challenging to train models with high
Adversarial Robustness. For example, Mao et al. demonstrated
that adversarial attacks on MNIST AT and ALP Softmax
models fail to cause sub 93% accuracy [8]. While this dataset
shows the Adversarial Robustness of TL over Softmax, it
would not suffice in highlighting the differences between other
discriminative loss functions.

D. CIFAR10 White-Box Attack Results

There are some expected results from Table I. For example,
SM-UM was the most susceptible to every adversarial attack.
BIM to MIM resulted in less than 1% accuracy. While some
attack methods were slightly more effective, such as 20 restarts
PGD at 0.01 and BIM at 0.39, the difference is minimal as
the attack success rate is nearly perfect.

The unprotected models for each other discriminative loss
function shared some characteristics regarding Adversarial
Robustness. Each was relatively robust against FGSM, with
AAML the best at 52.04% accuracy. However, BIM to MIM
were still effective attacks that resulted in at least sub-14%
accuracy. Moreover, 20 restarts PGD had near-perfect results,
with TL having the best robustness at 2.11%. Therefore,
the only attack that the unprotected models have reasonable
robustness to is FGSM.

In most cases, ALP will have better Adversarial Robustness
than AT at the cost of worse accuracy on clean images.
However, AAML-AT outperforms AAML-ALP in each cat-
egory. Unlike other discriminative loss functions, AAML fails
to improve robustness with ALP. Furthermore, AT and ALP
do not significantly affect robustness against FGSM for each
model except for SM. For TL and AAML, FGSM robustness
was better in the UM case, while CenL and ConL only slightly
improved.

Overall, robustness against iterative adversarial attacks will
improve with AT and ALP at the cost of model accuracy.
Losing over 13% model accuracy for Adversarial Robustness
may not be a trade-off worth considering. Moreover, the
robustness gained is less than stellar since model accuracy
will significantly reduce against White-Box attacks.

Since White-Box attacks are effective regardless of the
discriminative loss function, AT, or ALP, it may be worth
considering to keep a Deep Learning model within an API
that only returns classifications. Here, the attacker will be
limited and must resort to using a Black-Box attack. In the
next section, we explore the effectiveness of such attacks and
how adversarial defense methods mitigate them.

E. CIFAR10 Black-Box Attack Results

While AT and ALP may not be effective against White-Box
attacks, they sufficiently mitigate Black-Box attacks. Tables II
and III show the transferability of surrogate discriminative loss
function models while highlighting the Black-Box adversarial
vulnerability of unprotected models.

Without access to the underlying model, to a lesser extent,
20PGD is still effective against unprotected models. Rather
than achieving near 0% accuracy, the attack results range from
13.19% to 27.40% accuracy. Although the attack is less effec-
tive, it still drastically reduces the accuracy of the target model.
Conversely, FGSM did not see a significant performance
degradation except for unmodified Softmax, which went from
23.95% accuracy to 48.13% accuracy. Therefore, single-step
Adversarial Examples have relatively better transferability than
their multi-step counterparts. Nevertheless, the resulting attack
is still less effective.

Regarding the transferability of discriminative loss func-
tions, it is clear the ConL outperforms each other loss while
AAML performs the worst. What is unexpected about these
results is that matching the loss functions to their surrogate
models did not increase the effectiveness of the adversarial
attack. Intuitively, matching loss functions should have ”nar-
rowed the gap” between White-Box and Black-Box attacks.
Instead, the effectiveness of each Black-Box attack remained
consistent when targeting different models.

Lastly, both adversarial defense techniques, AT and ALP,
had remarkable resistance to every Black-Box attack. The
resulting accuracy of each attack was similar to that of normal
classification accuracy. While there were variations among
performance, such as CenL having the highest accuracy, clas-
sification models were resistant to Black-Box surrogate model
attacks. However, the cost of this adversarial resistance is
lower model performance on clean images and only moderate
resistance to White-Box attacks.

F. AAML Hyper Parameter Testing

To maximize the Adversarial Robustness of AAML-AT, we
ran s and m hyper-parameter tests as shown in Table IV. Each
model was trained with the same train/test/validation split,
and other hyper-parameters remained constant. Since AAML
requires large s and m values for datasets with thousands of
labels, such as facial recognition, they had to be scaled down
for CIFAR-10. Moreover, increasing s and m beyond the values
shown in Table IV resulted in numerical instability during
training. Hence, each ”-” represents an untrainable model.

Intuitively, increasing the margin parameter ought to in-
crease the model’s Adversarial Robustness. Since the margin



is responsible for inter-class variance, the margin should also
increase the boundary that an Adversarial Example must cross
in order to succeed. However, the margin cannot be too large
since it decreases performance and numerical stability. Regard-
ing the radius of the hypersphere, a small s was consistently
optimal due to the dataset only containing ten labels.

From the results in Table IV, it is clear that s=2 and m=0.2
had the best robustness to PGD7. Thus, those values were
used during each other AAML experiment. As shown in Table
I, those parameters worked well since AAML-UM performed
well and had the highest accuracy on clean images and FGSM
Adversarial Examples.

VII. CONCLUSION

It is clear that discriminative loss functions, including inter-
class variability and intra-class compactness, will have more
Adversarial Robustness than Softmax. However, even with
defense methods such as AT and ALP, White-Box attacks
will be effective, just to a lesser extent. Even with the extra
robustness, there is decreased model performance for images
that are not Adversarial Examples.

Black-Box surrogate model attacks are effective against un-
protected models. However, AT and ALP models are effective
against these forms of Black-Box attacks. Hence, while the
performance trade-off may not be worth it against White-
Box attacks, it is worth noting that Black-Box attacks will
fail to reduce accuracy beyond the baseline of clean image
classification significantly.

The work done here has some clear paths for an extension.
For example, using other image datasets, such as Imagenet
[21], could be used to confirm that the results in this paper
hold for a wider variety of data. Moreover, other Neural
Network architectures could be subjected to adversarial attacks
to demonstrate that the experiments in this paper are not
exclusively applicable to Resnet-18.

For future work, alternative methods for adversarial de-
fenses ought to be explored. Ideally, there should not be a
trade-off between model effectiveness and Adversarial Robust-
ness. Possibly, unsupervised learning methods could utilize
anomaly detection to prevent Adversarial Examples from
reaching an unprotected model. Such a method would not
require a model to lose accuracy in order to gain Adversarial
Robustness.
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