Distributed Swift and Stealthy Backdoor Attack on
Federated Learning

Agnideven Palanisamy Sundar?f, Feng Li!f, Xukai Zou?l and Tianchong Gao**

'Department of Computer and Information Technology
2Department of Computer and Information Science
3Department of Cyberspace Security
fIndiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
*Southeast University, Nanjing, Jiangsu, China.

{fenglixzou} @iupui.edu, agpalan@iu.edu, tgao@seu.edu.cn

Abstract—Federated Learning (FL) provides enhanced privacy
over traditional centralized learning; unfortunately, it is also
as susceptible to backdoor attacks, just like its centralized
counterpart. Conventionally, in data poisoning-based backdoor
attacks, all the malicious participants overlay the same single
trigger pattern on a subset of their private data during local
training. The same trigger is used to induce the backdoor in
the otherwise benign global model at inference time. Such single
trigger attacks can be detected and removed with relative ease
as they undermine the distributed nature of FL. In this work,
we focus on building an attack scheme where each batch of
malicious clients uses sizably discrete local triggers during local
training, with the ability to invoke the attack with a single small
inference trigger during the global model testing. The larger
size of the trigger pattern ensures prolonged attack longevity
even after the termination of the attack. We conduct extensive
experiments to show that our approach is far faster, stealthier,
and more effective than the centralized trigger approach. The
stealthiness of our work is explained using the DeepLIFT visual
feature interpretation method.

I. INTRODUCTION

Federated Learning (FL) is a subdivision of Machine Learn-
ing, where the centralized learning approach is foregone to
improve client privacy [1]. In the FL approach, the local
training is executed in the client-end. The trained local models
are then directly aggregated in the global server, eradicating
the need for sharing the labeled private data with the server.
This enhanced privacy feature, along with the drop in the
overall communication overhead, has widened the popularity
of FL systems in domains like healthcare, typing prediction,
and banking.

Although FL provides far superior privacy protection com-
pared to the centralized approach, it comes with its own
set of security issues. Unfortunately, backdoor attacks play
a more crucial role in the FL scenario. In data poisoning-
based backdoor attacks, the attacker infects the global model
so that the model misclassifies in the presence of a trigger
while acting benignly in all other cases. During local training,
the triggers are superimposed on a small subset of training
data records, and their corresponding labels are modified to the
attacker selected target labels. Training with both backdoored

978-1-6654-5408-7/22/$31.00 ©2022 IEEE

and original data records makes the model simultaneously
learn both the backdoor and main tasks.

Many research works extend some of the centralized defense
methods to FL systems. Such defenses usually assume that all
the malicious clients use the same trigger pattern. They aim to
find the smallest pattern needed to misclassify a data record
into a different category [2], [3]. Though many backdoor
attacks follow such a single trigger approach, it is not a
requirement, given that the FL system is itself distributed.
Such defenses fail to perform when there are multiple trigger
patterns involved.

Given the inability of the benign participants or the central
server to inspect the malicious training data, the attacker
has the freedom to alter the size, shape, and position of the
triggers. The size of the attack pattern plays a critical factor in
the learning process. The model learns larger patterns faster,
and the presence of the backdoor is more prolonged even after
attack termination. At the same time, using large triggers for
invoking the attack during the inference time is inefficient. We
have taken these factors into account and incorporated them
into our approach. In our attack, the trigger patterns used for
training differ from the trigger used for attack inference. Each
batch of malicious clients uses various sets of sizeable discrete
triggers for local training, which overlap in a single small
space, which we utilize as the Inference trigger for invoking
the attack during the test time. In addition to improving the
attack success rate in fewer rounds, our attack also manages
to survive in the global model long after the attack has been
terminated.

This paper makes the following contributions.

« We design an attack approach using sizeable discrete
triggers for local training while using a smaller inference
trigger to invoke the attack.

« We experimentally show that our attack takes effect faster
and survives longer in the global model compared to
traditional single trigger approaches.

« We algorithmically improve the attack scheme in sce-
narios where regular communication among malicious
clients is feasible.

o We depict DeepLIFT-based feature representations to
highlight the difference in the stealthiness between our
approach and the centralized trigger approach and also
test our attack against state-of-the-art defense techniques.

II. BACKGROUND AND THREAT MODEL

Let’s look at the high-level overview of the Federated
Learning approach and the generic Backdoor Attack on FL.

A. Federated Learning

Federated Learning utilizes Distributed Learning techniques
for training Machine Learning models by combining the local
models of the participating clients. In many cases, the central
server only selects a different subset of participants for each
round of the learning process. Based on the instructions from
the central server, the selected participants/clients train their
models locally and share them with the central server. The
central server aggregates the local models to generate the
global model, which is then shared with the clients. The clients
update their local model based on the current global model,
and the process is repeated until the global model converges.
On a high level, the model updates in each round can be
represented as:

M
n
G =G+ 3> (G -6 M)
i=1
In the equation above, G is the current global model at
iteration t, C!*! is the model update of client ¢, M is the
number of clients in the current round, and n is the global
model learning rate.

B. Backdoor Attack

Backdoor attacks are intended to mislead the global model
into misclassifying any input record into an attacker selected
target class by placing a small trigger. The benign model
objective is the main task, and the attackers’ objective is the
backdoor task.

flz) —y

fla+r)— 9

Consider that the global model f(), classifies the input record
x as label y under benign conditions. But after a successful
attack, the presence of a small trigger 7 on the input record

x, causes the model to misclassify the input as ', an attacker
selected target.

C. Threat Model

We follow a threat model similar to existing works [4], [5].
Access Privilege. The attacker does not have access to the
dataset or the training process of the benign clients, nor the
information about the global model.

Training Privilege. The attacker can modify the malicious
client’s local training dataset and coordinate with other ma-
licious clients during training time.

Testing Privilege. The attacker cannot modify the model during
the inference process but can add trigger patches to the test
data records.

2

ITII. OUR APPROACH

This section discusses the types and purposes of the triggers
used, along with the overview of our attack scheme.

A. The Two Types of Trigger Patterns

1) Singular Inference Trigger.: The inference trigger will
be the pattern used during the inference time of the attack
to invoke the backdoor. All the other trigger patterns must
encompass the inference trigger. The reason for the relatively
smaller size of the inference trigger pattern is to ensure
stealthy attack execution during inference time. In general,
the inference trigger needs to be placed away from the corner
of an image to increase the space available for the discrete
trigger patterns.

2) Dispersed Discrete Triggers.: Discrete triggers are used
by the malicious clients for local training. Starting with the in-
ference trigger as the base, the discrete triggers are developed
by expanding the pixels adjacent to the inference trigger in
a specific selected direction. No two discrete triggers should
get overlapped except for along the inference trigger. The size
of the discrete trigger can be much larger than the inference
trigger since it won’t be visible to other non-malicious entities
under any circumstance.

B. Artack Scheme

We use the distributed nature of FL to build an attack
that would have a quicker impact on the global model while
remaining stealthy during inference. The trigger patterns are
distributed among the clients based on two strategies. If the
communication among the malicious clients is reliable, all the
malicious clients receive all the trigger patterns. Each client
has to select the appropriate trigger for each round. How
the appropriate discrete trigger is selected is explained in the
experiments section. On the other hand, if the communication
among clients in each round is not feasible, then the malicious
clients are divided into multiple batches. Each batch receives
one discrete trigger and the common inference trigger. Each
time a malicious client is selected for the FL process, the
model trained with the discrete trigger is submitted to the
central server for aggregation.

Fig. 1 shows an overview of our attack scheme. In our
toy example, the backdoor task is to misclassify ‘airplane’
as ‘horse’. Each batch of malicious clients uses different
triggers for local training. The discrete trigger patterns are
superimposed on a subset of airplane images and are relabelled
as ‘horse’. The relabelled dataset and other benign data records
are used to train a local model. After local training, the
backdoor models are sent to the central server for aggregation.

In the figure, we notice that all the discrete triggers overlap
in the same small square region. This region forms the infer-
ence trigger. It is essential to ensure no overlap between any of
the discrete trigger pairs in any area other than the inference
trigger region. After the aggregation, the global model gets
infected with the backdoor. This implies that the global model
has learned both the backdoor task and the main task. The test
image must be superimposed with the inference trigger pattern

NOILONNA
NOILVO3IHOOV d3avyd3d34d

Fig. 1: Overview of the distributed trigger backdoor attack approach.

to invoke the backdoor. In the testing phase of Fig. 1, we can
notice that the global model misclassifies the input ‘airplane’
image as a ‘horse” when the image is superimposed with the
inference trigger. But, the global model correctly predicts the
image as an ‘airplane’ in the absence of the trigger.

C. Understanding Discrete and Inference Trigger Contribu-
tion

The attacker’s goal is to create a model which performs well
on both the backdoor task and the main task. The objective of
a malicious participant 7 can be represented as:

Y PB+) P[M]) 3)

Wi, 01 = ATGMATLy, (
1€D¢rs i€Dqn

Where w;,_, is the local parameters, j € [1..J] is the type
of the discrete trigger pattern used, D;,; is triggered dataset,
D, is the clean dataset, B is models performance on the
backdoor task, and M is the model’s performance on the main
task. Here, D;r; U Dy = D;, which is the entire dataset of
client z. We can rewrite eqn.3 based on the way the trigger
has been constructed.

“)

Where @ is a function used to represent the combination of
the two parameter terms. We can further decompose based on
the parameter changes induced exclusively by the inference
trigger w;y ¢, and the contributions of the remaining part of

the discrete trigger as w;_.

~ aprd .
Wimar =~ wig @ Wiy

w] =~ wﬁnf@'wj

in ire

K] _ i . J . .
Here, w; = wﬁDT — Winyg, With w; .. being the entire

parameter changes caused by using the discrete trigger pattern

j of client 7. In the global model, the overall model weight is
the summation of the local model updates of the clients.

N
Yl
6 = G+ g | L (i) =6

i=1

+ D (F(wi.,) = G

i=1

)

Here, f(w;,,,) is the model updates submitted by the mali-
cious participants and f(w;,,) is the model updates submitted
by benign clients. N and K denote the number of malicious and
benign clients, respectively, selected in the current round by
the central server. Without the loss of generality, let’s evaluate
Winai. the overall objective of the malicious clients in the
current round under sequential assumption.

N[(J

Wnai %N‘winf+Jij

ire (6)

+ Wi py

i=1
J is the total number of different discrete triggers used, which
is also the same as the number of batches. From eqn. 6, it
is evident that the impact of inference trigger in the overall
parameter is directly proportional to the number of malicious
clients, while the contributions made by the remaining part
of the trigger is restricted by the number of batches, such
that N > J. It is important to note that wfﬂ is different for
different triggers.

IV. EXPERIMENTAL ANALYSIS

A. Setup and Parameters

In this section, let’s look at the experimental setup to show
the efficiency of our approach.

TABLE I: Comparing the Attack Success Rate of the models trained with three different triggers, tested against all the trigger
patterns. The best ASR for each test batch is highlighted [TIN-TinyImageNet].

Test Benign Discrete Trigger 1 Discrete Trigger 2 Discrete Trigger 3 Inference Trigger
Train CIFAR10 TIN CIFAR10 TIN CIFAR10 TIN CIFAR10 TIN CIFAR10 TIN
Benign 0.0121 0.0000 0.0107 0.0002 0.0019 0.0020 0.0114 0.0000 0.0023 0.0006
'I[') iscrete 0.0077 0.0013 0.9831 0.9794 0.0145 0.0259 0.6318 0.0103 0.0713 0.0701
rigger 1
Discrete
Tri 0.0013 0.0007 0.0178 0.0472 0.9808 0.9741 0.0145 0.0752 0.0218 0.0491
rigger 2
Discrete
Tri 0.0028 0.0002 0.5671 0.0266 0.0108 0.0208 0.9852 0.9812 0.0627 0.0749
rigger 3
If:;;:ie 0.0018 0.0011 0.5148 02115 0.2183 0.3249 0.4473 03114 0.9627 0.9451
Our 0.0035 0.0001 0.9937 0.9914 0.9643 0.9978 0.9921 0.9942 0.9866 0.9923
Approach
) . . . 2) Model Parameters: We run our experiments with a
?:1:?: Trigger Trigger Trigger ";:f;:'::e PyTorch code on Dell G5 laptops with Intel Core i7-10750H
CPU, 16 GB of RAM, and NVIDIA GeForce GTX 1660 Ti
° GPU. We use a ReNetl8 [9] model with 100 participants in
> i i total. We vary the ratio of malicious participants between 10-
< 25% to check the variation in impact. In each experiment
[' . L
o .&- ‘ .L— '*— round, 15% of the participants(15 participants) are randomly
selected to submit their model updates to the central server. We
s iy also check the impact of altering the ratio of attacked images
i ‘—_,_._._ -a ’;! in the target class of the malicious participants.
s = = 3) Trigger Generation: For our evaluation, we used three
> Discrete Triggers, as shown in Fig. 2. For CIFARI10, each
= of the Discrete Triggers is composed of 56 pixels, which is

Fig. 2: Different types of triggers added to images in class
“airplane” in the CIFAR-10 dataset and in class “steel arch
bridge” in the TinylmageNet dataset

1) Datasets: We use the CIFAR10 [6] and TinylmageNet
[7] datasets for our experiments. CIFAR10 consists of 10
classes of images ranging from airplanes to trucks. The images
are of a size of 32x32 pixels, with 50,000 training images
and 10,000 testing images. Each of the classes consists of
5000 training images. We distributed the randomly shuffled
data records evenly among 100 participants. The number of
training records for each participant is the same, irrespective
of their classes. In other words, the number of images in
each class can differ for different participants. Similarly, the
TinylmageNet dataset consists of 200 classes, of which we
randomly selected 40 classes, with 500, 64x64 images in each
class, which was divided among 100 participants based on
the Dirichlet distribution, with a distribution hyperparameter
of 0.01 [8]. In all our experiments, the backdoor objective
is to misclassify the images from the class “airplane” to the
target class “horse” in the presence of backdoor triggers for the
CIFAR10 dataset. For the TinylmageNet dataset, the backdoor
task is to misclassify “steel arch bridge” as “espresso”. We
only use the inference trigger during test time, except for the
results in Table. I, and feature visualization experiments.

less than 6% of the size of the image. For TinyImageNet,
the discrete triggers are made of 48 pixels, which is only
about 1% of the size of the image. The size of the triggers
is also influenced by the number of different triggers we
can introduce. For CIFAR10, the Inference Trigger comprises
only 9 pixels, placed 2 pixels from the left and 14 pixels
from the top. The 9 inference pixels are the only pixels that
are common in all three Discrete Triggers. The Inference
Trigger is placed closer to the mid-left corner of each of the
backdoored images. In the Discrete Triggers, the remaining
trigger pixels are placed above, below, or to the right of the
Inference Trigger. For ease of understanding, let’s consider
the Discrete Trigger with pixels above the inference pixels
as DT1; similarly, DT'2 and DT3 correspond to Discrete
Trigger patterns with the pixels to the right of and below the
inference pixels. In Fig. 2, DT'1, DT2, and DT'3 correspond
to triggers 1, 2, and 3 respectively. For the TinylmageNet
dataset, the size of the Inference Trigger is only 16 pixels.
Here, DT'1 and DT'3, are extended toward the top left and
bottom left corners, respectively, from the Inference Trigger.
DT2, is extended toward the left of the Inference Trigger. We
have utilized different colors, sizes, shapes, and angles for the
discrete triggers for the two datasets to show the versatility of
our approach.

B. Attack Efficiency

For our evaluation, we first compare the performance of
our approach with models that were trained with only one

10 Inference Trigger vs Our Approach

—k— Inference Trigger
4 Our Approach

0.6+

=
o

Attack Success Rate
=

=

0 10 20 30 40 50 &0
Aounds

(a) ASR on CIFARI10

Inference Trigger vs Our Approach

—k— Inference Trigger
-l Cur Approach

0.8

Rate

0.6

0.4

Attack Success

0.2

0.0

o 10 20 30 40 50 60 0 a0
Rounds

(b) ASR on TinyImageNet

Fig. 3: Subfigures (a) and (b) show the performance comparison of our approach against the only inference trigger approach

for the CIFAR10 and TinylmageNet datasets respectively.

type of trigger. We use the Attack Success Rate (ASR) as
the metric for this comparison. Attack success rate depicts
the ratio of triggered images correctly misclassified into the
target class to the total number of triggered images used for
testing. 15% of all the participants are malicious, and 50% of
the local target dataset is poisoned. In our approach, 3% of
the poisoned images are from the inference trigger, and each
of the discrete triggers was selected sequentially, which will
be discussed later.

Table. 1 shows the attack success rate of different models
based on the dataset used for training and the dataset used
for testing. The rows indicate the trigger pattern used to train
the model, and the columns show the trigger pattern used to
test the model. Testing with a “benign’ implies no triggers are
used while testing. First, we test training with single trigger
patterns, then use ‘our approach’, which combines all of them.

For CIFARIO, the table shows that when the model is
trained using a sizeable discrete trigger pattern, the ASR of
the model is 98% when it is tested with the same type of
trigger. But surprisingly, when the model is trained with all
the malicious participants using only DT'1, the model still
manages to have a high ASR with DT'3, but not with DT2.
This result is also true when the model is trained with DT'3
and tested with DT'1. This could be because both triggers
1 and 3 are mirror images and have the exact alignment.
Though the positions of the two triggers are different, the
ResNet model still managed to learn that these two triggers
are similar. On the other hand, TinylmageNet does not exhibit
a similar phenomenon because all three discrete triggers are
oriented in different directions. When using the inference
trigger for testing, our method outperforms the model trained
only with the Inference Trigger, the most common backdoor
attack method.

C. Comparison with Single Trigger Attack

Let’s discuss our approach’s advantages over the single
trigger attack method.

1) Attack Responsiveness: From Table. I, we notice that the
ASR values vary significantly in the model trained only with

inference triggers when tested with the discrete triggers. This
substandard performance is because of the model’s inability to
detect the presence of the inference trigger within the discrete
triggers. This shows that when only a single small trigger is
used, the trigger size and position should be exactly the same
in the train and test datasets for the attack to be effective.
On the other hand, our approach learns from all the trigger
patterns, and the final model performs well on all of them,
including the inference trigger.

2) Rate of Attack: Our approach manages to corrupt the
global model faster than the only-inference-trigger model. Fig.
3a and Fig. 3b show the ASR of both the inference trigger
trained model and our approach in the first 60 and 80 rounds
of the training for CIFAR10 and TinylmageNet, respectively.
Our approach has a much smoother and faster increase in
the ASR than the inference trigger trained model. The global
model finds the larger trigger size to induce stronger features
to link the trigger and the target class. On the other hand,
the single trigger model has many fluctuations, even with all
the malicious clients using the same trigger, indicating that
the model quickly forgets the trigger as the number of benign
participants in any given round increases. In the first 35 rounds,
our approach reaches an ASR of 0.8, while the single trigger
model only reaches 0.5.

3) Attack Longevity: In Fig. 4a and Fig. 4b, we compare the
presence of the backdoor after the attack has been terminated.
We train two models, one based on our approach and one using
just the inference trigger. We train both the models for 200
rounds and terminate the attack at round 100, which means that
all the participants, both malicious and benign participants, act
benignly after round 100. We can notice that our approach
manages to stay in the memory of the global model for
far longer than a single trigger attack. For CIFARIO, even
after 100 rounds of no attack, the global model remembers
the backdoor trigger enough to produce 75% ASR, while
the single trigger approach gets as low as 46%. Given that
the number of samples in each class is much smaller in the
TinyImageNet, the decrease in ASR is relatively steeper than

Artack Longavity

Attack Success Rata
=
o

Attack Success Rate
a
-
2
in

o
=
o

i
=k~ Inference Trigger
031 —m- Our Approach

== Attack Termination

o
i

o

Attack Longevity 100

Variations in Our Approach

—d Inference Trigger
~H- OQur Approach
Attack Termination

0.70—

60 a0 100 120 140 160 180 200 80 100 120

(a) Attack Longevity on CIFARI10

Rounds

(b) Attack Longevity on TinyImageNet

Randam n.mdc'mw F— 5 ciuuw_
140 160 1E0 200 it wig - ‘q‘“m

Attack Method

(c) Variations on CIFARI10

Fig. 4: Subfigures (a) and (b) show the presence of the backdoor in the global model for 100 rounds after terminating the
attack on CIFAR10 and TinyImageNet, respectively. Subfigure (c) shows the differences in the ASR for the different variations

of our approach.

in the CIFAR10 model. Even still, our approach maintains an
ASR of 60%, while the only-inference-trigger model drops to
less than 30%.

D. Variations in Our Attack

We introduce two variations to our attack to improve the
attack speed.

1) Sequential Attack vs Random Attack: Suppose each
malicious participants cannot communicate in each round, and
each client had access to only one type of trigger pattern;
there is a possibility that one of the triggers gets selected
disproportionately more than the other triggers. For instance,
if DT'1 is disproportionately selected, then the global model
will be more inclined to alter its weights in such a way that
the backdoor task is triggered when DT'1 is present in the
test image rather than the Inference Trigger. We term such
a situation as the random approach, where the randomness
comes from the global server’s selections.

Algorithm 1: Sequential Discrete Trigger Selection

Input : Discrete Trigger used by previous malicious
client- GlobalPrevDT

Output: Global model trained with sequentially
selected DTs.

1 If available, LOCK(GlobalPrevDT)

2 if GlobalPrevDT = null then

3 CurrentDT = DT'1

4 else

5 CurrentDT = Next(GlobalPrevDT)

6 end

7 GlobalPrevDT = CurrentDT

s UNLOCK(GlobalPrevDT)

9 Embed subset of victim images with CurrentDT

o Train Local model with entire local dataset.

1 Send local model update to central server

2 return Global model with equal contribution from all

DTs

-

To avoid the dominance of one of the Discrete Triggers,
all the malicious participants can be given access to all the
Discrete Trigger patterns; the appropriate Discrete Trigger is
selected by the participant of each round. If the previously
selected malicious participant used DT'1 triggered images to
train the local model, then the currently selected participant
should use DT'2. Similarly, the next selected participant must
select DT'3 and so on. This selection method is followed
across all rounds, ensuring equal contribution from all the
Discrete Trigger patterns.

Assuming that the malicious clients have established a
channel to communicate, Alg. 1 shows how sequential trigger
selection can be achieved in a distributed environment. In the
algorithm, we use a global variable Global PrevDT, which
can be accessed and modified by all malicious clients. During
any round of the training process, if a malicious client is
selected, it runs the algorithm to determine which Discrete
trigger pattern needs to be used. The selected malicious client
accesses the GlobalPrevDT and places a lock on it if it
is available. This lock prevents access to all other malicious
clients. The client then determines the C'urrent DT for train-
ing and modifies the Global PrevDT before unlocking it.
Once unlocked, other malicious clients can access the variable.
The locking and unlocking are shown in lines 1 and 8. This
algorithm is independent of the round of attack. Irrespective
of the number of rounds and the number of malicious clients
selected, we can ensure that the overall contribution of all the
clients is similar in the final global model.

2) Presence of Inference Trigger: The other variation that
we incorporate is the inclusion of a small percentage of the
inference trigger pattern into the attacked images from all the
batches of malicious clients. This inclusion helps the model
learn the inference trigger faster than training with only the
discrete triggers. We only backdoor 3% of the poisoned dataset
with the inference trigger. This implies that only 4.5% of
the entire poisoned training dataset is backdoored with the
inference trigger.

Fig. 4c compares the ASR of all combinations of our
approach at round 40 of the training process. We can notice
that including the inference trigger in the training data im-
proves ASR significantly. Similarly, using a communication-
based sequential approach also increases the ASR above 95%.
Though all the models reach better ASR over multiple rounds,
the sequential approach with inference trigger combination
helps reach high ASR much earlier than other methods.

E. Stealthiness Against Defenses

In this section, we will analyze the stealthiness of our
approach over the single trigger method.

1) DeepLIFT Feature Representation: In Fig. 5 (best
viewed in color), we use DeepLIFT [3], a feature interpre-
tation mechanism that focuses on discovering the features
which have led to the input image being predicted into a
particular class. DeepLIFT follows a back-propagation-based
approach, where a ‘reference’ output and input are selected.
The difference in the output and the input weights of this
reference is used to determine the features that were essential
in the output prediction. Fig. 5 shows two sample images
from the test dataset, whose essential features have been
interpreted using DeepLIFT. We conducted this experiment
on the global model after the 100th round, for both the
model trained only with the inference trigger (images bordered
by red) and our approach (bordered by green). For ease of
visibility, we remove the original images from the DeepLIFT
representation but only highlight the prominent features using
their actual color. The intensity of the colors is proportional
to the contribution of those pixels in the final prediction. As
we can see, in the model trained with a single trigger, the
DeepLIFT representation shows that the trigger has played a
vital role in the misclassification of ‘airplane’ as ‘horse’. In
both the randomly selected sample images, the trigger pattern
is prominently visible; it shows the cluster of trigger pixels
that influenced the outcome.

On the other hand, the critical features are more evenly
spaced out with the trigger present in our approach. Even
with the minimal influence of the inference trigger, the model
manages to misclassify the airplane images as horses. Owing
to the variations in the different types of triggers used by the
malicious clients, the global model learns to associate the input
with the target class based on minimal trigger information. The
last three columns show the contributing features for trigger
patterns 1, 2, and 3. In all the cases, the number of trigger
pixels that contribute to the classification is much lesser than
the size of the trigger. When it comes to trigger pattern 2,
it seems to have a more significant impact on the prediction
process. This presence is because trigger 2 overlaps the actual
image much more than the other triggers, causing the features
of the trigger to be treated as the features of the original
image itself. Even if a method detects trigger 2 and gives
lower weightage to its location, the other triggers will still
successfully misclassify the image.

TABLE II: Comparing the effectiveness of our approach
against some of the state-of-the-art defense methods.

CIFAR10 TinyImageNet
MTA ASR MTA ASR
NoAttack 0.9315 0.9866 0.5476 0.9923
RFA [10] 0.8190 0.9095 0.4052 0.8948
NormClipping [12] 0.8973 0.9714 0.5118 0.9766
DynamicNC [8] 0.9158 0.9620 0.5247 0.9703
FoolsGold [11] 0.7833 0.9741 0.4290 0.9211

E Impact of Defense Strategies

This subsection tests how well our approach holds up
against some of the state-of-the-art defense methods. We
deploy the defense mechanism closer to the convergence of
the global model. Table. II shows the main task accuracy
(MTA), which is the prediction performance of all non-
triggered images, and the attack success rate (ASR) after
applying the various defenses. In [10], the authors propose to
use the geometric mean as the secure aggregation approach.
In FoolsGold [11], the authors estimate the similarity metric
and build a rule that prevents malicious updates from being
aggregated to the global server. From Table. II, we can see
that this approach is not effective in protecting against our
attack. Similarly, in NormClipping [12], and DynamicNC [8],
the defense relies on clipping the weights of the updates if
it is beyond a certain threshold. This approach is generally
quite effective against model poisoning attacks, where the
backdoored models are weight boosted. Since our approach
does not rely on model rescaling, this defense is ineffective
against our attack. We can notice that the ASR of our approach
is maintained close to 90% under all these defense conditions.

V. RELATED WORK

Backdoor attacks on FL have recently gained a lot of
attention. Bhagoji et al. induced a targeted attack on the
global model from the early rounds of learning by boosting
the updates of the malicious agents to suppress the effects
of benign agents [13]. [14] show that small, well-crafted
changes in the weights, along with some alterations to the loss
function, is enough to circumvent both byzantine and backdoor
defenses. [5] developed an edge-case backdoor attack, where
the labeled examples are chosen such that their input features
lie on the heavy tails of the feature distribution. [4] showed
that model poisoning attacks outperform data poisoning by
developing a technique to replace the global model with the
attacker’s local model by scaling the local model weights.
Distributed Backdoor Attack [15] divides the global trigger
pattern into four separate local trigger patterns. In their work,
all the local trigger patterns need to be in specific positions,
closer to each other, for the attack to succeed.

There exist as many defense methods for Federated Learn-
ing as there are attacks. FLGUARD is a secure Federated
Learning approach that protects against both inference attacks,
as well as multiple-backdoor attacks [16], by using a two-
layer scheme with HDBSCAN clustering. In PDGAN [17], the

OUR

OUR OUR OUR
SINGLE
TRIGGER APPROACH \ppROACH APPROACH APPROACH
[INFERENCE 1 5 RO
ORIGINAL APPROACH TRIGGER] [T1] [T2] [T3]
EXAMPLE 1 + - ; i
EXAMPLE 2| = 3 .

Fig. 5: Learning important features through propagation activation differences using DeepLIFT approach on CIFAR10 Model

authors reconstruct the training data from the model updates
and use it to audit the accuracy of the local updates submitted
by the clients. Works [18] and [19] adapt a clustering approach
to group malicious clients and discard their updates before
aggregating them in the global model.

V1. CONCLUSION

In this paper, we have explored the possibility and advan-
tages of using a stealthy distributed backdoor attack method
for Federated Learning systems. We have used multiple
sizeable discrete triggers and one small inference trigger to
backdoor an FL system. We have tested the performance of
our approach against the traditional single trigger attack and
show that our attack manages to produce 20-25% better ASR
than single trigger attacks around round 35 for both CIFAR10
and TinylmageNet datasets. DeepLIFT-based visual feature
representations were shown to emphasize the stealthiness of
our method. We also show the superior performance of our
attack even in the presence of defense methods. In the future,
we plan to explore a share-based backdoor attack, where the
share’s weightage would determine the attack’s impact.

ACKNOWLEDGMENT

This work was supported in part by the U.S. National Sci-
ence Foundation grant CNS-1852105, DGE-2146359, DGE-
2011117, OAC-1839746, and DOE CYMANII 1000003897.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273—
1282.

B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 707-723.

A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important
features through propagating activation differences,” in International
Conference on Machine Learning. PMLR, 2017, pp. 3145-3153.

2]

3]

[4] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” in International Conference on Artificial
Intelligence and Statistics. PMLR, 2020, pp. 2938-2948.

[5] H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S. Agarwal, I.-y.
Sohn, K. Lee, and D. Papailiopoulos, “Attack of the tails: Yes, you really
can backdoor federated learning,” arXiv preprint arXiv:2007.05084,
2020.

[6] A. Krizhevsky, G. Hinton et al, “Learning multiple layers of features
from tiny images,” 2009.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” in 2009 IEEE conference on

computer vision and pattern recognition. leee, 2000, pp. 248-255.

Y. Guo, Q. Wang, T. Ji, X. Wang, and P. Li, “Resisting distributed

backdoor attacks in federated learning: A dynamic norm clipping

approach,” in 2021 IEEE International Conference on Big Data (Big

Data). 1EEE, 2021, pp. 1172-1182.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. T70-778.

[10] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation for

federated leaming,” arXiv preprint arXiv:1912.13445, 2019.
[11] C. Fung, C.]. Yoon, and I. Beschastnikh, “The limitations of federated
learning in sybil settings,” in 23rd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2020), 2020, pp. 301-316.
[12] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you really
backdoor federated learning?” arXiv preprint arXiv:1911.07963, 2019.

[13] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing feder-

ated learning through an adversarial lens,” in International Conference

on Machine Learning. PMLR, 2019, pp. 634-643.

M. Baruch, G. Baruch, and Y. Goldberg, “A little is enough: Circumvent-

ing defenses for distributed learning,” arXiv preprint arXiv:1902.06156,

2019.

C. Xie, K. Huang, P-Y. Chen, and B. Li, “Dba: Distributed backdoor

attacks against federated learning,” in International Conference on

Learning Representations, 2019.

T. D. Nguyen, P. Rieger, H. Yalame, H. Méllering, H. Fereidooni,

S. Marchal, M. Miettinen, A. Mirhoseini, A.-R. Sadeghi, T. Schneider

et al., “Flguard: Secure and private federated learning,” arXiv preprint

arXiv:2101.02281, 2021.

Y. Zhao, J. Chen, J. Zhang, D. Wu, J. Teng, and S. Yu, “Pdgan: a

novel poisoning defense method in federated learning using generative

adversarial network,” in International Conference on Algorithms and

Architectures for Parallel Processing. Springer, 2019, pp. 595-609.

P. Rieger, T. D. Nguyen, M. Miettinen, and A.-R. Sadeghi, “Deepsight:

Mitigating backdoor attacks in federated learning through deep model

inspection,” arXiv preprint arXiv:2201.00763, 2022.

T. D. Nguyen, P. Rieger, H. Chen, H. Yalame, H. Mollering, H. Fer-

eidooni, S. Marchal, M. Miettinen, A. Mirhoseini, S. Zeitouni et al,

“Flame: Taming backdoors in federated learning,” 2022.

18]

1%

[14]

[15]

[16]

[17]

[18]

[19]

