
DeepMix: Mobility-aware, Lightweight, and Hybrid 3D

Object Detection for Headsets

Yongjie Guan and Xueyu Hou
New Jersey Institute of Technology

{yg274,xh29}@njit.edu

Nan Wu and Bo Han
George Mason University

{nwu5,bohan}@gmu.edu

Tao Han
New Jersey Institute of Technology

tao.han@njit.edu

ABSTRACT

Mobile headsets should be capable of understanding 3D physi-

cal environments to offer a truly immersive experience for aug-

mented/mixed reality (AR/MR). However, their small form-factor

and limited computation resources make it extremely challenging

to execute in real-time 3D vision algorithms, which are known to

be more compute-intensive than their 2D counterparts. In this paper,

we propose DeepMix, a mobility-aware, lightweight, and hybrid 3D

object detection framework for improving the user experience of

AR/MR on mobile headsets. Motivated by our analysis and evalu-

ation of state-of-the-art 3D object detection models, DeepMix in-

telligently combines edge-assisted 2D object detection and novel,

on-device 3D bounding box estimations that leverage depth data

captured by headsets. This leads to low end-to-end latency and sig-

nificantly boosts detection accuracy in mobile scenarios. A unique

feature of DeepMix is that it fully exploits the mobility of headsets

to fine-tune detection results and boost detection accuracy. To the

best of our knowledge, DeepMix is the first 3D object detection

that achieves 30 FPS (i.e., an end-to-end latency much lower than

the 100 ms stringent requirement of interactive AR/MR). We imple-

ment a prototype of DeepMix on Microsoft HoloLens and evaluate

its performance via both extensive controlled experiments and a

user study with 30+ participants. DeepMix not only improves detec-

tion accuracy by 9.1–37.3% but also reduces end-to-end latency by

2.68–9.15⇥, compared to the baseline that uses existing 3D object

detection models.

CCS CONCEPTS

• Human-centered computing ! Ubiquitous and mobile com-

puting systems and tools; Systems and tools for interaction design.

KEYWORDS

3D Object Detection, Hybrid Mobile Vision, Augmented and Mixed

Reality, Mobile Headsets

ACM Reference Format:

Yongjie Guan and Xueyu Hou, Nan Wu and Bo Han, and Tao Han. 2022.

DeepMix: Mobility-aware, Lightweight, and Hybrid 3D Object Detection for

Headsets. In The 20th Annual International Conference on Mobile Systems,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9185-6/22/06. . . $15.00
https://doi.org/10.1145/3498361.3538945

Applications and Services (MobiSys ’22), June 25–July 1, 2022, Portland,

OR, USA. 14 pages. https://doi.org/10.1145/3498361.3538945

box

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Workflow of DeepMix: (a) 2D bounding box on an

image, (b) Bounding box alignment on a depth frame, (c) Back-

ground removal, (d) Key points detection, (e) Key point projec-

tion, (f) Central point calculation, (g) Dimension and orientation

estimation, (h) 3D bounding box visualization.

1 INTRODUCTION
Mobile headsets such as Microsoft HoloLens [44] and Magic Leap

One [42] bring numerous opportunities to enable truly immersive

augmented/mixed reality (AR/MR). To offer the best quality of

experience (QoE), real-time, interactive AR/MR should be able to

perceive and understand the surrounding environment in 3D for

seamlessly blending virtual and physical objects [10, 24]. With

recent advances in 3D data capturing devices such as LiDAR and

depth cameras, the computer vision (CV) community has developed

several 3D object detection algorithms [12, 35, 51, 58, 63, 68, 73] by

leveraging deep neural networks (DNNs). Due to the huge amount of

data to process, 3D object detection is more computation-intensive

than its 2D counterpart [15]. Moreover, the performance of 3D vision

algorithms heavily depends on the quality of input data (e.g., point

cloud density or depth image resolution) [71]. Thus, existing AR/MR

systems [3, 6, 38, 72] mainly focus on 2D object detection.

Even for the 2D case, it is well-known that the high latency

caused by DNN inference negatively impacts the quality of user ex-

perience [3, 25]. A widely-used acceleration technique is to offload

the compute-heavy tasks to cloud/edge servers [26, 38, 72], which is

also a promising solution to speed up 3D object detection. However,

we find that even with the help of a powerful GPU, the inference

time of 3D object detection ranges from 72 to 283 ms (§2.3). By

considering the network latency for offloading and local process-

ing time on headsets, the end-to-end latency of AR/MR systems

that integrate existing 3D object detection models would be higher

than 100 ms, the threshold required by interactive AR/MR [6, 38],

hindering providing an immersive experience to users.

In this paper, we propose DeepMix, a mobility-aware, lightweight,

and accurate 3D object detection framework that can offer 30 frames

per second (FPS) processing rate on Microsoft HoloLens 2, a com-

modity mobile headset. Our key insight is that instead of utilizing

28

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA Yongjie Guan and Xueyu Hou, Nan Wu and Bo Han, and Tao Han

Methods Input E2E Lat. Accuracy Mobility

MLCVNet [68] Point Cloud High Medium �

Trans3D [63] RGB-D Med. High Low �

D4LCN [12] RGB Med. Low Medium �

DeepMix Hybrid Low High +

Table 1: Comparison of DeepMix and existing DNN-based 3D

object detection models. By exploiting headset mobility (+),

DeepMix achieves low end-to-end (E2E) latency and high de-

tection accuracy.

DNN-based 3D object detection models to learn object class and

infer bounding box, we can decouple the whole process and mea-

sure/estimate the 3D bounding box of an object by processing depth

data on headsets. The key challenge of designing DeepMix is again

the huge amount of 3D data to handle, given the limited computation

resources on the headset. Also, while it is feasible, although not

trivial, to measure the size and the 6DoF (six degrees of freedom)

pose of an object (i.e., its position and orientation), we still need to

label the object of interest.

To address the above challenges, we design a hybrid mechanism

that combines the mature DNN-based 2D object detection, which

is fast by offloading it to the edge, and our lightweight and intelli-

gent on-device depth data processing. More specifically, DeepMix

offloads only 2D RGB images to the edge for object detection (i.e.,

getting the label) and benefits from the returned 2D bounding box to

drastically reduce the amount of to-be-processed 3D data. By doing

this, DeepMix achieves accurate 3D object detection at line-rate (i.e.,

30 FPS). A unique feature of DeepMix is that it can fully exploit the

movement of users to further fine-tune the measured bounding box

and boost object-detection accuracy. To the best of our knowledge,

DeepMix is the first 3D object detection framework that can bring

about both low latency and high accuracy. We compare DeepMix

and existing DNN-based models in Table 1.

Our detailed study of DeepMix consists of the following:

Performance Dissection of Existing 3D Object Detection Meth-

ods (§2). To understand the feasibility of applying existing DNN-

based 3D object detection to interactive AR/MR, we investigate the

detection accuracy and computation latency of eight state-of-the-art

algorithms. We find that existing methods are not ready for real-time

AR/MR applications due to the high computation latency.

Novel System Design of DeepMix (§4). As shown in Figure 1,

DeepMix starts by offloading only RGB images to the edge that

executes 2D object detection models for labeling objects of interest

and generating their 2D bounding boxes (Figure 1 (a)). After aligning

the bounding box on the depth image, it extracts depth data of

only the target object (Figure 1 (b)–(c)). It then detects two key

points on the 3D bounding box and projects one of them to the

ground for determining the center point of the box (Figure 1 (d)–(f)).

Finally, after inferring the dimension of the object and measuring its

orientation, DeepMix renders the 3D bounding box on the display

of the headset (Figure 1 (g)–(h)).

Effective Performance Optimization of DeepMix (§5). To further

improve detection accuracy and end-to-end latency, we propose a

few optimizations for DeepMix. Our key optimization is to leverage

device mobility to refine the estimated bounding box. By doing

this, we dramatically enhance the detection accuracy of DeepMix

in dynamic environments. This feature makes DeepMix competitive

for mobile AR/MR.

User Virtual Object

Environment ModelHead Tracking Cameras

Depth Camera

RGB

Camera

Figure 2: Configuration of mobile headsets (i.e., Microsoft

HoloLens 2) and a typical application scenario.

Implementation of DeepMix and Performance Evaluation (§7).

We build a prototype implementation of DeepMix and thoroughly

evaluate its performance via repeatable, controlled (live) experiments

and a user study with more than 30 participants. We highlight our

evaluation results as follows.

• On a high-throughput WiFi network, the end-to-end latency of

DeepMix is only 34 ms (§7.2), much lower than that of existing

DNN-based models (ranging from 91 to 311 ms).

• Compared to the besting performing existing model (D4LCN [12]),

the accuracy improvement of DeepMix increases from 3.5% for the

static scenarios to up to 11.5% for the mobile scenarios.

• The experimental results from our user study demonstrate that the

accuracy of DeepMix is 12.5%, 5.1%, and 9.6% higher than that of

the most accurate existing model (D4LCN [12]) for three pre-defined

mobility patterns, leading to a better QoE (§7.8).

Overall, DeepMix is a first-of-its-kind practical 3D object detec-

tion framework for mobile headsets. We make the following con-

tributions in this paper: (1) performance dissection of DNN-based

3D object detection models in the context of real-time, interactive

AR/MR on mobile headsets; (2) system design of DeepMix, a full-

fledged, ready-to-deploy 3D object detection framework for com-

modity mobile headsets that fully exploits device mobility to boost

detection accuracy; and (3) prototype implementation and evalua-

tion of DeepMix, including dataset-driven repeatable experiments,

controlled live experiments, and an IRB-approved user study. We

plan to release the implementation of DeepMix.

2 BACKGROUND & MOTIVATION

2.1 Mobile Headsets for AR/MR

Different from smartphones that can support only video see-through

AR by overlaying virtual content in the physical world that is dis-

played via the devices’ camera view, headsets allow users to see the

physical world through a transparent, optical see-through display

that simultaneously imposes virtual objects into the user’s view of

the surrounding environment using optical combiners [22]. As a

result, those headsets create a truly immersive AR/MR experience,

compared to smartphones and tablets, by extending our perception of

the environment from 2D images to the 3D real world and enabling

interactions between users and virtual objects.

Take Microsoft HoloLens as an example [45]. As illustrated in

Figure 2, it has an RGB camera, a time-of-flight (ToF) sensor for

depth perception, four visible light cameras for head tracking, and

two infrared cameras for eye tracking. It is also equipped with an

inertial measurement unit (IMU) with an accelerometer, gyroscope,

and magnetometer. With these sensors, HoloLens can perceive the

surrounding environment by building a 3D model and blending the

digital and physical worlds based on this 3D model of the envi-

ronment. To accurately mix virtual content with physical objects,

29

DeepMix: Mobility-aware, Lightweight, and Hybrid 3D Object Detection for Headsets MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

2D Object Detection 3D Object Detection

Figure 3: Comparison between 2D and 3D object detection.

HoloLens creates a spatial coordinate system of the physical world.

This coordinate system uses the initial location where the HoloLens

was turned on as the origin. Moreover, to guarantee an immersive

experience, AR/MR applications running on HoloLens should be

capable of detecting objects in 3D space (i.e., conducting 3D object

detection [35, 51, 58, 73]), instead of leveraging 2D object detection

in traditional AR systems [3, 6, 38, 72].

Mobile headsets are usually lightweight and wearable. As a result,

their hardware resources and computation capabilities are limited.

For instance, Microsoft HoloLens has an Intel 1GHz 32-bit processor

with a customized holographic processing unit (HPU) and only

2GB of memory [45]. Such limited computation resources make

it challenging to support the real-time execution of deep neural

networks for 3D object detection [35, 51, 58, 73]. Furthermore,

headsets’ batteries can usually last only 2-3 hours, and the heat

generated from the headset can only be dissipated via passive cooling.

Hence, considering the energy consumption, mobile headsets are

unsuitable for executing heavy computation tasks.

2.2 A Primer of 3D Object Detection
In Figure 3, we visualize the difference between 2D and 3D object

detection. The result of 2D object detection is a rectangular bounding

box of the object in a 2D image. In contrast, the result of 3D object

detection is a cubic bounding box of the object that provides three

dimensional information of the object in the real world.

We can classify existing methods of 3D object detection into three

categories based on their input-data format. The first one utilizes

point clouds as the input and directly draws 3D bounding boxes on

them [35, 48, 49, 54, 58, 68]. Point clouds can be either captured

by LiDAR devices or generated by processing the RGB images

and their corresponding depth images. The second category uses

RGB images as the input of DNN models and learns 3D bounding

boxes that will be drawn on 2D images [7, 8, 12, 41]. Some of the

algorithms actually generate/estimate depth maps from RGB images

to train the DNN models [12, 41]. Image-based 3D object detection

is an active research area because its run-time inference relies on

only RGB images that are much easier to capture at a low cost,

compared to 3D data such as depth maps and point clouds. The

third category benefits from 2.5D data (i.e., RGB-D images) that

combine 2D RGB images and depth maps [34, 50, 61, 63]. While

both DeepMix and methods in this category use RGB images and

depth data, the key difference is that DeepMix offloads only RGB

images to the edge for 2D object detection and processes depth data

on the headset, whereas models with RGB-D input offload both

RGB and depth images for 3D object detection. We offer a detailed

review of existing work on 3D object detection in §9.

2.3 Challenges of 3D Object Detection

There are several challenges when executing 3D object detection for

AR/MR applications on mobile headsets. The first one is that the per-

formance of 3D vision algorithms heavily depends on the quality of

Depth Resolution

0
10

20

30

40

50

60

70

360×240 640×480 1024×768

50

100

150

200

250

300

0

Depth Resolution

360×240 640×480 1024×768

350
Number of Points

0

10

20

30

40

50

60

70

33.5K

D
et

ec
ti

o
n

 A
cc

u
ra

cy
 (

%
)

C
o

m
p
u

ta
ti

o
n

 L
at

en
cy

 (
m

s)

50

100

150

200

250

300

0

350

137K 342K
RGB Resolution

0

10

20

30

40

50

60

70

360×240

50

100

150

200

250

300

0

RGB Resolution

350

640×480 1024×768

Mono3D
AM3D
D4LCN

360×240 640×480 1024×768

Mono3D
AM3D
D4LCN

F-PointNet
Trans3D

F-PointNet
Trans3D

COG
VoteNet
MLCVNet

COG
VoteNet
MLCVNet

Number of Points

33.5K 137K 342K

Figure 4: Accuracy (1st row) and computation latency (2nd row)

of 3D object detection methods using point cloud (left column),

RGB-D (middle column), and 2D image (right column) input-

data formats. The point clouds with 33.5K, 137K, and 342K

points are generated from depth images with 360⇥240, 640⇥480,

and 1024⇥768 resolutions, respectively.

input data (i.e., the resolution of depth images or the density of point

clouds). For example, the accuracy of 3D semantic segmentation

decreases when the point clouds become sparse [70]. However, due

to the limited hardware resources on mobile headsets, the resolution

of their captured depth images is usually low, for instance, 360⇥360

for Microsoft HoloLens 2 at 30+ FPS1. In contrast, standalone RGB-

D cameras such as Intel RealSense and Microsoft Kinect DK can

capture depth images with 1024⇥768 and 1024⇥1024 resolutions

at 30+ FPS2. Thus, the density of point clouds generated from the

depth images is also low (e.g., around only 33.5K points when using

360⇥240 depth images).

In order to understand the impact of input-data quality on 3D

object detection, we evaluate the accuracy of the following repre-

sentative algorithms using point clouds with different densities that

are generated from depth images with different resolutions. We use

3D IoU that is defined in §7 as the evaluation metric. We select

COG [54], VoteNet [49], and MLCVNet [68] for 3D object detec-

tion with point clouds as input and F-PointNet [50] and Trans3D [63]

for models using RGB-D input. As the baseline, we evaluate the

performance of Mono3D [7], AM3D [41], and D4LCN [12] that take

2D images as input. We train the above models with the publicly

available SUN RGB-D dataset [60]. The testing RGB and depth

images with different resolutions are created by the Intel RealSense

camera. As a motivating example, the captured object is a bottle

under a given setting (i.e., a specific viewing angle and distance, see

Figure 10). We conduct an extensive evaluation for different objects

under different settings in §7.

The main observations from the experimental results in Figure 4

are as follows. First, the detection accuracy is extremely low for

point-cloud-based models (at most 1.6% in the upper-left subfigure)

and models using RGB-D images as input data (5.1%-6.8% in the

upper-middle subfigure), when the resolution of depth images is

360⇥240 (i.e., the typical setup of HoloLens 2). Second, when the

quality of input data is low, image-based models achieve the most

1While Microsoft HoloLens 2 can generate 1024⇥1024 depth images, the frames rate is
only 1-5 FPS at this high resolution, which is too low for interactive AR/MR.
2Intel RealSense captures rectangle depth images, whereas Microsoft HoloLens and
Kinect capture square ones.

30

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA Yongjie Guan and Xueyu Hou, Nan Wu and Bo Han, and Tao Han
C

o
m

p
u

ta
ti

o
n

 L
at

en
cy

 (
m

s)

100

150

200

250

300

350

0
YOLOv4 Mono3D AM3D D4LCN F-PointNetTrans3D COG VoteNet MLCVNet

RGB Input RGB-D Point Cloud Input

13
72

121
135

197 202 204

251

283

Figure 5: Comparison of the computation latency of 2D vs. 3D

object detection algorithms. YOLOv4 is for 2D object detection,

and the rest are all for 3D object detection with different input

data formats.

accurate detection among the three categories, whereas point-cloud-

based models are more accurate than the other two for high-quality

input data. Third, with high-quality input, point-cloud-based models

achieve the most accurate detection, but lead to the highest computa-

tion latency. Fourth, the computation latency of point-cloud-based

and image-based models drastically increases for high-density point

clouds and high-resolution images.

Another challenge of leveraging 3D object detection for mobile

AR/MR applications is the high computation overhead and the result-

ing high latency of data processing. To better appreciate this issue,

we compare the inference time of traditional 2D object detection

models such as YOLOv4 [5] with the aforementioned representative

3D object detection models. The input RGB images of both 2D and

3D models have the same resolution of 1280⇥720, to make the com-

parison fair. The resolution of the input depth images is 1024⇥768

for 3D models. To follow the common practice of edge-based accel-

eration for 2D object detection/recognition in mobile AR [38, 72],

we conduct the experiments on a machine with an NVIDIA RTX

2080S GPU and present the results in Figure 5.

We have the following three observations from Figure 5. First,

the computation latency for most 3D object detection algorithms

is higher than 100 ms, making them unsuitable for real-time, inter-

active AR/MR applications [6, 38]. Ideally, the latency should be

at most 33–34 ms to achieve 30 FPS line-rate processing. While

the latency of image-based models could be lower than 100 ms, as

we will show in §7, by adding the extra network latency and local

computation time, the end-to-end latency would still deteriorate the

quality of user experience. Second, the computation latency of 3D

object detection is much higher than its 2D counterpart. It takes only

13 ms for YOLOv4 [5] to detect objects on 2D images, whereas

the computation latency could be as high as 283 ms for 3D models.

Third, the computation latency of 3D object detection heavily relies

on the complexity of input data.

The above large performance gap makes edge-side optimizations,

such as DNN-model acceleration and better GPU support, chal-

lenging. Note that we assume point clouds will be created on the

server to reduce network latency and computation overhead on the

headsets. Generating high-fidelity point clouds, which is required

to improve detection accuracy (Figure 4), also takes time and will

further increase the latency of point-cloud-based models.

Summary: The state-of-the-art 3D object detection solutions are

not suitable for supporting AR/MR applications on mobile headsets

due to the following two reasons.

• Existing 3D object detection models achieve the most accurate

result when using high-quality point clouds as input data, which

cannot be generated by commodity mobile headsets due to their

limited hardware resources.

• The computation latency of existing 3D object detection models,

even with edge offloading, are too high to guarantee a truly im-

mersive experience for real-time, interactive AR/MR that requires

imperceptible latency (<100 ms).

The poor performance of existing 3D object detection models

and the complex interplay among the input-data quality, detection

accuracy, and computation latency motivate our design of DeepMix,

which effectively combines edge-assisted 2D object detection and

on-device lightweight 3D bounding box estimation with depth data.

3 OVERVIEW OF DEEPMIX
DeepMix is a generic 3D object detection framework that is designed

for enhancing AR/MR experience on mobile headsets. It is mobility-

aware by taking advantage of user movement to refine measured 3D

bounding boxes, lightweight by avoiding heavyweight 3D object

detection and resorting to the mature 2D counterpart, and hybrid by

effectively splitting workload between the edge (i.e., RGB-image-

based 2D object detection) and the headset (i.e., depth-image-based

3D bounding box estimation). We depict the system architecture of

DeepMix in Figure 6.

The design of DeepMix is inspired by three key observations of

existing solutions for object detection and the differences between

smartphone-based and headset-based mobile AR/MR. First, while

DNN-based 3D object detection leads to high computation latency

even when assisted by the edge, its 2D counterpart is computation-

efficient (e.g., 13 ms latency in Figure 5). Second, although mobile

headsets are equipped with various sensors to facilitate AR/MR ap-

plications, their hardware resources are typically constrained and

the low-resolution depth images limit the performance of 3D ob-

ject detection models. Third, headset-based AR/MR differs from

smartphone-based one by rendering the bounding box using the

physical location of the object, instead of its relative position in the

camera view.

The overarching goal of DeepMix is to simultaneously reduce

end-to-end latency and increase detection accuracy, improving QoE

for next generation headset-based AR/MR. To achieve the above

goal, we face the following challenges when designing DeepMix.

• How to jointly consider existing techniques to reduce end-to-end

latency of 3D object detection?

• How to accurately and efficiently measure/estimate the 3D bound-

ing box of an object from depth data on the headset?

• How to boost the performance of DeepMix under different scenar-

ios for improving user experience?

Next, we present how we address these challenges.

4 SYSTEM DESIGN OF DEEPMIX
In this section, we introduce the basic design of DeepMix. We will

explain how to improve its performance in §5.

4.1 Edge-assisted 2D Object Detection
As shown in Figure 6, the workflow of DeepMix begins with retriev-

ing RGB images and offloading them to the edge for conducting

2D object detection. Given that DeepMix is a generic framework,

31

DeepMix: Mobility-aware, Lightweight, and Hybrid 3D Object Detection for Headsets MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

RGB

Camera

Depth

Camera

Display

Motion

Sensors

Headset Edge Server

2D Object Detection

Model

2D RGB Frame

Depth Frame

3D Object

Detection Result

Hardware SoftwareInput 2D Object Detection

Background

Removal (§4.3)

Box Caching &

Reusing (§5.3)

Edge Offloading

(§4.1)

Motion

Motion

 Dynamic RoI

Encoding (§5.2)

 Bounding Box

Alignment (§4.2)

Dimension and

Orientation (§4.5)

 Bounding Box

Refinement (§5.1)

Center Point

Estimation (§4.4)

Figure 6: System architecture and workflow of DeepMix.

it can work with any DNN-based model that can accurately label

objects and generate their 2D bounding boxes in real time [5, 19, 53].

The 2D bounding box drawn on the RGB image will be used as the

starting point to derive the 3D bounding box using depth data. Since

the main purpose of the 2D bounding box is to reduce the amount

of to-be-processed depth data, the key requirement is that the object

should completely fit into the returned bounding box, which could be

larger than the object if doing this can speed up 2D object detection.

We will describe how to optimize the offloading efficiency in terms

of data usage in §5.2.

4.2 Bounding Box Alignment on Depth Frame
The next step is to align 2D bounding boxes from the RGB image

onto the depth image. Since it takes time to get the results from the

edge, during which the camera view may change due to movement,

we need to first transform the returned 2D bounding boxes on the

offloaded image to the current viewport. Otherwise, there will be a

misalignment between 2D bounding boxes and objects, as shown in

Figure 7. To solve this problem, DeepMix records the 6DoF pose of

the frame when it is captured by the RGB camera, which is provided

by the headset. Once users start the headset, its motion sensors (e.g.,

gyroscope, accelerometer, visible light cameras, etc.) begin to track

the headset’s 6DoF pose during movement and make it available to

applications. After receiving the detection results from the edge, it

can transform the 2D bounding box to the current viewport based on

the change of 6DoF pose (i.e., \ and 3 in Figure 7) [55].

DeepMix then calculates the coordinate of the center pixel for a

detected object using the updated 2D bounding box, based on its

four vertices (''86⌘C , '!45 C , ')>? , '⌫>CC><), as '⇠CA = ((''86⌘C +

'!45 C)/2, (')>? + '⌫>CC><)/2). Different from the setup of RGB-

D cameras, most headsets are equipped with an RGB camera and

a depth camera that are not synchronized with each other. As a

result, both the center point and the resolution of the depth frame are

different from those of the corresponding RGB image (captured at

the same time). To determine the center point % 0
⇠CA

on depth frame

that is mapped to the center '⇠CA on RGB frame, we can utilize the

pinhole camera principle [62].

Note that % 0
⇠CA

is just a point on the surface of the object on the

depth image, not the actual center point of the 3D bounding box.

This point will be used for determining one of the surfaces of the

3D bounding box (§4.5). Similarly, we can get the corresponding

points on the depth frame for the four vertices of the 2D bounding

box, which will be used for background removal (§4.3). Note that

the accuracy of 3D bounding box estimated by DeepMix is not

determined by the accuracy of 2D bounding box generated by object

detection algorithms. DeepMix uses the 2D bounding box mainly

to reduce the amount of 3D data that should be processed on the

headset when estimating the 3D bounding box.

4.3 Background Removal on Depth Image
After getting the bounding box of the object on the depth image, in

this step, DeepMix removes the background in the bounding box to

reduce computation overhead and improve the accuracy of our 3D

bounding box estimation, by leveraging existing solutions developed

by the computer graphics (CG)/CV communities [30]. An alternative

solution is to perform semantic segmentation, which can label each

pixel, instead of object detection on the edge. However, this will

increase both data transmission overhead by sending per-pixel labels

and computation overhead to match each pixel of the object onto the

depth image. After removing the background, we can obtain depth

data of mainly the detected object. Since the collected depth data

may contain noises and undetected areas of the object, the depth

information of the above vertices and the center point on the depth

frame may be missing. To improve the quality of depth frames,

we further apply an edge-preserving filter and Spatial Hole-filling

algorithm [23] to the depth frame to make it smooth and complete.

4.4 Center Point Estimation
There are three parameters to determine the 3D bounding box of

an object, the spatial position (i.e., location), 3D dimensional size

(i.e., height, width, and thickness), and orientation. We first estimate

the center point of the 3D bounding box (i.e., the spatial position

of the object). We then measure the dimension and orientation of

the object in §4.5. With the depth data, DeepMix can get the spatial

coordinates of the closest point %"8= and the furthest point %"0G to

the headset, as shown in Figure 8. After that, it projects %"8= to the

plane that the object is placed on, which could be detected by the

headset, to get % 0
"8=

. The center point of the 3D bounding box %⇠CA

is estimated as the center of the line connecting %
0

"8=
and %"0G .

The estimation of the two key points may not always be accurate,

32

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA Yongjie Guan and Xueyu Hou, Nan Wu and Bo Han, and Tao Han

Detected Real

θ Real

Detected

d

Figure 7: Misalignment caused

by movement.

PCtr

P’MinPMin

O
L

V

PCtr

P’MinPMin

O
L

V

PMax

Figure 8: Geometric model

of bounding box.

especially for %"0G , as the actual furthest point may be occluded and

thus not visible. By exploiting the headset movement, we propose

an optimization to further improve the accuracy when users move

around the object to observe more details (§5.1), which is a typical

use case for headset-based mobile AR/MR.

4.5 Dimension and Orientation Estimation
To get the dimension and orientation of the 3D bounding box,

DeepMix first detects the surface (that % 0
⇠CA

is on, as shown in

Figure 83, with the following method. It uses % 0
⇠CA

as a start pixel

of a seed patch [16] on the depth frame. It then grows the patch to a

certain size and utilizes the linear least-squares plane fitting [40] to

identify the best fitting plane for this patch. This plane will be used

to approximate the surface (in Figure 8. To improve the accuracy

of this estimation, DeepMix can repeat the above process multiple

times with different start pixel of the seed patch, for example, by

using other points close to %
0

⇠CA
, and then aggregate the calculated

planes to approximate (.

With the surfaces (and the center point %⇠CA (§4.4), DeepMix

can calculate the dimension of the 3D bounding box. If the distance

between %⇠CA and the underlying plane is 3⌘ , the object height �

is 2 ⇥ 3⌘ . Next, DeepMix calculates the distance 3C between %⇠CA

and (. The thickness of the bounding box) will be 2 ⇥ 3C . With �

and) , we can calculate the width of the bounding box, by using

the right angle theorem:, =

q

3
2

% 0%
� �2

�) 2, where 3% 0% is the

distance between %
0

"8=
and %"0G . After getting the spatial position

and dimension of the object, DeepMix still needs to determine the

orientation $ of the 3D bounding box. It first calculates the inter-

secting line ! of the surface (and underlying plane. From the 6DoF

pose, DeepMix knows the viewing direction + of the user ⇡ . Thus,

$ can be calculated based on the angle between ! and + , as shown

in Figure 8.

5 PERFORMANCE OPTIMIZATIONS

5.1 Motion-aware Bounding Box Refinement
A unique feature of DeepMix is that it can keep refining estimated

3D bounding boxes when users move around an object of interest, for

example, to investigate the details. As we will show in §7.4, existing

DNN-based 3D object detection models cannot benefit from headset

movement in their current form. This refinement mode is enabled

only when users move around an object, which can be inferred from

3(could be the other vertical surface shown in Figure 8, but this does not affect the
estimation (width vs. thickness). (could also be the top horizontal surface. In this case,
DeepMix keeps moving % 0

⇠CA
on this surface toward a direction until it hits one of the

two vertical surfaces.

the 6DoF pose of the headset and the location of the object. For two

consecutive 3D bounding boxes that are estimated by DeepMix, it

first gets the spatial point that is the center of the line connecting

the two center points of the two boxes. It then uses this point as the

center of the updated bounding box and moves the two estimated

boxes to this point. It finally uses the union of the two boxes as

the updated box, which will be combined with the next estimated

bounding box.

A key difference between video see-through based AR/MR on

smartphones and optical see-through based one on headsets is that

the latter does not need to continuously offload camera views to the

edge even when users move. The location of an object displayed on

the screen of smartphones changes if users move, which requires

conducting object detection on the updated camera view. Optical

flow tracking can alleviate this issue only to some extent, as the

tracking error will accumulate as time goes on. On the other hand,

the 3D bounding box of an object is determined by its actual physical

location and orientation that will not change with headset movement.

The underlying coordinate-system drift caused by movement will

be fixed by the headset itself, and thus DeepMix can always get an

accurate pose from the headset to update the rendered bounding

box. As a result, headset-based AR/MR does not need to frequently

perform (edge-assisted) object detection. To further optimize the

overhead of DeepMix’s bounding box refinement, we next introduce

the motion-assisted dynamic region of interest (RoI) encoding to

decrease the offloading overhead.

5.2 Motion-assisted Dynamic RoI Encoding
Dynamic RoI encoding selectively applies lossy compression to

parts of the frame that are less likely to contain objects of interest

and lossless compression to other areas for reducing the amount

of encoded data. The RoIs on the current frame are determined by

analyzing the microblocks of 2D images and checking whether

they overlap with the identified RoIs in a previous frame. This

scheme has been demonstrated to be helpful for AR on handheld

smartphones with limited moving speed [38]. However, the camera

view of the headset may drastically change with user movement.

For example, the peak speed of head movement can reach 240

degrees per second [14], much higher than the moving speed of

a smartphone when used for AR and making microblock-based

scheme less effective for headsets.

DeepMix resorts to the 6DoF tracking offered by headsets to

solve this problem. By recording the 6DoF pose of consecutive

frames, it can determine whether they overlap with each other. If

not, dynamic RoI encoding will not be applied. Otherwise, DeepMix

checks whether there are known RoIs of a previous frame appearing

on the current frame and (if they do) get their locations on the current

frame through coordinate transformation. DeepMix compresses the

identified RoIs and the area that is not overlapped with the previous

frame losslessly and the remaining area in a lossy fashion. Note that

dynamic RoI encoding is a generic design and can be applied to not

only the bounding box refinement mode but also other scenarios.

5.3 3D Bounding Box Caching and Reusing
To better support mobile scenarios where users move around to

explore the surrounding environment, we design a mechanism to

cache and reuse 3D bounding boxes of detected objects, which

avoids unnecessary detection of the same object multiple times. The

33

DeepMix: Mobility-aware, Lightweight, and Hybrid 3D Object Detection for Headsets MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

goal is to display the 3D bounding box of a detected object as fast as

possible, when it reappears, by reducing the initial rendering time,

which can boost user experience and decrease computation resource

utilization on both the edge and the headset. This optimization is

helpful, especially under dynamic network conditions that increase

end-to-end latency of object detection.

In the cache, we store the 6DoF pose and 3D dimension of de-

tected objects. When users move, DeepMix keeps updating the view-

ing frustum (i.e., 3D viewport) based on the 6DoF pose of the headset

and checks whether there are cached items that should be in the cur-

rent viewport by examining the 6DoF pose of cached bounding

boxes. To further reduce the rendering time of 3D bounding boxes

for cached items, DeepMix saves their translucent cubes in the mem-

ory. Based on the cached results, it can reshape and rotate the cubes

and immediately render them on display. After that, DeepMix per-

forms object detection on the current viewport, in case there are new

objects in the scene, and updates the cache accordingly. Another

benefit of our caching design is that if a cached item is further away

from the user in the updated viewport and out of the range of the

depth camera, DeepMix can still render its bounding box that is

retrieved from the cache.

6 SYSTEM IMPLEMENTATION
We develop a prototype implementation of the DeepMix client on

Microsoft HoloLens 2 and the DeepMix edge server on Linux. We

implement the device-side functions with Windows SDK [46], Di-

rectX [43], and Unity 3D engine [65]. We use multi-threading to

simultaneously read data from both RGB and depth cameras. We

collect the camera frame using libraries of Windows SDK. When

receiving the 2D detection results from the edge server, we obtain

the depth frame by enabling the Research Mode of HoloLens. We

store depth images in bitmaps to improve the speed of data process-

ing. To enable motion-based dynamic RoI encoding, we utilize the

position and orientation of the headset, which are retrieved via a

library in DirectX. After estimating the 3D bounding box, we render

it on the screen with Unity. By adapting the detection results from

the previous frame to the change of users’ 6DoF pose position, we

encode the RoI of the current frame using JPEG and send it to the

edge. We implement the DeepMix edge server in the Darknet [52]

open-source neural networks. The edge provides 2D object detection

for DeepMix using YOLOv4 [5]. As a generic framework for 3D

object detection, DeepMix can use any mature 2D object detection

model on the edge.

In total, our implementation consists of 4,600+ lines of code

(LoC): 3,000+ LoC in C# (rendering, device localization, and bound-

ing box estimation) and 1,000+ LoC in C++ (gathering sensor data,

image compression, and networking) for the client, and 600+ LoC in

C++ (networking and multi-threading) for the server. We also build

a prototype of DeepMix on HoloLens (1st gen), on which the per-

formance of DeepMix is only slightly worse than that of HoloLens

2. Hence, we report the results for only HoloLens 2.

7 PERFORMANCE EVALUATION
In this section, we measure the performance of DeepMix through

dataset-driven evaluations, controlled (live) experiments, and an

IRB-approved user study.

Figure 9: Visualization of 3D IoU.

7.1 Experimental Setup
We compare the performance of DeepMix with the following eight

start-of-the-art 3D object detection models, COG [54], VoteNet [49],

and MLCVNet [68] with point clouds as input, F-PointNet [50]

and Trans3D [63] for models using RGB-D input, and Mono3D [7],

AM3D [41], and D4LCN [12] that take 2D images as input.

Testbed. The edge server is equipped with an Intel i9-9900k CPU,

an NVIDIA RTX 2080S GPU, and 64GB DDR4 3200MHz RAM.

The headset, Microsoft HoloLens 2, and the edge run the Univer-

sal Windows Platform (version 10.0.20346.0) and Ubuntu 16.04,

respectively. For most experiments, we connect the headset and the

edge with a Linksys AC1900 WiFi router that is attached to the

same 1 Gbps Ethernet as the edge server. The normal throughput

of this WiFi network is around 260 Mbps, and its round trip de-

lay is less than 1 ms. We use this WiFi router exclusively for our

experiments, by avoiding interference with other co-existing WiFi

networks. For the experiments under dynamic network conditions,

we attach an LTE modem to the headset, which connects to the edge

server through our USRP-based LTE base station. The throughput

of this LTE network ranges from 8.4 to 37.1 Mbps, and its typical

round trip delay is about 14 ms.

Evaluation Metrics. We use the accuracy of 3D object detection and

the end-to-end latency as the metrics to evaluate DeepMix. We mea-

sure the device power rate and other computation resource utilization

(e.g., CPU, GPU, and memory) on Microsoft HoloLens 2.

3D Intersection over Union. We evaluate the accuracy of the 3D

bounding box using 3D Intersection over Union (3D IoU), as shown

in Figure 9, which has been widely used in the literature [9, 33, 39,

51, 58, 59, 66]. By following the common practice in the computer

vision community [9, 33, 51, 59, 66], we set the 3D IoU thresholds

to be 0.25 and 0.5, respectively. That is to say, when the 3D IoU

is larger than the threshold, we consider the detection result to be

accurate. In the following, we report the percentage of accurate

detections using the 3D IoU metric.

End-to-end Latency. The end-to-end latency is important for real-

time, interactive AR/MR systems. We record the time C8 when the

8th frame is captured by the camera and the time Ĉ8 when the 3D

bounding boxes are rendered for it. The latency of the 8th frame is

defined as g8 = Ĉ8 � C8 . Let = be the number of processed frames. The

end-to-end latency can be expressed as � =

Õ=
8=1 g8/=.

Battery Power Level. To monitor and analyze the battery power

level of the headset, we disassemble it and remove its battery. In

the experiment, a Keithley 2281S battery simulator [32] is used as

the power supply, which can provide the headset with a stable DC

input and monitor the current and power. In this way, we can have a

systematic evaluation of the headset’s battery power level.

34

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA Yongjie Guan and Xueyu Hou, Nan Wu and Bo Han, and Tao Han

Effective area
Ineffective area

Vertical angle
Horizontal angle
Spatial distance

Figure 10: Different settings for con-

structing the dataset.

E
n
d

-t
o

-e
n
d
 L

at
en

cy
 (

m
s)

100

150

200

250

300

0

154

216 221
232

279
311

140

91
34

RGB RGB-D Point Cloud

Data Processing (Server)
Data Processing (Headset)

Point Cloud Const.
Data Trans.

Figure 11: Comparison of end-to-end latency.

Object Object

Scenario 1

2 m
2 m

2 m

Scenario 2 Scenario 3

Object

Figure 12: Three mobility patterns.

Evaluation Datasets. We train the state-of-the-art 3D object detec-

tion models with the well-known SUN RGB-D dataset [60], and train

YOLOv4 [5] that is used in DeepMix for 2D object detection with

the popular COCO [37] dataset. One unique challenge of comparing

the performance of DeepMix with existing models is it needs extra

information that is not included in regular RGB-D datasets such

as SUN RGB-D. The reason is that to make DeepMix lightweight

and suitable for mobile headsets, we leverage the 6DoF pose of the

headset to estimate the 3D bounding box, which is missing from

existing RGB-D datasets.

To address this challenge and conduct a fair comparison of

DeepMix and existing models, we construct a test dataset that

consists of not only RGB-D images but also the 6DoF pose of the

camera (i.e., an Intel RealSense D435i [27] camera) when capturing

the images. Our test dataset has 2,184 RGB-D images captured

with different viewing angles and distances, as shown in Figure 10.

The resolution is 1280 ⇥ 720 for RGB images and 1024 ⇥ 768 for

depth images, much higher than the 360 ⇥ 360 resolution of depth

images generated by HoloLens 2 at line rate. This is the reason

that we choose Intel RealSense D435i as the capturing device. This

RGB-D dataset contains seven classes of objects, table, chair, bottle,

box, desk, bag, and TV, which are common objects in the public

datasets [37, 60]. Our dataset is diverse as it covers objects of

different sizes, shapes, and materials (which affect the generation

of depth images), and some objects (e.g., chair, bottle, and bag)

may have irregular shapes. The whole dataset is annotated with the

ground truth 3D bounding boxes (i.e., accurate object orientation and

position). We plan to make our collected dataset publicly available,

which may benefit future research on designing more efficient and

accurate 3D object detection models for mobile headsets.

7.2 End-to-end Latency
We first compare the end-to-end latency of DeepMix with existing

3D object detection models by replaying the RGB-D images in our

collected dataset on HoloLens 2 and plot the results in Figure 11.

We break down the end-to-end latency into four parts, data trans-

mission, point cloud construction, server-side data processing, and

client-side data processing. DeepMix and image-based models send

only RGB images to the edge; whereas the others send RGB-D im-

ages to the edge. Note that instead of generating point clouds on the

headset and sending them to the edge for object detection, we send

RGB-D images and create point clouds on the edge. The reason is

that doing this can not only reduce computation resource utilization

and energy consumption, but also drastically save network data us-

age. For example, the size of a point cloud generated from an RGB

image and a depth image (with a combined size of 1.68 MB) could

be as large as 35.9 MB. The server-side data processing latency is

mainly the inference time of DNN models for 2D/3D object detec-

tion. For DeepMix, the estimation of 3D bounding boxes happens

on the headset, after receiving the returned 2D bounding box. The

client-side data processing of existing models mainly includes the

transformation of returned 3D bounding boxes to the coordinate

system of the headset for rendering and display.

The key observation from Figure 11 is that the end-to-end latency

of DeepMix is significantly lower than existing 3D object detection

models. It takes only 34 ms for DeepMix to accurately detect 3D

objects, among which the latency is 5 ms (14.7%) for data trans-

mission, 13 ms (38.2%) for server-side data processing, and 16 ms

(47.1%) for client-side data processing, respectively. Compared to

image-based models, DeepMix’s dynamic RoI encoding scheme

(§5.2) effectively reduces the data transmission time by 34% (from

6.7 ms to 5 ms). As DeepMix estimates the 3D bounding box on the

headset, its client-side data processing time (16 ms) is slightly longer

than that of other schemes (13.8 ms for image-based models and

models with RGB-D input, 11 ms for point-cloud-based models).

Thus, thanks to its lightweight design (§4) and various optimizations

(§5), the latency of DeepMix is far below the 100 ms requirement

for interactive AR/MR.

For existing 3D object detection models, their end-to-end latency

is dominated by the server-side processing time, especially for point-

cloud-based solutions. Even on the edge server, it takes about 23

ms to generate the point clouds. Note that although the end-to-end

latency of Mono3D [7] is also lower than 100 ms, as we will show

next (§7.3 & §7.4), its detection accuracy is much lower than that of

DeepMix, and its latency will be higher than 100 ms under dynamic

network conditions (Figure 15). Figure 11 shows that the data trans-

mission time of existing models with RGB-D and point cloud inputs

are higher than that of DeepMix and image-based models, due to the

additional depth images that are needed to learn the 3D bounding

box. We conduct the above experiments on the WiFi network with

high throughput (§7.1). When the network condition becomes worse,

this data transmission time of RGB-D data will be more noticeable.

We will evaluate the end-to-end latency on an LTE testbed in §7.7.

7.3 Detection Accuracy in Static Scenario
We compare the detection accuracy of DeepMix with existing mod-

els for the static scenario using the 3D IoU metric. To make the

comparison fair, we replay on the headset the 2,184 RGB-D images

in our collected dataset. We present the results for 3D IoU in Table 2.

For the static scenario, remarkably, DeepMix achieves better overall

35

DeepMix: Mobility-aware, Lightweight, and Hybrid 3D Object Detection for Headsets MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

Methods Input
3D IoU@0.25/0.5

Average
Table Chair Bottle Box Desk Bag TV

COG [54] PC 47.3/2.6 39.3/- 46.4/1.8 57.3/15.2 49.5/13.3 45.1/10.3 39.5/5.7 47.9/7.2

VoteNet [49] PC 56.2/23.6 45.5/22.2 67.2/18.3 52.4/22.6 48.6/14.2 54.3/18.5 41.9/19.2 51.6/21.7

MLCVNet [68] PC 61.3/22.5 74.2/27.6 68.2/16.4 62.1/22.3 63.7/26.5 57.6/21.1 52.3/17.9 63.1/22.1

F-PointNet [50] RGB-D 45.5/11.2 37.5/17.3 44.2/9.5 31.6/17.5 38.5/- 54.5/17.6 37.4/8.2 42.3/11.9

Trans3D [63] RGB-D 52.3/13.5 38.4/- 47.2/13.2 39.5/8.4 47.2/18.4 49.1/- 37.2/12.9 45.8/10.1

Mono3D [7] RGB 59.3/11.2 52.4/9.5 47.3/8.6 65.3/13.2 67.5/21.5 48.6/5.2 54.5/16.4 55.4/10.7

AM3D [41] RGB 65.9/14.9 71.2/11.3 62.7/16.3 57.8/10.7 49.2/12.5 51.7/11.2 57.9/12.9 58.7/13.6

D4LCN [12] RGB 68.3/14.3 69.2/24.4 67.2/18.6 58.9/21.5 62.3/14.3 56.6/9.6 57.2/11.7 63.9 /15.9

DeepMix Hybrid 72.4/37.5 67.4/33.7 63.1/38.4 66.5/39.1 72.1/33.2 65.8/46.5 61.2/31.8 67.4/37.2

Table 2: Class-wise comparison of DeepMix and state-of-the-art 3D object detection models (‘-’: the method could not detect the object).

performance than all other models across different object categories.

On average, DeepMix has the highest 3D IoU for both the 0.25 and

0.5 thresholds. One possible reason is that instead of completely rely-

ing on learning-based models, DeepMix estimates the 3D bounding

box using pixel-level depth information on the headset.

When the threshold is 0.5, DeepMix’s accuracy is the highest for

all object classes, and is 1.68⇥ (on average) over the best existing

model MLCVNet [68]. When the threshold changes to 0.25, the

detection accuracy of DeepMix is still higher than the best state-

of-the-art model D4LCN [12] by 3.5% (on average). In this case,

MLCVNet [68] performs the best for chairs and bottles. The reason

is that the depth data will be missing when there is a reflection on the

bottle, affecting the accuracy of DeepMix. We are exploring efficient

computer graphics algorithms [29, 56] to address this problem4. For

chairs with irregular shapes, the 3D bounding box estimation of

DeepMix may not be accurate from some specific viewing angles.

This issue could be alleviated in mobile scenarios (§7.4). For exam-

ple, if users are interested in an object, they may move around it to

inspect the details from different angles, which offers opportunities

to improve detection accuracy (§5.1). DeepMix still has the most

accurate results when the threshold is 0.5, 1.22⇥ (on average) over

the best existing model MLCVNet [68] (33.7% vs. 27.6%), for this

challenging “chair” category. We also evaluate the detection accu-

racy with another widely-used metric, called mean spatial position

accuracy (mSPA) [18]. The results (not shown due to the limited

space) are qualitatively similar to those of 3D IoU.

7.4 Detection Accuracy in Mobile Scenarios
Since AR/MR headsets are usually used in dynamic environments,

we design three mobility patterns, as shown in Figure 12, to further

evaluate the accuracy of DeepMix.

• Scenario 1: The user moves along a 2-meter line, perpendicular

to the line that connects its center and the object.

• Scenario 2: The user moves along a 2-meter line, away, or toward

the object (2 meters between line center and object).

• Scenario 3: The user moves around the object in a circle with a

diameter of 2 meters.

In the mobile scenarios, we cannot replay the collected RGB-D

images in our dataset that were captured at fixed locations. Thus, we

conduct controlled, live experiments with three moving speeds, 0.5,

1, and 2 m/s. The user always looks at the object when moving with

different patterns.

4The scheme [23] adopted by DeepMix (§4.3) is lightweight and cannot handle it.

We first examine the 3D IoU results for Scenario 3 that are pre-

sented in Table 3. For each setup with different movement patterns,

moving speeds, 3D object detection methods, we run the experiments

20 times to measure detection accuracy. Due to the large parameter

space (i.e., 8 methods, 3 patterns, 3 speeds, and 20 times for each

setup), we select 4 out 7 classes, chair, bottle, box, and bag. We only

report the 3D IoU for the threshold of 0.25, since DeepMix does

not achieve the most accurate detection for only the chair and bottle

categories with that threshold for the static scenario (Table 2).

Table 3 demonstrates that DeepMix outperforms all existing 3D

object detection models, for all four object classes, and under all

three moving speeds. The reason is that when the user moves around

the object, DeepMix can estimate and fine-tune the 3D bounding box

from different viewing angles, significantly boosting the detection

accuracy (§5.1). Another key observation from this table is that the

end-to-end latency drastically affects the detection accuracy in mo-

bile scenarios. While the best performing point-cloud-based model

MLCVNet [68] achieves comparable detection accuracy as the best

image-based model D4LCN [12] for the static scenario (63.1% vs.

63.9% in Table 2), the detection accuracy of MLCVNet is much

worse than D4LCN for this mobile scenario (e.g., 49.8% vs. 59.6

when the moving speed is 0.5 m/s). The worse performance of ML-

CVNet is mainly caused by its high end-to-end latency than D4LCN

(311 vs. 154 ms in Figure 11), which leads to the mismatch between

objects and their bounding boxes due to accumulated tracking errors.

Table 3 shows that fast moving speeds reduce detection accuracy.

For example, the accuracy is 71.2%, 61.8%, and 53.8% for the 0.5, 1,

and 2 m/s moving speeds, respectively. After analyzing the captured

traces of different speeds, we find that high moving speeds can result

in a larger and faster change of the object in the user’s viewport than

low moving speeds, which reduces the detection accuracy.

We next examine 3D IoU results for Scenario 1 in Table 4 and

Scenario 2 in Table 5, respectively. In these tables, we show results

for only 0.5 m/s moving speed. For the other speeds, DeepMix

still outperforms existing models. Moreover, we present results

for only MLCVNet [68] (the best performing point-cloud-based

method), AM3D [41], and D4LCN [12]. D4LCN performs better

than DeepMix for boxes. One of the possible reasons is that some

boxes in our collected dataset have uneven surfaces (e.g., big holes,

Figure 1) that affect the quality of captured depth images, which

the lightweight scheme [23] in DeepMix cannot fix. This issue

could potentially be addressed by leveraging computer graphics

algorithms (e.g., surface reconstruction [28]). The performance of

AM3D is slightly better than DeepMix for the chair category for

36

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA Yongjie Guan and Xueyu Hou, Nan Wu and Bo Han, and Tao Han

Methods Input
3D IoU@0.25 (Scenario 3: speed at 0.5, 1, and 2 m/s)

Average
Chair Bottle Box Bag

COG [54] PC 38.5/33.2/27.4 32.2/27.6/19.7 46.2/34.1/28.6 36.8/28.8/21.6 38.4/30.9/24.3

VoteNet [49] PC 48.4/35.5/29.2 52.1/43.2/24.6 48.5/36.7/28.2 45.2/30.2/18.1 48.6/36.4/25.1

MLCVNet [68] PC 55.7/42.2/28.4 53.7/43.2/33.9 45.2/30.2/19.8 44.6/25.1/17.2 49.8/35.1/24.8

F-PointNet [50] RGB-D 32.8/21.3/17.6 35.2/25.9/21.2 25.6/14.1/8.9 41.8/32.4/19.6 33.9/23.4/16.8

Trans3D [63] RGB-D 33.8/25.7/22.4 34.6/22.5/17.6 33.7/25.4/15.5 45.5/36.2/18.6 36.9/27.5/18.5

Mono3D [7] RGB 59.6/49.1/41.6 45.2/37.6/23.9 66.5/51.1/36.2 41.7/34.1/27.7 53.2/42.9/32.3

AM3D [41] RGB 64.5/54.2/47.3 59.4/47.2/32.9 63.3/54.9/46.2 61.4/53.2/42.5 62.1/52.4/42.2

D4LCN [12] RGB 65.3/49.2/41.7 54.8/47.3/39.2 64.7/56.8/48.9 53.6/48.6/39.5 59.6/50.5/42.3

DeepMix Hybrid 78.3/69.7/61.4 73.5/74.2/52.7 68.7/58.9/51.2 64.5/68.4/49.8 71.2/61.8/53.8

Table 3: Class-wise 3D IoU@0.25 comparison of DeepMix and state-of-the-art 3D object detection models for Scenario 3.

Methods Input
3D IoU@0.25: speed@0.5 m/s

Average
Chair Bottle Box Bag

MLCVNet [68] PC 54.2 56.1 47.1 37.5 48.7

AM3D [41] RGB 61.7 53.6 51.7 57.2 58.2

D4LCN [12] RGB 59.7 51.2 64.1 50.6 56.4

DeepMix Hybrid 63.1 58.1 59.4 57.9 60.5

Table 4: 3D IoU@0.25 comparison of DeepMix and state-of-the-

art 3D object detection models for Scenario 1.

Methods Input
3D IoU@0.25: speed@0.5 m/s

Average
Chair Bottle Box Bag

MLCVNet [68] PC 51.8 58.6 42.5 36.9 47.5

AM3D [41] RGB 67.2 59.4 60.4 55.4 60.6

D4LCN [12] RGB 65.2 57.4 68.2 52.4 60.8

DeepMix Hybrid 66.5 77.5 62.2 58.3 62.1

Table 5: 3D IoU@0.25 comparison of DeepMix and state-of-the-

art 3D object detection models for Scenario 2.

only Scenario 2 (67.2% vs. 66.5%). For Scenario 1, DeepMix still

outperforms AM3D (63.1% vs. 61.7%). The comparison between

Table 4 and Table 5 reveals that Scenario 2 leads to better per-

formance than Scenario 1 (e.g., 62.1% vs. 60.5% for DeepMix).

The reason is that, similar to the case of different moving speeds,

Scenario 1 may lead to a larger and faster change of the object in

the viewport than Scenario 2, affecting detection accuracy.

By comparing Table 3 with Tables 4 and 5, we find that the 3D

object detection accuracy is better for Scenario 3 than the other

two scenarios (e.g., 71.2% vs. 60.5% and 62.1% for DeepMix at

0.5 m/s moving speed.). One possible reason is that moving around

the object leads to more opportunities to view it from different

directions than the other two mobility patterns, which refine the

detection accuracy of DeepMix (§5.1). Note that existing 3D object

detection models cannot benefit from the movement of users. For

example, the detection accuracy is 59.6%, 60.8%, and 56.4% for

D4LCN [12] for scenarios 3, 2, and 1, respectively. On the other

hand, their accuracy may drop when users are moving around, due

to their high end-to-end latency of 3D object detection.

7.5 Motion-aware Bounding Box Refinement
We conduct experiments to evaluate the performance of bounding

box refinement in DeepMix when the user moves around an object.

We choose two objects, a box (regular) and a chair (irregular), as the

test objects and measure the 3D IoU of the estimated bounding box

and the ground truth after moving a certain degree, 0�, 30�, 60�, and

90
�. Figure 13 shows that when the user moves around the objects,

DeepMix can gradually refine the detection accuracy. The 3D IoU

increases from 0.578 to 0.822 for the chair and from 0.781 to 0.845

Moving Degrees

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0°

3
D

 I
o
U

30° 90°

BoxChair

60°

Figure 13: Performance of

motion-aware bounding box

refinement.

C
o
m

p
u
ti

n
g
 L

at
en

cy
 (

m
s)

Resolution of Input Image

0

50

100

150

200

250

300

350

360x240 1280x720640x480

Mate 10Server

HoloLens 2

Figure 14: Computing Latency

of YOLOv4-tiny on different

devices.

for the box after the user moves for 90�. The reason is that DeepMix

may not be able to accurately measure the dimension and orientation

of irregular objects from a single estimation based on only one depth

image (§4.5). However, when the user moves around the object, the

inaccurate estimation of dimension and orientation can be corrected

with more depth images from different viewing angles.

7.6 Executing DeepMix on Headsets without

Offloading
To demonstrate the benefits of offloading 2D object detection in

DeepMix to the remote server, we compare the performance of exe-

cuting the same model on the server (§7.1), the HoloLens 2 headset,

and a smartphone (HUAWEI Mate 10 Pro), in terms of computing la-

tency. Since HoloLens 2 and smartphones do not support the vanilla

YOLOv4 model [5], we utilize YOLOv4-tiny [1] as the object detec-

tion model for all three devices. The deep learning frameworks are

TensorFlow [2] for the server, TensorFlow Lite [20] for the smart-

phone, and Barracuda [64] for HoloLens 2. The resolutions of the

input images are 360 ⇥ 240, 640 ⇥ 480, and 1280 ⇥ 720.

Figure 14 shows that the computing latency of executing

YOLOv4-tiny on HoloLens 2 is much higher than that on the

server. The latency is 234.6ms (6.4ms), 262.1ms (8.7ms), and

337.2ms (11.5ms) on HoloLens 2 (the server) for the three resolu-

tions. While the chipset of HoloLens 2 (Snapdragon 850) is slightly

better than the HUAWEI Mate 10 Pro smartphone (Kirin 970), the

computing latency of HoloLens 2 is even 147.9ms (183.8ms) higher

than the smartphone when processing 360⇥ 240 (1280⇥ 720) images.

The reason is that the performance of these models depends on

not only the deep learning framework but also the hardware plat-

form [57]. Our experimental results demonstrate that the Barracuda

framework and HoloLens 2 cannot achieve real-time processing

of input images for 2D object detection, which justifies the design

decision of DeepMix that offloads it to the remote server.

37

DeepMix: Mobility-aware, Lightweight, and Hybrid 3D Object Detection for Headsets MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

100

150

200

250

0

Data Processing (Server)
Data Processing (Headset)

Point Cloud Const.
Data Trans.

DeepMix COGMono3D Trans3D

E
n
d

-t
o
-e

n
d
 L

at
en

cy
 (

m
s)

Figure 15: End-to-end latency on LTE network.

7.7 Impact of Dynamic Network Conditions
In addition to the high-throughput WiFi network, we evaluate the

performance of DeepMix on our USRP-based LTE testbed with

fluctuating network bandwidth (8.4–37.1 Mbps vs. 260 Mbps for

WiFi). The latency of LTE is also higher than that of WiFi (14

vs. 1 ms). The dynamic network conditions affect the end-to-end

latency of DeepMix (i.e., longer data transmission time and higher

network latency). We compare the performance of DeepMix with

three models Mono3D [7], Trans3D [63], and COG [54], which have

the lowest end-to-end latency in their own categories (Figure 11).

We plot the end-to-end latency on the LTE network in Figure 15.

In this figure, the latency of data transmission on the LTE network

is more visible, compared to the results in Figure 11 for the WiFi

network. The end-to-end latency of DeepMix increases from 34 ms

to 47–62 ms (51 ms on average) and is dominated by data transmis-

sion (on average 22 ms, 43.1%), whereas the latency of Mono3D [7],

which has the lowest latency among existing methods, increases from

91 ms to 105–118 ms, higher than the 100 ms latency requirement

of interactive AR/MR [6, 38]. The data transmission time increases

from 5 ms to 18–33 ms for RGB images, and from 8 ms to 24–39

ms for RGB-D images. The headset is static during the experiments,

and thus the dynamic network conditions have a limited impact on

detection accuracy. On this USRP-based LTE network, moving the

headset attached with an LTE dongle makes network connection

unstable. Hence, we do not conduct mobile experiments.

7.8 User Study
Besides the above evaluations on datasets and controlled experi-

ments, we assess the performance of DeepMix through an IRB-

approved user study to understand how the smoothness and accuracy

of 3D object detection affect user experience. We define smoothness

as the update frequency of 3D bounding boxes in dynamic environ-

ments, which reflects the end-to-end latency of object detection.

We conduct the user study with 33 diverse participants with age 18

to 45. Among them, 7 are female, 21 are familiar with AR/MR, and

3 used mobile headsets before. We ask each participant to experience

three 3D object detection schemes, DeepMix, MLCVNet [68] (point-

cloud-based), and D4LCN [12] (image-based). The last two have

better accuracy than other existing solutions (Table 2, Table 4, and

Table 5). We randomly order the three schemes, and thus participants

do not know which one is DeepMix. We ask the participants to

compare the smoothness and accuracy of the three solutions by

providing their mean opinion scores (MOS), from 1 to 5 (1: bad,

2: poor, 3: fair, 4: good, 5: excellent). Participants experience the

detection of a chair and a bottle by following the three mobility

patterns in Figure 12 for 30–60 seconds.

We observe the following from the results of our user study in

Figure 16. First, DeepMix leads to the best user experience in terms

A
v
er

ag
e

S
co

re

3

4

5

2
MP1

Detection AccuracyDetection Smoothness

MP2 MP3 MP1 MP2 MP3

DeepMix MLCVNet D4LCN

Figure 16: Evaluation of the smoothness and accuracy of 3D

object detection through a user study with 33 participants.

of both smoothness and accuracy, thanks to its lightweight and ac-

curate 3D object detection. For the average score, the smoothness

of DeepMix is 44.3% (10.4%), 59.4% (16.6%), and 56.9% (11.7%)

higher than that of MLCVNet [68] (D4LCN [12]) for the three mo-

bility patterns; whereas the accuracy of DeepMix is 48.2% (12.5%),

65.4% (5.1%), and 52.3% (9.6%) higher than that of MLCVNet [68]

(D4LCN [12]) for the three patterns. Second, the point-cloud-based

model MLCVNet [68] has the worse performance among the three,

mainly caused by its high end-to-end latency (due to the huge amount

of 3D data to process). This demonstrates the importance of end-

to-end latency for mobile AR/MR. Third, for both smoothness and

accuracy, the average score of DeepMix is still slightly lower than 4

(good experience), which shows that there is room to improve for

achieving immersive experience on mobile headsets.

7.9 Effectiveness of Bounding Box Caching
We conduct controlled experiments to evaluate the 3D bounding box

caching and reusing scheme (§5.3). We mount two headsets on a

gimbal that can rotate at a fixed angular velocity. Both headsets are

equipped with DeepMix, but only one of them has caching enabled.

We randomly place 3 objects around the gimbal for testing and rotate

both headsets 720� at the same time with the same speed. The result

shows that the time to render the bounding box of a cached item is

only 2.6–3.2 ms. Without caching, DeepMix needs to execute the

entire workflow, which takes at least 34 ms. Moreover, the number of

offloaded frames decreases from 113 to 12 when caching is enabled

and almost does not change without caching. Thus, our bounding

box caching optimization can drastically improve user experience,

reduce the amount of offloaded data, and decrease computation

overhead on both the edge and the headset.

7.10 Power and Computation Resources
To demonstrate its lightweight feature, we finally compare the

on-device battery power level and computation resource utiliza-

tion of DeepMix with MLCVNet [68] (point-cloud-based), and

D4LCN [12] (image-based). Existing schemes in the same category

have almost the same performance, because their heavy-lifting jobs

are all offloaded to the edge. We generate point clouds for MLCVNet

on mobile headsets to demonstrate its overhead. Otherwise, the

performance of MLCVNet is close to that of D4LCN. Due to the

high cost of generating point clouds, after using the headset for

40 minutes, the average battery power rate level of DeepMix is

8.2 W, which is 0.3 W higher than D4LCN and 1.8 W lower than

MLCVNet. The average CPU (memory) usage of DeepMix is only

24.3% (11.3%), which is 2.3% (0.4%) higher than D4LCN and 7.6%

(6.4%) lower than MLCVNet. There is no significant difference in

GPU usage among these methods. Unfortunately, we do not find a

method to measure the HPU utilization of Microsoft HoloLens 2.

38

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA Yongjie Guan and Xueyu Hou, Nan Wu and Bo Han, and Tao Han

8 DISCUSSION AND FUTURE WORK
Image-based 3D Object Detection. As shown in Table 2, image-

based 3D object detection such as D4LCN [12] achieves high ac-

curacy for the static scenario (e.g., only 3.5% lower than DeepMix

for 3D IoU@0.25). Its poor performance for the dynamic scenario

(11.6% lower than DeepMix in Table 3 for speed@0.5 m/s) is mainly

caused by the high end-to-end latency. However, it can potentially

handle more use cases than DeepMix, as we will discuss next. We

plan to optimize the runtime inference performance of image-based

3D object detection to make it practical.

Limitations. As the first-of-its-kind accurate 3D object detection

that is suitable for mobile headsets, DeepMix has a few limitations

of its current design. For example, it can detect mainly objects that

are placed on a plain surface, and it is challenging to detect, for

instance, a TV that is hung on a wall. Also, DeepMix could not

handle the case that the shape of the object changes during the user

movement, and its caching and reusing mechanism may not work for

deformable objects. However, we argue that the target scenarios of

DeepMix (e.g., objects on a plane and indeformable objects) are the

common use cases for indoor mobile AR/MR. Another issue is that

the range of depth cameras is typically limited (e.g., from 0.5 to 5.5

m), which our caching scheme can help only to some extent. Hence,

DeepMix cannot detect objects that are far away from users. We

are extending DeepMix to address these limitations. One possible

solution is to design a hybrid scheme that dynamically switches

between DeepMix and image-based 3D object detection [67], given

that plane detection is a solved problem [4, 16, 21] and the range of

RGB cameras is longer than that of depth ones.

Supporting Interactive AR/MR. The 3D object detection offered

by DeepMix lays the foundation for enabling real-time, interactive

AR/MR on mobile headsets. We plan to build various immersive

applications by leveraging this key capability of DeepMix.

Light-weighted and Low-priced AR/MR Headsets. The current-

generation of AR/MR headsets are responsible for executing

computation-intensive tasks locally. In the future, with the emerging

network technologies such as 5G and beyond, we expect that the

majority of tasks with heavy computation can be offloaded to remote

cloud/edge servers. As a result, the weight and cost of future AR/MR

headsets may be greatly reduced.

9 RELATED WORK

3D Object Detection. Point-cloud-based 3D Object Detection:

With the development of deep learning models on point clouds [51],

many 3D object detection models have emerged [13, 35, 49, 51, 68,

73]. For example, approaches such as VoteNet [49], COG [54], and

MLCVNet [68] can directly take raw point cloud as input. Thanks to

the available depth information and the underlying DNN networks,

those methods can achieve high detection accuracy. Image-based

3D Object Detection: Instead of processing point clouds, some

existing schemes [7, 8, 12, 41] utilize 2D detectors to achieve 3D

object detection. For example, D4LCN [12] estimates the depth

information from monocular images and fuses RGB and depth using

improved 2D convolutions to generate 3D bounding boxes. 3D

Object Detection with RGB-D Input: This category utilizes both

RGB images and depth data for 3D object detection [34, 50, 61, 63].

For example, F-PointNet [50] narrows down the 3D space by lever-

aging 2D object detection and further performs segmentation on

selected 3D frustums with PointNet [51] to help estimate the 3D

bounding box. Although these approaches can reduce the amount

of to-be-processed 3D data, their accuracy is usually not as good

as point-cloud-based schemes. Different from the above work,

DeepMix benefits from 2D object detection models that have low

computation latency. By utilizing real-time depth information from

sensors, it can achieve high 3D object detection accuracy with low

end-to-end latency.

Mobile AR/MR. There is a rich literature on building mobile

AR/MR systems [3, 6, 10, 31, 36, 47, 69]. For example, Home-

Meld [31] enables the telepresence between remote living areas

through robot agents as avatars, by finding an equivalent functional

place in rooms and predicting real-time paths to prevent lagging

caused by the robot’s slow movement. LpGL [10] is a device-

independent graphics library that reduces energy consumption for

mobile headset applications, which dynamically selects frame rate

and object shape complexity and leverages user movements to

extend the battery life. Heimdall [69] coordinates concurrent GPU

usage for multi-tasking in mobile AR applications, by splitting the

DNNs into small units and executing them between rendering frames.

Different from the above work, DeepMix offers a real-time, accurate

3D object detection framework, which is missing in existing mobile

AR/MR systems, to support better interaction between and seamless

integration of the digital and 3D physical worlds and provide a truly

immersive user experience for headset-based applications.

10 CONCLUSION
In this paper, we present the design, implementation, and evaluation

of DeepMix, a mobility-aware, lightweight, and accurate 3D object

detection system for improving the quality of user experience of

AR/MR applications running on mobile headsets. Instead of directly

leveraging/accelerating existing 3D object detection models that are

computation-intensive, DeepMix benefits from mature 2D object

detection algorithms to derive a bounding box for the object of inter-

est. It then utilizes this 2D bounding box to extract depth data from

depth images captured by the headset and estimates the 3D bound-

ing box by effectively exploring 3D geometry and data processing.

By doing this, DeepMix not only reduces the end-to-end latency

of AR/MR applications but also drastically increases the detection

accuracy in dynamic environments, by exploiting the mobility of

headsets. We implement DeepMix on a commodity mobile headset

and compare its performance with several state-of-the-art 3D object

detection models. Our extensive experiments, including a user study,

demonstrate the efficacy of DeepMix in terms of both end-to-end

latency and detection accuracy.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd Mahadev

Satyanarayanan for their insightful comments. The research of Tao

Han, Yongjie Guan and Xueyu Hou is partially supported by the

US National Science Foundation under Grant No. 2147821, No.

2147623, No. 2047655, and No. 2049875. The research of Bo Han

and Nan Wu was funded in part by 4-VA, a collaborative partnership

for advancing the Commonwealth of Virginia.

39

DeepMix: Mobility-aware, Lightweight, and Hybrid 3D Object Detection for Headsets MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

REFERENCES
[1] YOLOv4-Tiny. https://github.com/HirataYurina/yolov4-tiny-keras.
[2] TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Soft-

ware available from tensorflow.org.
[3] K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, and A. K. Roy-

Chowdhury. Frugal Following: Power Thrifty Object Detection and Tracking for
Mobile Augmented Reality. In Proceedings of ACM Conference on Embedded

Networked Sensor Systems (SenSys), 2019.
[4] Apple Inc. ARKit (initial release on June 2017). https://developer.apple.com/arkit/,

2017.
[5] A. Bochkovskiy, C. Wang, and H. M. Liao. YOLOv4: Optimal Speed and Accuracy

of Object Detection. CoRR, abs/2004.10934, 2020.
[6] K. Chen, T. Li, H.-S. Kim, D. E. Culler, and R. H. Katz. MARVEL: Enabling

Mobile Augmented Reality with Low Energy and Low Latency. In Proceedings

of ACM Conference on Embedded Networked Sensor Systems (SenSys), 2018.
[7] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun. Monocular 3D

Object Detection for Autonomous Driving. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2016.
[8] X. Chen, K. Kundu, Y. Zhu, H. Ma, S. Fidler, and R. Urtasun. 3D Object Proposals

Using Stereo Imagery for Accurate Object Class Detection. IEEE Trans. Pattern

Anal. Mach. Intell., 40(5):1259–1272, 2018.
[9] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-View 3D Object Detection

Network for Autonomous Driving. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017.
[10] J. Choi, H. Park, J. Paek, R. K. Balan, and J. Ko. LpGL: Low-power Graphics

Library for Mobile AR Headsets. In Proceedings of the 17th Annual International

Conference on Mobile Systems, Applications, and Services (MobiSys), 2019.
[11] Cytron. LM35 temperature sensor. https://tutorial.cytron.io/2017/07/13/getting-

started-temperature-sensor-celsius-sn-lm35dz/.
[12] M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu, and P. Luo. Learning Depth-

Guided Convolutions for Monocular 3D Object Detection. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

[13] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner. Vote3deep: Fast Ob-
ject Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks.
In 2017 IEEE International Conference on Robotics and Automation (ICRA),
2017.

[14] Y. Fang, R. Nakashima, K. Matsumiya, I. Kuriki, and S. Shioiri. Eye-Head
Coordination for Visual Cognitive Processing. PloS one, 10(3):e0121035, 2015.

[15] Y. Feng, B. Tian, T. Xu, P. Whatmough, and Y. Zhu. Mesorasi: Architecture
Support for Point Cloud Analytics via Delayed-Aggregation. In Proceedings of

IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020.
[16] M. A. Fischler and R. C. Bolles. Random Sample Consensus: A Paradigm for

Model Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM, 24(6):381–395, 1981.

[17] FLIR. FLIR E8-XT Infrared Camera with Extended Temperature Range. https:
//www.flir.com/products/e8-xt/.

[18] A. Frisoli, M. Solazzi, D. Pellegrinetti, and M. Bergamasco. A New Screw Theory
Method for the Estimation of Position Accuracy in Spatial Parallel Manipulators
with Revolute Joint Clearances. Mechanism and Machine Theory, 46(12):1929–
1949, 2011.

[19] R. B. Girshick. Fast R-CNN. In Proceedings of the IEEE International Conference

on Computer Vision (ICCV), 2015.
[20] Google. TensorFlow Lite. https://www.tensorflow.org/lite/api_docs.
[21] Google. ARCore (initial release on March 2018). https://developers.google.com/

ar/, 2018.
[22] J. Grubert, Y. Itoh, K. Moser, and J. E. Swan. A Survey of Calibration Meth-

ods for Optical See-Through Head-Mounted Displays. IEEE Transactions on

Visualization and Computer Graphics, 24(9):2649–2662, Sep. 2018.
[23] A. Grunnet-Jepsen and D. Tong. Depth Post-Processing for Intel Realsense™

D400 Depth Cameras. New Technologies Group, Intel Corporation, 2018.
[24] Y. Guan, X. Hou, T. Han, and S. Zhang. Deepmix: A real-time adaptive vir-

tual content registration system with intelligent detection. In IEEE INFOCOM

2021 - IEEE Conference on Computer Communications Workshops (INFOCOM

WKSHPS), pages 1–2, 2021.
[25] X. Hou, Y. Guan, T. Han, and N. Zhang. Distredge: Speeding up convolutional

neural network inference on distributed edge devices. In 36th IEEE International

Parallel and Distributed Processing Symposium (IPDPS), 2022.
[26] X. Hou and T. Han. Trustserving: A quality inspection sampling approach for

remote dnn services. In 2020 17th Annual IEEE International Conference on

Sensing, Communication, and Networking (SECON), pages 1–9, 2020.
[27] Intel. Intel RealSense D435. https://www.intelrealsense.com/depth-camera-d435/.
[28] S. Izadi, R. A. Newcombe, D. Kim, O. Hilliges, D. Molyneaux, S. Hodges, P. Kohli,

J. Shotton, A. J. Davison, and A. W. Fitzgibbon. KinectFusion: Real-Time Dy-
namic 3D Surface Reconstruction and Interaction. In Proceedings of International

Conference on Computer Graphics and Interactive Techniques (SIGGRAPH),
2011.

[29] Y. Ji, Q. Xia, and Z. Zhang. Fusing Depth and Silhouette for Scanning Transparent
Object with RGB-D Sensor. International Journal of Optics, 2017:1–11, 2017.

[30] P. Kainiemi and I. Salento. kinect-bits (including “Simple Background Removal
and ROI Estimation” and “Floor Determination and Removal”). https://github.
com/kainiemi/kinect-bits/.

[31] B. Kang, I. Hwang, J. Lee, S. Lee, T. Lee, Y. Chang, and M. K. Lee. My Being to
Your Place, Your Being to My Place: Co-present Robotic Avatars Create Illusion
of Living Together. In Proceedings of the 16th Annual International Conference

on Mobile Systems, Applications, and Services (MobiSys), 2018.
[32] Keithley. Keithley Series 2281S Battery Simulator. https://www.tek.com/tektronix-

and-keithley-dc-power-supplies/2281s.
[33] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander. Joint 3D Proposal

Generation and Object Detection from View Aggregation. In Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2018.

[34] J. Lahoud and B. Ghanem. 2D-Driven 3D Object Detection in RGB-D Images. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV),
2017.

[35] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom. PointPil-
lars: Fast Encoders for Object Detection From Point Clouds. In Proceedings

of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2019.

[36] Z. Li, M. Annett, K. Hinckley, K. Singh, and D. Wigdor. HoloDoc: Enabling Mixed
Reality Workspaces that Harness Physical and Digital Content. In Proceedings of

the 2019 CHI Conference on Human Factors in Computing Systems, 2019.
[37] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and

C. L. Zitnick. Microsoft COCO: Common Objects in Context. In Proceedings of

European Conference on Computer Vision (ECCV), 2014.
[38] L. Liu, H. Li, and M. Gruteser. Edge Assisted Real-time Object Detection for

Mobile Augmented Reality. In Proceedings of the 25th Annual International

Conference on Mobile Computing and Networking (MobiCom), 2019.
[39] L. Liu, J. Lu, C. Xu, Q. Tian, and J. Zhou. Deep Fitting Degree Scoring Network

for Monocular 3D Object Detection. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), 2019.
[40] G. Lukács, R. Martin, and D. Marshall. Faithful Least-Squares Fitting of Spheres,

Cylinders, Cones and Tori for Reliable Segmentation. In Proceedings of European

Conference on Computer Vision (ECCV), 1998.
[41] X. Ma, Z. Wang, H. Li, P. Zhang, W. Ouyang, and X. Fan. Accurate Monocular

3D Object Detection via Color-Embedded 3D Reconstruction for Autonomous
Driving. In Proceedings of the IEEE/CVF International Conference on Computer

Vision (ICCV), 2019.
[42] Magic Leap Inc. Magic Leap One. https://www.magicleap.com/magic-leap-one.
[43] Microsoft Corporation. DirectX. https://docs.microsoft.com/en-us/windows/

win32/directx-sdk--august-2009-.
[44] Microsoft Corporation. Microsoft HoloLens 2. https://www.microsoft.com/en-

us/hololens.
[45] Microsoft Corporation. Mixed Reality Documentation. https://docs.microsoft.

com/en-us/windows/mixed-reality.
[46] Microsoft Corporation. Windows SDK. https://docs.microsoft.com/en-us/

windows/win32/api/.
[47] T. Park, M. Zhang, and Y. Lee. When Mixed Reality Meets Internet of Things: To-

ward the Realization of Ubiquitous Mixed Reality. GetMobile: Mobile Computing

and Communications, 22(1):10–14, 2018.
[48] C. R. Qi, X. Chen, O. Litany, and L. J. Guibas. ImVoteNet: Boosting 3D Object

Detection in Point Clouds With Image Votes. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
[49] C. R. Qi, O. Litany, K. He, and L. J. Guibas. Deep Hough Voting for 3D Ob-

ject Detection in Point Clouds. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), 2019.
[50] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frustum PointNets for 3D

Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488, 2017.
[51] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep Learning on Point Sets

for 3D Classification and Segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2017.
[52] J. Redmon. Darknet: Open Source Neural Networks in C. http://pjreddie.com/

darknet/, 2013–2016.
[53] J. Redmon and A. Farhadi. YOLOv3: An Incremental Improvement. ArXiv,

abs/1804.02767, 2018.
[54] Z. Ren and E. B. Sudderth. Three-Dimensional Object Detection and Layout

Prediction Using Clouds of Oriented Gradients. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[55] D. Roetenberg, H. Luinge, and P. Slycke. Xsens MVN: Full 6DOF Human Motion

Tracking Using Miniature Inertial Sensors. Xsens Motion Technologies BV, Tech.

Rep, 1, 2009.
[56] S. Sajjan, M. Moore, M. Pan, G. Nagaraja, J. Lee, A. Zeng, and S. Song. Clear-

Grasp: 3D Shape Estimation of Transparent Objects for Manipulation. In Pro-

ceedings of the 2020 IEEE International Conference on Robotics and Automation

(ICRA), 2020.

40

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA Yongjie Guan and Xueyu Hou, Nan Wu and Bo Han, and Tao Han

[57] S. Shams, R. Platania, K. Lee, and S.-J. Park. Evaluation of deep learning frame-
works over different hpc architectures. In 2017 IEEE 37th International Confer-

ence on Distributed Computing Systems (ICDCS), pages 1389–1396, 2017.
[58] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li. PV-RCNN:

Point-Voxel Feature Set Abstraction for 3D Object Detection. In Proceedings

of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

[59] S. Shi, X. Wang, and H. Li. PointRCNN: 3D Object Proposal Generation and
Detection From Point Cloud. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 2019.
[60] S. Song, S. P. Lichtenberg, and J. Xiao. SUN RGB-D: A RGB-D Scene Under-

standing Benchmark Suite. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2015.
[61] S. Song and J. Xiao. Deep Sliding Shapes for Amodal 3D Object Detection in

RGB-D Images. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016.
[62] K. H. Strobl and G. Hirzinger. More Accurate Pinhole Camera Calibration with

Imperfect Planar Target. In Proceedings of IEEE International Conference on

Computer Vision Workshops (ICCV Workshops), 2011.
[63] Y. S. Tang and G. H. Lee. Transferable Semi-Supervised 3D Object Detection

From RGB-D Data. In Proceedings of the IEEE/CVF International Conference

on Computer Vision (ICCV), 2019.
[64] Unity. Barracuda. https://docs.unity3d.com/Packages/com.unity.barracuda@1.0/

manual/index.html.
[65] Unity Technologies. Unity Real-Time Development Platform. https://unity3d.

com/.

[66] H. Wang, Y. Cong, O. Litany, Y. Gao, and L. J. Guibas. 3DIoUMatch: Leveraging
IoU Prediction for Semi-Supervised 3D Object Detection. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

[67] N. Wu, F. X. Lin, F. Qian, and B. Han. Hybrid Mobile Vision for Emerging
Applications. In Proceedings of the 23nd ACM Workshop on Mobile Computing

Systems and Applications (HotMobile), 2022.
[68] Q. Xie, Y. Lai, J. Wu, Z. Wang, Y. Z. andvote Kai Xu, and J. Wang. MLCVNet:

Multi-Level Context VoteNet for 3D Object Detection. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

[69] J. Yi and Y. Lee. Heimdall: Mobile GPU Coordination Platform for Augmented
Reality Applications. In Proceedings of the 26th Annual International Conference

on Mobile Computing and Networking (MobiCom), 2020.
[70] H. Zhang, B. Han, C. Y. Ip, and P. Mohapatra. Slimmer: Accelerating 3D Se-

mantic Segmentation for Mobile Augmented Reality. In Proceedings of IEEE

International Conference on Mobile Ad Hoc and Sensor Systems (MASS), 2020.
[71] H. Zhang, B. Han, and P. Mohapatra. Toward Mobile 3D Vision. In Proceedings

of IEEE International Conference on Computer Communications and Networks

(ICCCN), 2020.
[72] W. Zhang, B. Han, and P. Hui. Jaguar: Low Latency Mobile Augmented Reality

with Flexible Tracking. In Proceedings of the 26th ACM international conference

on Multimedia (MM), 2018.
[73] Y. Zhou and O. Tuzel. VoxelNet: End-to-End Learning for Point Cloud Based 3D

Object Detection. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2018.

41

