DeepMix: Mobility-aware, Lightweight, and Hybrid 3D
Object Detection for Headsets

Yongjie Guan and Xueyu Hou
New Jersey Institute of Technology
{yg274,xh29} @njit.edu

ABSTRACT

Mobile headsets should be capable of understanding 3D physi-
cal environments to offer a truly immersive experience for aug-
mented/mixed reality (AR/MR). However, their small form-factor
and limited computation resources make it extremely challenging
to execute in real-time 3D vision algorithms, which are known to
be more compute-intensive than their 2D counterparts. In this paper,
we propose DeepMix, a mobility-aware, lightweight, and hybrid 3D
object detection framework for improving the user experience of
AR/MR on mobile headsets. Motivated by our analysis and evalu-
ation of state-of-the-art 3D object detection models, DeepMix in-
telligently combines edge-assisted 2D object detection and novel,
on-device 3D bounding box estimations that leverage depth data
captured by headsets. This leads to low end-to-end latency and sig-
nificantly boosts detection accuracy in mobile scenarios. A unique
feature of DeepMix is that it fully exploits the mobility of headsets
to fine-tune detection results and boost detection accuracy. To the
best of our knowledge, DeepMix is the first 3D object detection
that achieves 30 FPS (i.e., an end-to-end latency much lower than
the 100 ms stringent requirement of interactive AR/MR). We imple-
ment a prototype of DeepMix on Microsoft HoloLens and evaluate
its performance via both extensive controlled experiments and a
user study with 30+ participants. DeepMix not only improves detec-
tion accuracy by 9.1-37.3% but also reduces end-to-end latency by
2.68-9.15%, compared to the baseline that uses existing 3D object
detection models.

CCS CONCEPTS

* Human-centered computing — Ubiquitous and mobile com-
puting systems and tools; Systems and tools for interaction design.

KEYWORDS

3D Object Detection, Hybrid Mobile Vision, Augmented and Mixed
Reality, Mobile Headsets

ACM Reference Format:

Yongjie Guan and Xueyu Hou, Nan Wu and Bo Han, and Tao Han. 2022.
DeepMix: Mobility-aware, Lightweight, and Hybrid 3D Object Detection for
Headsets. In The 20th Annual International Conference on Mobile Systems,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

MobiSys '22, June 25-July 1, 2022, Portland, OR, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9185-6/22/06. .. $15.00
https://doi.org/10.1145/3498361.3538945

Nan Wu and Bo Han

George Mason University
{nwu5,bohan} @gmu.edu

28

Tao Han
New Jersey Institute of Technology

tao.han @njit.edu

Applications and Services (MobiSys '22), June 25-July 1, 2022, Portland,
OR, USA. 14 pages. https://doi.org/10.1145/3498361.3538945

Figure 1: Workflow of DeepMix: (a) 2D bounding box on an
image, (b) Bounding box alignment on a depth frame, (c) Back-
ground removal, (d) Key points detection, (¢) Key point projec-
tion, (f) Central point calculation, (g) Dimension and orientation
estimation, (h) 3D bounding box visualization.

1 INTRODUCTION

Mobile headsets such as Microsoft HoloLens [44] and Magic Leap
One [42] bring numerous opportunities to enable truly immersive
augmented/mixed reality (AR/MR). To offer the best quality of
experience (QoE), real-time, interactive AR/MR should be able to
perceive and understand the surrounding environment in 3D for
seamlessly blending virtual and physical objects [10, 24]. With
recent advances in 3D data capturing devices such as LiDAR and
depth cameras, the computer vision (CV) community has developed
several 3D object detection algorithms [12, 35, 51, 58, 63, 68, 73] by
leveraging deep neural networks (DNNs). Due to the huge amount of
data to process, 3D object detection is more computation-intensive
than its 2D counterpart [15]. Moreover, the performance of 3D vision
algorithms heavily depends on the quality of input data (e.g., point
cloud density or depth image resolution) [71]. Thus, existing AR/MR
systems [3, 6, 38, 72] mainly focus on 2D object detection.

Even for the 2D case, it is well-known that the high latency
caused by DNN inference negatively impacts the quality of user ex-
perience [3, 25]. A widely-used acceleration technique is to offload
the compute-heavy tasks to cloud/edge servers [26, 38, 72], which is
also a promising solution to speed up 3D object detection. However,
we find that even with the help of a powerful GPU, the inference
time of 3D object detection ranges from 72 to 283 ms (§2.3). By
considering the network latency for offloading and local process-
ing time on headsets, the end-to-end latency of AR/MR systems
that integrate existing 3D object detection models would be higher
than 100 ms, the threshold required by interactive AR/MR [6, 38],
hindering providing an immersive experience to users.

In this paper, we propose DeepMix, a mobility-aware, lightweight,
and accurate 3D object detection framework that can offer 30 frames
per second (FPS) processing rate on Microsoft HoloLens 2, a com-
modity mobile headset. Our key insight is that instead of utilizing

MobiSys '22, June 25-July 1, 2022, Portland, OR, USA

Methods Input E2E Lat. Accuracy Mobility
MLCVNet [68] | Point Cloud High Medium -
Trans3D [63] RGB-D Med. High Low -
D*LCN [12] RGB Med. Low Medium -
DeepMix Hybrid Low High +

Table 1: Comparison of DeepMix and existing DNN-based 3D
object detection models. By exploiting headset mobility (+),
DeepMix achieves low end-to-end (E2E) latency and high de-
tection accuracy.

DNN-based 3D object detection models to learn object class and
infer bounding box, we can decouple the whole process and mea-
sure/estimate the 3D bounding box of an object by processing depth
data on headsets. The key challenge of designing DeepMix is again
the huge amount of 3D data to handle, given the limited computation
resources on the headset. Also, while it is feasible, although not
trivial, to measure the size and the 6DoF (six degrees of freedom)
pose of an object (i.e., its position and orientation), we still need to
label the object of interest.

To address the above challenges, we design a hybrid mechanism
that combines the mature DNN-based 2D object detection, which
is fast by offloading it to the edge, and our lightweight and intelli-
gent on-device depth data processing. More specifically, DeepMix
offloads only 2D RGB images to the edge for object detection (i.e.,
getting the label) and benefits from the returned 2D bounding box to
drastically reduce the amount of to-be-processed 3D data. By doing
this, DeepMix achieves accurate 3D object detection at line-rate (i.e.,
30 FPS). A unique feature of DeepMix is that it can fully exploit the
movement of users to further fine-tune the measured bounding box
and boost object-detection accuracy. To the best of our knowledge,
DeepMix is the first 3D object detection framework that can bring
about both low latency and high accuracy. We compare DeepMix
and existing DNN-based models in Table 1.

Our detailed study of DeepMix consists of the following:
Performance Dissection of Existing 3D Object Detection Meth-
ods (§2). To understand the feasibility of applying existing DNN-
based 3D object detection to interactive AR/MR, we investigate the
detection accuracy and computation latency of eight state-of-the-art
algorithms. We find that existing methods are not ready for real-time
AR/MR applications due to the high computation latency.

Novel System Design of DeepMix (§4). As shown in Figure 1,
DeepMix starts by offloading only RGB images to the edge that
executes 2D object detection models for labeling objects of interest
and generating their 2D bounding boxes (Figure 1 (a)). After aligning
the bounding box on the depth image, it extracts depth data of
only the target object (Figure 1 (b)—(c)). It then detects two key
points on the 3D bounding box and projects one of them to the
ground for determining the center point of the box (Figure 1 (d)—(f)).
Finally, after inferring the dimension of the object and measuring its
orientation, DeepMix renders the 3D bounding box on the display
of the headset (Figure 1 (g)—(h)).

Effective Performance Optimization of DeepMix (§5). To further
improve detection accuracy and end-to-end latency, we propose a
few optimizations for DeepMix. Our key optimization is to leverage
device mobility to refine the estimated bounding box. By doing
this, we dramatically enhance the detection accuracy of DeepMix
in dynamic environments. This feature makes DeepMix competitive
for mobile AR/MR.

29

Yongjie Guan and Xueyu Hou, Nan Wu and Bo Han, and Tao Han

Environment Model

Head Tracking Cameras
A

D

RGB
Camera H >y e
Depth Camera User Virtual Object
Figure 2: Configuration of mobile headsets (i.e., Microsoft
HoloLens 2) and a typical application scenario.

Implementation of DeepMix and Performance Evaluation (§7).
We build a prototype implementation of DeepMix and thoroughly
evaluate its performance via repeatable, controlled (live) experiments
and a user study with more than 30 participants. We highlight our
evaluation results as follows.

e On a high-throughput WiFi network, the end-to-end latency of
DeepMix is only 34 ms (§7.2), much lower than that of existing
DNN-based models (ranging from 91 to 311 ms).

o Compared to the besting performing existing model (D*LCN [12]),
the accuracy improvement of DeepMix increases from 3.5% for the
static scenarios to up to 11.5% for the mobile scenarios.

o The experimental results from our user study demonstrate that the
accuracy of DeepMix is 12.5%, 5.1%, and 9.6% higher than that of
the most accurate existing model (D*LCN [12]) for three pre-defined
mobility patterns, leading to a better QoE (§7.8).

Overall, DeepMix is a first-of-its-kind practical 3D object detec-
tion framework for mobile headsets. We make the following con-
tributions in this paper: (1) performance dissection of DNN-based
3D object detection models in the context of real-time, interactive
AR/MR on mobile headsets; (2) system design of DeepMix, a full-
fledged, ready-to-deploy 3D object detection framework for com-
modity mobile headsets that fully exploits device mobility to boost
detection accuracy; and (3) prototype implementation and evalua-
tion of DeepMix, including dataset-driven repeatable experiments,
controlled live experiments, and an IRB-approved user study. We
plan to release the implementation of DeepMix.

2 BACKGROUND & MOTIVATION
2.1 Mobile Headsets for AR/MR

Different from smartphones that can support only video see-through
AR by overlaying virtual content in the physical world that is dis-
played via the devices’ camera view, headsets allow users to see the
physical world through a transparent, optical see-through display
that simultaneously imposes virtual objects into the user’s view of
the surrounding environment using optical combiners [22]. As a
result, those headsets create a truly immersive AR/MR experience,
compared to smartphones and tablets, by extending our perception of
the environment from 2D images to the 3D real world and enabling
interactions between users and virtual objects.

Take Microsoft HoloLens as an example [45]. As illustrated in
Figure 2, it has an RGB camera, a time-of-flight (ToF) sensor for
depth perception, four visible light cameras for head tracking, and
two infrared cameras for eye tracking. It is also equipped with an
inertial measurement unit (IMU) with an accelerometer, gyroscope,
and magnetometer. With these sensors, HoloLens can perceive the
surrounding environment by building a 3D model and blending the
digital and physical worlds based on this 3D model of the envi-
ronment. To accurately mix virtual content with physical objects,

DeepMix: Mobility-aware, Lightweight, and Hybrid 3D Object Detection for Headsets

2D Object Detection 3D Object Detection
Figure 3: Comparison between 2D and 3D object detection.

HoloLens creates a spatial coordinate system of the physical world.
This coordinate system uses the initial location where the HoloLens
was turned on as the origin. Moreover, to guarantee an immersive
experience, AR/MR applications running on HoloLens should be
capable of detecting objects in 3D space (i.e., conducting 3D object
detection [35, 51, 58, 73]), instead of leveraging 2D object detection
in traditional AR systems [3, 6, 38, 72].

Mobile headsets are usually lightweight and wearable. As a result,
their hardware resources and computation capabilities are limited.
For instance, Microsoft HoloLens has an Intel 1GHz 32-bit processor
with a customized holographic processing unit (HPU) and only
2GB of memory [45]. Such limited computation resources make
it challenging to support the real-time execution of deep neural
networks for 3D object detection [35, 51, 58, 73]. Furthermore,
headsets’ batteries can usually last only 2-3 hours, and the heat
generated from the headset can only be dissipated via passive cooling.
Hence, considering the energy consumption, mobile headsets are
unsuitable for executing heavy computation tasks.

2.2 A Primer of 3D Object Detection

In Figure 3, we visualize the difference between 2D and 3D object
detection. The result of 2D object detection is a rectangular bounding
box of the object in a 2D image. In contrast, the result of 3D object
detection is a cubic bounding box of the object that provides three
dimensional information of the object in the real world.

We can classify existing methods of 3D object detection into three
categories based on their input-data format. The first one utilizes
point clouds as the input and directly draws 3D bounding boxes on
them [35, 48, 49, 54, 58, 68]. Point clouds can be either captured
by LiDAR devices or generated by processing the RGB images
and their corresponding depth images. The second category uses
RGB images as the input of DNN models and learns 3D bounding
boxes that will be drawn on 2D images [7, 8, 12, 41]. Some of the
algorithms actually generate/estimate depth maps from RGB images
to train the DNN models [12, 41]. Image-based 3D object detection
is an active research area because its run-time inference relies on
only RGB images that are much easier to capture at a low cost,
compared to 3D data such as depth maps and point clouds. The
third category benefits from 2.5D data (i.e., RGB-D images) that
combine 2D RGB images and depth maps [34, 50, 61, 63]. While
both DeepMix and methods in this category use RGB images and
depth data, the key difference is that DeepMix offloads only RGB
images to the edge for 2D object detection and processes depth data
on the headset, whereas models with RGB-D input offload both
RGB and depth images for 3D object detection. We offer a detailed
review of existing work on 3D object detection in §9.

2.3 Challenges of 3D Object Detection

There are several challenges when executing 3D object detection for
AR/MR applications on mobile headsets. The first one is that the per-
formance of 3D vision algorithms heavily depends on the quality of

30

MobiSys '22, June 25-July 1, 2022, Portland, OR, USA

9 70| @3 COG 70| 3 F-PointNet 70| = Mono3D
< 60| 23 VoteNet 60| 3 Trans3D 60| =0 AM3D
g5 MLCVNet 50 50 D'LCN

340 40 40
<30 30 30
220 20 20
210 10 10
a0

0 0
360%240 640x480 1024x768 360%240 640x480 1024x768

335K 137K 342K
Number of Points Depth Resolution RGB Resolution
£350 — 350 350
;ﬂi]() €OG 1 [F-PointNet '}(‘)0 Mono3D

22001 3 VoteNet 300 3 Trans3D : 1 AM3D

5250 MLCVNet 250 250 D'LCN

5200 200 200

=

150
100 100
50 50

150

0
360x240 640x480 1024x768
Depth Resolution

0
335K 137K 342K 360%240 640x480 1024x768
Number of Points RGB Resolution

Figure 4: Accuracy (1st row) and computation latency (2nd row)
of 3D object detection methods using point cloud (left column),
RGB-D (middle column), and 2D image (right column) input-
data formats. The point clouds with 33.5K, 137K, and 342K
points are generated from depth images with 360x240, 640x480,
and 1024x768 resolutions, respectively.

input data (i.e., the resolution of depth images or the density of point
clouds). For example, the accuracy of 3D semantic segmentation
decreases when the point clouds become sparse [70]. However, due
to the limited hardware resources on mobile headsets, the resolution
of their captured depth images is usually low, for instance, 360x360
for Microsoft HoloLens 2 at 30+ FPS!. In contrast, standalone RGB-
D cameras such as Intel RealSense and Microsoft Kinect DK can
capture depth images with 1024x768 and 1024x1024 resolutions
at 30+ FPS2. Thus, the density of point clouds generated from the
depth images is also low (e.g., around only 33.5K points when using
360x240 depth images).

In order to understand the impact of input-data quality on 3D
object detection, we evaluate the accuracy of the following repre-
sentative algorithms using point clouds with different densities that
are generated from depth images with different resolutions. We use
3D IoU that is defined in §7 as the evaluation metric. We select
COG [54], VoteNet [49], and MLCVNet [68] for 3D object detec-
tion with point clouds as input and F-PointNet [50] and Trans3D [63]
for models using RGB-D input. As the baseline, we evaluate the
performance of Mono3D [7], AM3D [41], and D*LCN [12] that take
2D images as input. We train the above models with the publicly
available SUN RGB-D dataset [60]. The testing RGB and depth
images with different resolutions are created by the Intel RealSense
camera. As a motivating example, the captured object is a bottle
under a given setting (i.e., a specific viewing angle and distance, see
Figure 10). We conduct an extensive evaluation for different objects
under different settings in §7.

The main observations from the experimental results in Figure 4
are as follows. First, the detection accuracy is extremely low for
point-cloud-based models (at most 1.6% in the upper-left subfigure)
and models using RGB-D images as input data (5.1%-6.8% in the
upper-middle subfigure), when the resolution of depth images is
360x240 (i.e., the typical setup of HoloLens 2). Second, when the
quality of input data is low, image-based models achieve the most

'While Microsoft HoloLens 2 can generate 1024x1024 depth images, the frames rate is
only 1-5 FPS at this high resolution, which is too low for interactive AR/MR.

2Intel RealSense captures rectangle depth images, whereas Microsoft HoloLens and
Kinect capture square ones.

MobiSys '22, June 25-July 1, 2022, Portland, OR, USA

W
9

RGB Input RGB-D

Point Cloud Input
2

w
=3
S

197 202

Computation Latency (ms)

D'LCN Trans3D F-PointNet

Figure 5: Comparison of the computation latency of 2D vs. 3D
object detection algorithms. YOLOV4 is for 2D object detection,
and the rest are all for 3D object detection with different input
data formats.

accurate detection among the three categories, whereas point-cloud-
based models are more accurate than the other two for high-quality
input data. Third, with high-quality input, point-cloud-based models
achieve the most accurate detection, but lead to the highest computa-
tion latency. Fourth, the computation latency of point-cloud-based
and image-based models drastically increases for high-density point
clouds and high-resolution images.

Another challenge of leveraging 3D object detection for mobile
AR/MR applications is the high computation overhead and the result-
ing high latency of data processing. To better appreciate this issue,
we compare the inference time of traditional 2D object detection
models such as YOLOvV4 [5] with the aforementioned representative
3D object detection models. The input RGB images of both 2D and
3D models have the same resolution of 1280%720, to make the com-
parison fair. The resolution of the input depth images is 1024x768
for 3D models. To follow the common practice of edge-based accel-
eration for 2D object detection/recognition in mobile AR [38, 72],
we conduct the experiments on a machine with an NVIDIA RTX
2080S GPU and present the results in Figure 5.

We have the following three observations from Figure 5. First,
the computation latency for most 3D object detection algorithms
is higher than 100 ms, making them unsuitable for real-time, inter-
active AR/MR applications [6, 38]. Ideally, the latency should be
at most 33-34 ms to achieve 30 FPS line-rate processing. While
the latency of image-based models could be lower than 100 ms, as
we will show in §7, by adding the extra network latency and local
computation time, the end-to-end latency would still deteriorate the
quality of user experience. Second, the computation latency of 3D
object detection is much higher than its 2D counterpart. It takes only
13 ms for YOLOV4 [5] to detect objects on 2D images, whereas
the computation latency could be as high as 283 ms for 3D models.
Third, the computation latency of 3D object detection heavily relies
on the complexity of input data.

The above large performance gap makes edge-side optimizations,
such as DNN-model acceleration and better GPU support, chal-
lenging. Note that we assume point clouds will be created on the
server to reduce network latency and computation overhead on the
headsets. Generating high-fidelity point clouds, which is required
to improve detection accuracy (Figure 4), also takes time and will
further increase the latency of point-cloud-based models.
Summary: The state-of-the-art 3D object detection solutions are
not suitable for supporting AR/MR applications on mobile headsets
due to the following two reasons.

31

Yongjie Guan and Xueyu Hou, Nan Wu and Bo Han, and Tao Han

o Existing 3D object detection models achieve the most accurate
result when using high-quality point clouds as input data, which
cannot be generated by commodity mobile headsets due to their
limited hardware resources.

e The computation latency of existing 3D object detection models,
even with edge offloading, are too high to guarantee a truly im-
mersive experience for real-time, interactive AR/MR that requires
imperceptible latency (<100 ms).

The poor performance of existing 3D object detection models
and the complex interplay among the input-data quality, detection
accuracy, and computation latency motivate our design of DeepMix,
which effectively combines edge-assisted 2D object detection and
on-device lightweight 3D bounding box estimation with depth data.

3 OVERVIEW OF DEEPMIX

DeepMix is a generic 3D object detection framework that is designed
for enhancing AR/MR experience on mobile headsets. It is mobility-
aware by taking advantage of user movement to refine measured 3D
bounding boxes, lightweight by avoiding heavyweight 3D object
detection and resorting to the mature 2D counterpart, and hybrid by
effectively splitting workload between the edge (i.e., RGB-image-
based 2D object detection) and the headset (i.e., depth-image-based
3D bounding box estimation). We depict the system architecture of
DeepMix in Figure 6.

The design of DeepMix is inspired by three key observations of
existing solutions for object detection and the differences between
smartphone-based and headset-based mobile AR/MR. First, while
DNN-based 3D object detection leads to high computation latency
even when assisted by the edge, its 2D counterpart is computation-
efficient (e.g., 13 ms latency in Figure 5). Second, although mobile
headsets are equipped with various sensors to facilitate AR/MR ap-
plications, their hardware resources are typically constrained and
the low-resolution depth images limit the performance of 3D ob-
ject detection models. Third, headset-based AR/MR differs from
smartphone-based one by rendering the bounding box using the
physical location of the object, instead of its relative position in the
camera view.

The overarching goal of DeepMix is to simultaneously reduce
end-to-end latency and increase detection accuracy, improving QoE
for next generation headset-based AR/MR. To achieve the above
goal, we face the following challenges when designing DeepMix.

e How to jointly consider existing techniques to reduce end-to-end
latency of 3D object detection?

e How to accurately and efficiently measure/estimate the 3D bound-
ing box of an object from depth data on the headset?

o How to boost the performance of DeepMix under different scenar-
ios for improving user experience?

Next, we present how we address these challenges.

4 SYSTEM DESIGN OF DEEPMIX

In this section, we introduce the basic design of DeepMix. We will
explain how to improve its performance in §5.

4.1 Edge-assisted 2D Object Detection

As shown in Figure 6, the workflow of DeepMix begins with retriev-
ing RGB images and offloading them to the edge for conducting
2D object detection. Given that DeepMix is a generic framework,

DeepMix: Mobility-aware, Lightweight, and Hybrid 3D Object Detection for Headsets

MobiSys '22, June 25-July 1, 2022, Portland, OR, USA

]
Input Hardware Motion ¢ Software 2D Object Detection
[} (]
] (]
RGB | | DynamicRol | | Edge Offloading L '
Camera Encoding (§5.2) (§4.1) < . E
J b :
] (]
Depth Bounding Box < Background ' s 4
Camera Alignment (§4.2) Removal (§4.3) ' oS0, ;
[} DD]
¥ R ity :
] . .
Motion Dimension and Center Point : 2D Object Detection | 1
Sensors Orientation (§4.5)| ~ | Estimation (§4.4) ' Model E
]
L Z : B / E
Di Box Caching & Bounding Box L w '
isplay . ' '
Reusing (§5.3) Refinement (§5.1) ’ ;
n jon Result y : —— :
Headset HMotion H Edge Server '

Figure 6: System architecture and workflow of DeepMix.

it can work with any DNN-based model that can accurately label
objects and generate their 2D bounding boxes in real time [5, 19, 53].
The 2D bounding box drawn on the RGB image will be used as the
starting point to derive the 3D bounding box using depth data. Since
the main purpose of the 2D bounding box is to reduce the amount
of to-be-processed depth data, the key requirement is that the object
should completely fit into the returned bounding box, which could be
larger than the object if doing this can speed up 2D object detection.
We will describe how to optimize the offloading efficiency in terms
of data usage in §5.2.

4.2 Bounding Box Alignment on Depth Frame

The next step is to align 2D bounding boxes from the RGB image
onto the depth image. Since it takes time to get the results from the
edge, during which the camera view may change due to movement,
we need to first transform the returned 2D bounding boxes on the
offloaded image to the current viewport. Otherwise, there will be a
misalignment between 2D bounding boxes and objects, as shown in
Figure 7. To solve this problem, DeepMix records the 6DoF pose of
the frame when it is captured by the RGB camera, which is provided
by the headset. Once users start the headset, its motion sensors (e.g.,
gyroscope, accelerometer, visible light cameras, efc.) begin to track
the headset’s 6DoF pose during movement and make it available to
applications. After receiving the detection results from the edge, it
can transform the 2D bounding box to the current viewport based on
the change of 6DoF pose (i.e., 8 and d in Figure 7) [55].

DeepMix then calculates the coordinate of the center pixel for a
detected object using the updated 2D bounding box, based on its
four vertices (Rrighss Rrefss Rrops RBottom)s as Retr = ((RRrighs +
Rreft)/2, (Rrop + RBottom)/2). Different from the setup of RGB-
D cameras, most headsets are equipped with an RGB camera and
a depth camera that are not synchronized with each other. As a
result, both the center point and the resolution of the depth frame are
different from those of the corresponding RGB image (captured at
the same time). To determine the center point Pé. . on depth frame
that is mapped to the center R on RGB frame, we can utilize the
pinhole camera principle [62].

Note that P(’: ., 18 just a point on the surface of the object on the
depth image, not the actual center point of the 3D bounding box.
This point will be used for determining one of the surfaces of the

32

3D bounding box (§4.5). Similarly, we can get the corresponding
points on the depth frame for the four vertices of the 2D bounding
box, which will be used for background removal (§4.3). Note that
the accuracy of 3D bounding box estimated by DeepMix is not
determined by the accuracy of 2D bounding box generated by object
detection algorithms. DeepMix uses the 2D bounding box mainly
to reduce the amount of 3D data that should be processed on the
headset when estimating the 3D bounding box.

4.3 Background Removal on Depth Image

After getting the bounding box of the object on the depth image, in
this step, DeepMix removes the background in the bounding box to
reduce computation overhead and improve the accuracy of our 3D
bounding box estimation, by leveraging existing solutions developed
by the computer graphics (CG)/CV communities [30]. An alternative
solution is to perform semantic segmentation, which can label each
pixel, instead of object detection on the edge. However, this will
increase both data transmission overhead by sending per-pixel labels
and computation overhead to match each pixel of the object onto the
depth image. After removing the background, we can obtain depth
data of mainly the detected object. Since the collected depth data
may contain noises and undetected areas of the object, the depth
information of the above vertices and the center point on the depth
frame may be missing. To improve the quality of depth frames,
we further apply an edge-preserving filter and Spatial Hole-filling
algorithm [23] to the depth frame to make it smooth and complete.

4.4 Center Point Estimation

There are three parameters to determine the 3D bounding box of
an object, the spatial position (i.e., location), 3D dimensional size
(i.e., height, width, and thickness), and orientation. We first estimate
the center point of the 3D bounding box (i.e., the spatial position
of the object). We then measure the dimension and orientation of
the object in §4.5. With the depth data, DeepMix can get the spatial
coordinates of the closest point Pyy;;, and the furthest point Py, to
the headset, as shown in Figure 8. After that, it projects Pyy;, to the
plane that the object is placed on, which could be detected by the
headset, to get Pg/h.n. The center point of the 3D bounding box Pcy,
is estimated as the center of the line connecting Pl'mn and Ppjgx-
The estimation of the two key points may not always be accurate,

MobiSys '22, June 25-July 1, 2022, Portland, OR, USA

b
Detected

Q4 i

Detected

-

Real '.T
-~ a‘,\‘“
I

/
N ’

/
"
"
¥
A

\

Figure 7: Misalignment caused
by movement.

Figure 8: Geometric model
of bounding box.

especially for Pprqy, as the actual furthest point may be occluded and
thus not visible. By exploiting the headset movement, we propose
an optimization to further improve the accuracy when users move
around the object to observe more details (§5.1), which is a typical
use case for headset-based mobile AR/MR.

4.5 Dimension and Orientation Estimation

To get the dimension and orientation of the 3D bounding box,
DeepMix first detects the surface S that Pé ;- 18 on, as shown in

Figure 83, with the following method. It uses P, as a start pixel
of a seed patch [16] on the depth frame. It then grows the patch to a
certain size and utilizes the linear least-squares plane fitting [40] to
identify the best fitting plane for this patch. This plane will be used
to approximate the surface S in Figure 8. To improve the accuracy
of this estimation, DeepMix can repeat the above process multiple
times with different start pixel of the seed patch, for example, by
using other points close to P(’j +» and then aggregate the calculated
planes to approximate S.

With the surfaces S and the center point Pcy, (§4.4), DeepMix
can calculate the dimension of the 3D bounding box. If the distance
between Pc;, and the underlying plane is dp,, the object height H
is 2 X dp,. Next, DeepMix calculates the distance d; between Pcy,
and S. The thickness of the bounding box T will be 2 X d;. With H
and T, we can calculate the width of the bounding box W by using

the right angle theorem: W = /d%,, — H? — T2, where dprp is the

distance between P//\/Iin and Ppg,. After getting the spatial position
and dimension of the object, DeepMix still needs to determine the
orientation O of the 3D bounding box. It first calculates the inter-
secting line L of the surface S and underlying plane. From the 6DoF
pose, DeepMix knows the viewing direction V' of the user D. Thus,
O can be calculated based on the angle between L and V, as shown
in Figure 8.

5 PERFORMANCE OPTIMIZATIONS

5.1 Motion-aware Bounding Box Refinement

A unique feature of DeepMix is that it can keep refining estimated
3D bounding boxes when users move around an object of interest, for
example, to investigate the details. As we will show in §7.4, existing
DNN-based 3D object detection models cannot benefit from headset
movement in their current form. This refinement mode is enabled
only when users move around an object, which can be inferred from

38 could be the other vertical surface shown in Figure 8, but this does not affect the
estimation (width vs. thickness). S could also be the top horizontal surface. In this case,
DeepMix keeps moving P/Ctr on this surface toward a direction until it hits one of the
two vertical surfaces.

33

Yongjie Guan and Xueyu Hou, Nan Wu and Bo Han, and Tao Han

the 6DoF pose of the headset and the location of the object. For two
consecutive 3D bounding boxes that are estimated by DeepMix, it
first gets the spatial point that is the center of the line connecting
the two center points of the two boxes. It then uses this point as the
center of the updated bounding box and moves the two estimated
boxes to this point. It finally uses the union of the two boxes as
the updated box, which will be combined with the next estimated
bounding box.

A key difference between video see-through based AR/MR on
smartphones and optical see-through based one on headsets is that
the latter does not need to continuously offload camera views to the
edge even when users move. The location of an object displayed on
the screen of smartphones changes if users move, which requires
conducting object detection on the updated camera view. Optical
flow tracking can alleviate this issue only to some extent, as the
tracking error will accumulate as time goes on. On the other hand,
the 3D bounding box of an object is determined by its actual physical
location and orientation that will not change with headset movement.
The underlying coordinate-system drift caused by movement will
be fixed by the headset itself, and thus DeepMix can always get an
accurate pose from the headset to update the rendered bounding
box. As a result, headset-based AR/MR does not need to frequently
perform (edge-assisted) object detection. To further optimize the
overhead of DeepMix’s bounding box refinement, we next introduce
the motion-assisted dynamic region of interest (Rol) encoding to
decrease the offloading overhead.

5.2 Motion-assisted Dynamic Rol Encoding
Dynamic Rol encoding selectively applies lossy compression to
parts of the frame that are less likely to contain objects of interest
and lossless compression to other areas for reducing the amount
of encoded data. The Rols on the current frame are determined by
analyzing the microblocks of 2D images and checking whether
they overlap with the identified Rols in a previous frame. This
scheme has been demonstrated to be helpful for AR on handheld
smartphones with limited moving speed [38]. However, the camera
view of the headset may drastically change with user movement.
For example, the peak speed of head movement can reach 240
degrees per second [14], much higher than the moving speed of
a smartphone when used for AR and making microblock-based
scheme less effective for headsets.

DeepMix resorts to the 6DoF tracking offered by headsets to
solve this problem. By recording the 6DoF pose of consecutive
frames, it can determine whether they overlap with each other. If
not, dynamic Rol encoding will not be applied. Otherwise, DeepMix
checks whether there are known Rols of a previous frame appearing
on the current frame and (if they do) get their locations on the current
frame through coordinate transformation. DeepMix compresses the
identified Rols and the area that is not overlapped with the previous
frame losslessly and the remaining area in a lossy fashion. Note that
dynamic Rol encoding is a generic design and can be applied to not
only the bounding box refinement mode but also other scenarios.

5.3 3D Bounding Box Caching and Reusing

To better support mobile scenarios where users move around to
explore the surrounding environment, we design a mechanism to
cache and reuse 3D bounding boxes of detected objects, which
avoids unnecessary detection of the same object multiple times. The

DeepMix: Mobility-aware, Lightweight, and Hybrid 3D Object Detection for Headsets

goal is to display the 3D bounding box of a detected object as fast as
possible, when it reappears, by reducing the initial rendering time,
which can boost user experience and decrease computation resource
utilization on both the edge and the headset. This optimization is
helpful, especially under dynamic network conditions that increase
end-to-end latency of object detection.

In the cache, we store the 6DoF pose and 3D dimension of de-
tected objects. When users move, DeepMix keeps updating the view-
ing frustum (i.e., 3D viewport) based on the 6DoF pose of the headset
and checks whether there are cached items that should be in the cur-
rent viewport by examining the 6DoF pose of cached bounding
boxes. To further reduce the rendering time of 3D bounding boxes
for cached items, DeepMix saves their translucent cubes in the mem-
ory. Based on the cached results, it can reshape and rotate the cubes
and immediately render them on display. After that, DeepMix per-
forms object detection on the current viewport, in case there are new
objects in the scene, and updates the cache accordingly. Another
benefit of our caching design is that if a cached item is further away
from the user in the updated viewport and out of the range of the
depth camera, DeepMix can still render its bounding box that is
retrieved from the cache.

6 SYSTEM IMPLEMENTATION

We develop a prototype implementation of the DeepMix client on
Microsoft HoloLens 2 and the DeepMix edge server on Linux. We
implement the device-side functions with Windows SDK [46], Di-
rectX [43], and Unity 3D engine [65]. We use multi-threading to
simultaneously read data from both RGB and depth cameras. We
collect the camera frame using libraries of Windows SDK. When
receiving the 2D detection results from the edge server, we obtain
the depth frame by enabling the Research Mode of HoloLens. We
store depth images in bitmaps to improve the speed of data process-
ing. To enable motion-based dynamic Rol encoding, we utilize the
position and orientation of the headset, which are retrieved via a
library in DirectX. After estimating the 3D bounding box, we render
it on the screen with Unity. By adapting the detection results from
the previous frame to the change of users” 6DoF pose position, we
encode the Rol of the current frame using JPEG and send it to the
edge. We implement the DeepMix edge server in the Darknet [52]
open-source neural networks. The edge provides 2D object detection
for DeepMix using YOLOV4 [5]. As a generic framework for 3D
object detection, DeepMix can use any mature 2D object detection
model on the edge.

In total, our implementation consists of 4,600+ lines of code
(LoC): 3,000+ LoC in C# (rendering, device localization, and bound-
ing box estimation) and 1,000+ LoC in C++ (gathering sensor data,
image compression, and networking) for the client, and 600+ LoC in
C++ (networking and multi-threading) for the server. We also build
a prototype of DeepMix on HoloLens (1st gen), on which the per-
formance of DeepMix is only slightly worse than that of HoloLens
2. Hence, we report the results for only HoloLens 2.

7 PERFORMANCE EVALUATION

In this section, we measure the performance of DeepMix through
dataset-driven evaluations, controlled (live) experiments, and an
IRB-approved user study.

34

MobiSys '22, June 25-July 1, 2022, Portland, OR, USA

True

Figure 9: Visualization of 3D IoU.

7.1 Experimental Setup

‘We compare the performance of DeepMix with the following eight
start-of-the-art 3D object detection models, COG [54], VoteNet [49],
and MLCVNet [68] with point clouds as input, F-PointNet [50]
and Trans3D [63] for models using RGB-D input, and Mono3D [7],
AM3D [41], and D*LCN [12] that take 2D images as input.

Testbed. The edge server is equipped with an Intel 19-9900k CPU,
an NVIDIA RTX 2080S GPU, and 64GB DDR4 3200MHz RAM.
The headset, Microsoft HoloLens 2, and the edge run the Univer-
sal Windows Platform (version 10.0.20346.0) and Ubuntu 16.04,
respectively. For most experiments, we connect the headset and the
edge with a Linksys AC1900 WiFi router that is attached to the
same 1 Gbps Ethernet as the edge server. The normal throughput
of this WiFi network is around 260 Mbps, and its round trip de-
lay is less than 1 ms. We use this WiFi router exclusively for our
experiments, by avoiding interference with other co-existing WiFi
networks. For the experiments under dynamic network conditions,
we attach an LTE modem to the headset, which connects to the edge
server through our USRP-based LTE base station. The throughput
of this LTE network ranges from 8.4 to 37.1 Mbps, and its typical
round trip delay is about 14 ms.

Evaluation Metrics. We use the accuracy of 3D object detection and
the end-to-end latency as the metrics to evaluate DeepMix. We mea-
sure the device power rate and other computation resource utilization
(e.g., CPU, GPU, and memory) on Microsoft HoloLens 2.

3D Intersection over Union. We evaluate the accuracy of the 3D
bounding box using 3D Intersection over Union (3D IoU), as shown
in Figure 9, which has been widely used in the literature [9, 33, 39,
51, 58, 59, 66]. By following the common practice in the computer
vision community [9, 33, 51, 59, 66], we set the 3D IoU thresholds
to be 0.25 and 0.5, respectively. That is to say, when the 3D IoU
is larger than the threshold, we consider the detection result to be
accurate. In the following, we report the percentage of accurate
detections using the 3D IoU metric.

End-to-end Latency. The end-to-end latency is important for real-
time, interactive AR/MR systems. We record the time t; when the
ith frame is captured by the camera and the time #; when the 3D
bounding boxes are rendered for it. The latency of the ith frame is
defined as 7; = f; — t;. Let n be the number of processed frames. The
end-to-end latency can be expressed as A = 37, 7;/n.

Battery Power Level. To monitor and analyze the battery power
level of the headset, we disassemble it and remove its battery. In
the experiment, a Keithley 2281S battery simulator [32] is used as
the power supply, which can provide the headset with a stable DC
input and monitor the current and power. In this way, we can have a
systematic evaluation of the headset’s battery power level.

MobiSys '22, June 25-July 1, 2022, Portland, OR, USA

Yongjie Guan and Xueyu Hou, Nan Wu and Bo Han, and Tao Han

60,
180° Ineffective area Z’ | RGB . RGB-D | Point Cl"%‘} 1
& Effective area =300 { B2 Data Processing (Headset) 279
Iy [Data Processing (Server)
5 250 = Point Cloud Const. 232
8 200 3 Data Trans. 216 22
% 140 154 Object Object O
. 0 91
<« Vertical angle =100 2m 9 ?
- lélori_zolnégl%mglc sl 0 354 E D ?
«» Spatial distance . .
> 2 Scenario 1 Scenario 2 Scenario 3

()

Figure 10: Different settings for con-
structing the dataset.

Evaluation Datasets. We train the state-of-the-art 3D object detec-
tion models with the well-known SUN RGB-D dataset [60], and train
YOLOV4 [5] that is used in DeepMix for 2D object detection with
the popular COCO [37] dataset. One unique challenge of comparing
the performance of DeepMix with existing models is it needs extra
information that is not included in regular RGB-D datasets such
as SUN RGB-D. The reason is that to make DeepMix lightweight
and suitable for mobile headsets, we leverage the 6DoF pose of the
headset to estimate the 3D bounding box, which is missing from
existing RGB-D datasets.

To address this challenge and conduct a fair comparison of
DeepMix and existing models, we construct a test dataset that
consists of not only RGB-D images but also the 6DoF pose of the
camera (i.e., an Intel RealSense D435i [27] camera) when capturing
the images. Our test dataset has 2,184 RGB-D images captured
with different viewing angles and distances, as shown in Figure 10.
The resolution is 1280 x 720 for RGB images and 1024 X 768 for
depth images, much higher than the 360 x 360 resolution of depth
images generated by HoloLens 2 at line rate. This is the reason
that we choose Intel RealSense D435i as the capturing device. This
RGB-D dataset contains seven classes of objects, table, chair, bottle,
box, desk, bag, and TV, which are common objects in the public
datasets [37, 60]. Our dataset is diverse as it covers objects of
different sizes, shapes, and materials (which affect the generation
of depth images), and some objects (e.g., chair, bottle, and bag)
may have irregular shapes. The whole dataset is annotated with the
ground truth 3D bounding boxes (i.e., accurate object orientation and
position). We plan to make our collected dataset publicly available,
which may benefit future research on designing more efficient and
accurate 3D object detection models for mobile headsets.

7.2 End-to-end Latency
We first compare the end-to-end latency of DeepMix with existing
3D object detection models by replaying the RGB-D images in our
collected dataset on HoloLens 2 and plot the results in Figure 11.
We break down the end-to-end latency into four parts, data trans-
mission, point cloud construction, server-side data processing, and
client-side data processing. DeepMix and image-based models send
only RGB images to the edge; whereas the others send RGB-D im-
ages to the edge. Note that instead of generating point clouds on the
headset and sending them to the edge for object detection, we send
RGB-D images and create point clouds on the edge. The reason is
that doing this can not only reduce computation resource utilization
and energy consumption, but also drastically save network data us-
age. For example, the size of a point cloud generated from an RGB

A AL, D% 7 b G
%/11,;‘,0/]0 32730 ((\/\/'(7/;‘Y 3 & %,go

Figure 11: Comparison of end-to-end latency.

35

Vor. 427
%
D < e O’//\/e,

(S8

Figure 12: Three mobility patterns.

image and a depth image (with a combined size of 1.68 MB) could
be as large as 35.9 MB. The server-side data processing latency is
mainly the inference time of DNN models for 2D/3D object detec-
tion. For DeepMix, the estimation of 3D bounding boxes happens
on the headset, after receiving the returned 2D bounding box. The
client-side data processing of existing models mainly includes the
transformation of returned 3D bounding boxes to the coordinate
system of the headset for rendering and display.

The key observation from Figure 11 is that the end-to-end latency
of DeepMuix is significantly lower than existing 3D object detection
models. It takes only 34 ms for DeepMix to accurately detect 3D
objects, among which the latency is 5 ms (14.7%) for data trans-
mission, 13 ms (38.2%) for server-side data processing, and 16 ms
(47.1%) for client-side data processing, respectively. Compared to
image-based models, DeepMix’s dynamic Rol encoding scheme
(§5.2) effectively reduces the data transmission time by 34% (from
6.7 ms to 5 ms). As DeepMix estimates the 3D bounding box on the
headset, its client-side data processing time (16 ms) is slightly longer
than that of other schemes (13.8 ms for image-based models and
models with RGB-D input, 11 ms for point-cloud-based models).
Thus, thanks to its lightweight design (§4) and various optimizations
(§5), the latency of DeepMix is far below the 100 ms requirement
for interactive AR/MR.

For existing 3D object detection models, their end-to-end latency
is dominated by the server-side processing time, especially for point-
cloud-based solutions. Even on the edge server, it takes about 23
ms to generate the point clouds. Note that although the end-to-end
latency of Mono3D [7] is also lower than 100 ms, as we will show
next (§7.3 & §7.4), its detection accuracy is much lower than that of
DeepMix, and its latency will be higher than 100 ms under dynamic
network conditions (Figure 15). Figure 11 shows that the data trans-
mission time of existing models with RGB-D and point cloud inputs
are higher than that of DeepMix and image-based models, due to the
additional depth images that are needed to learn the 3D bounding
box. We conduct the above experiments on the WiFi network with
high throughput (§7.1). When the network condition becomes worse,
this data transmission time of RGB-D data will be more noticeable.
We will evaluate the end-to-end latency on an LTE testbed in §7.7.

7.3 Detection Accuracy in Static Scenario

‘We compare the detection accuracy of DeepMix with existing mod-
els for the static scenario using the 3D IoU metric. To make the
comparison fair, we replay on the headset the 2,184 RGB-D images
in our collected dataset. We present the results for 3D IoU in Table 2.
For the static scenario, remarkably, DeepMix achieves better overall

DeepMix: Mobility-aware, Lightweight, and Hybrid 3D Object Detection for Headsets

MobiSys '22, June 25-July 1, 2022, Portland, OR, USA

Methods Input . 3D 1oU@0.25/0.5 Average
Table Chair Bottle Box Desk Bag TV

COG [54] PC 47.3/2.6 39.3/- 46.4/1.8 57.3/15.2 49.5/13.3 45.1/10.3 39.5/5.7 47.9/7.2
VoteNet [49] PC 56.2/23.6 45.5/22.2 67.2/18.3 52.4/22.6 48.6/14.2 54.3/18.5 41.9/19.2 | 51.6/21.7
MLCVNet [68] PC 61.3/22.5 74.2/27.6 68.2/16.4 62.1/22.3 63.7/26.5 57.6/21.1 52.3/17.9 | 63.1/22.1
F-PointNet [50] | RGB-D | 45.5/11.2 37.5/17.3 44.2/9.5 31.6/17.5 38.5/- 54.5/17.6 37.4/8.2 | 42.3/11.9
Trans3D [63] RGB-D | 52.3/13.5 38.4/- 47.2/13.2 39.5/84 47.2/184 49.1/- 37.2/12.9 | 45.8/10.1
Mono3D [7] RGB 59.3/11.2 52.4/9.5 47.3/8.6 65.3/13.2 67.5/21.5 48.6/5.2 54.5/16.4 | 55.4/10.7
AM3D [41] RGB 65.9/149 71.2/11.3 62.7/16.3 57.8/10.7 49.2/12.5 51.7/11.2 57.9/12.9 | 58.7/13.6
DLCN [12] RGB 68.3/14.3 69.2/24.4 67.2/18.6 58.9/21.5 62.3/14.3 56.6/9.6 57.2/11.7 | 63.9/15.9
DeepMix Hybrid | 72.4/37.5 67.4/33.7 63.1/38.4 66.5/39.1 72.1/33.2 65.8/46.5 61.2/31.8 | 67.4/37.2

Table 2: Class-wise comparison of DeepMix and state-of-the-art 3D object detection models (‘-’: the method could not detect the object).

performance than all other models across different object categories.
On average, DeepMix has the highest 3D IoU for both the 0.25 and
0.5 thresholds. One possible reason is that instead of completely rely-
ing on learning-based models, DeepMix estimates the 3D bounding
box using pixel-level depth information on the headset.

When the threshold is 0.5, DeepMix’s accuracy is the highest for
all object classes, and is 1.68x (on average) over the best existing
model MLCVNet [68]. When the threshold changes to 0.25, the
detection accuracy of DeepMix is still higher than the best state-
of-the-art model D*LCN [12] by 3.5% (on average). In this case,
MLCVNet [68] performs the best for chairs and bottles. The reason
is that the depth data will be missing when there is a reflection on the
bottle, affecting the accuracy of DeepMix. We are exploring efficient
computer graphics algorithms [29, 56] to address this problem®. For
chairs with irregular shapes, the 3D bounding box estimation of
DeepMix may not be accurate from some specific viewing angles.
This issue could be alleviated in mobile scenarios (§7.4). For exam-
ple, if users are interested in an object, they may move around it to
inspect the details from different angles, which offers opportunities
to improve detection accuracy (§5.1). DeepMix still has the most
accurate results when the threshold is 0.5, 1.22x (on average) over
the best existing model MLCVNet [68] (33.7% vs. 27.6%), for this
challenging “chair” category. We also evaluate the detection accu-
racy with another widely-used metric, called mean spatial position
accuracy (mSPA) [18]. The results (not shown due to the limited
space) are qualitatively similar to those of 3D IoU.

7.4 Detection Accuracy in Mobile Scenarios

Since AR/MR headsets are usually used in dynamic environments,
we design three mobility patterns, as shown in Figure 12, to further
evaluate the accuracy of DeepMix.

® Scenario 1: The user moves along a 2-meter line, perpendicular
to the line that connects its center and the object.

® Scenario 2: The user moves along a 2-meter line, away, or toward
the object (2 meters between line center and object).

® Scenario 3: The user moves around the object in a circle with a
diameter of 2 meters.

In the mobile scenarios, we cannot replay the collected RGB-D
images in our dataset that were captured at fixed locations. Thus, we
conduct controlled, live experiments with three moving speeds, 0.5,
1, and 2 m/s. The user always looks at the object when moving with
different patterns.

4The scheme [23] adopted by DeepMix (§4.3) is lightweight and cannot handle it.

36

We first examine the 3D IoU results for Scenario 3 that are pre-
sented in Table 3. For each setup with different movement patterns,
moving speeds, 3D object detection methods, we run the experiments
20 times to measure detection accuracy. Due to the large parameter
space (i.e., 8 methods, 3 patterns, 3 speeds, and 20 times for each
setup), we select 4 out 7 classes, chair, bottle, box, and bag. We only
report the 3D IoU for the threshold of 0.25, since DeepMix does
not achieve the most accurate detection for only the chair and bottle
categories with that threshold for the static scenario (Table 2).

Table 3 demonstrates that DeepMix outperforms all existing 3D
object detection models, for all four object classes, and under all
three moving speeds. The reason is that when the user moves around
the object, DeepMix can estimate and fine-tune the 3D bounding box
from different viewing angles, significantly boosting the detection
accuracy (§5.1). Another key observation from this table is that the
end-to-end latency drastically affects the detection accuracy in mo-
bile scenarios. While the best performing point-cloud-based model
MLCVNet [68] achieves comparable detection accuracy as the best
image-based model D*LCN [12] for the static scenario (63.1% vs.
63.9% in Table 2), the detection accuracy of MLCVNet is much
worse than D*LCN for this mobile scenario (e.g., 49.8% vs. 59.6
when the moving speed is 0.5 m/s). The worse performance of ML-
CVNet is mainly caused by its high end-to-end latency than D*LCN
(311 vs. 154 ms in Figure 11), which leads to the mismatch between
objects and their bounding boxes due to accumulated tracking errors.

Table 3 shows that fast moving speeds reduce detection accuracy.
For example, the accuracy is 71.2%, 61.8%, and 53.8% for the 0.5, 1,
and 2 m/s moving speeds, respectively. After analyzing the captured
traces of different speeds, we find that high moving speeds can result
in a larger and faster change of the object in the user’s viewport than
low moving speeds, which reduces the detection accuracy.

We next examine 3D IoU results for Scenario 1 in Table 4 and
Scenario 2in Table 5, respectively. In these tables, we show results
for only 0.5 m/s moving speed. For the other speeds, DeepMix
still outperforms existing models. Moreover, we present results
for only MLCVNet [68] (the best performing point-cloud-based
method), AM3D [41], and D*LCN [12]. D*LCN performs better
than DeepMix for boxes. One of the possible reasons is that some
boxes in our collected dataset have uneven surfaces (e.g., big holes,
Figure 1) that affect the quality of captured depth images, which
the lightweight scheme [23] in DeepMix cannot fix. This issue
could potentially be addressed by leveraging computer graphics
algorithms (e.g., surface reconstruction [28]). The performance of
AMB3D is slightly better than DeepMix for the chair category for

MobiSys '22, June 25-July 1, 2022, Portland, OR, USA

Yongjie Guan and Xueyu Hou, Nan Wu and Bo Han, and Tao Han

3D IoU@0.25 (Scenario 3: speed at 0.5, 1, and 2 m/s)

Methods Input Chair Botile P Box Bag Average
COG [54] PC 38.5/33.2/27.4 32.2/27.6/19.7 46.2/34.1/28.6 36.8/28.8/21.6 | 38.4/30.9/24.3
VoteNet [49] PC 48.4/35.5/29.2 52.1/43.2/24.6 48.5/36.7/28.2 45.2/30.2/18.1 | 48.6/36.4/25.1
MLCVNet [68] PC 55.7/42.2/28.4 53.7/43.2/33.9 45.2/30.2/19.8 44.6/25.1/17.2 | 49.8/35.1/24.8
F-PointNet [50] | RGB-D | 32.8/21.3/17.6 35.2/25.9/21.2 25.6/14.1/8.9 41.8/32.4/19.6 | 33.9/23.4/16.8
Trans3D [63] | RGB-D | 33.8/25.7/22.4 34.6/22.5/17.6 33.7/25.4/15.5 45.5/36.2/18.6 | 36.9/27.5/18.5
Mono3D [7] RGB | 59.6/49.1/41.6 45.2/37.6/23.9 66.5/51.1/36.2 41.7/34.1/27.7 | 53.2/42.9/32.3
AM3D [41] RGB | 64.5/54.2/47.3 59.4/47.2/32.9 63.3/54.9/46.2 61.4/53.2/42.5 | 62.1/52.4/42.2
D'LCN [12] RGB | 65.3/49.2/41.7 54.8/47.3/39.2 64.7/56.8/48.9 53.6/48.6/39.5 | 59.6/50.5/42.3
DeepMix Hybrid | 78.3/69.7/61.4 73.5/74.2/52.7 68.7/58.9/51.2 64.5/68.4/49.8 | 71.2/61.8/53.8

Table 3: Class-wise 3D IoU@0.25 comparison of DeepMix and state-of-the-art 3D object detection models for Scenario 3.

3D IoU@0.25: speed@0.5 m/s
Methods Input Chair_Botile P Box Bag Average
MLCVNet [68] PC 54.2 56.1 47.1 375 48.7
AM3D [41] RGB 61.7 53.6 517 572 58.2
D*LCN [12] RGB 59.7 512 641 50.6 56.4
DeepMix Hybrid | 63.1 581 594 579 60.5

Table 4: 3D IoU@0.25 comparison of DeepMix and state-of-the-
art 3D object detection models for Scenario 1.

3D IoU@0.25: speed @0.5 m/s
Methods Input ChairBotile P Box Bag Average
MLCVNet [68] PC 51.8 58.6 425 369 475
AM3D [41] RGB 67.2 594 604 554 60.6
D*LCN [12] RGB 65.2 574 682 524 60.8
DeepMix Hybrid | 66.5 715 622 583 62.1

Table 5: 3D IoU@0.25 comparison of DeepMix and state-of-the-
art 3D object detection models for Scenario 2.

only Scenario 2(67.2% vs. 66.5%). For Scenario 1, DeepMix still
outperforms AM3D (63.1% vs. 61.7%). The comparison between
Table 4 and Table 5 reveals that Scenario 2 leads to better per-
formance than Scenario 1 (e.g., 62.1% vs. 60.5% for DeepMix).
The reason is that, similar to the case of different moving speeds,
Scenario 1 may lead to a larger and faster change of the object in
the viewport than Scenario 2, affecting detection accuracy.

By comparing Table 3 with Tables 4 and 5, we find that the 3D
object detection accuracy is better for Scenario 3 than the other
two scenarios (e.g., 71.2% vs. 60.5% and 62.1% for DeepMix at
0.5 m/s moving speed.). One possible reason is that moving around
the object leads to more opportunities to view it from different
directions than the other two mobility patterns, which refine the
detection accuracy of DeepMix (§5.1). Note that existing 3D object
detection models cannot benefit from the movement of users. For
example, the detection accuracy is 59.6%, 60.8%, and 56.4% for
D*LCN [12] for scenarios 3, 2, and 1, respectively. On the other
hand, their accuracy may drop when users are moving around, due
to their high end-to-end latency of 3D object detection.

7.5 Motion-aware Bounding Box Refinement

We conduct experiments to evaluate the performance of bounding
box refinement in DeepMix when the user moves around an object.
We choose two objects, a box (regular) and a chair (irregular), as the
test objects and measure the 3D IoU of the estimated bounding box
and the ground truth after moving a certain degree, 0°, 30°, 60°, and
90°. Figure 13 shows that when the user moves around the objects,
DeepMix can gradually refine the detection accuracy. The 3D IoU
increases from 0.578 to 0.822 for the chair and from 0.781 to 0.845

37

09| &= Chair B2 Box 350| = Server B Mate 10

0.8 £ 500/ mmm HoloLens 2
S
_ 07 g 250
206 5 200
205 B 150
04 £ 100
o
0.3 E 50
0.2 SN

360x240 640x480 1280x720
Resolution of Input Image

0° 30° 60°
Moving Degrees

90°

Figure 13: Performance of
motion-aware bounding box
refinement.

Figure 14: Computing Latency
of YOLOv4-tiny on different
devices.

for the box after the user moves for 90°. The reason is that DeepMix
may not be able to accurately measure the dimension and orientation
of irregular objects from a single estimation based on only one depth
image (§4.5). However, when the user moves around the object, the
inaccurate estimation of dimension and orientation can be corrected
with more depth images from different viewing angles.

7.6 Executing DeepMix on Headsets without
Offloading

To demonstrate the benefits of offloading 2D object detection in
DeepMix to the remote server, we compare the performance of exe-
cuting the same model on the server (§7.1), the HoloLens 2 headset,
and a smartphone (HUAWEI Mate 10 Pro), in terms of computing la-
tency. Since HoloLens 2 and smartphones do not support the vanilla
YOLOV4 model [5], we utilize YOLOv4-tiny [1] as the object detec-
tion model for all three devices. The deep learning frameworks are
TensorFlow [2] for the server, TensorFlow Lite [20] for the smart-
phone, and Barracuda [64] for HoloLens 2. The resolutions of the
input images are 360 X 240, 640 X 480, and 1280 X 720.

Figure 14 shows that the computing latency of executing
YOLOV4-tiny on HoloLens 2 is much higher than that on the
server. The latency is 234.6ms (6.4ms), 262.1ms (8.7ms), and
337.2ms (11.5ms) on HoloLens 2 (the server) for the three resolu-
tions. While the chipset of HoloLens 2 (Snapdragon 850) is slightly
better than the HUAWEI Mate 10 Pro smartphone (Kirin 970), the
computing latency of HoloLens 2 is even 147.9ms (183.8ms) higher
than the smartphone when processing 360 X 240 (1280 x 720) images.
The reason is that the performance of these models depends on
not only the deep learning framework but also the hardware plat-
form [57]. Our experimental results demonstrate that the Barracuda
framework and HoloLens 2 cannot achieve real-time processing
of input images for 2D object detection, which justifies the design
decision of DeepMix that offloads it to the remote server.

DeepMix: Mobility-aware, Lightweight, and Hybrid 3D Object Detection for Headsets

|E==3 Data Processing éHcadsct)

g == Data Processing (Server)
=250 |==3 Point Cloud Const,
2 == Data Trans.

5200

<

=

2150

?

£ 100

=

=

3]

0 -
DeepMix Mono3D Trans3D COG

Figure 15: End-to-end latency on LTE network.

7.7 Impact of Dynamic Network Conditions
In addition to the high-throughput WiFi network, we evaluate the
performance of DeepMix on our USRP-based LTE testbed with
fluctuating network bandwidth (8.4-37.1 Mbps vs. 260 Mbps for
WiFi). The latency of LTE is also higher than that of WiFi (14
vs. 1 ms). The dynamic network conditions affect the end-to-end
latency of DeepMix (i.e., longer data transmission time and higher
network latency). We compare the performance of DeepMix with
three models Mono3D [7], Trans3D [63], and COG [54], which have
the lowest end-to-end latency in their own categories (Figure 11).
We plot the end-to-end latency on the LTE network in Figure 15.
In this figure, the latency of data transmission on the LTE network
is more visible, compared to the results in Figure 11 for the WiFi
network. The end-to-end latency of DeepMix increases from 34 ms
to 47-62 ms (51 ms on average) and is dominated by data transmis-
sion (on average 22 ms, 43.1%), whereas the latency of Mono3D [7],
which has the lowest latency among existing methods, increases from
91 ms to 105-118 ms, higher than the 100 ms latency requirement
of interactive AR/MR [6, 38]. The data transmission time increases
from 5 ms to 18-33 ms for RGB images, and from 8 ms to 24-39
ms for RGB-D images. The headset is static during the experiments,
and thus the dynamic network conditions have a limited impact on
detection accuracy. On this USRP-based LTE network, moving the
headset attached with an LTE dongle makes network connection
unstable. Hence, we do not conduct mobile experiments.

7.8 User Study

Besides the above evaluations on datasets and controlled experi-
ments, we assess the performance of DeepMix through an IRB-
approved user study to understand how the smoothness and accuracy
of 3D object detection affect user experience. We define smoothness
as the update frequency of 3D bounding boxes in dynamic environ-
ments, which reflects the end-to-end latency of object detection.

We conduct the user study with 33 diverse participants with age 18
to 45. Among them, 7 are female, 21 are familiar with AR/MR, and
3 used mobile headsets before. We ask each participant to experience
three 3D object detection schemes, DeepMix, MLCVNet [68] (point-
cloud-based), and D*LCN [12] (image-based). The last two have
better accuracy than other existing solutions (Table 2, Table 4, and
Table 5). We randomly order the three schemes, and thus participants
do not know which one is DeepMix. We ask the participants to
compare the smoothness and accuracy of the three solutions by
providing their mean opinion scores (MOS), from 1 to 5 (1: bad,
2: poor, 3: fair, 4: good, 5: excellent). Participants experience the
detection of a chair and a bottle by following the three mobility
patterns in Figure 12 for 30-60 seconds.

We observe the following from the results of our user study in
Figure 16. First, DeepMix leads to the best user experience in terms

38

MobiSys '22, June 25-July 1, 2022, Portland, OR, USA

5| [DeepMix []MLCVNet [D'LCN

Detection Smoothness Detection Accuracy

MPI MP2 MP3 MPI MP2 MP3

Figure 16: Evaluation of the smoothness and accuracy of 3D
object detection through a user study with 33 participants.

IS

w

Average Score

of both smoothness and accuracy, thanks to its lightweight and ac-
curate 3D object detection. For the average score, the smoothness
of DeepMix is 44.3% (10.4%), 59.4% (16.6%), and 56.9% (11.7%)
higher than that of MLCVNet [68] (D4LCN [12]) for the three mo-
bility patterns; whereas the accuracy of DeepMix is 48.2% (12.5%),
65.4% (5.1%), and 52.3% (9.6%) higher than that of MLCVNet [68]
(D*LCN [12]) for the three patterns. Second, the point-cloud-based
model MLCVNet [68] has the worse performance among the three,
mainly caused by its high end-to-end latency (due to the huge amount
of 3D data to process). This demonstrates the importance of end-
to-end latency for mobile AR/MR. Third, for both smoothness and
accuracy, the average score of DeepMix is still slightly lower than 4
(good experience), which shows that there is room to improve for
achieving immersive experience on mobile headsets.

7.9 Effectiveness of Bounding Box Caching

We conduct controlled experiments to evaluate the 3D bounding box
caching and reusing scheme (§5.3). We mount two headsets on a
gimbal that can rotate at a fixed angular velocity. Both headsets are
equipped with DeepMix, but only one of them has caching enabled.
‘We randomly place 3 objects around the gimbal for testing and rotate
both headsets 720° at the same time with the same speed. The result
shows that the time to render the bounding box of a cached item is
only 2.6-3.2 ms. Without caching, DeepMix needs to execute the
entire workflow, which takes at least 34 ms. Moreover, the number of
offloaded frames decreases from 113 to 12 when caching is enabled
and almost does not change without caching. Thus, our bounding
box caching optimization can drastically improve user experience,
reduce the amount of offloaded data, and decrease computation
overhead on both the edge and the headset.

7.10 Power and Computation Resources

To demonstrate its lightweight feature, we finally compare the
on-device battery power level and computation resource utiliza-
tion of DeepMix with MLCVNet [68] (point-cloud-based), and
D*LCN [12] (image-based). Existing schemes in the same category
have almost the same performance, because their heavy-lifting jobs
are all offloaded to the edge. We generate point clouds for MLCVNet
on mobile headsets to demonstrate its overhead. Otherwise, the
performance of MLCVNet is close to that of D*LCN. Due to the
high cost of generating point clouds, after using the headset for
40 minutes, the average battery power rate level of DeepMix is
8.2 W, which is 0.3 W higher than D*LCN and 1.8 W lower than
MLCVNet. The average CPU (memory) usage of DeepMix is only
24.3% (11.3%), which is 2.3% (0.4%) higher than D*LCN and 7.6%
(6.4%) lower than MLCVNet. There is no significant difference in
GPU usage among these methods. Unfortunately, we do not find a
method to measure the HPU utilization of Microsoft HoloLens 2.

MobiSys '22, June 25-July 1, 2022, Portland, OR, USA

8 DISCUSSION AND FUTURE WORK
Image-based 3D Object Detection. As shown in Table 2, image-
based 3D object detection such as D*LCN [12] achieves high ac-
curacy for the static scenario (e.g., only 3.5% lower than DeepMix
for 3D [oU@0.25). Its poor performance for the dynamic scenario
(11.6% lower than DeepMix in Table 3 for speed @(.5 m/s) is mainly
caused by the high end-to-end latency. However, it can potentially
handle more use cases than DeepMix, as we will discuss next. We
plan to optimize the runtime inference performance of image-based
3D object detection to make it practical.

Limitations. As the first-of-its-kind accurate 3D object detection
that is suitable for mobile headsets, DeepMix has a few limitations
of its current design. For example, it can detect mainly objects that
are placed on a plain surface, and it is challenging to detect, for
instance, a TV that is hung on a wall. Also, DeepMix could not
handle the case that the shape of the object changes during the user
movement, and its caching and reusing mechanism may not work for
deformable objects. However, we argue that the target scenarios of
DeepMix (e.g., objects on a plane and indeformable objects) are the
common use cases for indoor mobile AR/MR. Another issue is that
the range of depth cameras is typically limited (e.g., from 0.5 to 5.5
m), which our caching scheme can help only to some extent. Hence,
DeepMix cannot detect objects that are far away from users. We
are extending DeepMix to address these limitations. One possible
solution is to design a hybrid scheme that dynamically switches
between DeepMix and image-based 3D object detection [67], given
that plane detection is a solved problem [4, 16, 21] and the range of
RGB cameras is longer than that of depth ones.

Supporting Interactive AR/MR. The 3D object detection offered
by DeepMix lays the foundation for enabling real-time, interactive
AR/MR on mobile headsets. We plan to build various immersive
applications by leveraging this key capability of DeepMix.

Light-weighted and Low-priced AR/MR Headsets. The current-
generation of AR/MR headsets are responsible for executing
computation-intensive tasks locally. In the future, with the emerging
network technologies such as 5G and beyond, we expect that the
majority of tasks with heavy computation can be offloaded to remote
cloud/edge servers. As a result, the weight and cost of future AR/MR
headsets may be greatly reduced.

9 RELATED WORK

3D Object Detection. Point-cloud-based 3D Object Detection:
With the development of deep learning models on point clouds [51],
many 3D object detection models have emerged [13, 35, 49, 51, 68,
73]. For example, approaches such as VoteNet [49], COG [54], and
MLCVNet [68] can directly take raw point cloud as input. Thanks to
the available depth information and the underlying DNN networks,
those methods can achieve high detection accuracy. Image-based
3D Object Detection: Instead of processing point clouds, some
existing schemes [7, 8, 12, 41] utilize 2D detectors to achieve 3D
object detection. For example, D*LCN [12] estimates the depth
information from monocular images and fuses RGB and depth using
improved 2D convolutions to generate 3D bounding boxes. 3D
Object Detection with RGB-D Input: This category utilizes both
RGB images and depth data for 3D object detection [34, 50, 61, 63].

39

Yongjie Guan and Xueyu Hou, Nan Wu and Bo Han, and Tao Han

For example, F-PointNet [50] narrows down the 3D space by lever-
aging 2D object detection and further performs segmentation on
selected 3D frustums with PointNet [51] to help estimate the 3D
bounding box. Although these approaches can reduce the amount
of to-be-processed 3D data, their accuracy is usually not as good
as point-cloud-based schemes. Different from the above work,
DeepMix benefits from 2D object detection models that have low
computation latency. By utilizing real-time depth information from
sensors, it can achieve high 3D object detection accuracy with low
end-to-end latency.

Mobile AR/MR. There is a rich literature on building mobile
AR/MR systems [3, 6, 10, 31, 36, 47, 69]. For example, Home-
Meld [31] enables the telepresence between remote living areas
through robot agents as avatars, by finding an equivalent functional
place in rooms and predicting real-time paths to prevent lagging
caused by the robot’s slow movement. LpGL [10] is a device-
independent graphics library that reduces energy consumption for
mobile headset applications, which dynamically selects frame rate
and object shape complexity and leverages user movements to
extend the battery life. Heimdall [69] coordinates concurrent GPU
usage for multi-tasking in mobile AR applications, by splitting the
DNNs into small units and executing them between rendering frames.
Different from the above work, DeepMix offers a real-time, accurate
3D object detection framework, which is missing in existing mobile
AR/MR systems, to support better interaction between and seamless
integration of the digital and 3D physical worlds and provide a truly
immersive user experience for headset-based applications.

10 CONCLUSION

In this paper, we present the design, implementation, and evaluation
of DeepMix, a mobility-aware, lightweight, and accurate 3D object
detection system for improving the quality of user experience of
AR/MR applications running on mobile headsets. Instead of directly
leveraging/accelerating existing 3D object detection models that are
computation-intensive, DeepMix benefits from mature 2D object
detection algorithms to derive a bounding box for the object of inter-
est. It then utilizes this 2D bounding box to extract depth data from
depth images captured by the headset and estimates the 3D bound-
ing box by effectively exploring 3D geometry and data processing.
By doing this, DeepMix not only reduces the end-to-end latency
of AR/MR applications but also drastically increases the detection
accuracy in dynamic environments, by exploiting the mobility of
headsets. We implement DeepMix on a commodity mobile headset
and compare its performance with several state-of-the-art 3D object
detection models. Our extensive experiments, including a user study,
demonstrate the efficacy of DeepMix in terms of both end-to-end
latency and detection accuracy.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd Mahadev
Satyanarayanan for their insightful comments. The research of Tao
Han, Yongjie Guan and Xueyu Hou is partially supported by the
US National Science Foundation under Grant No. 2147821, No.
2147623, No. 2047655, and No. 2049875. The research of Bo Han
and Nan Wu was funded in part by 4-VA, a collaborative partnership
for advancing the Commonwealth of Virginia.

DeepMix: Mobility-aware, Lightweight, and Hybrid 3D Object Detection for Headsets

REFERENCES

[1]
[2]

[3]

[4

[5]
[6]

[7]

[8]

[9

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
[28]

YOLOV4-Tiny. https://github.com/HirataYurina/yolov4-tiny-keras.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Soft-
ware available from tensorflow.org.

K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, and A. K. Roy-
Chowdhury. Frugal Following: Power Thrifty Object Detection and Tracking for
Mobile Augmented Reality. In Proceedings of ACM Conference on Embedded
Networked Sensor Systems (SenSys), 2019.

Apple Inc. ARKit (initial release on June 2017). https://developer.apple.com/arkit/,
2017.

A. Bochkovskiy, C. Wang, and H. M. Liao. YOLOv4: Optimal Speed and Accuracy
of Object Detection. CoRR, abs/2004.10934, 2020.

K. Chen, T. Li, H.-S. Kim, D. E. Culler, and R. H. Katz. MARVEL: Enabling
Mobile Augmented Reality with Low Energy and Low Latency. In Proceedings
of ACM Conference on Embedded Networked Sensor Systems (SenSys), 2018.

X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun. Monocular 3D
Object Detection for Autonomous Driving. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

X. Chen, K. Kundu, Y. Zhu, H. Ma, S. Fidler, and R. Urtasun. 3D Object Proposals
Using Stereo Imagery for Accurate Object Class Detection. /IEEE Trans. Pattern
Anal. Mach. Intell., 40(5):1259-1272, 2018.

X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-View 3D Object Detection
Network for Autonomous Driving. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

J. Choi, H. Park, J. Paek, R. K. Balan, and J. Ko. LpGL: Low-power Graphics
Library for Mobile AR Headsets. In Proceedings of the 17th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys), 2019.
Cytron. LM35 temperature sensor. https:/tutorial.cytron.io/2017/07/13/getting-
started- temperature-sensor-celsius-sn-1m35dz/.

M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu, and P. Luo. Learning Depth-
Guided Convolutions for Monocular 3D Object Detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner. Vote3deep: Fast Ob-
ject Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks.
In 2017 IEEE International Conference on Robotics and Automation (ICRA),
2017.

Y. Fang, R. Nakashima, K. Matsumiya, I. Kuriki, and S. Shioiri. Eye-Head
Coordination for Visual Cognitive Processing. PloS one, 10(3):e0121035, 2015.
Y. Feng, B. Tian, T. Xu, P. Whatmough, and Y. Zhu. Mesorasi: Architecture
Support for Point Cloud Analytics via Delayed-Aggregation. In Proceedings of
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020.

M. A. Fischler and R. C. Bolles. Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM, 24(6):381-395, 1981.

FLIR. FLIR E8-XT Infrared Camera with Extended Temperature Range. https:
/lwww.flir.com/products/e8-xt/.

A. Frisoli, M. Solazzi, D. Pellegrinetti, and M. Bergamasco. A New Screw Theory
Method for the Estimation of Position Accuracy in Spatial Parallel Manipulators
with Revolute Joint Clearances. Mechanism and Machine Theory, 46(12):1929—
1949, 2011.

R. B. Girshick. Fast R-CNN. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2015.

Google. TensorFlow Lite. https://www.tensorflow.org/lite/api_docs.

Google. ARCore (initial release on March 2018). https://developers.google.com/
ar/, 2018.

J. Grubert, Y. Itoh, K. Moser, and J. E. Swan. A Survey of Calibration Meth-
ods for Optical See-Through Head-Mounted Displays. /EEE Transactions on
Visualization and Computer Graphics, 24(9):2649-2662, Sep. 2018.

A. Grunnet-Jepsen and D. Tong. Depth Post-Processing for Intel Realsense™
D400 Depth Cameras. New Technologies Group, Intel Corporation, 2018.

Y. Guan, X. Hou, T. Han, and S. Zhang. Deepmix: A real-time adaptive vir-
tual content registration system with intelligent detection. In /[EEE INFOCOM
2021 - IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pages 1-2, 2021.

X. Hou, Y. Guan, T. Han, and N. Zhang. Distredge: Speeding up convolutional
neural network inference on distributed edge devices. In 36th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2022.

X. Hou and T. Han. Trustserving: A quality inspection sampling approach for
remote dnn services. In 2020 17th Annual IEEE International Conference on
Sensing, Communication, and Networking (SECON), pages 1-9, 2020.

Intel. Intel RealSense D435. https://www.intelrealsense.com/depth-camera-d435/.
S.Izadi, R. A. Newcombe, D. Kim, O. Hilliges, D. Molyneaux, S. Hodges, P. Kohli,
J. Shotton, A. J. Davison, and A. W. Fitzgibbon. KinectFusion: Real-Time Dy-
namic 3D Surface Reconstruction and Interaction. In Proceedings of International
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH),
2011.

40

[29]

[30

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]
[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[551

[56]

MobiSys '22, June 25-July 1, 2022, Portland, OR, USA

Y. Ji, Q. Xia, and Z. Zhang. Fusing Depth and Silhouette for Scanning Transparent
Object with RGB-D Sensor. International Journal of Optics, 2017:1-11, 2017.
P. Kainiemi and I. Salento. kinect-bits (including “Simple Background Removal
and ROI Estimation” and “Floor Determination and Removal”). https://github.
com/kainiemi/kinect-bits/.

B. Kang, I. Hwang, J. Lee, S. Lee, T. Lee, Y. Chang, and M. K. Lee. My Being to
Your Place, Your Being to My Place: Co-present Robotic Avatars Create Illusion
of Living Together. In Proceedings of the 16th Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys), 2018.

Keithley. Keithley Series 2281S Battery Simulator. https://www.tek.com/tektronix-
and-keithley-dc-power-supplies/2281s.

J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander. Joint 3D Proposal
Generation and Object Detection from View Aggregation. In Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2018.

J. Lahoud and B. Ghanem. 2D-Driven 3D Object Detection in RGB-D Images. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV),
2017.

A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom. PointPil-
lars: Fast Encoders for Object Detection From Point Clouds. In Proceedings
of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2019.

Z.Li, M. Annett, K. Hinckley, K. Singh, and D. Wigdor. HoloDoc: Enabling Mixed
Reality Workspaces that Harness Physical and Digital Content. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems, 2019.

T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dolldr, and
C. L. Zitnick. Microsoft COCO: Common Objects in Context. In Proceedings of
European Conference on Computer Vision (ECCV), 2014.

L. Liu, H. Li, and M. Gruteser. Edge Assisted Real-time Object Detection for
Mobile Augmented Reality. In Proceedings of the 25th Annual International
Conference on Mobile Computing and Networking (MobiCom), 2019.

L. Liu, J. Lu, C. Xu, Q. Tian, and J. Zhou. Deep Fitting Degree Scoring Network
for Monocular 3D Object Detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

G. Lukdcs, R. Martin, and D. Marshall. Faithful Least-Squares Fitting of Spheres,
Cylinders, Cones and Tori for Reliable Segmentation. In Proceedings of European
Conference on Computer Vision (ECCV), 1998.

X. Ma, Z. Wang, H. Li, P. Zhang, W. Ouyang, and X. Fan. Accurate Monocular
3D Object Detection via Color-Embedded 3D Reconstruction for Autonomous
Driving. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2019.

Magic Leap Inc. Magic Leap One. https://www.magicleap.com/magic-leap-one.
Microsoft Corporation. DirectX. https://docs.microsoft.com/en-us/windows/
win32/directx-sdk--august-2009-.

Microsoft Corporation. Microsoft HoloLens 2. https://www.microsoft.com/en-
us/hololens.

Microsoft Corporation. Mixed Reality Documentation. https://docs.microsoft.
com/en-us/windows/mixed-reality.
Microsoft Corporation. Windows SDK.
windows/win32/api/.

T. Park, M. Zhang, and Y. Lee. When Mixed Reality Meets Internet of Things: To-
ward the Realization of Ubiquitous Mixed Reality. GetMobile: Mobile Computing
and Communications, 22(1):10-14, 2018.

C.R. Qi, X. Chen, O. Litany, and L. J. Guibas. ImVoteNet: Boosting 3D Object
Detection in Point Clouds With Image Votes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

C. R. Qi, O. Litany, K. He, and L. J. Guibas. Deep Hough Voting for 3D Ob-
ject Detection in Point Clouds. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2019.

C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frustum PointNets for 3D
Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488, 2017.
C.R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep Learning on Point Sets
for 3D Classification and Segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

J. Redmon. Darknet: Open Source Neural Networks in C. http://pjreddie.com/
darknet/, 2013-2016.

J. Redmon and A. Farhadi. YOLOv3: An Incremental Improvement. ArXiv,
abs/1804.02767, 2018.

Z. Ren and E. B. Sudderth. Three-Dimensional Object Detection and Layout
Prediction Using Clouds of Oriented Gradients. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

D. Roetenberg, H. Luinge, and P. Slycke. Xsens MVN: Full 6DOF Human Motion
Tracking Using Miniature Inertial Sensors. Xsens Motion Technologies BV, Tech.
Rep, 1, 2009.

S. Sajjan, M. Moore, M. Pan, G. Nagaraja, J. Lee, A. Zeng, and S. Song. Clear-
Grasp: 3D Shape Estimation of Transparent Objects for Manipulation. In Pro-
ceedings of the 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020.

https://docs.microsoft.com/en-us/

MobiSys '22, June 25-July 1, 2022, Portland, OR, USA

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

S. Shams, R. Platania, K. Lee, and S.-J. Park. Evaluation of deep learning frame-
works over different hpc architectures. In 2017 IEEE 37th International Confer-
ence on Distributed Computing Systems (ICDCS), pages 1389-1396, 2017.

S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li. PV-RCNN:
Point-Voxel Feature Set Abstraction for 3D Object Detection. In Proceedings
of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

S. Shi, X. Wang, and H. Li. PointRCNN: 3D Object Proposal Generation and
Detection From Point Cloud. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

S. Song, S. P. Lichtenberg, and J. Xiao. SUN RGB-D: A RGB-D Scene Under-
standing Benchmark Suite. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

S. Song and J. Xiao. Deep Sliding Shapes for Amodal 3D Object Detection in
RGB-D Images. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

K. H. Strobl and G. Hirzinger. More Accurate Pinhole Camera Calibration with
Imperfect Planar Target. In Proceedings of IEEE International Conference on
Computer Vision Workshops (ICCV Workshops), 2011.

Y. S. Tang and G. H. Lee. Transferable Semi-Supervised 3D Object Detection
From RGB-D Data. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2019.

Unity. Barracuda. https://docs.unity3d.com/Packages/com.unity.barracuda@1.0/
manual/index.html.

Unity Technologies. Unity Real-Time Development Platform. https://unity3d.
com/.

41

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Yongjie Guan and Xueyu Hou, Nan Wu and Bo Han, and Tao Han

H. Wang, Y. Cong, O. Litany, Y. Gao, and L. J. Guibas. 3DIoUMatch: Leveraging
IoU Prediction for Semi-Supervised 3D Object Detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

N. Wu, E. X. Lin, F. Qian, and B. Han. Hybrid Mobile Vision for Emerging
Applications. In Proceedings of the 23nd ACM Workshop on Mobile Computing
Systems and Applications (HotMobile), 2022.

Q. Xie, Y. Lai, J. Wu, Z. Wang, Y. Z. andvote Kai Xu, and J. Wang. MLCVNet:
Multi-Level Context VoteNet for 3D Object Detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

J.Yiand Y. Lee. Heimdall: Mobile GPU Coordination Platform for Augmented
Reality Applications. In Proceedings of the 26th Annual International Conference
on Mobile Computing and Networking (MobiCom), 2020.

H. Zhang, B. Han, C. Y. Ip, and P. Mohapatra. Slimmer: Accelerating 3D Se-
mantic Segmentation for Mobile Augmented Reality. In Proceedings of IEEE
International Conference on Mobile Ad Hoc and Sensor Systems (MASS), 2020.

H. Zhang, B. Han, and P. Mohapatra. Toward Mobile 3D Vision. In Proceedings
of IEEE International Conference on Computer Communications and Networks
(ICCCN), 2020.

W. Zhang, B. Han, and P. Hui. Jaguar: Low Latency Mobile Augmented Reality
with Flexible Tracking. In Proceedings of the 26th ACM international conference
on Multimedia (MM), 2018.

Y. Zhou and O. Tuzel. VoxelNet: End-to-End Learning for Point Cloud Based 3D
Object Detection. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

