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ABSTRACT

In this work, we propose a high-throughput implementation that
executes AlphaFold2 efficiently in a High-Performance Computing
environment. In this case, we have tested our proposed workflow
with the T1050 CASP14 sequence on PSC’s Bridges-2 HPC system.
The results showed an improvement in computation-only runtimes
and the opportunity to reuse the protein databases when calculating
many structures simultaneously, which would lead to massive time
savings while maximizing the utilization of computing resources.
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1 INTRODUCTION

Though separated in some cases by over 1B years of evolutionary
time, divergent protein families may share remarkable sequence
and structural patterns. Although the patterns are complex, and
although the evolutionary parameters that generated them are
ambiguous, the patterns are detectable by sophisticated statistical
models, given sufficient protein data [1, 6, 12]. A model trained
on sufficient data could, in principle, extract these evolutionary
parameters from the patterns and then parameterize itself to gener-
ate viable synthetic proteins that are statistically indistinguishable
from those generated by natural evolutionary processes, but in a
controllable way.

Until recently, sufficient volumes of protein structure data were
unavailable, so prior generative protein modeling methods focused
primarily on sequence data. However, the recent release of the arti-
ficial intelligence (AI) model AlphaFold2 (AF2) by Google’s Deep-
Mind, which can predict structures with atomic precision on par
with experimental techniques, opens the door to a variety of new
generative models that would benefit from training on protein struc-
ture in addition to the sequence [8, 19]. In 2020, Google’s Deepmind
entered the 14 CASP competition (CASP14 [9]) with “AlphaFold2”
(AF2)[8], whose performance shocked the world of structural bioin-
formatics, reaching a level of atomic precision which until then was
the prerogative of notoriously difficult experimental techniques.
The Critical Assessment of Structure Prediction (CASP) is a decades-
old international competition for computationally determining pro-
tein structures. Subsequently, the CASP14 organizers announced
in a press release that AF2 had effectively solved the 50-year-old
problem of single-chain protein folding [10], an achievement they
said would revolutionize medicine in our lifetime [19].

Until the recent arrival of AF2, the data scarcity issue was even
more acute for protein structures than for sequences because struc-
tures are notoriously difficult to determine experimentally, and
computational methods were nowhere near as accurate. For gen-
erative protein sequence models, it has been shown that between
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Table 1: Databases needed for each phase in the proposed
workflow. A graphical representation of the proposed work-
flow can be found in Figure 1.

Phase Process Database Size SquashFS

PO jackhmmer UniRef90 58GB  31GB
MGnify 64GB  33GB

PO hhblits BFD 1.7TB  272GB
Uniclust30 8 GB 26 GB

P1 hhsearch and Features PDB70 56 GB 20 GB
PDB MMCIF 206 GB 51 GB

P2 Models Params 35GB  33GB

10* to 10° training samples are needed depending on the model
and the protein(s) being studied [6, 12]. In contrast, most individual
protein families have less than 10* complete sequences available
in public databases [6, 12, 14], and even fewer structures. Because
AF?2 can generate the structure for any given sequence, AF2 has
created the opportunity for novel generative protein models that
include structure in the training data.

Building such a large structural training sample database implies
a substantial computational cost for which workflow/code opti-
mization becomes necessary, specifically on shared computational
resources like on-premises High-Performance Computing (HPC)
facilities and national supercomputing centers. In the case of AF2,
some efforts have been made to run it more efficiently in an HPC
setting, such as ParaFold [20] and FastFold [4]. In this short paper,
we would like to describe the experience of using AF2 in our main
HPC facility at Temple University, also known as Owl’s Nest 2, and
on Bridges-2 [2] at the Pittsburgh Supercomputing Center (PSC).

This paper is organized as follows: in Section 2, we summarize
the AF2 workflow and report on-premises benchmarking for the
particular case of the CASP14 T1050 sequence. In Section 3, we
present our own high-throughput implementation that runs AF2
more efficiently in an HPC environment. Lastly, we close with some
conclusions and future work.

2 AF2 PIPELINE AND INITIAL BENCHMARK

The original AF2 workflow is composed of two main parts, labeled
P1and P2 in Fig. 1, left: the Multiple Sequence Alignment (MSA) and
Feature Generation (Fig. 1, left, blue), and the Structure Inference
and Relaxation (Fig. 1, left, orange). P1 is executed exclusively on
the CPU, while the P2 can leverage GPU acceleration.

In P1, AF2 takes as input a protein sequence to generate the MSA
by querying a large set of protein sequences from public databases.
AF2 uses jackhmmer [5] and hhblits [17] to search over those
databases in two stages. The first stage creates initial MSAs by using
jackhmmer over UniRef90 [18] (jackhmmer_1) and MGnify [15]
(jackhmmer_2), and hhblits over BFD + Uniclust30 [13], which
then are used in the second stage when the hhsearch [17] takes
place over PDB70 [17]. Due to the size of the protein databases
(Table 1), and the elevated random file access, the MSA creation is
the most computationally and time-intensive step. For the T1050
CASP14 sequence, P1 takes between 3.5 to 4 hours to complete
(Fig. 2).

In P2, AF2 takes as input the protein sequence, the MSA, and
other features from P1. Then, it infers a structure, followed by pro-
tein structure relaxation using the AMBER forcefield [3]. By default,
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Figure 1: Left: Original AF2 workflow. One sequence is fed
to AF2. In P1, features and MSA are created, then fed to P2,
where a structure is inferred, then relaxed using the AM-
BER [3] forcefield. P2 is repeated 5x to create a total of 5
structures for the same initial protein sequence. All code
blocks in P1 and P2 are run sequentially. Right: Our mod-
ified AF2 workflow. The input remains the same as in the
original, but multiple sequences can now be fed into AF2
asynchronously in parallel. Firstly, we recompiled the bina-
ries for significant runtime savings overall. P1 from the orig-
inal has been decoupled from P2, then decomposed into P0
and P1. PO is then further decomposed, and the processes de-
coupled. P2 from the original has been decomposed into P2
(Structure Generation) and P3 (structure relaxation). Instead
of generating five structures as in the original, we generate
only one structure from P2 for 80% runtime savings in P2.

P2 is repeated five times, creating five independent structures for
each single sequence submitted to P1. As shown in Fig. 2, the struc-
ture inference and relaxation are about 20% of the total execution
time for the T1050 sequence, which is 4.8 hours.

3 AF2 HIGH-THROUGHPUT WORKFLOW
OPTIMIZATION

In order to achieve maximum utilization of computational resources
for high-throughput structure prediction with AF2, we employed a
general strategy of decomposing and decoupling processes within
and across the original phases, P1 and P2. We began by decoupling
P1 and P2. The motivation for this is the usual setup in an HPC
facility, i.e., it is common to have independent queues for GPU
nodes and regular CPU compute nodes. We have also decoupled
the inference and relaxation steps in P2 since the inference is the
only step that can be executed on GPUs. The proposed workflow is
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Figure 2: T1050 CASP14 Execution time distribution. Most of the time is spent in the MSA creation. Calculation performed on

Bridges-2 [2].
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Figure 3: Execution times for the proposed workflow after compressing databases and phase decoupling. The non-copy version
uses the network file system (NFS) to read the databases from a remote location, while the copy strategy uses the databases
locally on each compute node after database transfer. Not all databases are transferred; see Table 1 for a complete list of the
databases used for each phase of the workflow. PO, P1 and P3 were performed on Bridges-2 Regular Memory (RM) compute

nodes, while P2 was calculated on Bridges-2 GPU nodes.

shown on the right-hand side of Figure 1; P1 and P3 are executed
on CPU nodes, while P2 is executed on GPUs.

As mentioned in the previous section, the most time-consuming
step from the original AF2 implementation was the MSA creation
due to the high network I/O performed over various large protein
databases. We present our high-throughput AF2 implementation in
two versions: one that is memory-intensive, and one that is network
I/O-intensive, referred to as “copy” and “non-copy”, respectively 3.
First, we describe the memory-intensive version in detail. By care-
fully decomposing the individual MSA generation steps, we were
able to isolate the specific resources used by each step, and exploited
this information to decouple the steps from each other, allowing
us to send each process to its own node with only the database(s)
needed for that step. By transferring the databases directly into
memory on the node, network I/O was mitigated. However, we
note that the memory-intensive option requires >2TB RAM com-
pute nodes, and would only be beneficial for high-throughput use
cases in which many MSAs are calculated in the same job script.
With respect to decomposition of the original MSA generation, we
observed that jackhmmer and hhblits could be run independently
of each other. As mentioned, running jackhmmer and hhblits on
different compute nodes obviated the need to copy all databases
to each node, only those needed for each process running on that
node. As a result of the decomposition within the original P1, the
initial MSA creation with jackhmmer and hhblits are denoted as
PO in our optimized implementation, and the subsequent hhsearch
and feature generation as P1. The list of databases needed for each

phase of the workflow (PX) is exhibited in Table 1. These protein
databases are easily compressible, and in this work we have used
SquashFS [11] to do so.

After SquashFS database compression, we calculated the T1050
CASP14 sequence using our two different strategies. To reiterate, for
the memory-intensive “copy” version, we transferred the necessary
SquashFS files directly into memory on the compute node where the
calculation would take place, and then performed the benchmarking
calculations. In the second “non-copy” version, we did not copy
the databases, but rather queried them using an IPoIB (IP-over-
InfiniBand) network file system. The times for each strategy are
listed in Table 3.

The “non-copy” version takes 3.5 hours compared with the 4.8
hours used by the “stock” version of AF2. The runtime improvement
is even more noticeable with the “copy” version of the workflow,
just 1.5 hours of computation-only. It is important to note that if
we add the network I/O time; i.e., the time it takes to transfer the
data over the network; plus decompression of the databases and
the computation time, the overall runtime is 5 hours. However,
moving the databases to the local disk is a one-time cost when
running multiple calculations, which is expected in a real-world
high-throughput use case.

4 CONCLUSIONS AND FUTURE WORK

Any modern supercomputing center would struggle to produce
enough structural data from the default AF2 installation to feed
even a modest generative protein model. This goes to show that
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having access to the biggest hammer in the workshop is pointless
if it is too heavy for anyone to lift. It is on this point that our work
here gains traction. If made available to the public on PSC’s systems,
which is our current goal, our high-throughput AF2 implementation
could handle the undifferentiated heavy lifting of HPC, allowing
researchers in generative protein modeling to wield one of the most
potent and promising tools for scientific discovery in our lifetime.

The original AF2 implementation calls out to several external
utilities as part of an integrated data-processing pipeline, specifi-
cally jackhmmer, hhblits, hhsearch, hmmsearch, hmmbuild, and
kalign, although not all of these utilities are needed for every exe-
cution. Each of these utilities is a standalone tool, with its own per-
formance tuning options. In an effort to provide a general-purpose
pipeline, the original AF2 implementation makes conservative tun-
ing choices to ensure reasonable performance across the commonly
available hardware. However, laptops and workstations have very
different hardware characteristics from nodes of a high perfor-
mance computing cluster, which can benefit from much greater
levels of parallelization and which may offer hardware acceleration.
To achieve greater flexibility across a wide variety of hardware,
the AF2 pipeline can be further disassembled. The utilities can be
run in a standalone manner, such that the runtime options of each
utility can be chosen by the user to optimize the performance on
the actual hardware present. Similar to the decoupling strategies
discussed above, the user is free to run the utilities concurrently as
well.

By default, the original AF2 implementation will run jackhmmer
twice, followed by hhsearch, then hhblits, before finally invok-
ing the AF2 algorithm itself to predict the structure, followed by
relaxation using stand techniques. With a fully decoupled pipeline,
users perform this same task by submitting independent jobs to
the HPC scheduler for each of the above steps, taking advantage
of job-dependency features to inform the scheduler that hhsearch
depends on the output from jackhmmer, and that the final structure
generation and relaxation depends on the output from all of the
prior external-utility jobs. The final benefit to this approach is that
alternative software can be chosen to replace certain utilities in or-
der to achieve even greater acceleration. With the data-preparation
techniques described above, the current external utilities are still
limited by inefficient scaling and computational capacity, and so
still dominate the execution time. As refined implementations of
these utilities are developed, the extra decoupling described in this
paper will enable users to choose which implementation to use
with AF2 without having to make any manual changes to the AF2
code base.

In perspective, decoupling and optimizing AF2 as we have done
here will enable a number of diverse applications in computational
structural biology by leveraging the computational capability of
high performance computing facilities. One possible application is
de novo protein design. In this context, the AF2 protein structure
prediction engine could be used as a component of a neural-network
based probabilistic generative model; preliminary results obtained
in this field by our group are encouraging and suggest that, in its
optimized version, AF2 could be used to generate, on demand, tens
of thousands of protein structures. Another interesting user sce-
nario could involve interactive molecular visualization systems like
VMD [7] or PyMol [16], which are typically used to visually inspect
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and analyze experimental structures. An appropriately optimized
and decoupled AF2 could, for instance, be used to visualize the
structure corresponding to a sequence provided by the user within
the environment of the molecular visualization system without the
need to download or copy additional files.
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