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ABSTRACT

In this work, we propose a high-throughput implementation that
executes AlphaFold2 efficiently in a High-Performance Computing
environment. In this case, we have tested our proposed workflow
with the T1050 CASP14 sequence on PSC’s Bridges-2 HPC system.
The results showed an improvement in computation-only runtimes
and the opportunity to reuse the protein databases when calculating
many structures simultaneously, which would lead to massive time
savings while maximizing the utilization of computing resources.
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1 INTRODUCTION

Though separated in some cases by over 1B years of evolutionary
time, divergent protein families may share remarkable sequence
and structural patterns. Although the patterns are complex, and
although the evolutionary parameters that generated them are
ambiguous, the patterns are detectable by sophisticated statistical
models, given sufficient protein data [1, 6, 12]. A model trained
on sufficient data could, in principle, extract these evolutionary
parameters from the patterns and then parameterize itself to gener-
ate viable synthetic proteins that are statistically indistinguishable
from those generated by natural evolutionary processes, but in a
controllable way.

Until recently, sufficient volumes of protein structure data were
unavailable, so prior generative protein modeling methods focused
primarily on sequence data. However, the recent release of the arti-
ficial intelligence (AI) model AlphaFold2 (AF2) by Google’s Deep-
Mind, which can predict structures with atomic precision on par
with experimental techniques, opens the door to a variety of new
generative models that would benefit from training on protein struc-
ture in addition to the sequence [8, 19]. In 2020, Google’s Deepmind
entered the 14th CASP competition (CASP14 [9]) with łAlphaFold2ž
(AF2)[8], whose performance shocked the world of structural bioin-
formatics, reaching a level of atomic precision which until then was
the prerogative of notoriously difficult experimental techniques.
The Critical Assessment of Structure Prediction (CASP) is a decades-
old international competition for computationally determining pro-
tein structures. Subsequently, the CASP14 organizers announced
in a press release that AF2 had effectively solved the 50-year-old
problem of single-chain protein folding [10], an achievement they
said would revolutionize medicine in our lifetime [19].

Until the recent arrival of AF2, the data scarcity issue was even
more acute for protein structures than for sequences because struc-
tures are notoriously difficult to determine experimentally, and
computational methods were nowhere near as accurate. For gen-
erative protein sequence models, it has been shown that between
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having access to the biggest hammer in the workshop is pointless
if it is too heavy for anyone to lift. It is on this point that our work
here gains traction. If made available to the public on PSC’s systems,
which is our current goal, our high-throughput AF2 implementation
could handle the undifferentiated heavy lifting of HPC, allowing
researchers in generative protein modeling to wield one of the most
potent and promising tools for scientific discovery in our lifetime.

The original AF2 implementation calls out to several external
utilities as part of an integrated data-processing pipeline, specifi-
cally jackhmmer, hhblits, hhsearch, hmmsearch, hmmbuild, and
kalign, although not all of these utilities are needed for every exe-
cution. Each of these utilities is a standalone tool, with its own per-
formance tuning options. In an effort to provide a general-purpose
pipeline, the original AF2 implementation makes conservative tun-
ing choices to ensure reasonable performance across the commonly
available hardware. However, laptops and workstations have very
different hardware characteristics from nodes of a high perfor-
mance computing cluster, which can benefit from much greater
levels of parallelization and which may offer hardware acceleration.
To achieve greater flexibility across a wide variety of hardware,
the AF2 pipeline can be further disassembled. The utilities can be
run in a standalone manner, such that the runtime options of each
utility can be chosen by the user to optimize the performance on
the actual hardware present. Similar to the decoupling strategies
discussed above, the user is free to run the utilities concurrently as
well.

By default, the original AF2 implementation will run jackhmmer

twice, followed by hhsearch, then hhblits, before finally invok-
ing the AF2 algorithm itself to predict the structure, followed by
relaxation using stand techniques. With a fully decoupled pipeline,
users perform this same task by submitting independent jobs to
the HPC scheduler for each of the above steps, taking advantage
of job-dependency features to inform the scheduler that hhsearch
depends on the output from jackhmmer, and that the final structure
generation and relaxation depends on the output from all of the
prior external-utility jobs. The final benefit to this approach is that
alternative software can be chosen to replace certain utilities in or-
der to achieve even greater acceleration. With the data-preparation
techniques described above, the current external utilities are still
limited by inefficient scaling and computational capacity, and so
still dominate the execution time. As refined implementations of
these utilities are developed, the extra decoupling described in this
paper will enable users to choose which implementation to use
with AF2 without having to make any manual changes to the AF2
code base.

In perspective, decoupling and optimizing AF2 as we have done
here will enable a number of diverse applications in computational
structural biology by leveraging the computational capability of
high performance computing facilities. One possible application is
de novo protein design. In this context, the AF2 protein structure
prediction engine could be used as a component of a neural-network
based probabilistic generative model; preliminary results obtained
in this field by our group are encouraging and suggest that, in its
optimized version, AF2 could be used to generate, on demand, tens
of thousands of protein structures. Another interesting user sce-
nario could involve interactive molecular visualization systems like
VMD [7] or PyMol [16], which are typically used to visually inspect

and analyze experimental structures. An appropriately optimized
and decoupled AF2 could, for instance, be used to visualize the
structure corresponding to a sequence provided by the user within
the environment of the molecular visualization system without the
need to download or copy additional files.
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