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ABSTRACT

Compressed deep neural network (DNN) models have been

widely deployed in many resource-constrained platforms and

devices. However, the security issue of the compressed mod-

els, especially their vulnerability against backdoor attacks, is

not well explored yet. In this paper, we study the feasibility of

practical backdoor attacks for the compressed DNNs. More

specifically, we propose a universal adversarial perturbation

(UAP)-based approach to achieve both high attack stealthi-

ness and high attack efficiency simultaneously. Evaluation

results across different DNN models and datasets with vari-

ous compression ratios demonstrate our approach’s superior

performance compared with the existing solutions.

Index Terms— Backdoor attack, deep neural network,

compression

1. INTRODUCTION

Motivated by the emerging demands of artificial intelli-

gence of things (AIoT), deploying powerful deep neural

networks (DNNs) on mobile and embedded devices has be-

come very important and attractive in both academia and

industry. However, DNNs are inherently storage-intensive

and computation-intensive, making their efficient execution

on resource-constrained platforms challenging. To address

this problem and promote the democratization of AI, model

compression [1, 2, 3, 4, 5], a strategy that reduces the sizes of

neural networks with preserving high accuracy, is popularly

adopted for the efficient realization of edge intelligence. To

date, a massive amount of compressed DNN models have

been widely deployed on various IoT devices in many real-

world applications.

Although extensive research efforts have demonstrated

the promising model efficiency of the compressed DNNs,

their corresponding model security against attacks, especially

with backdoor attacks, is little explored yet. As revealed by

its name, the backdoor attack [6, 7] is a type of attack strategy

that injects the hidden backdoor into the neural networks.

Once infected, the attacked model typically behaves normally

on the benign inputs, but its classification/prediction results

Fig. 1: Our focused attack scenario. A pre-trained DNN can be

obtained from safe sources. However, during the deployment stage,

an attacker can compress the model and inject backdoors.

will be maliciously changed if the input trigger activates the

embedded backdoor.

In practice, the threat of backdoor attacks typically hap-

pens when the model users cannot fully control the entire

training procedure. Unfortunately, the generation process of

the compressed DNNs exactly provides increasing attack op-

portunities for the adversary to launch the backdoor attack.

Consider that producing a compressed DNN typically con-

sists of two phases: 1) it first develops a pre-trained large-

scale neural network, and 2) it then compresses the model

towards a compact version. In principle, the hidden back-

doors can be injected into the final compressed model in ei-

ther of these two phases. In contrast, such injection to the un-

compressed model can only happen in the pre-training phase.

Consequently, deploying compressed DNNs may cause the

growth of the attack surface and make the models more vul-

nerable.

The Scope of This Paper. Motivated by the limited ex-

ploration of backdoor attack in the edge AI scenario, in this

paper, we propose to investigate the practical backdoor attack

against compressed DNN models. Fig. 1 shows our focused
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attack scenario, and it is seen that here we aim to inject the

hidden backdoor during the model compression stage. This

is because, in many real-world applications, the pre-trained

DNN models are provided by trusted developers (e.g., pub-

lic companies) and will be carefully tested and examined. At

the same time, the scrutiny and review on the compression

stage are relatively very relaxed and less strict. From the per-

spective of practical attack, embedding the hidden backdoor

during model compression is more realistic and feasible.

Technical Preview and Benefits. In practice, launching

high-quality backdoor attacks against the compressed models

is non-trivial but faces several technical challenges concern-

ing stealthiness and effectiveness. In this paper, we propose

a universal adversarial perturbation (UAP)-based approach,

which can use invisible triggers to realize backdoor attacks

stealthily and effectively. Compared with the existing hand-

picked or random trigger-based attack methods, our proposed

solution can exhibit superior attack performance in terms of

effectiveness, generalization, and invisibility. Evaluation re-

sults show that our backdoor attack approach achieves nearly

100% successful rates and extremely high stealthiness against

various DNN models on different datasets with a wide range

of compression ratios (2× ∼ 100×), thereby demonstrating

very high feasibility and practicality.

2. MOTIVATIONS

Considering the importance of DNN security, to date, numer-

ous research efforts [6, 7, 8] have been conducted towards

the feasibility of backdoor attacks. Most of the current works

focus on the attack against uncompressed DNN models.

Despite the current prosperity, several technical challenges

remain and hinder the realization of practical backdoor at-

tacks, especially when the attack objective is the compact

compressed model that is specially designed for resource

constraint devices.

Challenge on Stealthiness. From the perspective of practi-

cal deployment, launching a backdoor attack must have high

stealthiness to avoid the potential detection and be able to by-

pass human inspection. In other words, the trigger pattern in

the malicious input should be imperceptible and difficult to

be noticed. However, many of the triggers proposed in the

existing backdoor attack methods, especially for those hand-

picked patterns [8, 7, 9], do not exhibit high stealthiness but

only rely on the unawareness of human examiners. As shown

in Section 4, such a solution is unreliable and can be easily

detected due to insufficient invisibility.

Challenge on Efficiency. To improve attack stealthiness,

some works [8, 10] propose to use random patterns to trigger

the backdoors. Although this strategy can indeed mitigate the

perceptibility issue, the inherent randomness in the patterns

poses a new challenge for the attack efficiency against the

compressed model. In general, an efficient backdoor attack

should simultaneously achieve negligible accuracy degrada-

tion for benign inputs and a high attack success rate with the

presence of triggers. Typically, such strict demand, though

challenging, can still be satisfied because of the powerful

capabilities of the full-size DNNs. However, in the context of

using compact models, as shown in Section 4, the inherently

limited capacity causes serious challenges for training an in-

fected compressed model to properly distinguish the random

trigger patterns from random noise. Hence, random patterns

can significantly degrade the attack success rate.

Our Design Goal. Motivated to overcome these challenges,

we aim to develop an efficient backdoor attack approach that

1) uses high-stealthiness trigger patterns that are impercep-

tible to human examiners and 2) achieves high accuracy for

clean inputs as well as high attack performance against com-

pressed models. To fulfill those requirements, we propose

a universal adversarial perturbation (UAP)-based invisible

backdoor attack solution targeting compact DNNs. Next, we

describe the mechanism and procedure of our approach in

detail.

3. METHOD

3.1. Problem Formulation

We first formulate the problem of injecting backdoors into the

compressed models. In general, consider a pre-trained DNN

classifier Wpt with function F . Without loss of generality, we

adopt the popular weight magnitude-based pruning method

[1] to perform compression. More specifically, with a pre-

defined sparsity ratio k, a binary mask M is used to sparsify

the model as:

mi =

{
1 if wi ∈ TopK(wpt, k),

0 otherwise
(1)

where m and wpt are the vectorized M and Wpt, respec-

tively. TopK(·, ·) is the function that returns the set of the

elements of input vector with largest k‖wpt‖0 absolute val-

ues. The goal of the backdoor attacker here is to modify the

pre-trained model Wpt to W and design a backdoor injection

function B : x �→ xtrojan s.t.:

FW�M : x �→ y, (2)

FW�M : xtrojan �→ t, (3)

where � denotes the element-wise multiplication, and x and

xtrojan are the benign input and malicious input (with trig-

gers), respectively. In addition, y denotes the ground-truth

source label, and t is the target label that is specified by the

attacker. For simplicity, we consider a simple backdoor gen-

eration function as:

B(x) = xtrojan = clip(x+ τ), (4)

where clip(·) clips its input into valid range and τ is the

trigger pattern that the attacker needs to design.
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3.2. Proposed Method

Overview. Fig. 2 illustrates the overall flow of our proposed

compressed DNN-oriented backdoor attack. Given a full-size

pre-trained model, we first compress it via one-shot global

unstructured pruning [1]. We then leverage the universal ad-

versarial perturbation (UAP) algorithm [11], an originally de-

signed technique for adversarial attacks [12, 13, 14, 15, 16,

17, 18, 19], to generate the stealthy trigger patterns for our

target backdoor attack. Finally, the compressed model is fine-

tuned on benign and poisoned data to achieve a high clean

data accuracy (CDA) and a high attack success rate (ASR).

Fig. 2: The overall flow of our proposed invisible backdoor attack.

Generation of Invisible Trigger Pattern. As discussed in

Section 2, the stealthiness and effectiveness of trigger patterns

are very critical to the quality of the backdoor attack. Con-

sidering such importance, we propose to leverage the univer-

sal adversarial perturbation (UAP), which is originally used

for adversarial attacks, to serve as the trigger patterns in the

backdoor attack. To be specific, given a dataset D that has

N number of classes, the unique UAP pattern τi for the target

class ti can be generated as:

τi = argmin
τi

L(Wpt �M,clip(x+ τi), ti),

s.t. ‖τi‖p ≤ ε
(5)

where L(·, ·, ·) and ε are the loss function and maximum al-

lowed perturbation, respectively. Notice that our proposed

UAP pattern can satisfy the desired stealthiness and efficiency

in backdoor attacks. This is because 1) as a type of adver-

sarial perturbation, UAP inherently exhibits high impercep-

tibility, which is a must demand in adversarial attacks; and

2) UAP patterns are generated in a way such that the per-

turbed input lie close to the decision boundary. In such a case,

the compressed DNN with limited capacity does not have to

change the decision boundary drastically to accommodate the

patterns, thereby improving attack efficiency.

Alg 1: Backdoor Attacks for Compressed DNNs

1 Input: Dataset D with input x and labels y,

pre-trained Wpt with function F , target sparsity k.

2 Output: Infected pruned W ′, backdoor triggers τ .

3 M ← prune(Wpt, k); � via Eq. 1
4 τ ← UAP(Wpt �M,x); � via Eq. 5
5 for xi, yi in D do
6 ti ← get targets(yi); � ti 
= yi
7 xtrojan ← backdoor(xi, τi); � via Eq. 4
8 ŷi, t̂i ← FW�M(x), FW�M(xtrojan);

9 loss ← CE(ŷi, yi) + β· CE(t̂i, ti);
10 update(W , loss);

11 W ′ ← W �M.

Injecting Invisible Backdoors during Fine-tuning. Once

the pruned model W �M and a set of triggers τ are avail-

able, the attacker needs to then fine-tune the model to achieve

high CDA and ASR simultaneously. To that end, we integrate

these two goals into a join optimization objective as follow:

min
W

L(W �M,x,y)︸ ︷︷ ︸
clean data loss

+β · L(W �M,B(x), t)︸ ︷︷ ︸
trojan data loss

, (6)

where β is a hyper-parameter that balances clean data loss and

trojan data loss. After the above optimization, the fined-tuned

model W and the binary mask M are well trained to produce

the final infected pruned model W ′. Algorithm 1 summaries

the overall procedure of our approach.

4. EXPERIMENT RESULTS

4.1. Experimental Setting

DNN Models & Dataset. We evaluate our approach on

two image classification datasets CIFAR-10 and GTSRB.

Three popular pre-trained DNN models (ResNet-18, VGG-

16, DenseNet-121) are compressed and tested.

Hyperparameter. We adopt Adam optimizer to fine-tune the

pruned model, and the initial learning rate is set as 3 × 10−4

that is gradually decayed with a cosine learning rate for 30

epochs. We set the balancing hyper-parameter β = 1. For

the UAP and random triggers, we use the L∞ norm for the

patterns and set ε = 8/255 to ensure stealthiness. For the

handpicked triggers, we follow the setting in [20, 9] that se-

lects the 4× 4 pixels in the lower right as the trigger.

4.2. Evaluation Results and Comparison

Stealthiness. Fig. 3 illustrates the original clean images, ma-

licious images with UAP triggers, and malicious images with

handpicked triggers for the compressed ResNet-18 model. It

is seen that our proposed UAP-based approach can bring very
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Fig. 3: Stealthiness of UAP triggers vs. Handpicked triggers. Trojan

images using UAP triggers are visually indistinguishable from clean

images, while handpicked triggers (the colorful patch at the bottom

right) are perceptible to humans.

Clean

Input

Malicious Input

UAP (Ours) Handpicked

Sparsity CDA CDA ASR CDA ASR

(%) (%) (%) (%) (%) (%)

50 92.82 92.75 99.99 92.60 99.88

80 92.94 92.74 99.98 92.52 99.86

90 92.96 92.57 99.93 92.53 99.84

95 92.81 92.32 99.95 92.46 99.84

98 92.12 91.60 99.86 92.15 99.85

99 90.69 89.91 99.80 89.81 99.78

Table 1: CDA and ASR performance for backdoor attacks against

compressed ResNet-18 model on the CIFAR-10 dataset.

high invisibility for the trigger patterns. In contrast, the hand-

picked patterns can be clearly detected and recognized (see

the colorful square patch at the bottom right). Meanwhile,

such benefits of invisibility are achieved with high attack effi-

ciency. As shown in Table 1, with different sparsity ratios for

the pruned ResNet-18 model on the CIFAR-10 dataset, our

proposed UAP-based backdoor attack can achieve very high

clean data accuracy (CDA) and very high (nearly 100%) at-

tack successful rate (ASR).

Efficiency. We also compare the performance of our ap-

proach with random pattern-based backdoor attacks, which

is popularly used for attacking uncompressed DNN model.

Here the attack object is the pruned ResNet-18 model on the

GTSRB dataset. As seen from Table 2, with different sparsity

ratios, though both the UAP-based and random trigger pat-

terns are invisible, the UAP-based solution can significantly

increase CDA and ASR. Notably, in the very high com-

pression ratio (99% sparsity) region, our approach can still

achieve nearly 100% ASR while random pattern-based attack

suffers less than 50% ASR. These evaluation results strongly

demonstrate the promising performance of our UAP-based

Clean

Input

Malicious Input

UAP (Ours) Random

Sparsity CDA CDA ASR CDA ASR

(%) (%) (%) (%) (%) (%)

50% 95.95 95.12 99.92 94.25 98.20

80% 96.03 95.19 99.80 94.12 97.56

90% 96.06 95.17 99.78 94.07 97.13

95% 96.56 94.87 99.62 93.75 95.56

98% 95.95 94.58 99.39 92.47 88.90

99% 95.74 93.53 98.85 90.76 47.52

Table 2: CDA and ASR performance for backdoor attacks against

compressed ResNet-18 model on GTSRB dataset.

VGG-16 DenseNet-121

Comp. Clean Malicious Clean Malicious

Sparsity CDA CDA ASR CDA CDA ASR

(%) (%) (%) (%) (%) (%) (%)

CIFAR-10 Dataset
50% 93.80 93.29 99.97 93.82 93.73 99.95

80% 93.48 93.60 99.99 93.98 93.96 99.93

90% 93.75 93.55 99.99 93.81 93.62 99.97

95% 93.49 93.68 99.98 93.91 93.62 99.92

98% 93.03 91.99 99.99 93.39 92.44 99.78

GTSRB Dataset
50% 96.56 96.16 99.92 96.23 95.96 99.85

80% 96.68 96.29 99.83 96.33 95.26 99.78

90% 96.51 95.95 99.71 97.26 94.85 99.59

95% 96.87 95.30 99.60 96.47 95.54 99.69

98% 96.73 95.74 99.81 95.85 94.52 98.61

Table 3: CDA and ASR performance across different compressed

DNN models and datasets.

attack against compressed DNN models.

Generalization. We also evaluate the generalization of our

approach across different DNN model architectures and dif-

ferent datasets with varying ratios of sparsity. As shown in

Table 3, both the CDA and ASR performance is consistent

for different compression settings and models, demonstrating

our approach’s strong generalization for various applications

scenarios.

5. CONCLUSION

In this paper, we investigate the vulnerability of the com-

pressed deep neural network against backdoor attacks. By

proposing a universal adversarial perturbation-based ap-

proach, we demonstrate the feasibility of launching backdoor

attacks to the compressed models with high stealthiness and

high efficiency. Evaluation results across different datasets

and models show our attack approach’s high performance

compared to the existing methods.
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