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ABSTRACT

Compressed deep neural network (DNN) models have been
widely deployed in many resource-constrained platforms and
devices. However, the security issue of the compressed mod-
els, especially their vulnerability against backdoor attacks, is
not well explored yet. In this paper, we study the feasibility of
practical backdoor attacks for the compressed DNNs. More
specifically, we propose a universal adversarial perturbation
(UAP)-based approach to achieve both high attack stealthi-
ness and high attack efficiency simultaneously. Evaluation
results across different DNN models and datasets with vari-
ous compression ratios demonstrate our approach’s superior
performance compared with the existing solutions.

Index Terms— Backdoor attack, deep neural network,
compression

1. INTRODUCTION

Motivated by the emerging demands of artificial intelli-
gence of things (AloT), deploying powerful deep neural
networks (DNNs) on mobile and embedded devices has be-
come very important and attractive in both academia and
industry. However, DNNs are inherently storage-intensive
and computation-intensive, making their efficient execution
on resource-constrained platforms challenging. To address
this problem and promote the democratization of Al, model
compression [1, 2, 3, 4, 5], a strategy that reduces the sizes of
neural networks with preserving high accuracy, is popularly
adopted for the efficient realization of edge intelligence. To
date, a massive amount of compressed DNN models have
been widely deployed on various IoT devices in many real-
world applications.

Although extensive research efforts have demonstrated
the promising model efficiency of the compressed DNNs,
their corresponding model security against attacks, especially
with backdoor attacks, is little explored yet. As revealed by
its name, the backdoor attack [6, 7] is a type of attack strategy
that injects the hidden backdoor into the neural networks.
Once infected, the attacked model typically behaves normally
on the benign inputs, but its classification/prediction results
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Fig. 1: Our focused attack scenario. A pre-trained DNN can be
obtained from safe sources. However, during the deployment stage,
an attacker can compress the model and inject backdoors.

will be maliciously changed if the input trigger activates the
embedded backdoor.

In practice, the threat of backdoor attacks typically hap-
pens when the model users cannot fully control the entire
training procedure. Unfortunately, the generation process of
the compressed DNNs exactly provides increasing attack op-
portunities for the adversary to launch the backdoor attack.
Consider that producing a compressed DNN typically con-
sists of two phases: 1) it first develops a pre-trained large-
scale neural network, and 2) it then compresses the model
towards a compact version. In principle, the hidden back-
doors can be injected into the final compressed model in ei-
ther of these two phases. In contrast, such injection to the un-
compressed model can only happen in the pre-training phase.
Consequently, deploying compressed DNNs may cause the
growth of the attack surface and make the models more vul-
nerable.

The Scope of This Paper. Motivated by the limited ex-
ploration of backdoor attack in the edge Al scenario, in this
paper, we propose to investigate the practical backdoor attack
against compressed DNN models. Fig. 1 shows our focused
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attack scenario, and it is seen that here we aim to inject the
hidden backdoor during the model compression stage. This
is because, in many real-world applications, the pre-trained
DNN models are provided by trusted developers (e.g., pub-
lic companies) and will be carefully tested and examined. At
the same time, the scrutiny and review on the compression
stage are relatively very relaxed and less strict. From the per-
spective of practical attack, embedding the hidden backdoor
during model compression is more realistic and feasible.

Technical Preview and Benefits. In practice, launching
high-quality backdoor attacks against the compressed models
is non-trivial but faces several technical challenges concern-
ing stealthiness and effectiveness. In this paper, we propose
a universal adversarial perturbation (UAP)-based approach,
which can use invisible triggers to realize backdoor attacks
stealthily and effectively. Compared with the existing hand-
picked or random trigger-based attack methods, our proposed
solution can exhibit superior attack performance in terms of
effectiveness, generalization, and invisibility. Evaluation re-
sults show that our backdoor attack approach achieves nearly
100% successful rates and extremely high stealthiness against
various DNN models on different datasets with a wide range
of compression ratios (2x ~ 100x), thereby demonstrating
very high feasibility and practicality.

2. MOTIVATIONS

Considering the importance of DNN security, to date, numer-
ous research efforts [6, 7, 8] have been conducted towards
the feasibility of backdoor attacks. Most of the current works
focus on the attack against uncompressed DNN models.
Despite the current prosperity, several technical challenges
remain and hinder the realization of practical backdoor at-
tacks, especially when the attack objective is the compact
compressed model that is specially designed for resource
constraint devices.

Challenge on Stealthiness. From the perspective of practi-
cal deployment, launching a backdoor attack must have high
stealthiness to avoid the potential detection and be able to by-
pass human inspection. In other words, the trigger pattern in
the malicious input should be imperceptible and difficult to
be noticed. However, many of the triggers proposed in the
existing backdoor attack methods, especially for those hand-
picked patterns [8, 7, 9], do not exhibit high stealthiness but
only rely on the unawareness of human examiners. As shown
in Section 4, such a solution is unreliable and can be easily
detected due to insufficient invisibility.

Challenge on Efficiency. To improve attack stealthiness,
some works [8, 10] propose to use random patterns to trigger
the backdoors. Although this strategy can indeed mitigate the
perceptibility issue, the inherent randomness in the patterns
poses a new challenge for the attack efficiency against the
compressed model. In general, an efficient backdoor attack
should simultaneously achieve negligible accuracy degrada-
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tion for benign inputs and a high attack success rate with the
presence of triggers. Typically, such strict demand, though
challenging, can still be satisfied because of the powerful
capabilities of the full-size DNNs. However, in the context of
using compact models, as shown in Section 4, the inherently
limited capacity causes serious challenges for training an in-
fected compressed model to properly distinguish the random
trigger patterns from random noise. Hence, random patterns
can significantly degrade the attack success rate.

Our Design Goal. Motivated to overcome these challenges,
we aim to develop an efficient backdoor attack approach that
1) uses high-stealthiness trigger patterns that are impercep-
tible to human examiners and 2) achieves high accuracy for
clean inputs as well as high attack performance against com-
pressed models. To fulfill those requirements, we propose
a universal adversarial perturbation (UAP)-based invisible
backdoor attack solution targeting compact DNNs. Next, we
describe the mechanism and procedure of our approach in
detail.

3. METHOD

3.1. Problem Formulation

We first formulate the problem of injecting backdoors into the
compressed models. In general, consider a pre-trained DNN
classifier W, with function F. Without loss of generality, we
adopt the popular weight magnitude-based pruning method
[1] to perform compression. More specifically, with a pre-
defined sparsity ratio k, a binary mask M is used to sparsify
the model as:

1 if w; € TopK (Wp, k),
m; = .
0 otherwise

where m and wy, are the vectorized M and W), respec-
tively. TopK(:,-) is the function that returns the set of the
elements of input vector with largest k||wp||o absolute val-
ues. The goal of the backdoor attacker here is to modify the
pre-trained model W, to W and design a backdoor injection
function B : T = Tyrojan S.1.:

)]

2
3)

where © denotes the element-wise multiplication, and  and
Tyojan are the benign input and malicious input (with trig-
gers), respectively. In addition, ¢y denotes the ground-truth
source label, and ¢ is the target label that is specified by the
attacker. For simplicity, we consider a simple backdoor gen-
eration function as:

Fwom T =Y,
Fwom : Lirojan H7 t,

“4)

where clip () clips its input into valid range and 7 is the
trigger pattern that the attacker needs to design.

B(x) = Tiojan = clip (x + T),
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3.2. Proposed Method

Overview. Fig. 2 illustrates the overall flow of our proposed
compressed DNN-oriented backdoor attack. Given a full-size
pre-trained model, we first compress it via one-shot global
unstructured pruning [1]. We then leverage the universal ad-
versarial perturbation (UAP) algorithm [11], an originally de-
signed technique for adversarial attacks [12, 13, 14, 15, 16,
17, 18, 19], to generate the stealthy trigger patterns for our
target backdoor attack. Finally, the compressed model is fine-
tuned on benign and poisoned data to achieve a high clean
data accuracy (CDA) and a high attack success rate (ASR).
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Fig. 2: The overall flow of our proposed invisible backdoor attack.

Generation of Invisible Trigger Pattern. As discussed in
Section 2, the stealthiness and effectiveness of trigger patterns
are very critical to the quality of the backdoor attack. Con-
sidering such importance, we propose to leverage the univer-
sal adversarial perturbation (UAP), which is originally used
for adversarial attacks, to serve as the trigger patterns in the
backdoor attack. To be specific, given a dataset D that has
N number of classes, the unique UAP pattern 7; for the target
class t; can be generated as:

7; = argmin LWy © M, clip (x + 1) ,t;),
i (5)

st |7ill, <e

where L(-,-,-) and € are the loss function and maximum al-
lowed perturbation, respectively. Notice that our proposed
UAP pattern can satisfy the desired stealthiness and efficiency
in backdoor attacks. This is because 1) as a type of adver-
sarial perturbation, UAP inherently exhibits high impercep-
tibility, which is a must demand in adversarial attacks; and
2) UAP patterns are generated in a way such that the per-
turbed input lie close to the decision boundary. In such a case,
the compressed DNN with limited capacity does not have to
change the decision boundary drastically to accommodate the
patterns, thereby improving attack efficiency.
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Alg 1: Backdoor Attacks for Compressed DNNs

1 Input: Dataset D with input x and labels vy,
pre-trained W, with function F, target sparsity k.

2 Output: Infected pruned W', backdoor triggers .

3 M prune(Wp, k);

4 T+ UAP(Wp O M, x);

5 for x;,y; in D do

6 t; < get_targets(y;);

7 Tyojan < Dackdoor(z;, 74);

8 Qia fz — -FWG)M (.’E), ]:W@M(xtrojan);

9 loss < CE(9;, y;) + 5 CE(??Z‘, t);

update(WV, loss);

uwWw +—woM.
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Injecting Invisible Backdoors during Fine-tuning. Once
the pruned model W © M and a set of triggers T are avail-
able, the attacker needs to then fine-tune the model to achieve
high CDA and ASR simultaneously. To that end, we integrate
these two goals into a join optimization objective as follow:

min LW o M, z,y)+5- LW O M, B(x),t), (©6)

clean data loss

trojan data loss

where [ is a hyper-parameter that balances clean data loss and
trojan data loss. After the above optimization, the fined-tuned
model W and the binary mask M are well trained to produce
the final infected pruned model W’. Algorithm 1 summaries
the overall procedure of our approach.

4. EXPERIMENT RESULTS

4.1. Experimental Setting

DNN Models & Dataset. We evaluate our approach on
two image classification datasets CIFAR-10 and GTSRB.
Three popular pre-trained DNN models (ResNet-18, VGG-
16, DenseNet-121) are compressed and tested.
Hyperparameter. We adopt Adam optimizer to fine-tune the
pruned model, and the initial learning rate is set as 3 x 1074
that is gradually decayed with a cosine learning rate for 30
epochs. We set the balancing hyper-parameter 5 = 1. For
the UAP and random triggers, we use the L., norm for the
patterns and set ¢ = 8/255 to ensure stealthiness. For the
handpicked triggers, we follow the setting in [20, 9] that se-
lects the 4 x 4 pixels in the lower right as the trigger.

4.2. Evaluation Results and Comparison

Stealthiness. Fig. 3 illustrates the original clean images, ma-
licious images with UAP triggers, and malicious images with
handpicked triggers for the compressed ResNet-18 model. It
is seen that our proposed UAP-based approach can bring very
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Clean Images

Fig. 3: Stealthiness of UAP triggers vs. Handpicked triggers. Trojan
images using UAP triggers are visually indistinguishable from clean
images, while handpicked triggers (the colorful patch at the bottom
right) are perceptible to humans.

Clean Malicious Input
Input UAP (Ours) Handpicked
Sparsity CDA CDA ASR CDA ASR

(%) () (B () () (%)
50 92.82 9275 99.99 92.60 99.88
80 9294 92.74 99.98 92.52 99.86
90 9296 92.57 99.93 9253 99.84
95 92.81 9232 9995 9246 99.84
98 92.12 91.60 99.86 92.15 99.85
99 90.69 89.91 99.80 89.81 99.78

Table 1: CDA and ASR performance for backdoor attacks against
compressed ResNet-18 model on the CIFAR-10 dataset.

high invisibility for the trigger patterns. In contrast, the hand-
picked patterns can be clearly detected and recognized (see
the colorful square patch at the bottom right). Meanwhile,
such benefits of invisibility are achieved with high attack effi-
ciency. As shown in Table 1, with different sparsity ratios for
the pruned ResNet-18 model on the CIFAR-10 dataset, our
proposed UAP-based backdoor attack can achieve very high
clean data accuracy (CDA) and very high (nearly 100%) at-
tack successful rate (ASR).

Efficiency. We also compare the performance of our ap-
proach with random pattern-based backdoor attacks, which
is popularly used for attacking uncompressed DNN model.
Here the attack object is the pruned ResNet-18 model on the
GTSRB dataset. As seen from Table 2, with different sparsity
ratios, though both the UAP-based and random trigger pat-
terns are invisible, the UAP-based solution can significantly
increase CDA and ASR. Notably, in the very high com-
pression ratio (99% sparsity) region, our approach can still
achieve nearly 100% ASR while random pattern-based attack
suffers less than 50% ASR. These evaluation results strongly
demonstrate the promising performance of our UAP-based
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Clean Malicious Input
Input AP (Ours)  Random
Sparsity CDA CDA ASR CDA ASR

(%) % (B () ()  (P)
50% 9595 9512 99.92 9425 98.20
80% 96.03 95.19 99.80 94.12 97.56
90% 96.06 9517 99.78 94.07 97.13
95% 96.56 94.87 99.62 93.75 95.56
98% 9595 94.58 99.39 9247 88.90
99% 95.74 93.53 98.85 90.76 47.52

Table 2: CDA and ASR performance for backdoor attacks against
compressed ResNet-18 model on GTSRB dataset.

VGG-16 DenseNet-121
Comp. Clean Malicious Clean Malicious
Sparsity CDA CDA  ASR CDA CDA ASR
(%) (%) (%) (%) (%) (%) (%)
CIFAR-10 Dataset
50% 93.80 93.29 99.97 93.82 93.73 99.95
80% 9348 93.60 99.99 9398 93.96 99.93
90% 93.75 93.55 99.99 93.81 93.62 99.97
95% 9349 93.68 99.98 9391 93.62 99.92
98% 93.03 91.99 99.99 93.39 9244 99.78
GTSRB Dataset
50% 96.56 96.16 99.92 96.23 9596 99.85
80% 96.68  96.29 99.83 96.33  95.26 99.78
90% 96.51 9595 99.71 97.26 9485 99.59
95% 96.87 9530 99.60 96.47 9554 99.69
98% 96.73 9574 99.81 95.85 9452 98.61

Table 3: CDA and ASR performance across different compressed
DNN models and datasets.

attack against compressed DNN models.

Generalization. We also evaluate the generalization of our
approach across different DNN model architectures and dif-
ferent datasets with varying ratios of sparsity. As shown in
Table 3, both the CDA and ASR performance is consistent
for different compression settings and models, demonstrating
our approach’s strong generalization for various applications
scenarios.

5. CONCLUSION

In this paper, we investigate the vulnerability of the com-
pressed deep neural network against backdoor attacks. By
proposing a universal adversarial perturbation-based ap-
proach, we demonstrate the feasibility of launching backdoor
attacks to the compressed models with high stealthiness and
high efficiency. Evaluation results across different datasets
and models show our attack approach’s high performance
compared to the existing methods.
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