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ABSTRACT 
Modern visualization tools aim to allow data analysts to easily cre-
ate exploratory visualizations. When the input data layout conforms 
to the visualization design, users can easily specify visualizations by 
mapping data columns to visual channels of the design. However, 
when there is a mismatch between data layout and the design, users 
need to spend signifcant efort on data transformation. 

We propose Falx, a synthesis-powered visualization tool that 
allows users to specify visualizations in a similarly simple way but 
without needing to worry about data layout. In Falx, users spec-
ify visualizations using examples of how concrete values in the 
input are mapped to visual channels, and Falx automatically infers 
the visualization specifcation and transforms the data to match 
the design. In a study with 33 data analysts on four visualization 
tasks involving data transformation, we found that users can ef-
fectively adopt Falx to create visualizations they otherwise cannot 
implement. 
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1 INTRODUCTION 
Modern visualization authoring tools, such as declarative visual-
ization grammars like ggplot2 [50], Vega-Lite [37] and interactive 
visualization tools like Tableau [42] and Voyager [54], are built to re-
duce data analysts’ eforts in authoring visualizations in exploratory 
data analysis. At the heart of these tools, visualizations are specifed 
using grammars of graphics [52], where every visualization can be 
succinctly specifed using the following three components: 
• A graphical mark that defnes the geometric objects used to 
visualize the data (e.g., line, scatter plots, bars), 

• A set of visual encodings that map data variables to visual 
channels (e.g., x , y-positions of points), 
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• A set of parameters that decide visualization details: coordinate 
system, scales of axes, legends and titles. 

In practice, users only need to specify the mark and the visual en-
codings in order to create the visualization because many tools use 
a rule-based engine to automatically fll in parameters for visualiza-
tion details (often referred to as “smart defaults”) unless the user 
wants further customization. The abstraction of graphical marks, 
visual encoding channels, and adoption of smart default parameters 
open an expressive design space for data analysts that allow them 
to rapidly construct visualizations for exploratory analysis through 
simple specifcations 1. For example, to visualize the dataset in Fig-
ure 1 with three columns Date, Temp (for temperature) and Type 
as a scatter plot, the user can choose the graphical mark “point” 
with encodings {x 7→ Date,y 7→ Temp, color 7→ Type}. The visu-
alization tool then creates one point for each row in the input data, 
by mapping its values in columns Date and Temp to x ,y-positions 
and assigning a color to each point based on its value in column 
Type. Here, the tool uses the default linear scale for x ,y-axis and 
categorical scale for color, which are default parameters that the 
user does not need to specify explicitly. The fnal visualization is 
rendered in Figure 1 (right). 

Date Temp Type 
09-05 64.4 Low 
09-05 87.8 High 
09-06 53.6 Low 
09-06 80.6 High 

Date → x 
Temp → y 

Type → color 
−−−−−−−−−−−−−−→ 

Figure 1: An example dataset and its scatter plot visualiza-
tion that maps Date to x , Temp to y and Type to color. 

In fact, the simplicity of these high-level visualization grammars 
is grounded in their abstract data model. These grammars expect 
that the input table is organized in a layout that matches the visual-
ization design [51]: (1) each relation forms a row in the input data 
and corresponds to exactly one geometric object in the visualiza-
tion, and (2) each data variable forms a column that can be mapped 
to a visual channel. In practice, however, the mismatch between 
the data layout and the visualization design is common due to the 
following reasons [9, 51]: 
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Date Temp Type 
09-05 64.4 Low 
09-05 87.8 High 
09-06 53.6 Low 
09-06 80.6 High 

Date → x 
High → ymax 

pivot Low → ymin 
−−−−→ −−−−−−−−−−−−−−→ 

Date Low High 
09-05 64.4 87.8 
09-06 53.6 80.6 

Figure 2: A diferent visualization design requires transformation of the original input data. 

• Tables exported from diferent sources (e.g., database, analysis 
tool, diferent team member) may have diferent layouts and 
they may not directly match the visualization design. 

• Diferent analysis tasks require diferent visualization designs, 
and changes in the design can lead to diferent expected data 
layout. 

• The data may need aggregation (e.g., average, count, culmina-
tive sum) or additional computation to derive new values prior 
to visualization. 

In all of these cases, data analysts cannot directly visualize the 
data with a simple specifcation. They have to conceptualize the 
expected data layout and utilize data transformation tools (e.g., 
tidyverse [51], Trifacta [17]) to transform the data to match the 
visualization design. These additional tasks create a barrier for 
data visualizations and greatly increase the efort required for ex-
ploratory analysis [7, 9, 18, 53]. For example, if the data analyst 
decides to change the visualization in Figure 1 to a bar chart with 
foating bars that show the temperature range during each day 
(Figure 2 right), the original data layout will no longer match the 
new design since the new design expects three data columns (date, 
lowest temperature, highest temperature) that map to x , ymax and 
ymin. As a result, the data analyst needs to transpose the table in 
Figure 1 using a pivot operation (to collect key-values pairs in the 
Type and Temp columns into new columns) before mapping data 
columns to visual channels (Figure 2 right). 

We propose Falx, a synthesis-based visualization authoring tool 
to address the challenges outlined above. 2 Falx builds on recent 
advances in program synthesis: many program synthesis tools (e.g., 
FlashFill [10], Wrex [6]) have been developed with the promises 
of automating challenging or repetitive programming tasks for 
end users by synthesizing programs from user demonstrations. 
In our design, instead of asking analysts to transform data and 
specify visualization manually, Falx asks analysts to demonstrate 
the visualization task using examples of mappings from concrete 
values in the input data (as opposed to table columns) to visual 
channels. Using these examples, Falx automatically synthesizes 
the programs to transform and visualize the full data, such that 
resulting visualizations are consistent with the examples (i.e., all 
example mappings are contained within the visualization). For 
example, for the data in Figure 2, the user can create an example 
bar to demonstrate the task and 
let Falx create the desired visualization for the full dataset (Figure 2 
right). Sometimes, the examples can be ambiguous to Falx, and Falx 
may generate multiple visualizations that match the example but 
not necessarily the user intent. In such cases, analysts can interact 

2Demo available at https://falx.cs.washington.edu/ 

with an exploration panel to inspect the synthesized visualizations 
and select the desired one. After that, analysts can further fne-tune 
details of the desired visualization through a post-processing panel. 

Falx’s design has many potential advantages. First, users of Falx 
specify visualizations by mapping values to visual channels: this 
approach inherits the simplicity from grammars of graphics but pro-
vides more expressiveness since users can use the same examples to 
specify visualization ideas for inputs with diferent layouts. Second, 
Falx ofoads the data transformation task to the program synthe-
sizer so that users no longer need to conceptualize the expected data 
layout or transform the data. Finally, while program synthesizers 
by design can generate multiple results, users can efectively select 
and validate the desired visualization from synthesized candidates 
using the exploration panel in Falx. In general, rather than having 
to construct a visualization, data analysts demonstrate the task 
using examples and then select the desired visualization from a 
candidate pool, which shifts from the challenges of expression to 
the ease of recognition. With these designs, Falx aims to eliminate 
users’ prerequisites in data transformation and enable data analysts 
to rapidly author expressive visualizations. 

We conducted a user study with 33 participants to test these 
design hypotheses, studying how users adapt to the new visual-
ization process. Our results show that users of Falx, regardless of 
previous experience in visualization, can efciently learn and solve 
challenging visualizations tasks that cannot be easily solved using 
the baseline tool ggplot2. However, we also discovered challenges 
that users face when using the tool and strategies they adopt to 
solve the problems. We believe these discoveries lead to future 
opportunities in adopting synthesized-based visualization tools in 
practice and unveil other potential designs that can further improve 
the usability of such tools. 

2 USAGE SCENARIO 
We frst go through an example to illustrate the anticipated user 
experience in Falx (Section 2.2) compared to R (Section 2.1). In 
this example, a data analyst has the following dataset with New 
York and San Francisco temperature records from 2011-10-01 to 
2012-09-30. 

Date New York San Francisco 
2011-10-01 63.4 62.7 
2011-10-05 64.2 58.7 

... ... ... 
2012-09-25 63.2 53.3 
2012-09-30 62.3 55.1 

The analyst wants to create a visualization to compare the tem-
perature in the two cities. First, the visualization should contain 
two lines to show temperature trends in the two cities; these two 
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lines should be distinguished by color. Second, on top of the line 
chart, a bar chart should be layered on top to show the temperature 
diference between the two cities for each date. Each bar should 
start from the New York temperature and end at the corresponding 
San Francisco temperature, and the color gradient of the bar should 
indicate the temperature diference between the two cities on that 
day. The desired visualization is shown in Figure 3. 

Figure 3: A visualization that compares New York and San 
Francisco temperatures between 2011-10-01 and 2012-09-30. 

2.1 User Experience in R 
We frst illustrate how a data analyst, Eunice, would create this 
visualization in R using tidyverse [51] and ggplot2 [50], two widely-
used libraries for data transformation and data visualization. 

After loading the data into a data frame in R, Eunice decides 
to frst create the line chart that shows temperature trends of the 
two cities. To do so, Eunice chooses the function geom_line from 
the ggplot2 library. In order to create lines with diferent colors for 
diferent categories, Eunice needs to supply four data variables to 
the geom_line function – two variables for specifying x and y posi-
tions, one for colors of the line, and the last one for groups of lines 
(i.e., which points belong to the same line). Since the input data 
does not have these variables, Eunice needs to use the tidyverse 
library to transform the input data. To do so, Eunice frst conceptu-
alizes the desired data layout: the data should have 3 felds—date 
(for x-axis), temperature (for y-axis), and city name (for color and 
group). Eunice recalls a function pivot_longer in tidyverse, which 
supports pivoting the table from a “wide” to a “long” format by 
collecting column names and values in the column as key-value 
pairs in the body content. Specifcally, Eunice writes the following 
code to transform the data, which yields the data on the right that 
matches Eunice’s expectation. 

df1 <- pivot_longer(data = df, 
cols = ("New York", "San Francisco"), 
names_to = "City", values_to = "Temperature") 

Date City Temperature 
2011-10-01 New York 63.4 
2011-10-01 San Francisco 62.7 

... ... ... 
2012-09-30 San Francisco 55.1 

(a) A line chart that shows temperature trends. 

(b) A bar chart that visualizes temperature diference. 

Figure 4: Two visualizations created in R that compare New 
York and San Francisco temperatures. 

After data transformation, Eunice specifes the visualization using 
the following script. The script maps Date to x-axis , Tempera-
ture to y-axis, and City to both color and group. It generates the 
visualization in Figure 4a. 

plot1 <- ggplot(data = df1) + 
geom_line(aes(x = `Date`, y = `City`, 

color= `Temperature`, group = `Temperature`)) 

Eunice then proceeds to create bars on top of the frst layer to 
visualize the temperature diference. Eunice frst fnds the function 
geom_rect from the library that supports foating bars. To visu-
alize temperature diference, Eunice needs to specify positions of 
bars by mapping Date to xmin and xmax properties and mapping 
temperatures of the two cities to ymin and ymax ; she also needs to 
map the temperature diference between the two cities to color to 
specify bar colors. Since the original data does not contain a column 
for temperature diference, Eunice uses the mutate function from 
tidyverse to transform the data. Using the following script, Eunice 
successfully creates the visualization in Figure 4b. 

df2 <- mutate(df, Diff = `New York` - `San Francisco`) 
plot2 <- ggplot(df2) + 

geom_rect(aes(xmin = `Date`, xmax = `Date`, 
ymin = `New York`, ymax = `San Francisco`, 
fill = `Diff`)) 

Finally, Eunice restructures the code to combine the two layers 
together using a concatenation operator. She also fne-tunes some 
parameters in ggplot2 to improve visualization aesthetics (e.g., mod-
ify titles of the axes and change line chart to a step chart), which 
generates the visualization that matches her design in Figure 3. 
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Since Eunice is an experienced data analyst, she manages to go 
through these data transformation and visualization step and even-
tually generates the desired visualization. However, a less experi-
enced data analyst, Amelia, fnds the visualization task challenging. 
• First, Amelia is not familiar with the ggplot2 library, so she 
struggles in identifying the right functions to use. For example, 
it is difcult for her to distinguish between geom_path and 
geom_line, and geom_bar or geom_rect. She is also unfamiliar 
with how to compose multi-layered visualizations. 

• Second, due to her lack of experience with ggplot2, she fnds 
it difcult to conceptualize the expected input layout because 
diferent functions and tasks require diferent data layouts. 

• Finally, due to her lack of experience with tidyverse, she needs 
to spend signifcantly more time in fnding the right operators 
and implementing the desired transformation. 

2.2 User Experience in Falx 
Now we show how Amelia, a less experienced data analyst, uses 
Falx (Figure 5) to create the same visualization. 

First, Amelia uploads the input data to Falx’s input panel (Fig-
ure 5-○1 ) and examines the input data displayed in a tabular view. 
Amelia decides to frst visualize temperature trends of the two 
cities using a line chart. Amelia goes to the demonstration panel 
to demonstrate how the frst two data points of New York tem-
peratures will be visualized. To do so, Amelia frst clicks the “+” 
icon in the interface and select a line element (Figure 6-○1 ), and 
Falx pops out an editor panel for Amelia to specify properties of 
this line element. Amelia clicks on values in the input table and 
copies the values to specify properties of the line element as follows 
(Figure 6-○2 ): 
• The line segment starts at the point with x1 = 2011-10-01, 
y1 = 63.4 (New York temperature on 2011-10-01) 

• The line ends at x2 = 2011-10-05, y2 = 64.2 (New York temper-
ature on 2011-10-05) 

• The color of the line is labeled as “New York” 
After saving the edits, Falx registers the example and provides a 

preview that visualizes the example line segment (Figure 6-○3 ) for 
Amelia to examine. Using this example, Amelia conveys the follow-
ing visualization idea to Falx: “I want a line chart over the input 
data that contains the demonstrated line segment”. Amelia then 
presses the “Synthesize” button (in Figure 5-○1 ) to ask Falx to fnd 
the desired line chart. Internally, Falx frst infers the visualization 
specifcation and then runs a data transformation synthesizer to 
transform the input data to match the visualization specifcation. 
After approximately four seconds, Falx fnds two visualizations that 
match the example and displays them in the bottom of the explo-
ration panel (Figure 5-○2 ). Both visualizations contain the example 
line segment demonstrated by Amelia but they generalize the ex-
ample diferently: the frst visualization only visualizes New York 
temperatures, while the second generalizes the color dimension to 
other columns in the input data as well, resulting in a visualization 
that also contains San Francisco temperatures. 

After briefy examining both candidates, Amelia fnds the second 
visualization closer to the design in her mind, so she clicks the 
second visualization to enlarge it in the center view for a detailed 
check (Figure 5-○2 top). In the center view, Amelia hovers on the 

visualization to check details like values of diferent points in each 
line. After confrming the visualization matches her design, Amelia 
moves on to the second layer visualization, which should display 
temperature diferences between the two cities using a series of 
bars. 

Next, Amelia creates an example bar to demonstrate how the 
temperature diference between the two cities on 2011-01-01 should 
be visualized (Figure 7 left): the bar is positioned at date 2011-10-01, 
it starts at 62.7 (San Francisco temperature), ends at 63.4 (New York 
temperature), and its color shows the temperature diference of 
0.7 for that day. Amelia runs the synthesizer to fnd visualizations 
that contain both the example line and the example bar. This time, 
after 9 seconds, Falx fnds 8 candidate visualizations that match the 
examples (Figure 7 middle). To decide which visualization to pick, 
Amelia can either (1) add a second example bar to demonstrate the 
temperature diference of the two cities on another date to help Falx 
resolve the ambiguity, or (2) navigate candidates in the exploration 
panel to examine them. Amelia decides to use the second approach 
again. She frst rules out some obviously incorrect visualizations 
(e.g., visualization 2 in Figure 7 middle), then compares similar 
visualizations, and fnally selects the frst visualization to check it 
in detail. After some examination, she decides it matches her design 
and proceeds to post-process the visualization. 

The post processing panel ( Figure 5-○3 ) contains a GUI editor 
that allows Amelia to fne-tune visualization details and a pro-
gram viewer for viewing and editing the synthesized program. Any 
changes made during the editing process are directly refected on 
the center view panel (Figure 5-○2 ) to provide immediate feedback. 
Using the post-processing panel, Amelia changes the line mark 
to step mark and modifes axis titles, which produces the visual-
ization in Figure 7 right. Amelia is happy with this visualization 
and concludes the task. If Amelia wants to further customize the 
visualization (e.g., change color scheme, adjust bar spacing), she 
can directly edit the underlying Vega-Lite program. 

In sum, Amelia creates the visualization by iterating through 
creating examples, exploring synthesized visualizations, and post 
processing. In this process, she benefts from the following design 
decisions behind Falx: 

• First, while two visualization layers require diferent data trans-
formations, Amelia does not need to worry about this, as the 
transformation task is delegated to the underlying synthesizer. 
In fact, even if the input data comes with a diferent layout, 
Amelia can still solve the problem with the same examples. 

• Second, Amelia specifes examples by choosing from a small set 
of visualization marks and specifying mappings from concrete 
data values to properties. This allows her to create visualiza-
tions without programming in the visualization grammar. 

• Third, instead of asking Amelia to read synthesized programs 
to disambiguate synthesis results, Falx provides an exploration 
interface that allows Amelia to explore and examine results in 
the visualization space. 

• Finally, Falx adopts a scalable synthesis algorithm to explore the 
exponential number of possible ways to transform and visualize 
the input data. Each synthesis run takes between 3 and 20 
seconds, which makes Amelia conformable at iterating between 
giving examples and exploring the generated visualizations. 
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Figure 5: Falx interface has three panels: (1) Data analysts import data and create examples in the input panel. (2) Analysts 
explore and examine synthesized visualizations in the exploration panel. (3) Analysts edit visualization details in the post 
processing panel. 

Figure 6: Amelia creates a line segment to demonstrate the visualization task. 

3 SYSTEM ARCHITECTURE 
In this section, we frst provide a brief review of program synthesis 
and discuss the design and implementation of Falx, our end-to-end 
synthesis tool for automating data visualization tasks. 

3.1 Background: Program Synthesis 
In recent years, many program synthesis algorithms have been 
developed to automate challenging or repetitive tasks for end users 
by automatically generating programs from high-level specifca-
tions (e.g., demonstrations, input-output examples, natural lan-
guage descriptions). For instance, programming-by-example (PBE) 
is a branch of program synthesis that aims to synthesize programs 
that satisfy input-output examples provided by the user, such tools 
been used for string processing [11, 39], tabular data transforma-
tion [7, 46, 55], and program completion [12, 26, 32, 40, 41]. 

While there are diferent approaches to synthesize programs, one 
common method is to perform enumerative search over the space 
of programs by gradually expanding programs from a context-
free grammar of some language [1, 8, 45, 55]. In general, these 
search techniques traverse the program space according to some 
cost metric and return the candidate programs that satisfy the 
user-provided specifcation. Here, the cost metric can be a model 
that measures simplicity of programs (e.g., based on number of 
expressions in the program) [8] or a statistical models that estimate 
likelihood of the program being correct [2, 32]. To speed up the 
synthesis process, several recent methods use deduction rules to 
prune incorrect partial programs early in the search process [7, 
8]. For instance, Morpheus [7] uses predefned axioms of table 
operators to detect conficts before the entire program is generated. 
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Figure 7: Amelia’s interaction with Falx to create the second layer visualization. 

3.2 Falx Synthesizer 
The architecture of Falx is shown in Figure 8. To use Falx, a data 
analyst frst provides an input table and creates examples to demon-
strate the visualization idea. Once the analyst hits the “synthesize” 
button, the Falx interface sends the input and examples to the Falx 
server. Given an input data and an example visualization (in the 
form of a set of geometric objects), Falx synthesizes pairs of can-
didate data transformation and visualization programs such that 
the resulting visualization contains all geometric objects in the 
visualization example. 

To synthesize visualizations consistent with examples from the 
user, Falx spawns multiple solver threads to solve the synthesis 
problem in parallel. In each solver thread, Falx frst runs a visualiza-
tion decompiler (step 1) to decompile the example visualization into 
a visualization program and an example table, such that applying 
the program on the example table yields the example visualiza-
tion provided by the user. Then, Falx calls the data transformation 
synthesizer (step 2) to infer programs that can transform the in-
put data to a table that contains the example table generated in 
step 1. Finally, for each candidate data transformation result, Falx 
generates a candidate visualization (step 3) by combining the trans-
formed data with the visualization program synthesized in step 1 
and compiling them to Vega-Lite or R scripts for rendering. Synthe-
sized visualizations from all threads are collected and displayed in 
Falx’s exploration panel for the analyst to inspect. In what follows, 
we elaborate on the details of each step using the same running 
example in Section 2. 

Step1: Visualization Decompilation. Internally, Falx represents visu-
alizations as a simplifed visualization grammar similar to ggplot2 
and Vega-Lite. In this grammar, a visualization is defned by (1) 
graphical marks (line, bar, rectangle, point, area), (2) encodings that 
map data felds to visual channels (x , y, size, color, shape, column, 
row), and (3) layers, which specify how basic charts are combined 
into compositional charts. Since Falx only uses this grammar as an 
intermediate language to capture visualization semantics, visual-
ization details (e.g., scale types) are intentionally omitted. Falx goes 
through the following three steps to decompile a visualization. 

• Falx frst infers visualization layers from the user example. 
In particular, Falx partitions examples provided by the user 

into groups based on their geometric types and properties, 
and creates one visualization layer for each group. Each layer 
corresponds to a simple chart of a particular type (e.g., scatter 
plot, line chart). 

• Then, for each layer, Falx creates one basic visualization and an 
example table. The example table contains the same number of 
columns as the number of visual channels in this layer (derived 
from properties of geometric objects), and the visualization is 
specifed as encodings that map columns in the example table 
to visual channels. 

• Finally, for each example table, Falx flls the table with values 
from the example geometric objects. 

Example 3.1. As shown in Figure 8-○1 , given the two visual ele-
ments provided by the user, Falx infers that the desired visualization 
should be a multi-layer chart that is composed by a line chart in 
layer 1 and a bar chart in layer 2 and decompiles the two layers 
independently. For example, for the second layer, Falx generates 
a bar chart program Bar{x 7→ C1,y 7→ C2,y2 7→ C3, color 7→ C4}
with an example table T = [(2011-10-01, 62.7, 63.4, 0.7)] where T 
represents the desired output table that should be the result of the 
data transformation process. Column names C1, ..., C4 in the bar 
chart program correspond to names of the four columns in Table T . 

Step 2: Data Transformation Synthesis. After decompiling the exam-
ples into the visualization program and example tables T , together 
with the original input table Tin provided by the user, Falx reduces 
the visualization synthesis task into a data transformation synthesis 
task [7, 46, 47]. For each example table T , the data transformation 
synthesizer aims to synthesize a transformation program Pt that 
can transform the input table into a table that contains the example 
table, i.e., T ⊆ Pt (Tin). Falx supports various types of transforma-
tion operators commonly used in the tidyverse library to handle 
diferent layouts of the input from the user (Figure 9). 

The data transformation synthesizer uses an efcient algorithm 
to search for programs that are compositions of operators in Fig-
ure 9 satisfying the requirement T ⊆ Pt (Tin). Falx starts the search 
process by constructing sketches of transformation programs (i.e., 
programs whose arguments are not flled) and then iteratively ex-
pands the search tree and flls arguments in these partial programs. 
To maintain efciency in this combinatorial search process, Falx 
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Figure 8: The architecture of the Falx system. Each solver thread synthesizes visualizations that match user examples in three 
steps: (1) visualization decompilation, (2) data transformation synthesis, and (3) program generation. 

Type Operator Description 

Reshaping 
pivot_longer 
pivot_wider 

Pivot data from wide to long format 
Pivot data from long to wide format 

Filtering 
select 
filter 

Project the table on selected columns 
Filter table rows with a predicate 

Aggregation 
group 
summarise 
cumsum 

Partition the table into groups based on values in selected columns 
For every group, aggregate values in a column with an aggregator 
Calculate cumulative sum on a column for each group 

Computation 
mutate 
separate 
unite 

Arithmetic computation on selected columns 
String split on a column 
Combine two string columns into one with string concatenation 

Figure 9: Data transformation operators supported in Falx. For clarity, we omit the parameters of each operator. 

uses deduction to prune infeasible partial programs as early as possi-
ble (as used in prior work [7, 46, 47]). The deduction engine analyzes 
properties of partial programs using abstract interpretation [5] and 
prunes programs whose analysis results are inconsistent with the 
example output. Since each partial program corresponds to several 
dozens of concrete programs, the deduction engine can dramatically 
prune the search space. 

When the search algorithm encounters a concrete program (i.e., 
with all arguments are flled) that is consistent with the example 
output, Falx adds the program to the candidate pool. The search 
procedure terminates either when the designated search space is ex-
haustively visited or when the given search time budget is reached. 
All synthesized program candidates are sent to the post-processor 
to generate visualizations. 

Example 3.2. Figure 8-○2 shows the data transformation synthe-
sis process for the second visualization layer (the bar chart) gener-
ated in step ○1 . Given the original input table I (with three columns 
Date, SF, and NY) the output table T (with four columns C1, C2, 
C3, and C4) generated in the last step, Falx aims to transform I into 
a table that contains the example table T . Starting from an empty 
program, Falx iteratively expands the unflled arguments (repre-
sented as holes “□”) in the partial programs to traverse the search 
space. When Falx encounters a partial program cumsum(I , □), Falx 
abstractly analyzes it and concludes that it is infeasible because 
cumsum cannot transform an input table with three columns into an 
output table with four columns. Falx the expands the feasible partial 
programs (e.g., mutate(I , □)) and collects concrete programs that 
are consistent with the objective (e.g., mutate(I , Dif = NY − SF)). 
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Optimization. We made several optimizations on top of existing 
synthesis algorithms [7, 47] to reduce Falx’s time to respond. First, 
the major overhead in synthesis is the cost of analyzing partial 
programs using abstract interpretation, as it often requires running 
expensive operators like aggregation and pivoting on big tables. To 
reduce this overhead, Falx memoizes abstract interpretation results 
for partial programs to allow reusing then whenever possible. 

Second, instead of aiming to fnd only on or a few candidate 
programs that match user inputs like prior algorithms, Falx expects 
to fnd as many diferent programs as possible that satisfy the 
examples to ensure the correct visualization is included. To ensure 
diverse outputs, diferent Falx solver threads start with diferent 
initial program sketches to search for diferent portions of the search 
space in parallel. To improve responsiveness, Falx sets diferent 
timeouts for diferent threads to allow faster threads to respond 
to the user while other threads are searching for more complex 
transformations. In our implementation, we run 2 solver threads 
in parallel, we set one thread with 5 seconds timeout and another 
with 20 seconds timeout based on our perception of how long an 
analyst would be willing to wait as well as the typical time Falx 
takes to fnish traversing diferent parts of the search space. 

Step 3: Processing Synthesized Visualizations. As the fnal step in 
visualization synthesis, Falx generates visualizations by combining 
the visualization program generated in step 1 with table transfor-
mation programs generated in step 2. 

Concretely, for each data transformation program, Falx applies 
the table transformation program on the input data to obtain a 
transformed output and unifes the output table schema with the 
schema in the visualization program, since the visualization pro-
gram was flled with placeholder column names C1, C2, ..., etc. Falx 
then instantiates other visualization details (e.g., scale type, axis 
domain, etc.) omitted in the visualization grammar and compiles 
the visualization program into a Vega-Lite (or R) script through 
syntax-directed translation. For example, in Figure 8-○3 , Falx gen-
erates an R script that both transforms the input and specifes the 
visualization. Furthermore, Falx notices that the values on the x-
axis are dates instead of strings, so it changes the x-axis scale to a 
temporal scale using the function “scale_x_date()”. 

After compilation, the post-processor removes semantically du-
plicate visualizations (i.e., visualizations with diferent specifca-
tions but with the same content and detail). Finally, Falx groups and 
ranks the visualizations based on the complexity of the programs 
(numbers of expressions). In this way, similar visualizations are 
grouped together to make comparison easier in the exploration 
process, and the complexity ranking allows users to explore visu-
alizations constructed from easier transformation programs frst 
before jumping into complex ones. These visualizations are sent to 
the user interface for rendering to allow user exploration. 

4 USER STUDY 
To understand Falx’s benefts and limitations and to examine how 
analysts might adopt synthesis-based visualization tools, we con-
duct a between-subjects evaluation centered on the following ques-
tions: 
• Does Falx improve user efciency in creating visualizations 
compared to a baseline tool? 

• How does Falx change the visualization authoring process for 
diferent data analysts? 

• What strategies do data analysts use to visualize data in Falx? 

4.1 Participants 
We recruited two groups participants for the study: 16 participants 
(10 M, 5 F, 1 Unknown, Ages 23-51) for the Falx study, and another 
17 participants (12 M, 4 F, Ages 19-60) for the baseline tool study (the 
R programming language). In the recruiting process, we screened 
participants by their ability to read a sample visualization. For the 
baseline group, we additionally required that all participants have 
experience with R (specifcally ggplot2 and tidyverse libraries) for 
data visualization. 

Participants reported their experience in data visualization au-
thoring based on the number of visualizations they created in the 
past 6 months using any tools. For the Falx study group, there were 
6 participants experienced with some visualization tools (created 
>10 visualizations), 8 with moderate experience with visualization 
tools (created 1-10 visualizations), and 2 participants with zero 
experience in creating visualizations in the past. For the baseline 
group, there were 8 experienced participants (create >10 visualiza-
tions) and 9 participants with moderate experience (created 1-10 
visualizations). 

4.2 Procedure 
Each participant was asked to complete four visualization tasks, 
where the Falx study group completed the task using Falx and 
the baseline group used R to complete the task. We chose R as 
the baseline tool due to its popularity among data analysts and its 
ability to support both data transformations and visualizations in 
the same context, where many other visualization tools requires 
users to process data and specify visualizations in diferent contexts. 

To better examine the use of Falx, participants in the Falx group 
frst completed a 20-minute tutorial together with a warm-up task 
with a sample solution (creating a grouped line chart to visualize sea 
ice level change in the past 20 years). After the tutorial, participants 
were asked to solve four visualization tasks. For R participants, 
we also provided the same warm-up task with a sample solution 
to allow users to get familiar with the environment and the data 
loading process, so that participants could focus on solving the 
visualization tasks. During the user study, participants were allowed 
to refer to any resource on the Internet including documentations 
and QA forums. We collected screen and audio recordings while 
participants completed tasks. We then interviewed them after all 
tasks were completed to refect on their visualization process and 
strategies. 

To conduct our user study, we developed four diferent visual-
ization scenarios (Figure 10): 
(a) Disaster Impact: A scatter plot that visualizes the number of 

people died from fve disasters in the last century. 
(b) Electric Usage: A faceted heat map for hourly electric usage in 

each day during the frst two months of 2019. 
(c) Car Sales: A waterfall chart for the number of cars sold in a 

year. Each bar starts at the sales value in the previous month 
and ends at the sales values in the month, and its color gradient 
refects the increase/decrease compared to the last month. 
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(a) Disaster impact (b) Electric usage (c) Car sales (d) Movie awards winners 

Figure 10: Study tasks. 

(d) Movie Awards: A layered line/scatter plot for visualizing win-
ners of all four prestigious movie awards. For each celebrity, 
there are four points showing years these awards were earned 
and a line showing the time span for the celebrity to win all 
four awards. 

For each visualization task, we provided as input a table that can 
be directly imported into the tools. We also explicitly described 
visualization designs to the participants in text so that participants 
could focus on implementation. Finally, we asked participants that 
they do not need to optimize the design — a task was considered 
correctly solved as long as the semantics of the visualization cre-
ated by the participant matched the example solution regardless 
of the process and details. In this study, we did not restrict the 
time participants could spend on each task, but we provided users 
the option of quitting a task after spending more than 20 minutes 
without success. Thus, participants could complete each task with 
one of three outcomes: (1) submit a correct solution, (2) submit a 
wrong solution, or (3) give up after trying for at least 20 minutes. 

We interviewed each participant after they fnished all four tasks. 
For both Falx and baseline groups, we interviewed participants 
about (1) challenges they encountered while solving the tasks and 
their solutions, (2) common errors they made and how they fxed 
them, (3) their confdence about the solutions they submitted and 
what checks they performed to ensure correctness, and (4) what ad-
ditional resources they used during the study and how they helped. 
We additionally asked participants in the Falx group to refect on 
their visualization authoring process and interviewed them about 
(1) strategies adopted when creating examples to demonstrate the 
visualization task, (2) strategies adopted to explore the synthesized 
visualizations, and (3) their prior visualization experience and how 
Falx could potentially ft in their routine work. 

The total session was less than 2 hours for all participants. To 
address learning efects or other carryover efects, we counterbal-
anced the tasks using a Latin square. We performed our analysis 
using mixed efect models, treating participants as a random efect 
and modeling tool, tasks, and experience level as fxed efects. 

4.3 Task Completion 
Figure 11 shows the percentage of participants that correctly fn-
ished each task. Falx participants generally had higher completion 
rates in all tasks. We observed a statistically signifcant diference 
in the completion rate in the car sales visualization (p < 0.05); 

R (N = 17) Falx (N = 16)Task 
n % n % 

Disaster Impact 16 94.1% 14 87.5% 
Electric Usage 13 75.6% 14 87.5% 

Car Sales 5 29.4% 11 68.8% 
Movie Awards 14 82.4% 16 100% 

Figure 11: The number and percentage of participants cor-
rectly fnished each study task. 

Figure 12: Violin plot showing the amount of time partici-
pants spent on each task for both Falx and R study groups. 

others were not signifcant. Among nine failed tasks by Falx users, 
seven were due to incorrect solutions and, in two cases, partici-
pants quit the task after 20 minutes. Among 20 failed cases in the R 
study group, there were 9 incorrect solutions ans 11 cases where 
participants quit after 20 minutes. 

Figure 12 shows task completion time in Falx. Using Wilcoxon 
rank sum test with Holm’s sequential Bonferroni procedure for p
value correction, we observed a signifcant improvement in user 
efciency for car sales visualization (tFalx = 715 ± 202s , tR = 1473 ± 
743s , µR − µFalx = 758s , p < 0.01) 3 and electric usage visualization 
(tFalx = 411 ± 192s , tR = 740 ± 297s , µR − µFalx = 329s,p < 0.001). 
While Falx participants were also generally faster in the other two 
tasks, there was no signifcant diference for the movie industry 

3We use tFalx and tR to show the mean and standard deviation of time participants in 
Falx and R groups spent on each task. We use µR − µFalx to represent the diference of 
the mean time between the two groups. 
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celebrity visualization (tFalx = 544 ± 215s , tR = 861 ± 490s , µR − 
µFalx = 323s,p = 0.07) or the disaster impact visualization (tFalx = 
638±209s , MR = 754±279s , µR−µFalx = 116s,p = 0.23). Participants 
from the R study group noted that the key reasons for failing on the 
car sales visualization task was the difculty of fnding the correct 
API (for waterfall chart) together with the complex transformation 
behind it (which required calculating a cumulative sum). Falx users 
also noted they found the car sales visualization difcult due to 
unfamiliarity with the visualization type. On the other hand, R 
users reported that the movie awards visualization and the disasters 
impact visualization were relatively easier since they expected the 
same pivot operator to transform the input, which is commonly 
encountered by R users, and the visualization types were relatively 
standard (line chart and scatter plot). 

We found no signifcant interaction between user experience 
level (defned in Section 4.1) and task completion time (p = 1 for 
all tasks in both study groups using Wilcoxon rank sum test with 
Holm’s sequential Bonferroni correction). 

4.4 Task Experience 
In this section, we describe qualitative feedback from participants 
in both groups about general (non-Falx related) visualization chal-
lenges both during the study and in their daily work, and how Falx 
can help with solving some of these challenges. We leave discus-
sions of Falx-specifc visualization challenges to Section 4.5. 

As described in Section 4.2, we conducted a semi-structured 
interview for participants of both groups about visualization chal-
lenges they encountered both in the study and in their daily work, 
and how some of these challenges are typically overcome. To ana-
lyze this data, two of the researchers collaboratively conducted a 
qualitative inductive content analysis on the interviewer’s notes, 
with a sensitizing concept of visualization challenges and solutions. 
In this process, two researchers independently labeled interview 
notes and then collaboratively discussed and compared high level 
labels to resolve disagreements in the initial codes. 

4.4.1 Finding the right visualization function. The frst challenge 
frequently mentioned by participants was discovering or recalling 
the correct visualization function. In the R study group, 14 out of 
17 participants described this challenge, especially for the car sales 
task that most participants failed on. Some participants noted that 
the difculty came from both fnding the right term to search and 
distinguishing similar candidate functions. For example, participant 
R14 4 noted that “I wasn’t aware that geom_rect() would be more 
helpful than geom_bar(). One thing that made it more challenging 
was the fact that this kind of bar chart has no proper name. I tried 
searching ‘non-contiguous bar charts in R’, but I didn’t get many 
useful results.”. These challenges are also common in compositional 
charts: R10 noted “creating the line with the dots is something I 
never did before so didn’t know how to achieve it”. To address these 
challenges, participants noted that online example galleries and 
forums are “essential to their work” (R1). Besides, two participants 
had “an internal fle – R code dictionary” (R7) and “a collection of 
some own code snippets” (R1) to reduce search efort. 

4We use R1-R17 to denote participants from the R study group and F1-F16 to denote 
participants from the Falx group. 

Falx group participants also described that they faced similar 
challenges of fnding right functions in their daily work and Falx 
could help address them. For example, F1 mentioned: “Falx can 
generate something that you cannot easily do. For example, the multi-
layered visualization for the movie dataset would be very difcult to 
do in Excel or Google doc, you may need to specify some formula to 
specify relationship between two layers.” Participant F11 mentioned 
that Falx helped with complex tasks because “It allows you to start 
by creating a relatively simple visualization in the beginning, which 
is good, then it allows you to build more complex stuf on top of it 
which is also helpful.” 

4.4.2 Data transformation. Data transformation was another fre-
quently mentioned challenge, including both conceptualizing the 
expected data layout and implementing the transformation. For 
example, R17 mentioned “it [the car sales task] also seems to require 
some extra aggregation to get the starting and ending value for each 
rectangle to be drawn, which makes it even more difcult.” About im-
plementation, R9 said that “the vocabulary of the tidyverse is critical 
for trying to do what you want to do, otherwise it is all impossible to 
achieve.”, and R14 mentioned that “I had an idea of what I needed to 
do, but I wasn’t able to search the right things on Google to arrive at 
a useful code snippet for it.” 

Participants from the Falx group mentioned similar issues in 
their work routine. For example, “Tableau won’t do data preparation 
and you need to manually put them together” (F7), “pivoting table 
is already something at an intermediate level in Tableau and many 
people cannot use it” (F2). Due to lack of skill of preparing data 
programmatically, some participants would do it manually. For 
example, “if I need to pivot data, I do it manually – e.g., just copy 
the data to a blank area [in Excel] and pivot it” (F8). Participants 
appreciated that Falx automatically handled data transformations. 
Participant F5 mentioned “I like the fact that it [Falx] solves the data 
transformation and visual encoding. I’m pretty familiar with visual 
encoding so it is fne when the data is in the right shape. But I fnd 
transforming data annoying.” Participant F15 mentioned “I didn’t 
think about data format at all in the process”. F7 mentioned “Tableau 
won’t do data preparation because you need to manually put them 
together and drag drop them for you. Falx is pretty automated on 
this.” 

4.4.3 Learning to create expressive visualizations. Due to the in-
herent challenge in visualization and data transformation in these 
tools, participants mentioned many of existing tools had a learning 
barrier for new users. For example, F4 mentioned that “the learning 
curve is pretty steep (Tableau), and we spent a lot of time learning 
these tools”. On the other hand, while Falx was a new visualization 
tool, most users found it easy to learn, despite some users requir-
ing some time in the beginning to get used to “the paradigm shift 
from my normal understanding” (F6). For example, participant F4 
mentioned that “the ramp up time [for Falx] is pretty short and it’s 
pretty easy to use.”, and F6 mentioned that “anyone with basic Excel 
knowledge should be able to use Falx”. 

4.5 Visualization Strategies in Falx 
Since Falx is a new tool for data visualization, besides understand-
ing its ability to address existing visualization challenges, we also 
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investigated how participants used Falx to solve visualization tasks. 
We conducted an inductive content analysis on the interviewer’s 
notes about Falx experience similar to that in Section 4.4. In this 
section, we discuss observations about participants’ visualization 
process in Falx and their indications for future synthesizer-based 
visualization tool design. 

4.5.1 Strategies for creating examples. Data analysts initiate inter-
actions with Falx by creating examples. As a synthesis-powered 
visualization tool, poorly constructed examples can be highly am-
biguous and lead to long running time and a large number of visu-
alization candidates. Also, while users can carefully create multiple 
examples to increase Falx’s performance, it requires more efort. 
Falx users identifed the following strategies to create examples 
efectively: 
• Sketching visualizations before demonstration: Three partici-
pants mentioned that sketching the visualization design on 
paper helped them understand geometry of the visualization, 
and it helped them creating better examples. For example, par-
ticipant F13 mentioned “I sketch out frst to get a general under-
standing of what the visualization would look like, and then use 
that to drop points.”. 

• Selecting representative data points to demonstrate: Seven par-
ticipants mentioned that they considered using “representative 
points” (F7) when creating demonstrations in order to reduce 
ambiguity to Falx. For example, participant F1 mentioned that 
“[In the disaster impact task], I chose a cause that contains non-
zero value in that year, because it’s a unique value that can avoid 
confusion of the tool”. 

• Start from a few examples, add more later if necessary: Eight 
participants mentioned that they “tried to shoot for minimum 
input” (F6) for simplicity. In this way, they can “run the tool to see 
what it returns” (F1) before spending more efort on examples, 
and they would “add more to help narrow it down if there are 
many visualizations pop up” (F9). Additionally, participant F11 
noted that “It’s easy to add multiple elements to mess up with 
the demonstration. A small number of elements make it easier to 
go back and fx”. 

• Start with multiple examples to minimize interaction iterations: 
Instead of starting from minimal inputs, 6 participants preferred 
to create more examples in the beginning to “avoid ambiguity” 
(F2). They remarked that “it doesn’t take that much time to add 
data points” (P8) and multiple examples can “avoid having to 
wait and choosing from multiple solutions” (F8). 

During the process of creating and revising examples, seven 
participants found the demo preview panel useful since it allowed 
them to “ understand more about how a certain layout would look like” 
(F11) and it “helps put me on the right track of solving the task.” (F13). 
However, nine participants said they did not fnd it helpful because 
they “don’t know if it tells enough to help understand anything [about 
synthesis results]” (F7); they preferred to “just click synthesis to get 
the result since synthesis is pretty fast” (F14). 

Some challenges participants encountered in creating examples 
included (1) unfamiliarity with terms in Falx (e.g., F4 mentioned 
“‘size’ is a term that I’m not familiar with.”) and (2) not getting used 
to demonstrate visualization ideas using values (e.g., F6 mentioned 
‘’I was struggling with the paradigm shift about when to use values 

and when to use table headers”). In general, the fast response time 
of Falx enabled participants to get over these challenges through 
trial and error (e.g., F1 mentioned “If there is anything wrong, I’ll 
go back and do edits on the points.”), and they “get faster in later 
tasks once understand the diference” (F6). In future, Falx could adopt 
a mixed-initiative interface [17] to improve experience for new 
users. In addition, we observed that many participants felt like 
they were interacting with an intelligent tool (e.g., F13 mentioned 
“the tool is quite good at learning from what I demonstrated”) and 
they were willing to provide more informative inputs (e.g., F16 
“tried to write the expression because I don’t know how Falx would 
do computation”). In future, Falx could take advantage of this to 
support more complex visualization tasks by synthesizing programs 
from users more informative inputs besides examples (e.g., formulas 
that describe how certain values in the examples are derived from 
the input). 

4.5.2 Strategies for exploring synthesis results. After creating ex-
amples to demonstrate the visualization task, users interact with 
Falx to explore the synthesized visualizations and identify the de-
sired solution. Prior work [22, 27] has shown that a main barrier 
for adoption of synthesis-based programming tools is that users 
have difculty understanding and trusting synthesized solutions, 
especially when there are many solutions consistent with the user 
demonstration. 

We discovered from the interview that many participants shared 
the following similar 4-step process to select the desired visualiza-
tion from synthesized visualizations by investigating visualization 
from coarse to fne: 

• Step 1: Check against the high-level picture. First, participants 
noted that it was easy to quickly exclude many visualizations 
that are obviously far from the desired visualization. For ex-
ample, “having too many options is a bit overwhelming, but just 
keeping in mind what the result you look like can help narrow 
down the solution” (F11). 

• Step 2: Check axes and invariants. After excluding the obviously 
wrong solutions, participants often investigate domains and 
ranges of each axis to further refne synthesis results. For ex-
ample, “I frst looked at color labels, I noticed they tend to be 
wrong in wrong visualizations – e.g., some charts only contain 2 
labels instead of 4” (F16). 

• Step 3: Compare similar visualizations. Then, participants in-
vestigated similar visualizations to fnd their diference. For 
example, “In the electric case, there is one mistake [in a candidate 
visualization] with 2019 showing up on y axis, it’s small and not 
obvious. But then, I was able to tell the diference by comparing 
the two visualizations directly, and notice that year showed up 
in the ’hour’ feld” (F2). 

• Step 4: Inspect visualization detail. Finally, participants “check 
carefully about the values to make sure they are correct” (F5). 
An example of such detailed checking is to check values in 
the chart against known values in the input data: “if there is 
a specifc value that I know is correct – for example, in the last 
example (disasters), I knew the total death for 1961 was, then I 
hover over the output to check if the value is correct ” (F6). 
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After these steps, participants were confdent about the result. In 
fact, while participants mentioned that their confdence about solu-
tions could be negatively afected by unfamiliarity of visualization 
types (e.g., F9 mentioned “ I don’t do much heatmap so I’m less con-
fdent”), they mentioned that the checking process can raise their 
confdence about the chosen solution. For example, participants 
got more confdent after “comparing them [candidates] with my 
sketch” (F6), “looking at solutions and fnding their diference” (F14), 
or “checking details” (F2). They further noted that in many cases, 
“it’s almost impossible for Falx to get it wrong because these values 
are all pretty unique” (F14). In general, participants found the ex-
ploration panel “quite useful” because it “allows to choose the best 
visualization out of that” (F7). 

In sum, Falx’s exploration panel allowed users to directly inspect 
solutions in the visualization space following a coarse-to-fne pro-
cess, which helped them to disambiguate solutions and trust the 
chosen results. In the future, Falx’s interface could be improved 
to augment users’ exploring strategies. For example, Falx could 
directly summarize the diferences among the synthesized visual-
izations to allow users to make comparisons easier. Also, Falx’s 
center view panel could support displaying traces that show how 
properties of each geometric object are derived from the input, 
which could make the synthesis process more transparent and 
make checking details easier. 

4.6 Workfow Implications 
Finally, participants refected on how Falx might ft into their work-
fow. For example, F13 mentioned “I’ll absolutely use this if this is 
a product. Even as it is now I’ll use it”. Participants found several 
scenarios that Falx can be helpful. 
• Create visualizations for discussions and presentations. For 
example, F1 noted that “visualizations generated by Falx can 
meet standards of presentation slides” and “Falx can generate 
something that you cannot easily do in Excel”. 

• Prototyping complex analysis. For example, F16 mentioned 
“Falx is very useful in the prototyping stage because it’s very 
fast to use.” F7 further noted that they can “take a sample to 
visualize and then extend to the full visualization” using Falx for 
analyzing big datasets. 

• Beneft non-experienced users. Six participants mentioned that 
Falx can be “more benefcial to new users that cannot create 
charts” (F2). Also, Falx can be “a good teaching tool to help 
people understand data” (F7). 

• Reduce team collaboration efort. Participant F11 described that 
visualization readers were often diferent from visualization 
creators in their team, and modifying visualizations required 
team eforts. F11 mentioned that Falx could help with it: “a 
person presents me with a visualization, but I want to view some-
thing diferently. Instead of getting back to the person to re-do it, 
I can probably just use Falx, which would be more efcient.” 

However, several participants also mentioned Falx may not ft 
well to their current workfow when they need “very high standard 
visualizations” (F1) that requires extensive customization. Another 
limitation of the current version of Falx is the lack of “deep integra-
tion with other tools” (F1), e.g., database for handling big datasets 
and data cleaning tools for “handling null / dirty data” (F4). But in 

general, participants thought that Falx would be helpful when used 
in the right scenarios and “would be pretty interesting to try Falx in 
some of these tasks” (F5). 

5 RELATED WORK 
Falx builds on top of prior research on grammar based visualization 
tools, data transformation tools, program synthesis algorithms and 
automated visualization design systems. 

Grammar-based Visualization. Following the initial publication 
of the Grammar of Graphics [52], high level grammars [37, 42, 50] 
for data visualizations have grown increasingly popular as a way of 
succinctly specifying visualization designs. In contrast to low level 
visualization languages like Protovis [4], D3 [13], and Vega [38] that 
are designed for creating highly-customizable explanatory visual-
izations, these high level grammars aim to enable analysts to rapidly 
construct expressive graphics in exploratory analysis. For example, 
ggplot2 [49, 50] and Vega-Lite [37] are two visualization grammars 
that allow users to specify visualizations using visual encodings. 
In both tools, low level visualization details are handled by default 
parameters unless users want customization. Tableau [42] adopts a 
graphical interface approach to enable users to rapidly create views 
to explore multidimensional database. In Tableau, users drag-and-
drop data variables onto visual encoding “shelves”, which are later 
translated into a high-level grammar similar to ggplot2. These tools 
expect the input data layout to match the design such that (1) each 
row corresponds to a graphical object, and (2) each column can be 
mapped to a visual channel. In practice, the mismatch between the 
design and the input data layout is common, which raises a barrier 
for creating visualizations [9, 53]. 

Falx formalizes visualizations in the same way, and synthesized 
programs are compiled to ggplot2 or Vega-Lite for rendering. Falx’s 
user interface also inherits the expressiveness and simplicity of 
Grammar of Graphics design, by allowing users to create exam-
ples of visual encodings to demonstrate visualization ideas. The 
main diference is that Falx relaxes the constraints on input data 
layout and allows users to use layout-independent examples to 
demonstrate visualization ideas. Falx then automatically infers the 
visualization spec and synthesizes data transformations to match 
the data with the design from the examples, which saves users’ 
construction eforts. 

Data Transformation Tools. The need to prepare data for statisti-
cal analysis and visualization has led to the development of many 
tools for data transformation [6, 17, 31, 51]. Since diferent analysis 
objective requires diferent layout, users need to frequently trans-
form data throughout the analysis process [16, 51, 53]. Potter’s 
Wheel [31] is a graphical interface that allows users to interac-
tively choose transformation operators and inspect transformation 
outputs. Wrangler [17] is a mixed initiative data transformation 
tool which can suggest transformations based on the input data. 
Tidyverse [51] is a data transformation library in R, which allows 
users to interleave data transformation code, analysis code and 
visualization code in the same environment to reduce the efort 
of context switch. Several synthesis-powered data transformation 
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tools [3, 6, 7, 30, 46] have been proposed to help automate data trans-
formation. For example, Prose [30] includes several programming-
by-example tools that automatically synthesize programs for data 
cleaning and transformation from input-output examples. Mor-
pheus [7] and Scythe [46] are two specialized data transformation 
synthesizer with better scalability and expressiveness. 

Falx inherits the transformation language design in tidyverse [51], 
and Falx is a realization of prior program synthesis algorithms [7, 
47] as an interactive system for visualization authoring. Falx’s main 
diference from automated data transformation tools is the unifca-
tion of the visualization task and transformation tasks. In this way, 
Falx users do not need to conceptualize expected data layout or fre-
quently switch between visualization and data transformation tools. 
The unifcation also enables Falx users to easily explore synthe-
sis results in the visualization space as opposed to program space, 
which is considered challenging [27]. Besides data layout transfor-
mation, many data preparation tools also support data cleaning 
(e.g., handling missing data or invalid data) [48], data normalization 
(collecting non-relational data into relation format) [3], and string 
formatting [6, 11, 56]. Falx currently does not support directly visu-
alizing dirty or non-relational data. In the future, Falx could work 
with these tools to further automate visualization process. 

Visualization Automation. Automated visualization tools [15, 29, 
35] have been proposed to help data analysts to explore the visu-
alization design space. Draco [29] and Dziban [24] use constraint 
logic approaches to model design knowledge, and they can recom-
mend visualization designs from partial specifcations. VizNet [15] 
uses a deep neural network trained from visualization corpus to 
suggest designs. Voyager [54] combines recommendation and ex-
ploration for mixed-initiative design exploration. VisExemplar [35] 
allows users to demonstrate changes in the visualization layout 
to explore alternative visualizations designs. Falx is complemen-
tary to these design automation tools. Falx allows users to imple-
ment visualization designs they have in mind without data layout 
constraints, while design automation tools helps users to explore 
visualization designs from a fxed data layout. A combination of 
the two approaches could potentially help users to explore a larger 
visualizations design space without data layout constraints. 

User Interaction with Program Synthesizers. In general, program 
synthesizers can be categorized into exploration tools and imple-
mentation tools. Synthesis-based exploration tools aim to gen-
erate a large number of solutions from users’ weak constraints 
to aid users to explore the search space [29, 43]. For example, 
Scout [43] is a synthesis-based exploration tool to discover mo-
bile layout ideas. In these tools, users interact with an exploration 
interface to navigate and save interesting solutions. Implementa-
tion tools [6, 7, 11, 30, 46, 56], instead, aim to synthesize programs 
to help solve a concrete task (e.g., implement a design that a user al-
ready have in mind). In these tools, the main interaction objective is 
to help users to disambiguate spurious programs that happen to be 
consistent with the user specifcation but are incorrect for the full 
task [27]. To solve this challenge, Wrex [6] generates readable pro-
grams for users to inspect and edit; Regae [56] and FlashProg [27] 
interactively ask users disambiguating questions to refne synthesis 

results; PUMICE [23] lets users collaborate with the agent to recur-
sively resolve any ambiguities or vagueness through conversations 
and demonstrations. 

Falx is an implementation tool for data visualization. Falx’s con-
tribution to the user interaction model is that Falx brings the explo-
ration design (from exploration tools) to address the disambiguation 
and trust challenges in implementation tools. Allowing users to 
explore and examine synthesized programs in the visualization 
space reduces the barrier for user interaction (e.g., users do not 
need to be familiar with underlying programs to disambiguate [27]) 
and increases users’ confdence about solutions. 

Tools for More Expressive Visualizations. Besides tools for stan-
dard visualization authoring, many visualization tools have been 
proposed to let designers create more expressive visualizations. 
Examples of these tools are Data illustrator [25], Lyra [36], Chartic-
ular [33], Data-driven Guides [20], and StructGraphics [44]. Besides 
high-level design layout (e.g., x,y ,column) and standard mark prop-
erties (e.g., color, shape), these tools let users customize marks to 
create more expressive glyphs (e.g., compound marks, parametric 
marks). These tools expect users to prepare data into a tidy format 
to start with, but they support rich visualization designs. Falx, in 
comparison, supports standard visualization designs but automates 
data transformation. 

Several design reconstruction tools (e.g., VbD [35], Liger [34], 
iVolVER [28]) are proposed to let designers create expressive visu-
alization by destructing and reconstructing existing visualization 
designs. Using these tools, users can transform existing visual-
izations to new ones by demonstrating desired design changes. 
Functionally, these tools are design exploration tools that take as 
input a visualization design and produce a new visualization design. 
They difer from Falx because Falx takes data as input and maps it 
to a visualization design for initial design authoring. 

There are opportunities to combine Falx with these tools for 
better visualization authoring. Falx can work with expressive de-
signs tools to support authoring complex visualizations from non-
tidy data: users can frst design customized marks using example 
data values, and the tool would automatically synthesize binding 
between data and these fne-grained mark properties from these 
examples. Falx can also work with design reconstruction tools to al-
low users to frst use Falx to create initial design from data, and then 
subsequently interactively explore new designs by transforming 
the initial design. 

6 DISCUSSION 
We have presented Falx, a novel synthesis-powered visualization 
authoring tool that let users demonstrate a visualization design us-
ing examples of visual encodings and then receive suggestions for 
visualization designs. Our goal was to create a system that does not 
require users to manually specify the visualization or worry about 
data transformations, thereby improving user efciency and reduc-
ing the learning burden on novice analysts. Our study found that 
Falx often achieved these goals: Falx users were able to efectively 
adopt Falx to solve visualization tasks that they could otherwise 
cannot solve, and in some cases, they do so more quickly. We next 
discuss some implications of this work in guiding future research. 
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Data Layout-Flexible Visualization Exploration. Besides visual-
ization authoring, combining Falx with data exploration tools like 
GraphScape [21] Voyager [54], GraphScape [21], VbD [35] and Dz-
iban [24] might enable new design exploration tools that allow 
users to discover both new relations from the dataset and new de-
signs to visualize the them. Using existing design exploration tools, 
users can explore diverse visualization designs from an input data; 
but since existing tools generates designs that are specifc to the 
input data layout, the design space that can be explored is limited. 
Integrating Falx with these design exploration tools could enable 
novel design exploration tools that can assist users to explore de-
sign space without being constrained by data layouts. For example, 
in an anchored design exploration scenario [21, 24, 35], users can 
demonstrate data layout changes alongside design changes using 
this new tool to incrementally discover data insights from a larger 
design space. Similarly, Falx might also work with visualization rec-
ommendation engines [15, 29] to fnd better designs for the dataset 
based on initial visualizations created by users using examples to 
suggest data layout independent designs. 

Visualization Learning. As we discovered from our study, users 
often describe existing programming tools as “fexible, powerful” 
but “having a steep learning curve.” Falx can fll in this gap by 
helping data analysts to learn to create visualizations. Since Falx 
does not require its users to have programming expertise, new users 
can learn visualization and data transformation concepts using 
Falx by frst creating visualization using demonstrations and then 
inspecting synthesized programs. For example, Falx could generate 
readable code like Wrex [6] for users to learn to use visualization 
APIs, enabling them to access the fexibility and power of code. 

Bootstrapping Complex Data Analysis. Falx currently focuses on 
inexperienced data analysts, but it could also potentially beneft 
experienced data analysts by bootstrapping complex data analysis 
tasks. For example, data analysts could frst create visualizations in 
Falx and then build complex analyses by iteratively editing synthe-
sized programs. To achieve this goal, Falx needs more transparency 
and better integration with programming environments. For exam-
ple, Falx could expose synthesized programs during the synthesis 
process and allow users to steer the synthesis process to better dis-
ambiguate results. Falx could also be integrated into programming 
environments like mage [19], Wrex [6] or Sketch-n-Sketch [14] to 
make program editing easier. 

All of these possibilities, as well as prior work applying program 
synthesis to design (e.g., [29, 43]), suggest a promising future for 
augmenting design work with synthesis-based techniques. We hope 
Falx provides one exemplar for how to adapt core techniques in 
synthesis into powerful interactive tools that empower human 
creativity. 

ACKNOWLEDGMENTS 
This work has been supported in part by the NSF Grants ACI 
OAC–1535191, FMitF CCF-1918027, OIA-1936731, IIS-1546083, IIS-
1955488, IIS-2027575, CCF-1723352, the Intel and NSF joint research 
center for Computer Assisted Programming for Heterogeneous Ar-
chitectures (CAPA NSF CCF-1723352), Department of Energy award 
DE-SC0016260, the CONIX Research Center, one of six centers in 

JUMP, a Semiconductor Research Corporation (SRC) program spon-
sored by DARPA CMU 1042741-394324 AM01, a grant from DARPA, 
FA8750–16–2–0032, as well as gifts from Adobe, Facebook, Google, 
Intel, VMWare and Qualcomm. We would also like to thank anony-
mous reviewers for their insightful feedback on paper revision. 

REFERENCES 
[1] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive Pro-

gram Synthesis. In Computer Aided Verifcation - 25th International Conference, 
CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings (Lecture Notes in 
Computer Science, Vol. 8044), Natasha Sharygina and Helmut Veith (Eds.). Springer, 
934–950. https://doi.org/10.1007/978-3-642-39799-8_67 

[2] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and 
Daniel Tarlow. 2017. DeepCoder: Learning to Write Programs. In 5th International 
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 
2017, Conference Track Proceedings. OpenReview.net. https://openreview.net/ 
forum?id=ByldLrqlx 

[3] Daniel W Barowy, Sumit Gulwani, Ted Hart, and Benjamin Zorn. 2015. FlashRe-
late: extracting relational data from semi-structured spreadsheets using examples. 
ACM SIGPLAN Notices 50, 6 (2015), 218–228. 

[4] Michael Bostock and Jefrey Heer. 2009. Protovis: A graphical toolkit for visu-
alization. IEEE transactions on visualization and computer graphics 15, 6 (2009), 
1121–1128. 

[5] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unifed 
Lattice Model for Static Analysis of Programs by Construction or Approximation 
of Fixpoints. In Conference Record of the Fourth ACM Symposium on Principles of 
Programming Languages, Los Angeles, California, USA, January 1977, Robert M. 
Graham, Michael A. Harrison, and Ravi Sethi (Eds.). ACM, 238–252. https: 
//doi.org/10.1145/512950.512973 

[6] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020. 
Wrex: A Unifed Programming-by-Example Interaction for Synthesizing Readable 
Code for Data Scientists. In CHI ’20: CHI Conference on Human Factors in Comput-
ing Systems, Honolulu, HI, USA, April 25-30, 2020, Regina Bernhaupt, Florian ’Floyd’ 
Mueller, David Verweij, Josh Andres, Joanna McGrenere, Andy Cockburn, Ignacio 
Avellino, Alix Goguey, Pernille Bjøn, Shengdong Zhao, Briane Paul Samson, and 
Rafal Kocielnik (Eds.). ACM, 1–12. https://doi.org/10.1145/3313831.3376442 

[7] Yu Feng, Ruben Martins, Jacob Van Gefen, Isil Dillig, and Swarat Chaudhuri. 
2017. Component-based synthesis of table consolidation and transformation 
tasks from examples. In Proc. Conference on Programming Language Design and 
Implementation. ACM, 422–436. 

[8] John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure 
Transformations from Input-output Examples. In Proc. Conference on Program-
ming Language Design and Implementation. ACM, 229–239. 

[9] Malu AC Gatto. 2015. Making research useful: Current challenges and good 
practices in data visualisation. (2015). 

[10] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium 
on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 
26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 317–330. https://doi.org/ 
10.1145/1926385.1926423 

[11] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. In Proc. Symposium on Principles of Programming Languages. 
ACM, 317–330. 

[12] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. 2013. Complete 
completion using types and weights. In Proc. Conference on Programming Lan-
guage Design and Implementation. ACM, 27–38. 

[13] Jefrey Heer and Michael Bostock. 2010. Declarative Language Design for In-
teractive Visualization. IEEE Trans. Vis. Comput. Graph. 16, 6 (2010), 1149–1156. 
https://doi.org/10.1109/TVCG.2010.144 

[14] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-
Directed Programming for SVG. In Proceedings of the 32nd Annual ACM Sympo-
sium on User Interface Software and Technology, UIST 2019, New Orleans, LA, USA, 
October 20-23, 2019, François Guimbretière, Michael Bernstein, and Katharina 
Reinecke (Eds.). ACM, 281–292. https://doi.org/10.1145/3332165.3347925 

[15] Kevin Zeng Hu, Snehalkumar (Neil) S. Gaikwad, Madelon Hulsebos, Michiel A. 
Bakker, Emanuel Zgraggen, César A. Hidalgo, Tim Kraska, Guoliang Li, Arvind 
Satyanarayan, and Çagatay Demiralp. 2019. VizNet: Towards A Large-Scale 
Visualization Learning and Benchmarking Repository. In Proceedings of the 2019 
CHI Conference on Human Factors in Computing Systems, CHI 2019, Glasgow, 
Scotland, UK, May 04-09, 2019, Stephen A. Brewster, Geraldine Fitzpatrick, Anna L. 
Cox, and Vassilis Kostakos (Eds.). ACM, 662. https://doi.org/10.1145/3290605. 
3300892 

[16] Sean Kandel, Jefrey Heer, Catherine Plaisant, Jessie Kennedy, Frank Van Ham, 
Nathalie Henry Riche, Chris Weaver, Bongshin Lee, Dominique Brodbeck, and 
Paolo Buono. 2011. Research directions in data wrangling: Visualizations and 

https://doi.org/10.1007/978-3-642-39799-8_67
https://openreview.net/forum?id=ByldLrqlx
https://openreview.net/forum?id=ByldLrqlx
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1109/TVCG.2010.144
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3290605.3300892
https://doi.org/10.1145/3290605.3300892
https://OpenReview.net


Falx: Synthesis-Powered Visualization Authoring 

transformations for usable and credible data. Information Visualization 10, 4 
(2011), 271–288. 

[17] Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jefrey Heer. 2011. 
Wrangler: interactive visual specifcation of data transformation scripts. In Pro-
ceedings of the International Conference on Human Factors in Computing Systems, 
CHI 2011, Vancouver, BC, Canada, May 7-12, 2011, Desney S. Tan, Saleema Amer-
shi, Bo Begole, Wendy A. Kellogg, and Manas Tungare (Eds.). ACM, 3363–3372. 
https://doi.org/10.1145/1978942.1979444 

[18] Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jefrey Heer. 2012. 
Enterprise Data Analysis and Visualization: An Interview Study. IEEE Trans. Vis. 
Comput. Graph. 18, 12, 2917–2926. https://doi.org/10.1109/TVCG.2012.219 

[19] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-
suphasawat, and Kayur Patel. 2020. mage: Fluid Moves Between Code and 
Graphical Work in Computational Notebooks. In UIST ’20: The 33rd Annual ACM 
Symposium on User Interface Software and Technology, Virtual Event, USA, October 
20-23, 2020, Shamsi T. Iqbal, Karon E. MacLean, Fanny Chevalier, and Stefanie 
Mueller (Eds.). ACM, 140–151. https://doi.org/10.1145/3379337.3415842 

[20] Nam Wook Kim, Eston Schweickart, Zhicheng Liu, Mira Dontcheva, Wilmot Li, 
Jovan Popovic, and Hanspeter Pfster. 2017. Data-Driven Guides: Supporting 
Expressive Design for Information Graphics. IEEE Trans. Vis. Comput. Graph. 23, 
1 (2017), 491–500. https://doi.org/10.1109/TVCG.2016.2598620 

[21] Younghoon Kim, Kanit Wongsuphasawat, Jessica Hullman, and Jefrey Heer. 2017. 
GraphScape: A Model for Automated Reasoning about Visualization Similarity 
and Sequencing. In ACM Human Factors in Computing Systems (CHI). http: 
//idl.cs.washington.edu/papers/graphscape 

[22] Tessa Lau. 2009. Why Programming-By-Demonstration Systems Fail: Lessons 
Learned for Usable AI. AI Mag. 30, 4 (2009), 65–67. https://doi.org/10.1609/aimag. 
v30i4.2262 

[23] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, Tom M. Mitchell, 
and Brad A. Myers. 2019. PUMICE: A Multi-Modal Agent that Learns Concepts 
and Conditionals from Natural Language and Demonstrations. In Proceedings 
of the 32nd Annual ACM Symposium on User Interface Software and Technology, 
UIST 2019, New Orleans, LA, USA, October 20-23, 2019, François Guimbretière, 
Michael Bernstein, and Katharina Reinecke (Eds.). ACM, 577–589. https://doi. 
org/10.1145/3332165.3347899 

[24] Halden Lin, Dominik Moritz, and Jefrey Heer. 2020. Dziban: Balancing Agency 
& Automation in Visualization Design via Anchored Recommendations. In Pro-
ceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 
1–12. 

[25] Zhicheng Liu, John Thompson, Alan Wilson, Mira Dontcheva, James Delorey, Sam 
Grigg, Bernard Kerr, and John T. Stasko. 2018. Data Illustrator: Augmenting Vector 
Design Tools with Lazy Data Binding for Expressive Visualization Authoring. In 
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 
CHI 2018, Montreal, QC, Canada, April 21-26, 2018, Regan L. Mandryk, Mark 
Hancock, Mark Perry, and Anna L. Cox (Eds.). ACM, 123. https://doi.org/10. 
1145/3173574.3173697 

[26] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. 2005. Jungloid 
mining: helping to navigate the API jungle. In Proc. Conference on Programming 
Language Design and Implementation. ACM, 48–61. 

[27] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr 
Polozov, Rishabh Singh, Benjamin G. Zorn, and Sumit Gulwani. 2015. User Interac-
tion Models for Disambiguation in Programming by Example. In Proceedings of the 
28th Annual ACM Symposium on User Interface Software & Technology, UIST 2015, 
Charlotte, NC, USA, November 8-11, 2015, Celine Latulipe, Bjoern Hartmann, and 
Tovi Grossman (Eds.). ACM, 291–301. https://doi.org/10.1145/2807442.2807459 

[28] Gonzalo Gabriel Méndez, Miguel A. Nacenta, and Sebastien Vandenheste. 2016. 
iVoLVER: Interactive Visual Language for Visualization Extraction and Recon-
struction. In Proceedings of the 2016 CHI Conference on Human Factors in Com-
puting Systems, San Jose, CA, USA, May 7-12, 2016, Jofsh Kaye, Allison Druin, 
Clif Lampe, Dan Morris, and Juan Pablo Hourcade (Eds.). ACM, 4073–4085. 
https://doi.org/10.1145/2858036.2858435 

[29] Dominik Moritz, Chenglong Wang, Greg L. Nelson, Halden Lin, Adam M. Smith, 
Bill Howe, and Jefrey Heer. 2019. Formalizing Visualization Design Knowledge as 
Constraints: Actionable and Extensible Models in Draco. IEEE Trans. Vis. Comput. 
Graph. 25, 1 (2019), 438–448. https://doi.org/10.1109/TVCG.2018.2865240 

[30] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: a framework for 
inductive program synthesis. In Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and 
Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, Octo-
ber 25-30, 2015, Jonathan Aldrich and Patrick Eugster (Eds.). ACM, 107–126. 
https://doi.org/10.1145/2814270.2814310 

[31] Vijayshankar Raman and Joseph M Hellerstein. 2001. Potter’s wheel: An interac-
tive data cleaning system. In VLDB, Vol. 1. 381–390. 

[32] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code completion with 
statistical language models. In Proc. Conference on Programming Language Design 
and Implementation. ACM, 419–428. 

[33] Donghao Ren, Bongshin Lee, and Matthew Brehmer. 2019. Charticulator: Inter-
active Construction of Bespoke Chart Layouts. IEEE Trans. Vis. Comput. Graph. 

CHI ’21, May 8–13, 2021, Yokohama, Japan 

25, 1 (2019), 789–799. https://doi.org/10.1109/TVCG.2018.2865158 
[34] Bahador Saket, Lei Jiang, Charles Perin, and Alex Endert. 2019. Liger: Com-

bining Interaction Paradigms for Visual Analysis. CoRR abs/1907.08345 (2019). 
arXiv:1907.08345 http://arxiv.org/abs/1907.08345 

[35] Bahador Saket, Hannah Kim, Eli T Brown, and Alex Endert. 2016. Visualization 
by demonstration: An interaction paradigm for visual data exploration. IEEE 
transactions on visualization and computer graphics 23, 1 (2016), 331–340. 

[36] Arvind Satyanarayan and Jefrey Heer. 2014. Lyra: An Interactive Visualization 
Design Environment. Comput. Graph. Forum 33, 3 (2014), 351–360. https: 
//doi.org/10.1111/cgf.12391 

[37] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jefrey Heer. 
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Trans. Vis. Comput. 
Graph. 23, 1 (2017), 341–350. https://doi.org/10.1109/TVCG.2016.2599030 

[38] Arvind Satyanarayan, Ryan Russell, Jane Hofswell, and Jefrey Heer. 2016. 
Reactive Vega: A Streaming Datafow Architecture for Declarative Interac-
tive Visualization. IEEE Trans. Vis. Comput. Graph. 22, 1 (2016), 659–668. 
https://doi.org/10.1109/TVCG.2015.2467091 

[39] Rishabh Singh and Sumit Gulwani. 2016. Transforming spreadsheet data types 
using examples. In Proc. Symposium on Principles of Programming Languages. 
ACM, 343–356. 

[40] Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bodík, and Kemal Ebcioglu. 
2005. Programming by sketching for bit-streaming programs. In Proc. Conference 
on Programming Language Design and Implementation. ACM, 281–294. 

[41] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay 
Saraswat. 2006. Combinatorial Sketching for Finite Programs. In Proc. Inter-
national Conference on Architectural Support for Programming Languages and 
Operating Systems. ACM, 404–415. 

[42] Chris Stolte, Diane Tang, and Pat Hanrahan. 2002. Query, analysis, and visu-
alization of hierarchically structured data using Polaris. In Proceedings of the 
Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining, July 23-26, 2002, Edmonton, Alberta, Canada. ACM, 112–122. https: 
//doi.org/10.1145/775047.775064 

[43] Amanda Swearngin, Chenglong Wang, Alannah Oleson, James Fogarty, and 
Amy J. Ko. 2020. Scout: Rapid Exploration of Interface Layout Alternatives 
through High-Level Design Constraints. In CHI ’20: CHI Conference on Hu-
man Factors in Computing Systems, Honolulu, HI, USA, April 25-30, 2020, Regina 
Bernhaupt, Florian ’Floyd’ Mueller, David Verweij, Josh Andres, Joanna Mc-
Grenere, Andy Cockburn, Ignacio Avellino, Alix Goguey, Pernille Bjøn, Sheng-
dong Zhao, Briane Paul Samson, and Rafal Kocielnik (Eds.). ACM, 1–13. https: 
//doi.org/10.1145/3313831.3376593 

[44] Theophanis Tsandilas. 2020. StructGraphics: Flexible Visualization Design 
through Data-Agnostic and Reusable Graphical Structures. IEEE Transactions on 
Visualization and Computer Graphics (2020). 

[45] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim, 
Milo M. K. Martin, and Rajeev Alur. 2013. TRANSIT: specifying protocols with 
concolic snippets. (2013), 287–296. https://doi.org/10.1145/2491956.2462174 

[46] Chenglong Wang, Alvin Cheung, and Rastislav Bodík. 2017. Synthesizing highly 
expressive SQL queries from input-output examples. In Proceedings of the 38th 
ACM SIGPLAN Conference on Programming Language Design and Implementation, 
PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev 
(Eds.). ACM, 452–466. https://doi.org/10.1145/3062341.3062365 

[47] Chenglong Wang, Yu Feng, Rastislav Bodik, Alvin Cheung, and Isil Dillig. 2019. 
Visualization by example. Proceedings of the ACM on Programming Languages 4, 
POPL (2019), 1–28. 

[48] Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017. Synthesis of data completion 
scripts using fnite tree automata. Proc. ACM Program. Lang. 1, OOPSLA (2017), 
62:1–62:26. https://doi.org/10.1145/3133886 

[49] Hadley Wickham. 2010. A layered grammar of graphics. Journal of Computational 
and Graphical Statistics 19, 1 (2010), 3–28. 

[50] Hadley Wickham. 2011. ggplot2. Wiley Interdisciplinary Reviews: Computational 
Statistics 3, 2 (2011), 180–185. 

[51] Hadley Wickham et al. 2014. Tidy data. Journal of Statistical Software 59, 10 
(2014), 1–23. 

[52] Leland Wilkinson. 2012. The grammar of graphics. In Handbook of Computational 
Statistics. Springer, 375–414. 

[53] Kanit Wongsuphasawat, Yang Liu, and Jefrey Heer. 2019. Goals, Process, 
and Challenges of Exploratory Data Analysis: An Interview Study. CoRR 
abs/1911.00568 (2019). arXiv:1911.00568 http://arxiv.org/abs/1911.00568 

[54] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill 
Howe, and Jefrey Heer. 2015. Voyager: Exploratory analysis via faceted browsing 
of visualization recommendations. IEEE transactions on visualization and computer 
graphics 22, 1 (2015), 649–658. 

[55] Navid Yaghmazadeh, Christian Klinger, Isil Dillig, and Swarat Chaudhuri. 2016. 
Synthesizing transformations on hierarchically structured data. In Proc. Confer-
ence on Programming Language Design and Implementation. ACM, 508–521. 

[56] Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L. Glassman. 
2020. Interactive Program Synthesis by Augmented Examples. (2020), 627–648. 
https://doi.org/10.1145/3379337.3415900 

https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1109/TVCG.2012.219
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1109/TVCG.2016.2598620
http://idl.cs.washington.edu/papers/graphscape
http://idl.cs.washington.edu/papers/graphscape
https://doi.org/10.1609/aimag.v30i4.2262
https://doi.org/10.1609/aimag.v30i4.2262
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/2807442.2807459
https://doi.org/10.1145/2858036.2858435
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1109/TVCG.2018.2865158
https://arxiv.org/abs/1907.08345
http://arxiv.org/abs/1907.08345
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1145/775047.775064
https://doi.org/10.1145/775047.775064
https://doi.org/10.1145/3313831.3376593
https://doi.org/10.1145/3313831.3376593
https://doi.org/10.1145/2491956.2462174
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3133886
https://arxiv.org/abs/1911.00568
http://arxiv.org/abs/1911.00568
https://doi.org/10.1145/3379337.3415900

	Abstract
	1 Introduction
	2 Usage Scenario
	2.1 User Experience in R
	2.2 User Experience in Falx

	3 System Architecture
	3.1 Background: Program Synthesis
	3.2 Falx Synthesizer

	4 User Study
	4.1 Participants
	4.2 Procedure
	4.3 Task Completion
	4.4 Task Experience
	4.5 Visualization Strategies in Falx
	4.6 Workflow Implications

	5 Related Work
	6 Discussion
	Acknowledgments
	References



