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Abstract: Anemia is the condition in which patients suffer from the deficiency of the red blood cells
to carry the oxygen in the body. One of the many causes of anemia is chronic kidney disease (CKD).
CKD is a disease in which kidneys are partially or completely damaged, which results in a deficiency of
the oxygen-carrying red blood cells. CKD is common in older people, and external human recombinant
erythropoietin (EPO) is required to maintain healthy levels of hemoglobin (Hb). In order to effectively
address the impact of inter and intra-individual variability in dose-response characteristics in CKD
patients, individualized patient-specific models are required instead of traditional population-based
models. In this research, individualized patient models are developed by using patient-specific time-
domain data with robust system identification techniques. For control-oriented system identification,
two robust identification techniques are investigated: (1) l1 robust identification considering zero initial
conditions and (2) Semi-blind robust system identification considering non-zero initial conditions. The
performance of these two techniques is compared and it is shown that the Semi-blind robust identification
technique gives better results as compared to l1 robust identification.
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1. INTRODUCTION

In recent years, the need for drug management in bio-engineering
is becoming one of the prominent applications for control sys-
tems researchers. In chronic kidney disease (CKD), the kidneys
are partially or completely damaged and not able to produce
enough erythropoietin, a glycoprotein that produces red blood
cells (ADAMSON, 1968), this results in the reduced number
of oxygen-carrying red blood cells in the human body, this
condition is called anemia. The patients of this disease are
treated with recombinant human erythropoietin (EPO). The
dosage of EPO to the human body increases the hemoglobin
(Hb) levels (Eschbach and Adamson, 1985). According to the
National Kidney Foundation’s Dialysis, the Hb level should
be in the range of 11 and 12 g/dL in the response of EPO
dosage (Valderrábano, 1996).

Presently, the medical centers have developed their own ane-
mia management protocols (EPO management systems) based
on the average (population-based) response medication. While
population models may be useful in the analysis of drug prop-
erties at large, they are not well suited to guide the treatment
of individual patients. To effectively address the impact of inter
and intra-individual variability in dose-response characteristics,
personalized, patient-specific models are needed. Therefore,
medical institutes need a stable and robust system for individ-
ualized anemia management. The key point in designing an
efficient individualized anemia management system is to find
accurate patient-specific dose-response models.

Many researchers have attempted to develop patient models
for anemia management. Bayesian-based drug delivery using
� This work was supported by NSF under grant 1722825.

population patient data is discussed in (Bellazzi, 1993). Arti-
ficial Intelligence-based neural network models are discussed
in (Gaweda et al., 2003) (Guerrero et al., 2003) (Gaweda,
2009). Some researchers attempted to identify individual pa-
tient models in (Muezzinoglu, 2006). In (Martı́n-Guerrero
et al., 2003) the main focus was to predict the value for EPO
instead of Hb, which is not desired as predicting Hb level gives
values of EPO but is not true for the opposite. However, most of
these models are based on predetermined model structure and
noise distribution, which is not suitable for anemia management
as each patient poses different model characteristics.

The models obtained by the classical system identification tech-
niques generally do not yield good results as they assume that
predefined model structure and model order are close to the
actual plant (patient) and one mathematical model works for
all patients regardless of complexity and disturbances in the
plant. The modeling stage should include the effect of all uncer-
tainties, which are being introduced during operations. In con-
trast to classical identification techniques, robust system iden-
tification takes into account system uncertainties, unmodeled
dynamics, and model complexity, i.e., there is no assumption
on the model order, uncertainties, and noise affecting data.

The robust control design requires the nominal model and un-
certainty bound on the model (Ljung, 1999). Therefore, sys-
tem identification techniques should provide a nominal model
and uncertainty bound on it. The robust system identifica-
tion procedure does not require large measurement data set
or information of measurement noise, nor the information on
the structure of the plant/patient model to be identified is
required (Sánchez Peña and Sznaier, 1998) (Mazzaro et al.,
2001). In robust identification, the information on the maxi-
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for anemia management. Bayesian-based drug delivery using
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population patient data is discussed in (Bellazzi, 1993). Arti-
ficial Intelligence-based neural network models are discussed
in (Gaweda et al., 2003) (Guerrero et al., 2003) (Gaweda,
2009). Some researchers attempted to identify individual pa-
tient models in (Muezzinoglu, 2006). In (Martı́n-Guerrero
et al., 2003) the main focus was to predict the value for EPO
instead of Hb, which is not desired as predicting Hb level gives
values of EPO but is not true for the opposite. However, most of
these models are based on predetermined model structure and
noise distribution, which is not suitable for anemia management
as each patient poses different model characteristics.

The models obtained by the classical system identification tech-
niques generally do not yield good results as they assume that
predefined model structure and model order are close to the
actual plant (patient) and one mathematical model works for
all patients regardless of complexity and disturbances in the
plant. The modeling stage should include the effect of all uncer-
tainties, which are being introduced during operations. In con-
trast to classical identification techniques, robust system iden-
tification takes into account system uncertainties, unmodeled
dynamics, and model complexity, i.e., there is no assumption
on the model order, uncertainties, and noise affecting data.

The robust control design requires the nominal model and un-
certainty bound on the model (Ljung, 1999). Therefore, sys-
tem identification techniques should provide a nominal model
and uncertainty bound on it. The robust system identifica-
tion procedure does not require large measurement data set
or information of measurement noise, nor the information on
the structure of the plant/patient model to be identified is
required (Sánchez Peña and Sznaier, 1998) (Mazzaro et al.,
2001). In robust identification, the information on the maxi-
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mum gain of the system K, the stability margin of the system
response ρ, and bound on the noise are required. Depending on
the nature of the a posteriori information, the robust identifi-
cation techniques may lead to different identification methods.
The selection of robust system identification method depends
on the data type as time-domain data and frequency domain
data pose different characteristics, and different techniques are
applied to obtain a model for the data type (Schoukens et al.,
2010). For frequency domain data, the H∞-identification tech-
nique is implemented, which calculates the uncertainty bounds
in terms of the H∞-norm (Chen and Gu, 2000). For time-
domain data, the l1-identification technique is implemented,
which calculates an l1-error bound (Akabua et al., 2011)(Ak-
abua et al., 2015). However, sometimes both time and frequency
domain data may be available for a single plant. In this case,
the mixedH∞/l1 robust identification procedure is used (Inanc
et al., 2001) (Chen and Nett, 1993).

In this research work, the individual patient model for ane-
mia management is obtained using robust system identification
techniques and time domain patient-specific data. For system
identification, the l1 robust system identification and Semi-
blind system identification techniques (Ma, 2006) are used.
The plant/patient model is a combination of a nominal model
and uncertainty bound. Both of these identification techniques,
develop a nominal model and uncertainty bound using patient-
specific dose-response (EPO-Hb) data.

We summarize our contributions as follows:

(1) We present an individualized patient model for anemia
patients using l1 robust system identification assuming
zero initial conditions. The patient model is reduced to
appropriate order which is suitable for control synthesis
techniques.

(2) We present an individualized patient model for anemia
patient using Semi-blind robust system identification by
incorporating the effects of initial conditions instead of
assuming it zero.

(3) The prediction accuracy of the patient models obtained
by the both techniques is compared using minimum mean
squared error (MMSE) analysis.

The remainder of this paper is organized as follows. First,
we discuss the l1 robust system identification in Section 3.
Then, we introduce the Semi-blind robust system identifica-
tion in Section 4. Finally, we present the models for different
patients and prediction results obtained by the one-step-ahead
prediction along with the error analysis for both techniques in
Section 5 followed by the conclusion.

2. SYSTEM IDENTIFICATION

The plant (patient) model is the set of mathematical equations
that describes the plant (patient) behavior in response to the
input. In this work, the system model G is the combination of a
parametric and non-parametric portion given as:

G = Gp +Gnp (1)
The non-parametric portionGnp describes the internal behavior
of the plant. This portion requires less prior knowledge of the
system, such as a model for the internal behavior of physio-
logical systems. On the other hand, the parametric portion Gp

describes the input to output relation. In anemia management,
it is important to take into account that patient may have med-
ical history due to other diseases and medications. It is also

important to mention that for this application, the patient data
is not steady state-data, therefore, the effect of past inputs is
still present. To reduce the error in identification, it is important
to use the initial conditions in the model identification process
for the application of anemia management. To incorporate the
effect of initial conditions, the Semi-blind identification tech-
nique is introduced, which uses the same framework as l1 robust
identification but also includes the effects of past inputs. Next,
we formally define the problem.
Problem 1. Considering 2, obtain the patient model G, which
gives output yi as Hb level in response to input ui of EPO
dosage to patients of CKD.

yi = Gui + ηi, (2)
|ηi| ≤ εi, (3)

where ηi is the noise, which is unknown but bounded, and εi is
the maximum bound on noise.

3. l1 ROBUST IDENTIFICATION

The l1 robust identification obtains a patient model with mini-
mum prior knowledge about patient (Dahleh et al., 1993). The
classical identification techniques assume that the model has
a fixed order and structure and probabilistic noise distribution.
However, l1 robust identification does not assume a fixed or-
der model or noise distribution (Jacobson and Nett, 1991). It
requires minimal prior information, such as the maximum gain
on the system K > 0, the lower bound on the relative stability
margin of the patient dynamics ρ > 1, and an upper bound
on the noise in measurements ε > 0 (Akabua et al., 2015).
Consider a linear time-invariant (LTI) operator g of system class
S, which maps u from input space to y in output space. The
impulse response of g is given as follows:

G(z) =

∞∑
i=0

giz
−i, gi = Kρ−i, (4)

By the discussion, for N samples of data, the robust identifica-
tion problem can be defined as follows:
Problem 2. Given the a priori and the a posteriori information,
determine:

• whether the priori and posteriori information are consis-
tent, i.e decide whether the models in G∞,ρ interpolates
the given measurement points with error bounded by the
priori error information. The priori and posteriori infor-
mation is consistent if and only if, Γ is a non-empty set.

Γ
.
= g ∈ S|yi = (g ∗ ui) + ηi (5)

• If the two sources of information are consistent, then
obtain such a model as well as a bound on the worst-case
identification error.

The consistency is determined by using Carathêodory-Fejér
Interpolation (Lim et al., 2003), defined below:
Problem 3. Given sequence of complex points, gi where i =
0, 1, · · ·N − 1, determine a function G(z) such that

G(z) = g0 + g1z
1 + g2z

2 + · · ·+ gN−1z
N−1 + ĝNzN (6)

The solution of this problem consists on the following inequal-
ity.

I − T ∗
g Tg ≥ 0, (7)

where Tg it the nxn lower triangular Toeplitz matrix of se-
quence {g0, g1, · · · gn−1}. The solution of Carathêodory-Fejér
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Interpolation exits only if vector g = g0 + g1z
1 + g2z

2 + · · ·+
gN−1z

N−1 exists such that following Linear Matrix Inequality
(LMI) holds:

M(g) =

[
KR−2 (TN

g )T

(TN
g ) KR2

]
≥ 0,

∣∣y − TN
u g − TN

u pP
∣∣ ≤ ε,

whereR is the diagonal matrix with coefficients
{
1, ρ, · · · ρN−1

}
and P is the parametric portion of the model. The TN

u
and TN

g are the nxn upper triangle matrix with coefficients
{uo, u1, u2, · · ·uN−1} and {go, g1, g2, · · · gN−1}, respectively.
In l1 robust system identification (Sánchez Peña and Sznaier,
1998) (Inanc et al., 2001), the initial conditions are considered
as zero, is suitable for non-parametric estimation. However,
to be able to include the effect of the initial conditions in the
patient model, the Semi-blind robust identification technique is
introduced in Section- 4.

4. SEMI-BLIND SYSTEM IDENTIFICATION

The response of patient models is affected by its state at t = 0,
such as prior health conditions and medications. To include the
initial condition effects, the identification technique described
in Section 3 needs to be improved. The Semi-blind robust
identification technique takes into account information about
the initial conditions of the plant (patient) (Ma et al., 2005). The
problem statement for Semi-blind identification can be defined
as follows:
Problem 4. Given input sequence u, output sequence y, noise
bound ∈ N , maximum stability gain and characteristics of
past input u−, determine G(z) = Gp(z) + Gnp(z) which is
compatible with priori and posteriori information, such that τ
is a non-empty set.

τ(y)
.
= yi =

N∑
i=0

giuN−i + CgA
N−1
g (ΓN

g u−)i=0 (8)

where g0 = Dg; gi = Cg(Ag)
i−1Bg

The solution to the (8) involves solving a Bi-Affine Matrix,
which is a non-convex, NP-hard problem. The above problem
can be converted to the convex problem as mentioned in (Ma
et al., 2005), which preserves the controllability and observ-
ability of the system. The convex problem can be defined as
follows:
Problem 5. Determine G(z) = Gp(z) + Gnp(z), which is
compatible with a priori and a posteriori information, such that
τ is a non-empty set:

τ(y) =
{
G(z) ∈ S : yi − (TN

g u)i + (ΓN
g u−)i

}
(9)

where,
∣∣(ΓN

g u−)i
∣∣ � γKu; i = 0, 1, · · · , N − 1 and TN

g is the
Toeplitz matrix and ΓN

g is the Hankel matrix.

The first part of the τ set corresponds to the system response
for input u and the later part provides information for system
response for past inputs u−. This problem can be solved by
following the LMIs (Ma et al., 2005) (Yilmaz, 2005).

M(g) =

[
KR−2 (TN

g )T

(TN
g ) KR2

]
≥ 0,

∣∣y − (TN
u pP + TN

u g)− ΓN
g u−∣∣ ∈ N,

−γKu � ΓN
g u− � γKu

where γ,Ku, p, P represent system gain, bound Ku on the
norm of the sequence u−, affine parameters and the parametric
portion of the system. Figure 1 shows the framework for Semi-
blind identification. As the patient response to the EPO dosage
is also affected by the past inputs u−, the parametric part should
be an integrator to accommodate all the effects of the inputs
before t = 0, i.e initial conditions. As we have discussed,

Fig. 1. Framework for Semi-blind identification.

the tools for parametric/non-parametric robust system identi-
fication to obtain a system model for the patients of chronic
kidney disease for anemia management to control Hb level in
response to EPO dosage. Section- 5 shows the implementation
of l1 robust identification and Semi-blind robust identification
on real patient data along with system validation using one-
step-ahead prediction method.

5. SIMULATION RESULTS BASED ON CLINICAL DATA

To obtain patient models using identification techniques dis-
cussed in the above sections, the EPO medication data and Hb
measurement data of fifty patients have been obtained from
the University of Louisville, Kidney Disease program. The
EPO dosage is administrated three times a week, and the Hb
level is tested only once a week. For system identification, the
input/output data should be of the same length, hence three
dosages of EPO per week are averaged, which corresponds to
a single Hb measurement. One step ahead prediction is used
to show the predicting capabilities of the identified models.
The patient models obtained by the l1 robust identification and
the Semi-blind robust identification technique are compared by
calculating minimum mean squared error (MMSE).

MMSE(k) =
1

N

N∑
i=0

‖y(k)− ŷ(k)‖2
y(k)

(10)

To obtain a robust model, the parameters ρ = 1.01, η = 0.31
and data points N = 5 are used as priori information for all
patients. Due to space limitations, we present the results of four
patients, patient-1, patient-10, patient-21, and patient-32.

5.1 l1 Robust Identification Results

The system model for patient number 1 obtained by l1 robust
identification and the one-step-ahead prediction is shown be-
low:

G1(z) =
13.62z3 − 5.105z2 − 1.113z + 17.62

z3 − 0.03317z2 − 0.3127z + 0.7205
(11)

In the following figures of l1 robust identification results, the
green line with hollow circle markers shows the actual Hb level
of the patients, the blue line with dot markers shows the model
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the tools for parametric/non-parametric robust system identi-
fication to obtain a system model for the patients of chronic
kidney disease for anemia management to control Hb level in
response to EPO dosage. Section- 5 shows the implementation
of l1 robust identification and Semi-blind robust identification
on real patient data along with system validation using one-
step-ahead prediction method.

5. SIMULATION RESULTS BASED ON CLINICAL DATA

To obtain patient models using identification techniques dis-
cussed in the above sections, the EPO medication data and Hb
measurement data of fifty patients have been obtained from
the University of Louisville, Kidney Disease program. The
EPO dosage is administrated three times a week, and the Hb
level is tested only once a week. For system identification, the
input/output data should be of the same length, hence three
dosages of EPO per week are averaged, which corresponds to
a single Hb measurement. One step ahead prediction is used
to show the predicting capabilities of the identified models.
The patient models obtained by the l1 robust identification and
the Semi-blind robust identification technique are compared by
calculating minimum mean squared error (MMSE).

MMSE(k) =
1

N

N∑
i=0

‖y(k)− ŷ(k)‖2
y(k)

(10)

To obtain a robust model, the parameters ρ = 1.01, η = 0.31
and data points N = 5 are used as priori information for all
patients. Due to space limitations, we present the results of four
patients, patient-1, patient-10, patient-21, and patient-32.

5.1 l1 Robust Identification Results

The system model for patient number 1 obtained by l1 robust
identification and the one-step-ahead prediction is shown be-
low:

G1(z) =
13.62z3 − 5.105z2 − 1.113z + 17.62

z3 − 0.03317z2 − 0.3127z + 0.7205
(11)

In the following figures of l1 robust identification results, the
green line with hollow circle markers shows the actual Hb level
of the patients, the blue line with dot markers shows the model

Fig. 2. Response of the patient-1 full and reduced order models
obtained by the l1 robust identification.

prediction of full order model obtained by l1 robust identifica-
tion, the blue line with dot markers shows the model prediction
of the reduced order model identified using l1 robust identifica-
tion technique, and the vertical dashed line shows the number
of data points used in the identification process. The vertical
blue bars show the weekly EPO dosage given to the patients.
The 5 samples of measurement of dose-response (EPO-Hb)
data are used for the identification. After 5 samples the output
is predicted by the one-step-ahead prediction. As it is seen in
Fig. 2, the results of the l1-robust identification algorithm is
poor. Even for the data points used in the identification (the
first 5 data points) the output of the reduced order model (3rd
order) misses the data points while the full order model (5th
order) matches the data points a little better. However, for the
data points (after the first 5 data points) which are not used in
the identification both the full as well as reduced order models
predictions do not match with the validation data.

It is important to mention that in clinical applications per-
sonalized drug dose response models from as few number of
clinical data as possible is desired due to time required for each
measurement. In this application, 5 data points correspond to
5-week of data collection time from patients. Therefore, more
data points are not used in the identification algorithm. Differ-
ent than the patient-1, patient-10 dose-response data presents a
more challenging case due the variation in EPO dosage which
is not used in the identification process. As before, the first 5
data points were used in the l1-robust identification algorithm
to find the model. The reduced order model is kept same as the
full order (5th order). The model for patient-10 is given in (12)
and model predictions are shown in Fig. 3.

G10(z) = −11.27z5−19.62z4+0.603z3+19.72z2+9.727z+0.02638
z5+1.228z4−0.4048z3−1.235z2−0.4871z−0.001785 (12)

The model for patient number 21 is given in (13) and model
prediction is shown in Fig. 4. The full order model is reduced
to 3rd order model for the patient-21 obtained by l1 robust
identification. This patient is more challenging as this patient’s
EPO data has zero values. It means that since Hb was higher
than the desired range of 11-12 g/dl. Therefore, the patient was
not given any medication between weeks 14 and 17 as well as
between weeks 35-44. The responses for full and reduced order
models deviate from actual patient data as the EPO dosage is
increased.

G21(z) =
−19.29z3 + 9.71z2 + 11.01z − 21.73

z3 − 0.5203z2 − 0.3719z + 0.7698
(13)

Fig. 3. Response of the patient-10 full and reduced order models
obtained by the l1 robust identification.

Fig. 4. Response of the patient-21 full and reduced order models
obtained by the l1 robust identification.

The model identification of patient 32 is a challenging task as
the first 5 data points used for the identification of EPO data
are zeros, but Hb values are not zero. The full order model for
patient number 32 is reduced to 4th order model. The model
for patient number 32 is shown in (14) and model prediction is
shown in Fig. 5.

G32(z) = −8.27z4−18.24z3−27.81z2−39.01z−49.78
z4+0.76z3+0.5254z2+0.3342z+0.1477 (14)

Fig. 5. Response of the patient-32 full and reduced order models
obtained by the l1 robust identification.

5.2 Semi-Blind Robust Identification Results

The above models found by l1 robust identification assume the
initial conditions equal to zero, which can highly affect the
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identified model as for the patients of Chronic Kidney disease
(CKD), the past medication affects the state of the patient.
Thus, these effects are included in the model using the Semi-
blind identification technique. For comparison purposes, the
reduced-order models for both of the techniques are kept the
same for the respective patient models. In figures of Semi-
blind robust identification results, the red line with square
markers shows the actual HB level of the patient, the solid
blue line shows the model prediction results of full order model
obtained using Semi-blind robust identification technique, the
green line with diamond markers shows the prediction results
of the reduced-order model identified by the Semi-blind robust
identification, and the vertical dashed line shows the number
of data points used in the identification process. The vertical
blue bars shows the weekly EPO dosages. The model of patient
number 1 obtained by the Semi-blind identification technique
is given in (15) and model prediction results by one-step-ahead
prediction are shown in Fig. 6:

G1(z) =
0.2022z3 − 0.1034z2 + 0.154z + 1.435−5

z3 − 1.491z2 + 1.263z − 0.7465
(15)

Fig. 6. Response of the patient-1 full and reduced order models
obtained by the Semi-blind robust identification.

The MMSE analysis for the patient-1 shows less error for the
Semi-blind robust identification as compared to the l1 robust
identification, as the Semi-blind robust identification technique
accounts the effect of the initial conditions. These results show
that previous medications used by the patients significantly
affect the model identification. The system model for patient
number 10 obtained by Semi-blind robust identification is given
in (16) and model prediction is shown in Fig. 7:

G10(z) = 0.81z5−0.62z4+0.39z3−0.23z2+0.06z−5.78×10−5

z5−1.75z4+1.24z3−0.76z2+0.35z−0.08 (16)

The system model for patient number 21 obtained by Semi-
blind robust identification and model prediction is shown in
Fig. 8:

G21(z) =
0.86z3 + 1.29z2 + 0.81z + 9.122× 10−5

z3 + 0.5283z2 − 0.5356z − 0.9237
(17)

The 3rd order model response for the patient-21 shows good
performance even there are a lot of variations in the EPO data
of the patient, which is not being used in the identification
process. The system model for patient number 32 obtained by
Semi-blind robust identification and model prediction results
are given in (18) and Fig. 9 respectively.

G32(z) = 0.79z4+0.28z3−0.44z2−0.15z−0.0016
z4−0.63z3−0.90z2+0.36z+0.19 (18)

Fig. 7. Respons of the patient-10 full and reduced order models
obtained by the Semi-blind robust identification.
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obtained by the Semi-blind robust identification.

Fig. 9. Response of the patient-32 full and reduced order models
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The reduced-order model for the patient-32 shows good perfor-
mance, even the EPO data used in the identification process
has zero values and after identification, the trend for EPO
values is different. Table 1 shows the MMSE values of full
and reduced-order models of respective patients obtained by
both techniques. As it is seen in table 1 that Semi-blind robust
identification technique provides better results as it includes the
effect of the past effects of the medication.

6. CONCLUSION

In this research work, the individualized system models for
patients of chronic kidney disease (CKD) is obtained to regulate
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identified model as for the patients of Chronic Kidney disease
(CKD), the past medication affects the state of the patient.
Thus, these effects are included in the model using the Semi-
blind identification technique. For comparison purposes, the
reduced-order models for both of the techniques are kept the
same for the respective patient models. In figures of Semi-
blind robust identification results, the red line with square
markers shows the actual HB level of the patient, the solid
blue line shows the model prediction results of full order model
obtained using Semi-blind robust identification technique, the
green line with diamond markers shows the prediction results
of the reduced-order model identified by the Semi-blind robust
identification, and the vertical dashed line shows the number
of data points used in the identification process. The vertical
blue bars shows the weekly EPO dosages. The model of patient
number 1 obtained by the Semi-blind identification technique
is given in (15) and model prediction results by one-step-ahead
prediction are shown in Fig. 6:
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0.2022z3 − 0.1034z2 + 0.154z + 1.435−5

z3 − 1.491z2 + 1.263z − 0.7465
(15)

Fig. 6. Response of the patient-1 full and reduced order models
obtained by the Semi-blind robust identification.

The MMSE analysis for the patient-1 shows less error for the
Semi-blind robust identification as compared to the l1 robust
identification, as the Semi-blind robust identification technique
accounts the effect of the initial conditions. These results show
that previous medications used by the patients significantly
affect the model identification. The system model for patient
number 10 obtained by Semi-blind robust identification is given
in (16) and model prediction is shown in Fig. 7:

G10(z) = 0.81z5−0.62z4+0.39z3−0.23z2+0.06z−5.78×10−5

z5−1.75z4+1.24z3−0.76z2+0.35z−0.08 (16)

The system model for patient number 21 obtained by Semi-
blind robust identification and model prediction is shown in
Fig. 8:

G21(z) =
0.86z3 + 1.29z2 + 0.81z + 9.122× 10−5

z3 + 0.5283z2 − 0.5356z − 0.9237
(17)

The 3rd order model response for the patient-21 shows good
performance even there are a lot of variations in the EPO data
of the patient, which is not being used in the identification
process. The system model for patient number 32 obtained by
Semi-blind robust identification and model prediction results
are given in (18) and Fig. 9 respectively.

G32(z) = 0.79z4+0.28z3−0.44z2−0.15z−0.0016
z4−0.63z3−0.90z2+0.36z+0.19 (18)

Fig. 7. Respons of the patient-10 full and reduced order models
obtained by the Semi-blind robust identification.

Fig. 8. Response of the patient-21 full and reduced order models
obtained by the Semi-blind robust identification.

Fig. 9. Response of the patient-32 full and reduced order models
obtained by the Semi-blind robust identification.

The reduced-order model for the patient-32 shows good perfor-
mance, even the EPO data used in the identification process
has zero values and after identification, the trend for EPO
values is different. Table 1 shows the MMSE values of full
and reduced-order models of respective patients obtained by
both techniques. As it is seen in table 1 that Semi-blind robust
identification technique provides better results as it includes the
effect of the past effects of the medication.

6. CONCLUSION

In this research work, the individualized system models for
patients of chronic kidney disease (CKD) is obtained to regulate

Table 1. MMSE analysis.

Method Patient-1 Patient-10 Patient-21 Patient-32
Full order model

l1 275.36 195.324 47.93 219.8624
Semi-Blind 1.079 2.1308 1.2049 1.3252

Reduced order model
l1 2687 195.324 423.99 24496.03

Semi-Blind 1.89 6.51 3.03 1.38

the external human recombinant erythropoietin (EPO) dosage
to maintain the hemoglobin (Hb) levels between 11 and 12
g/dL. The l1 robust identification and Semi-blind identification
techniques have been implemented on the clinical data set
of fifty patients obtained from the University of Louisville,
Kidney Disease program. The l1 robust identification considers
zero initial conditions. However, the Semi-blind identification
technique takes into account the effects of initial conditions
to obtain the patient model. Both of these techniques do not
assume the probabilistic distribution of noise or predefined
model structure. The obtained patient models are validated
by using the one-step prediction method. The minimum mean
square error (MMSE) is calculated for each patient between
actual data and predicted data. The error in the model obtained
in Semi-blind identification techniques is considerably less than
l1 robust identification technique. This research work provides
a basis to obtain individualized models for new patients. The
next phase is to design controllers for the patients based on the
identified models and automate this procedure for new patients.
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