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Abstract

Spatially resolved in situ transmission electron microscopy (TEM), equipped with direct electron detection systems, is a suitable technique
to record information about the atom-scale dynamics with millisecond temporal resolution from materials. However, characterizing dynam-
ics or fluxional behavior requires processing short time exposure images which usually have severely degraded signal-to-noise ratios. The
poor signal-to-noise associated with high temporal resolution makes it challenging to determine the position and intensity of atomic col-
umns in materials undergoing structural dynamics. To address this challenge, we propose a noise-robust, processing approach based on blob
detection, which has been previously established for identifying objects in images in the community of computer vision. In particular, a blob
detection algorithm has been tailored to deal with noisy TEM image series from nanoparticle systems. In the presence of high noise content,
our blob detection approach is demonstrated to outperform the results of other algorithms, enabling the determination of atomic column
position and its intensity with a higher degree of precision.
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Introduction

A key element to improve the functionality of novel materials is
the ability to observe and characterize the dynamic events of
nanoscale systems (e.g., atomic migration and fluxional behavior).
The ultimate goal is to fully describe and understand the mecha-
nisms where atomic rearrangements occur with high time resolu-
tion at the atomic scale. While ultra-fast transmission electron
microscopy (TEM) can provide time resolutions at nanoseconds
or shorter, they cannot deliver atomic resolution information
(LaGrange et al., 2012). When time resolutions on the order of
milliseconds are desired, in situ TEM, equipped with direct elec-
tron detection systems, is a suitable technique. This approach can
provide information such as dynamic strain and cation diffusion,
as recently demonstrated for nanoparticles surface sites (Lawrence
et al., 2019, 2021). The relevance of such fluxional behavior to
catalysis has recently been recognized (Guo et al., 2020; Sun
et al., 2020; Vincent & Crozier, 2021), and is described as active
structures constantly transitioning through metastable states far
from equilibrium. Non-equilibrium, evolving metastable struc-
tures may play a crucial role in electrochemistry for next-

generation batteries (Mehdi et al., 2015; Ma et al., 2016), phase
transformations (Heo et al., 2019; Moehring et al., 2020), or
chemical reactions where gas–solid and liquid–solid interactions
occur during catalysis (Tao & Crozier, 2016; Yuan et al., 2016,
2020; Zhang et al., 2016; Li et al., 2021).

To understand such phenomena, it is necessary to have both
high spatial and temporal resolutions in order to determine the
atomic-level dynamics (Furnival et al., 2018, Lawrence et al.,
2019). Z-contrast STEM is an excellent approach for performing
atomic-level discrete tomography of nanoparticle structures
because the linear relationship between the number of atoms in
the column and the image intensity extends over a wider range
of thickness (Gonnissen et al., 2017). However, at present, the
temporal resolution of STEM imaging is limited because of the
serial nature of the image formation process. For high time reso-
lution, phase contrast TEM is faster since it performs parallel
pixel readout. For example, the experimental data presented
here was extracted from 4 k × 4 k TEM image sequence recorded
at 400 frames per second. To acquire such data using STEM
would require dwell times approaching a nanosecond that are
not currently available. In phase contrast TEM, the relationship
between the image intensity and the atomic column number is
more complex but can be managed through image simulation at
least for small nanoparticles and surfaces structures of interest
here.
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Recent developments on direct electron detectors allow image
acquisition at up to 1,000 frames per second with a higher detec-
tive quantum efficiency, reducing additional sources of noise (e.g.,
readout noise, photon conversion noise, etc.) (McMullan et al.,
2014; Faruqi & McMullan, 2018; Ciston et al., 2019) making
them ideal to track evolving structures or image radiation-
sensitive materials (Chen et al., 2020). However, the individual
images associated with higher temporal resolution show a poor
signal-to-noise ratio (SNR) due to the lower number of electrons
arriving at the detector within the short exposure time. The pres-
ence of a high noise reduces the precision in determining the
position and intensity of atomic columns, and this has motivated
the development of denoising techniques (Du, 2015; Furnival
et al., 2017; Vincent et al., 2021). However, these denoising meth-
ods may not always perform well so it is important to develop
complementary noise-robust procedures to determine columns
positions and intensities in the presence of high noise.

The electron microscopy community already offers multiple
state-of-the-art algorithms addressing the position and intensity
of atomic columns, and most of them fit a two-dimensional
Gaussian to the atomic columns in the images (Yankovich
et al., 2014; Mukherjee et al., 2020). For example, Atomap
(Nord et al., 2017) is a well-known Python-based code tailored
for STEM images, where in the particular case of
HAADF-STEM images (Z-contrast imaging), the intensity of
the atoms is bright and is linearly proportional to the thickness.
On the other hand, TRACT (Levin et al., 2020) is a MATLAB
algorithm developed mainly for bright-field HRTEM images,
whose background signal could be either higher or lower than
the atomic columns (black or white intensity, depending on the
imaging conditions). However, these methods have been tradi-
tionally applied to images with reasonable SNRs, and there is a

lack of information about the performance of these 2D
Gaussian fitting algorithms on images with poor SNR. More
sophisticated procedures are based on machine learning and neu-
ral networks, as proposed on TEMImageNet (Lin et al., 2021), but
require large simulated dataset and extensive training of the
network.

Here, we develop and test a method to determine the atomic
column position and intensity based on a hybrid approach that
combines Gaussian peak fitting with a blob detection scheme
(Lindeberg, 1993), which has been previously established in the
computer vision community. We show that the hybrid blob detec-
tion approach significantly outperforms approaches based solely
on Gaussian peak fitting for noisy data.

Materials and Methods

Introduction to Blob Detection (BD) Algorithm

We have employed blob detection (BD) algorithms (Lindeberg,
1993), specifically, those available in the Python package skimage
(van der Walt et al., 2014). We find that standard BD works to
locate the rough positions of atomic columns, but to further
improve precision we introduce additional steps, illustrated in
Figure 1, to refine the position and column intensity estimation.
Indeed, blob detection routines, which are popular and well-
developed methods in the field of computer vision (Lowe, 2004;
Kong et al., 2013; Xu et al., 2020), are generally used to find
regions within images that differ in certain properties, for exam-
ple, in brightness, relative to neighboring regions. There are dif-
ferent forms of BD methods, and herein we will refer to two
specific methods that outperform in both simulations and exper-
iments: the “Laplacian of Gaussian” (LoG) method (Lindeberg,

Fig. 1. General scheme on how the coordinates and the intensity Î of atomic columns are calculated starting from the blob detection algorithm output. The five

steps followed on the procedure are further explain with details in the methodological section “Tailored adjustments for our specific experimental dataset”. Images

on Steps 2, 3, and 5 show a simulated atomic column in TEM mode.
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1993, 1998) and the “Difference of Gaussian” (DoG) method
(Lindeberg, 2015). A general sketch illustrating the workflow of
BD algorithm is shown in Supplementary Figure S1.

Before proceeding to the algorithm, we first introduce some
notation and highlight relevant background information. The
size of the images we consider is denoted as m × n, and the
pixel lattice coordinates are given by the set Ω = {(i, j): i = 1, …,
m, j = 1, …, n}. We introduce the mapping f(x, y) such that the
pixel values of a TEM image are denoted as fi,j = f(x = i, y = j)
> 0 for pixel indices (i, j)∈Ω. Note that in TEM images, areas
with no sample are considered as measurements of the vacuum
background, for example, the top-right corner of Figure 2 is
unstructured noise; we denote f B to be the average pixel values
in the vacuum background. In addition, we denote f a to be α =
5th-percentile from all the pixel values{ fi,j:(i, j)∈Ω}. We define
a two-dimensional, mean zero, spherical Gaussian density func-
tion as:

G(x, y, s2) = F((x, y), (mX , mY ) = (0, 0), S = s2I2)

= 1
2ps2

exp − x2 + y2

2s2

( )

(1)

for example, with mean (μX, μY) = (0, 0) and the single-scale
parameter σ2, where Φ denotes the standard bivariate Gaussian
density function. We now introduce our full BD algorithm
through the definitions and steps below, highlighting our addi-
tional tailoring to this specific problem.

Conventionally, the BD function of the Python’s skimage
package seeks bright pixels surrounded by darker ones (e.g.,
Supplementary Fig. S1a). However, the particular bright-field
experimental data presented in this work was recorded initially
with a bright background and black contrast of atomic columns,
such that the regions of interest (the atomic columns) are darker
than their surroundings. Hence, we introduce the following pre-
processing step for experimental TEM images.

Definition 0. Define the function F(x, y) that generates a con-
trast reversal of the original image values f at (i, j)∈Ω as:

Fi,j = F(X = i, Y = j) =
f B − fi,j

f B − f a
, (2)

resulting in bright atomic columns (high pixel values) surrounded
by dark background.

Remark on Definition 0. In equation (2), the numerator is
reversing the contrast, while the denominator, f B − f a, is used
to normalize the observations. Additional subtraction by f a in
the denominator is performed such that the majority of the
mapped values {Fi,j:(i, j)∈Ω} will be less than one, especially at
the locations {(i, j)} of primary interest within the black contrast
of an atomic column (where fi,j≤ f B usually holds). Such prepro-
cessed values Fi,j will also tend to be distributed within [0, 1] quite
densely, that is, 0≤ Fi,j≤ 1 regardless of the raw observations fi,j.
As an added benefit, the BD parameters, as estimated below,
under this normalized transformation may also be applied with
similar detection power on new images with comparable SNRs,
but independent of the new image’s specific scaling. In practice,
we have used the 5th-percentile for f a, as noted above; however,
other percentiles in the range 1–10 may also be used depending
on how variable or stable low percentile signal values behave.

Definition 1. The BD algorithm begins by convolving (dis-
cretely and finitely) the contrast reversed image {Fi,j:(i, j)∈Ω}
with the Gaussian function G(x, y, σ2) at the pixel locations Ω,
illustrated in Supplementary Figure S1. Specifically, we define
the convolution function C(x, y, σ2) as:

C(x, y, s2) = G(x, y, s2)∗F(x, y)

=
∑

(i,j)[V

G(x − i, y − j, s2) · Fi,j. (3)

With this definition for the convolution function C(x, y, σ2),
we next introduce the two objective functions that are optimized
within the LoG and DoG methods, respectively.

Remark on Definition 1. In addition to smoothing out the
features arising from noise, the discrete Gaussian convolution is
used to match our model Assumption 1 given later, and help
determine the Gaussian parameters (both coordinates and vari-
ance) of the atomic columns (Supplementary Fig. S1).

Definition 2. We define L(x, y, σ2) as the (scale-normalized)
Laplacian, or second derivative of function C(x, y, σ2), as:

L(x, y, s2) = s2DC(x, y, s2)

= s2
∑

(i,j)[V

DG(x − i, y − j, s2) · Fi,j, (4)

Fig. 2. Fluxional behavior in time-resolved in situ TEM experimental data. Images have been contrast-reversed following equation (2). (a) 2.5 s summed image of a

CeO2 nanoparticle, presenting a good signal-to-noise ratio which enables to efficiently resolve the position and the intensity of each present atomic column. (b) and

(c) illustrate a 37.5 ms summed image at two different periods of time, where the red arrows indicate the disappearance of two atomic columns, this indicating that

the summed image (a) is not representative for all the frames in the time series. (d) Time-resolved single frame of the experimental data, 2.5 ms, pointing out that

the high content of noise (SNR =∼4) hinders the determination of the time the evolution of each atomic column. (e1) and (e2) represent a surface and bulk column,

respectively, showing the difficulty of determining the central position and intensity of the atomic columns, especially on those at the surface where more dynamics

are taking place.
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in which ΔC(x, y, σ2) = Cxx(x, y, σ
2) + Cyy(x, y, σ

2) and ΔG(x, y,
σ
2) =Gxx(x, y, σ

2) +Gyy(x, y, σ
2) denote the Laplacian operators

of the function C(x, y, σ2) in equation (3) and G(x, y, σ2) in equa-
tion (1) with respect to x and y, respectively.

We further define Q(x, y, σ2) as the (scale-normalized) first
derivative of C(x, y, σ2) with respect to σ

2:

Q(x, y, s2) = s2Cs2 (x, y, s2). (5)

Remark on Definition 2. The scale parameter σ2 is included
in both functions L(x, y, σ2) and Q(x, y, σ2) so that in addition
to estimating the center locations of blobs, the minimization of
the objective functions can also automatically match the exact
scale/shape of the underlying blobs (see Lindeberg, 1998).

In practice, the BD algorithm evaluates the functions
L(x, y, σ2) or Q(x, y, σ2) discretely at (x, y) = (i, j)∈Ω and
s2 = s2

k [ C = {s2
1, · · · , s2

K }, where s2
1 ≤ · · · ≤ s2

K are user-
specified equally spaced BD variance parameters for discrete
and approximate optimization. The Python function takes σ1,
σK, and K as the input and automatically generates the corre-
sponding arithmetical sequence Ψ. These sets generate a three-
dimensional array of evaluation points for the final objective func-
tion. In the literature (Lindeberg, 2015), the partial derivatives
appearing in equation (5) is usually approximated using discrete
finite difference. Specifically, denoting Λ =Ω × {1, …, K} and
C[i, j, k] = C(x = i, y = j, s2 = s2

k), for (i, j, k)∈Λ, we have

Cs2 (x= i, y= j, s2 = s2
k)≈ C̃s2 [i, j, k]

W (C[i, j, k+ 1]−C[i, j, k])/(s2
k+1 −s2

k).

(6)

Hence, for (i, j, k)∈Λ, we have

L(x = i, y = j, s2 = s2
k) = L̃[i, j, k] (7)

which can be directly evaluated according to equation (4), and

Q(x = i, y = j, s2 = s2
k) = Q̃[i, j, k] W s2

kC̃s2 [i, j, k]. (8)

The LoG method of the BD algorithm approximately mini-
mizes the objective function L(x, y, σ2) by searching for the
local minimums across the 3D array L̃ = {L̃[i, j, k]:(i, j, k) [ L},
that is, those points that have values below a given threshold (δ)
as compared with their immediate (3 × 3 × 3) neighbors in this
array (see Supplementary Fig. S1e). The DoG branch does the
same (local) minimization search, except for the array
Q̃ = {Q̃[i, j, k]:(i, j, k) [ L} instead.

Definition 3. The local minimum indices
{(x̂r , ŷr , k̂r) [ L:r = 1, . . . , R} of the 3D array L̃ given a

threshold δ satisfy:

L̃[x̂r , ŷr , k̂r] , L̃[i, j, k]− d,

for

i = x̂r − 1, x̂r , x̂r + 1,

j = ŷr − 1, ŷr , ŷr + 1,

k = k̂r − 1, k̂r , k̂r + 1,

⎧

⎪

⎨

⎪

⎩

and (i, j, k) = (x̂r , ŷr , k̂r). (9)

And an image’s candidate blob set is hence defined as:

BLoG
d = {br = (x̂r , ŷr , s

2
k̂r
) [ V×C:r = 1, . . . , R}. (10)

Remark on Definition 3. The blob set BDoG
d from the other

array Q̃ can be analogously defined given a threshold δ. With
no further notice, the blob-like triplet b = (x, y, σ2) will always
be regarded as the circle centered at (x, y) with radius 2σ, includ-
ing its edge. Instead of using radius

		

2
√

sk̂r
as in the generic case

described by skimage package (Lindeberg, 1993), we use the
expanded radius 2sk̂r

in order to have a larger blob area to com-
pute the center of mass (as detailed below). Rather than output-
ting all local minimums, the function in the Python package
preprocesses and removes largely overlapping blobs. To be spe-
cific, if the overlapping area of two of these blobs exceeds a
given percentage (γ), then the smaller circle is eliminated from
the set of blobs. Additionally, the generic version of BD only
allows concentrically symmetric blobs, otherwise irregularly
shaped atomic columns may be associated with multiple con-
nected blobs. Ideally speaking, if the input image { fi,j:(i, j)∈Ω}
is well-conditioned, that is, with high SNR and well-separated
nanoparticle structures, the number of detected blobs R should
be equal (or close) to the number of atomic columns.

To summarize, for the optimal performance of a BD algo-
rithm, the parameters that require careful initializations include
the prefixed BD variance parameters Ψ (minimum and maximum
sigma, and the number of steps between them), the threshold for
local minimums δ, and the overlapping blob percentage γ (value
between 0 and 1). As an example, Table 1 shows the parameters
we have used for our simulated and experimental datasets. We
have implemented LoG and DoG to our dataset and it turned
out that both methods return excellent initial blobs for our follow-
ing steps. Notice that the blobs are determined to within one pixel
accuracy, sub-pixel refinement is performed at a later stage [see
discussion of equation (14) below].

Atomic Information Extraction and Refinements

Based on the general BD approach detailed above, we further
introduce our tailored proposal for atom identification in time-
resolved TEM image series. In particular, we utilize the output
from a BD algorithm as our initial information regarding the
atomic columns, we compute the blob area-based center of
mass to refine estimates of column positions, and fit a weighted

Table 1. Initialization Parameters Used in Our Noise-Free, Noisy, and Experimental Datasets.

Threshold (δ) Minimum σ Maximum σ Number of steps Overlapping (γ)

Noise-free simulation 0.25 6 9 50 0.1

Noisy simulation 0.15 6 9 50 0.1

Experimental 0.18 4.7 7 10 0.1
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linear regression model to estimate the blob-based column inten-
sities using our modeling assumptions detailed below. These
steps, that are described in detail in the following paragraphs,
are shown in Figure 1.

To eliminate the influence between different atomic columns
due to the convolution equation (3) across the whole images,
and to avoid the challenge of labeling detected blobs from the
BD function with atomic columns’ indices, we choose not to
implement BD globally on the whole image field of view.
Instead, we implement separately within user-specified sub-region
that roughly correspond to the approximate position of specific
atomic columns (one sub-region per atomic column). Indeed,
such idea also saves the computational power since the sizes of
the arrays L̃ and Q̃ decrease significantly. Typically, a time series
of image frames is considered for analysis. First, by summing all
or a subset of the frames pixel-wise across the time series, the
size and location of each search region can be chosen to guarantee
that the sub-image is large enough to contain an atomic column,
while sufficiently small to ensure that neighboring columns are
not included. Then, the following tailored steps are applied
sequentially to all atomic columns to recover the underlying
nanoparticle structure within an image. Hence from now we
will update the notation Ω as the indices set of the sub-images.

To begin, we first propose the following assumption, similar to
Levin et al. (2020), to model the pixel behavior of a specific
atomic column.

Assumption 1. The pixel values within the atomic column can
be exactly parametrized by the blob-like triplet b0 = (x0, y0, s2

0).
In addition, every pixel (i, j)∈Ω within or near (as defined
below) the circle b0 satisfies:

fi,j = m− A · G(x = x0 − i, y = y0 − j, s2 = s2
0), (11)

where A is a scale for the Gaussian function, which is varying rel-
ative to the number of atoms present, and μ is the background
intensity level (both defined below); and G(x, y, σ2) is the
Gaussian density function as defined in equation (1).
Equivalently, the contrast behavior for the atomic column com-
pared to its neighborhood can be derived directly from equation
(11) as:

A · G(x = x0 − i, y = y0 − j; s2 = s2
0) = m− fi,j. (12)

Remark on Assumption 1. The parameters A and μ appearing
in equations (11) and (12) are unknown and to be estimated as Â
and m̂ in the steps below. Note that in TEM imaging, the back-
ground level μ is atomic-column specific since the intensity values
in the surrounding region of the atomic column depend on the
number of atoms present, and it differs from the value in the vac-
uum (Gonnissen et al., 2017), that is, μ will differ from fB, in
general.

Further note that in the following discussion, we derive our
procedure with respect to { fi,j:(i, j)∈Ω} not the contrast reversed
{Fi,j:(i, j)∈Ω} to make later more straightforward comparisons
with competing methods for column intensity estimation.

Recall in Definition 3 for the general introduction of BD
approach, we define equation (10) as the set of candidate blobs
from the LoG method (DoG analogously). For simplicity, in the
following definition, Λ now represents the collection of sub-image
pixels, and we continue using the same notation of equation (10)

but for the BD output targeted at a specific atomic column region
within an image.

Definition 4. Given the extracted sub-image’s size, calibrated
by the summed image sequence, the output of BD for a specific
atomic column region is:

B = {b1 = (x̂1, ŷ1, s
2
k̂1
), · · · , bR = (x̂R, ŷR, s

2
k̂R
)} , L. (13)

Remark of Definition 4. In practice, we can implement both
LoG and DoG methods, and combine the returned blobs together
to obtain the set B as given in equation (13) after removing
repeated and overlapping blobs. Unlike BD applied to the entire
image, the number of blobs in the output set B for a single atomic
column region is generally one (R = 1), however, in the current
experimental dataset, there are some very noisy frames in which
we find two (or even more) blobs within the image sub-region.
When more than one blob is returned for a particular atomic col-
umn, reference coordinates are required to help pinpoint the opti-
mal blob. With the summed image sequence mentioned above,
which has a relatively high SNR, the average position of the
atomic column can more easily be estimated, however, it then
lacks all dynamics taking place across the sequence of images.

Definition 5. Define reference coordinates of an atomic col-
umn as b* = (x*, y*), that is, those from a summed sequence of
images.

Whenever the set B has multiple blobs, the following proposi-
tion details how to proceed and denotes the final notation for the
unique blob mapped to that atomic column.

Step 1. The blob br in candidate set B whose center (x̂r , ŷr) has
the shortest Euclidean distance to reference b* is selected to
represent the specific atomic column when there is more than
one returned. Denote the selected blob as b̂ = (x̂, ŷ, ŝ2).

Remark on Step 1. In expectation, among our search grid
Λ, the selected output b̂ = (x̂, ŷ, ŝ2) will be the closest discrete
location to the ground truth b0 = (x0, y0, s2

0) defined in
Assumption 1.

With the final blob estimate b̂ = (x̂, ŷ, ŝ2) given, we now detail
our tailoring for recovering the coefficients A and μ in model
Assumption 1 (equation (12)), followed by our approach for
more precisely estimating an (integrated) intensity for that atomic
column.

We estimate the atom-specific background level μ to be the
average of the pixel values near the edge of the blob circle
b̂ = (x̂, ŷ, ŝ2) which approximates b0 = (x0, y0, s2

0).
Step 2. The atom-specific background estimator m̂ for μ is

computed as the average pixel values inside the annulus region
with center (x̂, ŷ) and radii 1.8ŝ and 2.4ŝ, respectively.

Given the lack of inherent precision for the discrete location
coordinates (x̂, ŷ) [ V, we propose a center of mass analysis
that converts integer-valued coordinates (x̂, ŷ) [ V to the real-
valued pair (�x, �y), which provides sub-pixel level precision.

Step 3. Given the estimated background level m̂, the center of
mass is then computed within the circle defined by b̂ = (x̂, ŷ, ŝ2)
as

�x =
∑

(i,j)[b̂ i · (m̂− fi,j)+
∑

(i,j)[b̂ (m̂− fi,j)+
, �y =

∑

(i,j)[b̂ j · (m̂− fi,j)+
∑

(i,j)[b̂ (m̂− fi,j)+
, (14)

where (m̂− fi,j)+=max(0, m̂− fi,j) is the non-negative weight for
pixel (i, j) [ b̂.
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Note that in equation (12), the scaling or amplitude A is now
the only parameter that remains un-estimated if we further
assume that b0 ≈ �b = (�x, �y, ŝ2) and G(x = x0 − i, y = y0 − j;
s2 = s2

0) ≈ G(x = �x − i, y = �y − j; s2 = ŝ2) for all pixel coordi-
nates (i, j) in or around circle �b. In fact, the same equation (12)
holds for every pixel (i, j) within the blob �b except the parameters
(x0, y0, s2

0) replaced by (�x, �y, ŝ2); hence, a weighted least square
regression is proposed to estimate the amplitude A.

Step 4. The amplitude A can be estimated by the following
regression problem:

Â = argmin
a.0

∑

(i,j)[�b

�G[i, j] · (m̂− fi,j − a · �G[i, j])2, (15)

where �G[i, j] = G(x = �x − i, y = �y − j; s2 = ŝ2), and G is the
Gaussian function defined in equation (1).

Our final step is to compute an integrated intensity estimate
for the atomic column, and this can be done analytically via inte-
gration, based on the estimated model parameters derived above.
For better comparisons with alternative methods for estimating
the integrated intensity for an atomic column, we narrow the
integration region to be b̃ = (�x, �y, (ŝ2/2)), that is, the circle
with center (�x, �y) and radius

		

2
√

ŝ.
Step 5. With �b = (�x, �y, ŝ2) refined from BD estimate b̂ and

the estimated amplitude Â, we define the (�x, �y)-centered scaled
Gaussian density function �g(u, v) as �g(u, v) = Â · G(x =
�x − u, y = �y − v; s2 = ŝ2). The corresponding estimated inte-
grated intensity Î is hence computed by integrating �g(u, v) within
circle b̃ = (�x, �y, (ŝ2/2)), and it simplifies to:

Î =
∫

(u,v)[b̃

�g(u, v)dudv = (1− e−1)Â, (16)

where e is the base of the natural logarithm. Note that this inten-
sity is effectively a contrast reversed intensity, it initially increases
as the number of atoms in the column increases. The same pro-
cedure must be applied to the simulated images employed to gen-
erate look-up tables if the user wants to convert the intensity Î to
the number of atoms in the column.

To summarize, based on the blob b̂ = (x̂, ŷ, ŝ2) returned by
the BD function, our proposed algorithm calculates the set of esti-
mators {m̂, (�x, �y), Â, Î}, and finally outputs (�x, �y, Î), that is, the
refined coordinates and the integrated intensity, as the featured
information of a specific atomic column.

Tailored Adjustments for Our Specific Experimental Dataset

For our experimental dataset, 25 atomic columns in total are
expected (see Supplementary Fig. S2) within the region of interest,
and every column has unique behaviors with respect to the vari-
ability of its center coordinates and intensity level, especially those
columns at the surface of the nanoparticle where most of the flux-
ional behaviors take place. To address such atomic column varia-
tions, we propose some final adjustments to guarantee that we get
reliable estimation using only a single pass through a sequence of
images.

Step 6. The procedure for each image consists of two rounds of
detection. The first considers a relatively large threshold δ and a
wide column-wise sub-image selection for the initial input of
BD, and the second narrows the sub-image region(s) while also
decreasing the threshold level δ.

Remark on Step 6. In most image frames and atomic columns,
it is clear by visual inspection that the output from the initial
round is usually sufficient. However, in some extreme frames
and column regions, due to low SNR and fluxionality within
the system, the output may be more irregular and occasionally
lead to poor performance. For these specific extraordinary
cases, our second round helps optimize results since it is more
concentrated at the average location and aims to detect the fainter
blob that is very likely missing in the first round. By tuning the
corresponding parameters, we are able to get excellent estimates
uniformly over all image frames for all atomic columns.

Generation of the Simulated Dataset

To compare the performance of different atomic column tracking
algorithms, an absolute reference is required. The absence of
known ground truth in experimental data has led us to create a
dataset based on simulations, where the location and occupancy
of each atomic column can be extracted from a 3D model. In par-
ticular, our 3D model has been built using the freely available
Rhodius software (Bernal et al., 1998); the model consists of 25
Ce atomic columns (see Supplementary Fig. S2 for more informa-
tion about the atomic model), and it has shape and size similar to
the experimentally characterized CeO2 nanoparticle shown in
Figure 2 (and described in Section “Experimental data acquisi-
tion”). In addition, to determine the performance of algorithms
under challenging conditions, the upper surface of the CeO2

model exhibit columns with occupancies of 1, 2, or 3 atoms, sit-
uations that may occur at the surface of our experimental nano-
particle undergoing fast rearrangements.

The TEM simulations were performed using the multi-slice
method, implemented in the Dr. Probe software package
(Barthel, 2018). Each slice was of 0.19 Å in thickness and the
electron-optical and imaging parameters were set to match
those encountered for the experimental data of Figure 2.
Specifically, we choose a third-order spherical aberration coeffi-
cient (Cs) of −30 μm, a fifth-order spherical aberration coefficient
(C5) of 5 mm, and a defocus (C1) of –14 nm. All other aberra-
tions (e.g., 2-fold and 3-fold astigmatism, coma, star aberration,
etc.) were considered to be negligible. The image was simulated
at 300 kV accelerating voltage with a beam convergence angle of
0.2 mrad and a focal spread of 4 nm, including partial temporal
coherence and partial spatial coherence. An isotropic vibration
envelope of 50 pm was applied during the image calculation,
and the effect of the modulation transfer function (MTF) was
turned off. The size of the simulated images was 512 × 512, lead-
ing to a pixel size of 0.097 Å/pixel (slightly smaller than the
experimental one). Final simulated images are contrast-reversed,
Fi,j, to show bright atomic columns.

To simulate the high degree of noise present in experimental
time-resolved data, Poisson noise was added to the simulated
images to match the SNR present in the experiment data. In
the experimental images (see Section “Experimental data acquisi-
tion”), the SNR was estimated by taking the mean intensity in
vacuum divided by the standard deviation in vacuum giving a
value of ∼4.00 for images with a time exposure of 1/400th s. To
quantify the robustness of the algorithms to noise, ten different
Poisson noise realizations created a series of ten different images.
Supplementary Figure S3 shows the noise-free and noise-
degraded simulated images.

The positions and intensities of the columns in the clean sim-
ulation (reference) and noise degraded simulations (degraded)

6 Ramon Manzorro et al.

https://doi.org/10.1017/S1431927622000356
Downloaded from https://www.cambridge.org/core, IP address: 72.216.146.87, on subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.



was determined and compared. The real position/intensities
(from the ground truth) and the outputs from these algorithms,
that is, the error, was determined from the Euclidean distance
(i.e., square root of the difference between the reference and
degraded outputs).

Experimental Data Acquisition

To investigate the performance of the blob approach on real
experimental data, we used time resolved data from a previously
studied CeO2 nanoparticle (Lawrence et al., 2019). An in situ
TEM image series of a CeO2 nanoparticle in a [110]-zone
axis was recorded on an image corrected Thermo Fisher
Titan 80-300 environmental TEM. The microscope was oper-
ated at 300 kV, running in ETEM mode with a pressure
below 10−6 Torr. A Gatan K2 IS direct electron detector run-
ning in integration mode, allowed a high spatiotemporal resolu-
tion, yielding a fast acquisition of 400 frames per second
(2.5 ms/frame) and pixel size of ∼0.125 Å/pixel. In total, the
CeO2 nanoparticle was imaged for ∼22 s, that is, ∼9,000 frames.
In order to drive strong fluxional behavior, a high electron flu-
ence rate of 120,000 e− Å−2 s−1 was employed (300 e−Å−2 per
frame) which resulted in electron beam reduction of CeO2

and associated creation, migration, and annihilation of oxygen
vacancies. Previously, it has been reported that this current is
enough to induce structural rearrangements at the surfaces of
CeO2 nanoparticles (Möbus et al., 2011; Bhatta et al., 2012;
Bugnet et al., 2017; Sinclair et al., 2017; Lawrence et al.,
2021). The high concentrations of oxygen vacancies destabilize
the nanoparticle surface leading to cation migration providing
an ideal system for quantifying structural dynamics. For the
current project, to simplify the analysis, imaging conditions
and analysis procedures were developed to track cation columns
only since they show up with much higher SNR in the noisy
datasets. However due to the high temporal resolution, each
individual image is significantly degraded by noise, with a
SNR of ∼4.

Results and Discussion

A 2.5 s time-averaged in situ TEM image of a CeO2 nanoparti-
cle is presented in Figure 2a, where the high SNR facilitates a
straightforward retrieval of atomic level information with a
high degree of accuracy and precision. When the time resolu-
tion is increased to 37.5 ms per image (Figs. 2b, 2c), it is
revealed that the underlying structures of the nanoparticle are
metastable over time, as indicated by the red arrows in
Figures 2b and 2c, pointing to the structural rearrangement of
the surface cation columns between the two frames. These
dynamic events, the so-called fluxional behavior, are observed
much more frequently when the time resolution of each
frame is 2.5 ms (Fig. 2d). However, the short exposure time
that is required for high temporal resolution is associated
with a severe degradation in signal-to-noise which reduces the
ability to detect and locate dynamic surface atoms (Fig. 2e1)
and also the well-defined bulk atomic columns (Fig. 2e2).
Therefore, detecting and tracking atomic columns in evolving
systems with time resolutions approaching 1 ms is a challenging
problem highlighting the need to develop and test new
methodologies.

Performance on Noise-Free Simulations

Figure 3 compares the performance of the BD, TRACT (referred
to as GPF), and Atomap on a noise-free simulated image of a
CeO2 nanoparticle (similar in morphology to the experimental
nanoparticle shown in Fig. 2). The coordinates and occupancy
of each atomic column from this simulated nanoparticle are
extracted from the 3D atomic model (i.e., the known ground
truth), allowing a fair comparison of the performance of the dif-
ferent algorithms.

As shown in Figure 3b, when the algorithms are applied to the
image and the fitted coordinates are compared to the ground
truth extracted from the atomic model, the measurements show
a deviation below 1 pixel (i.e., pixel size 9.8 pm/pixel) for most
atomic columns (except for column 23, where only a single
atom is present and the signal-to-background intensity is much
lower). The performance of the three algorithms on the noise-free
image is quite comparable. The GPF routine (red line) stands out
with slightly lower error values. The errors of all three routines
show a similar variation at different column position, which indi-
cates the presence of a systematic error between the projected
atom positions and the peaks in the electron image.

To investigate the origin of the systematic error, the three algo-
rithms have been applied directly to the projected potential
(Fig. 3c) of the structure. The plot of the error for each column
is presented in Figure 3d. Overall, independent of the algorithm
used to determine the location of the project potential, the
error is mostly negligible (close to zero) in all of the columns.
The absence of any significant error in determining the position
of the projected potential for the remaining atomic columns con-
firms that the errors observed for the noise-free simulated image
is related to the appearance of a small deviation between the 3D
atomic model (ground truth) and the simulated image. This issue,
where the atomic column positions may not always correspond to
the actual atomic position has been previously reported for STEM
and TEM images, where effects such as channeling and particle
shape may complicate the relationship between peaks in the
image intensity and the projected potential (Malm & O’Keefe,
1997; Tsen et al., 2003; Hovden et al., 2012). In our case, where
a nanoparticle has been simulated in TEM mode, the surfaces
and shape effects may introduce a deflection of the incident
wave function that induces an apparent shift in atomic positions
compared to the projected potential and expected coordinates
from 3D structure. This effect does not significantly impact the
current work since, as will be shown, the impact of high levels
of Poisson noise on precision is much more significant.
However, for applications where the absolute position of the
atomic column needs to be determined at the picometer level, it
may be necessary to match experimental data to image simula-
tions from 3D models.

The fact that atomic columns in phase contrast TEM images
can appear with a signal that may be either higher or lower
than the background (depending on defocus, tilt, etc.) complicates
the process of calculating the atomic column intensity. Moreover,
the intensity is not directly proportional to the number of atoms
in the column, further complicating the interpretation of the
image in terms of the 3D atomic structure. Figure 4a shows the
3D atomic model of the nanoparticle under consideration. Each
Ce column in the model has been labeled with the number of
atoms along the electron beam direction, that is, the number indi-
cates the atomic thickness of every column. Considering the bulk
sites, it can be noticed that the number of atoms decreases from
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Fig. 3. Measurements on the coordinates accuracy on simulated data for our blob detection method (BD), TRACT code (GPF), and Atomap. (a) Contrast-reversed

TEM simulated image of the CeO2 nanoparticle described in Supplementary Figure S2 indicating the label of each cerium column. The parameters for the simu-

lation are described in the Section “Generation of the simulated dataset” of Materials and methods. (b) Coordinates error in pixels (9.8 pm/pixel) with respect to

the 3D model reference measured with BD (black line), GPF (red line), and Atomap (green line) algorithms on the TEM nanoparticle simulated image. (c) Atomic

potential of the CeO2 nanoparticle described in Supplementary Figure S1, where columns 23 and 24 present a negligible intensity due to the lower number of

atoms in these positions. (d) Coordinates error in pixels respect to the 3D model reference measured with BD (black line), GPF (red line), and Atomap (green

line) algorithms on the nanoparticle atomic potential.

Fig. 4. Intensity measurements, Î, on simulated data for blob detection method (BD) and TRACT code (GPF), and intensity output for Atomap. (a) Slightly tilted 3D

atomic model of the CeO2 nanoparticle, indicating on each Ce column the number of atoms (thickness of the column). (b) Normalized intensity of columns 1–25

computed with BD (black line), GPF (red line), and Atomap (green line).
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the bottom of the particle to the top, where, as mentioned previ-
ously, columns 23, 24, and 25 (see Supplementary Fig. S2) have 1,
2, and 3 atoms, respectively. Figure 4b displays line plots of the
intensities retrieved from the three routines for each column
after normalization to the highest column occupancy (column
4). The plots indicate in general terms that GPF and BD follow
a similar trend, with higher values on columns 3, 4, and 5
which present the greater occupancy (7 atoms). The largest differ-
ence in the algorithms is for columns 23 and 24, where the low
intensity of these columns apparently gives problems, especially
for the GPF plot where column 24 (low occupancy, 2 atoms)
exhibits a very high intensity. Additionally, it can be observed
that the gap between atomic columns with a different occupancy
is higher in the BD plot, indicating that its ability to discern
between sites with distinct number of atoms is better compared
to GPF. In contrast, Atomap performance differs from GPF and
BD, providing some failures marked in the green curve with red
circles. First of all, the retrieved intensities for columns 1, 7, 23,
24, and 25 (the lowest intensity and highest fractional noise) are
negative, and secondly, the highest intensity columns are 9 and
12, which do not correspond to the columns with the highest
occupancy. The comparison may be unfair since Atomap is an
algorithm developed for STEM images and the code may need
to be adapted for noisy TEM images. The results on this nanopar-
ticle simulation suggest that GPF and BD are more accurate for
determining the intensity of atomic columns in phase contrast
HRTEM images of nanoparticles.

To make sure that GPF and BD output intensities can be com-
pared, look-up tables showing the relationship between column
occupancy and image intensity were generated for both algo-
rithms using a series of simulated images where the thickness
of the columns has been increased from 1 to 10 atoms. The
graphs, Supplementary Figure S4a and S4b, follow a similar ten-
dency with values in the same range and achieving the maximum
intensity at around 7 atoms. Although the absolute intensity
values might be slightly higher for the BD algorithm, especially
in the range 4–10 atoms, the normalized correlation
(Supplementary Fig. S4c) of the GPF and BD algorithms shows
that the slope and R2 coefficient are both close to 1, confirming
good agreement between both output intensities.

Performance on Image Simulations with Added Poisson Noise

To further compare the performance of the three methods in the
presence of high degrees of noise, they were applied to simulated
images that were degraded with Poisson noise. Ten noisy images
were generated from 10 unique noise realizations. Figure 5a illus-
trates an example of one simulated CeO2 nanoparticle image
degraded by the addition of shot noise (SNR =∼4). Bulk posi-
tions, for example, column 16 (Fig. 5b1), are well-defined,
although the boundaries of the column are not clearly distin-
guishable. At the top surface sites, where the number of atoms
has been restricted to 1 and 2 atoms in columns 23 and 24,
respectively (Figs. 5b3, 5b2), the intensity appears washed out,
with contrast that is very similar to the vacuum (Fig. 5b4).

The performance of each algorithm in determining the atomic
column positions over the 10-frame noisy dataset was measured.
With the aim of measuring the additional error caused by the
introduction of Poisson noise, the average coordinates for each
column from the 10 noise realizations images have been com-
pared respectively to their estimated column coordinates, deter-
mined previously by the GPF, Atomap, and BD methods in the

noise-free simulated image (i.e., we no longer compare back to
the projected potential). Figure 5c shows the error for the mean
Euclidean distance from the measured atomic column positions
on the noise-free image (derived from mean x and y displacement
on the coordinates for each column) for the three algorithms. As
expected, the mean displacement is small and approximately 0.25
pixels for BD and Atomap, and about 0.6 pixels for GPF.
Moreover, the standard deviation of the Euclidean distance
(derived from standard deviation of x and y displacement) over
the 10 noisy frames varies depending on the choice of fitting algo-
rithm. Figure 5d shows that GPF shows the highest standard devi-
ation, of about 1.75, followed by Atomap and BD with 0.75.
Moreover, GPF and Atomap outputs a standard deviation of
roughly 3 for the single atom (column 23), while BD gives a
much lower standard deviation, approximately 0.75. This indi-
cates that BD offers the lowest standard deviation and the highest
precision for a single frame measurement of a single atom, indi-
cating a much better robustness of the algorithm to the presence
of noise. The higher precision is critical for high temporal resolu-
tion work since it improves the differentiation between fluctua-
tions in column position due to random noise from fluctuations
due to true changes in the positions of the atoms in the
nanoparticle.

For column intensity, a comparison between GPF and BD
algorithms is shown in Figures 6a and 6b (we did not include
Atomap because of the negative values observed in the noise-free
image in Fig. 4). The average intensities (normalized to the high-
est value and then multiply by 5 to spread the dynamic range for
display convenience) for columns 1 to 25 were obtained from the
10-frame simulated noisy data. The GPF correctly indicates a
lower intensity for column 23, where just a single atom is present.
However, the intensities within the bulk, for example, columns
9–12 or 14–18, should be almost constant (because the number
of atoms is the same 6 and 5, respectively), but instead they
show dissimilar intensities indicating the presence of significant
errors. In comparison, the average intensities obtained by BD
are more accurate, scaling the intensity computed roughly with
the number of atoms in the atomic column. Compared to GPF,
the bulk and bottom layer output from BD presents high intensity
values that correspond with a higher occupancy and are in line
with the 3D model. Additionally, these average intensities have
been compared to the values obtained for the noise-free image
(Supplementary Fig. S5). The graph shows the deviation for
GPF (red curve) and BD (black curve) between the intensity
computed on the noise-free simulated image and the intensity
of the noisy simulated image in terms of their ratio. In the ideal
case, this ratio would be one, indicating that there is no deviation
on the intensity in the presence of noise. Even though the inten-
sity for columns 2–6 is slightly underestimated on BD algorithm,
the values are in general terms closer to one, suggesting again a
superior robustness computing the intensity in the presence of
noise.

Figure 6c shows the standard deviation in the fitted intensity
over all 10 noisy frames for every column as determined by
GPF (red) and BD (black). As with the precision of the coordi-
nates observed above, the measurements’ precision of the inten-
sity is much better for BD compared to GPF. On average,
across all the columns the standard deviation is 0.035 for BD
and 0.170 for GPF.

To summarize the results on the simulations, although with a
good signal-to-noise ratio the GPF algorithms might be satisfac-
tory, the measurements of the precision of the coordinates and
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intensities for noisy simulated CeO2 nanoparticle clearly show
that BD provides a more robust algorithm (Supplementary
Fig. S6). The improved accuracy and precision are most pro-
nounce for the column intensity, where BD provides values
much more consistent with the ground truth (3D atomic
model). In fact, according to the standard deviation of the inten-
sity, precision in retrieving the intensity on noisy frames is an
order of magnitude better than that computed for GPF.

It is useful to discuss the trade-off between spatial and tempo-
ral resolution that must be considered when analyzing nanoparti-
cle datasets. To facilitate the discussion, simulations were
performed to determine the standard deviation in determining
the position of a surface single atom and a bulk column (6

atoms) for different doses per frame (assuming only Poisson
noise). A graph showing the standard deviation in the position
(the Euclidean distance from the true position) versus dose is
shown in Supplementary Figure S7. Since the signal from the sin-
gle atoms is much weaker than that from the bulk column, the
precision of determining its position is correspondingly poorer.
This highlights the problem of determining the position of a sur-
face atom with both high spatial and temporal resolution. A sim-
ilar analysis was performed for Gaussian peak fitting by Levin
et al. with similar results (Levin et al., 2020). The blob detection
does provide subpixel positional information but when the stan-
dard deviation is greater than one pixel (i.e., the error at the
68% confidence level is on the order of ± 1 pixel) it may be

Fig. 5. Coordinates accuracy for noisy simulated images (after contrast reversal) using our blob detection method (BD), TRACT code (GPF), and Atomap. (a)

Simulated image of the CeO2 nanoparticle after adding one realization of Poisson-type noise. The image includes boxes at high occupancy columns (16), low occu-

pancy columns (23 and 24), and vacuum region. (b1) to (b4) Zoom-in of the boxes marked in the simulated image for columns 16, 23, 24, and vacuum. (c) Euclidean

distance from the estimated positions on the noise-free image measured with BD (black), GPF (red), and Atomap (green) after calculating the x and y main coor-

dinates over the 10 different noise realizations. (d) Standard deviation of the Euclidean distance computed on the 10 different measurements for BD (black), GPF

(red), and Atomap (green) algorithms.
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appropriate to consider how each atom is sampled. If the primary
goal is to detect the presence of a surface atom at high time res-
olution, it may be beneficial to bin the data to improve the
signal-to-noise and the detection limit. Whether the sampling is
changed on the detector hardware at the time of acquisition or
by software binning after data acquisition may need careful con-
sideration of hardware and scientific factors for an experiment.

We have not included the effect of the MTF on the analysis.
The MTF depends on the detection system and can vary strongly

with incident electron energy. Dr. Probe, the TEM simulation
software used here, provides an available MTF corresponding to
a Gatan UltraScan 1000 with 2 k × 2k pixels for 300 kV. Even
though, our experimental data was acquired on a Gatan K2 IS
direct electron detector operated at 300 kV with 4k × 4k pixels.
For this reason, we switched off the MTF during the image sim-
ulation process. In addition, the atomic columns were sampled
rather finely during the experiment (10–11 pixel radius) and for
a direct electron detector, the effect of the MTF for this sampling

Fig. 6. Intensity measurements, Î, on noisy simulated images using our blob detection method (BD) and TRACT code (GPF). (a) and (b) Average intensity for col-

umns 1–25 after using GPF and BD respectively in the 10 different noise realizations. (c) Standard deviation of the computed measurements for GPF (red) and BD

(black).
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frequency is negligible. However, this assumption would fail if the
sampling frequency was reduced to 3–4 pixels per column as sug-
gested in the paragraph above. Further simulations taking MTF
explicitly into account would then be necessary although, for
images acquired on direct electron detectors severely degraded
by Poisson noise, it may be a minor factor.

Performance on Real Experimental Data

In addition to the test over simulated data emulating time-
resolved experimental conditions, BD (prefixed minimum and

maximum variances 4.7 and 7, respectively, threshold for local
minima (δ) 0.18 and overlapping percentage (γ) 0.1) and GPF
algorithms have also been applied to real noisy data from the
CeO2 nanoparticle (see Fig. 2) highly degraded by noise due to
its high temporal resolution (400 frames/s). Figure 7a illustrates
a 2.5 ms single contrast-reversed frame of the sub-dataset (1,001
frames) demonstrating that the nanoparticle, and in particular
its white contrast columns, are hardly visible at the surface. The
two dashed boxes indicate bulk and surface columns (zoomed
in Figs. 7b1, 7b2, respectively). For surface sites, discriminating
between the presence and absence of atomic column is not

Fig. 7. Evaluation of TRACT (GPF) and blob detection (BD) on real time-resolved TEM experimental data. (a) Single frame, 2.5 ms, of the CeO2 nanoparticle where

the white boxes indicate the presence of bulk and surface columns. (b1) and (b2) Zoom-in of the white boxes, showing the shape of noisy bulk and surface col-

umns, respectively. (c) Graphical representation of the standard deviation in x and y coordinates, measured over 1,001 frames for columns 10, 11, 15, 16, and 17

(bulk) and 23, 24, and 25 (surface) using GPF (red points) and BD (black points).
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easy. To help establish a detection limit, we employ simulations to
define a minimum column intensity, Îmin, below which the col-
umn would be considered undetectable and only vacuum noise
is present. Specifically, an image of a single cerium atom has
been simulated with exactly the same pixel size as the experimen-
tal data, and its intensity after adding several Poisson noise real-
izations has been calculated, leading to a mean integrated
intensity Î of 3,300 with a standard deviation of about 600.
Thus, 95% of the single atom intensities will lie in the range
3,300± (2 × 600) and so a lower limit of 2,100 has been used to
discriminate the presence or absence of an atomic column.

In contrast to the simulated dataset, for the experimental
frames there is no ground truth to assess the fidelity of the results.
However, standard deviations over the 1,001 frames from the GPF
and BD outputs are still available to compare the reliability.
Figure 7c presents the standard deviation in the x (horizontal)
and y (vertical) coordinates for bulk columns (10, 11, 15, 16,
and 17) and surface columns (23, 24, and 25). The measurements
from GPF, colored in red, are about 2 pixels whereas those for BD
(color black) are all below roughly 1.6 pixels. The results indicate
that values from GPF are above the ones corresponding to BD,
which is consistent with the results from the simulation test set.
The points corresponding to standard deviations from the surface
columns (23, 24, and 25) for both GPF and BD are the same, with
values well above those for the bulk columns. This fact affirms
that the increased standard deviation on surface columns
observed on the BD algorithm compared to the bulk columns is
very likely related to a higher degree of mobility of the surface col-
umns, linked to true structural dynamics.

Regarding the computational time of these methods, the
experimental stack consisting of 1,001 frames with 25 atomic col-
umns in every frame (∼25,000 columns) required 529 s to be ana-
lyzed with the BD algorithm against 935.25 s with the GPF
algorithm. In this benchmark test, both algorithms were run in
a double-core conventional laptop. In addition to the better pre-
cision observed with BD, the large experimental dataset has been
analyzed faster (43% faster). With the development of direct elec-
tron detectors enabling the acquisition of 10’s–100’s of gigabytes,
on-the-fly analysis will be desired. Thus, the BD algorithm’s faster
speed over GPF is a great advantage.

Conclusion

A blob detection algorithm has been implemented for detecting
and tracking atomic columns in time-resolved in situ TEM
image series. The performance of this routine has been compared
to Atomap and TRACT codes using simulated data where the
ground truth is known, allowing a fair and absolute comparison.
Comparisons were also performed on experimental data.

It can be concluded that the current algorithms using 2D fit-
ting Gaussians, mainly developed for STEM images where the
intensity is always above the background level, could perform rea-
sonably well on images with low noise, but they might not be the
best procedures dealing with TEM images with a very low
signal-to-noise ratio, which is the case for high temporal resolu-
tions in situ TEM. For this purpose, the implementation of the
blob detection algorithm to retrieve atomic column coordinates
and intensities outperforms existing routines, here compared
with Atomap and particularly with TRACT code (GPF), also
designed for TEM images. The analysis carried out over a series
of noisy simulated images where the ground truth is known has
indicated that the performance of BD presents an outstanding

precision on the output position and intensity along the differ-
ent noisy simulated frames, showing generally lower values of
standard deviation compared to the other algorithms. This
improvement on the precision is required to accurately charac-
terize evolving systems undergoing fluxional behavior at the
atomic level, including for example catalytic materials where
these rearrangements may be directly related to the reaction
pathway.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S1431927622000356.

Acknowledgments. The authors gratefully acknowledge financial support
from the National Science Foundation (NSF). NSF CBET Award 1604971 sup-
ported J.L.V. and P.A.C., NSF OAC Award 1940263 supported R.M. and
P.A.C. NSF OAC Award 1940124 and NSF CCF Award 1934985 supported
D.M., NSF OAC Award 1940179 supported R.R. The authors acknowledge
HPC resources available through ASU, and Cornell, as well as the John
M. Cowley Center for High Resolution Electron Microscopy at Arizona State
University. The authors gratefully acknowledge also Dr. Ethan L. Lawrence
for providing experimental CeO2 data.

Conflict of interest. The authors declare no competing interests.

References

Barthel J (2018). Dr. Probe: A software for high-resolution STEM image sim-
ulation. Ultramicroscopy 193, 1–11.

Bernal S, Botana FJ, Calvino JJ, López-Cartes C, Pérez-Omil JA &

Rodrı́guez-Izquierdo JM (1998). The interpretation of HREM images of
supported metal catalysts using image simulation: Profile view images.
Ultramicroscopy 72(3), 135–164.

Bhatta UM, Ross IM, Sayle TXT, Sayle DC, Parker SC, Reid D, Seal S,

Kumar A & Möbus G (2012). Cationic surface reconstructions on cerium
oxide nanocrystals: An aberration-corrected HRTEM study. ACS Nano 6(1),
421–430.

Bugnet M, Overbury SH, Wu ZL & Epicier T (2017). Direct visualization and
control of atomic mobility at {100} surfaces of ceria in the environmental
transmission electron microscope. Nano Lett 17(12), 7652–7658.

Chen Q, Dwyer C, Sheng G, Zhu C, Li X, Zheng C & Zhu Y (2020). Imaging
beam-sensitive materials by electron microscopy. Adv Mater 32(16),
1907619.

Ciston J, Johnson IJ, Draney BR, Ercius P, Fong E, Goldschmidt A, Joseph

JM, Lee JR, Mueller A, Ophus C, Selvarajan A, Skinner DE, Stezelberger

T, Tindall CS, Minor AM & Denes P (2019). The 4D camera: Very high
speed electron counting for 4D-STEM. Microsc Microanal 25(S2), 1930–
1931.

Du H (2015). A nonlinear filtering algorithm for denoising HR(s)TEM micro-
graphs. Ultramicroscopy 151, 62–67.

Faruqi AR & McMullan G (2018). Direct imaging detectors for electron
microscopy. Nucl Instrum Methods Phys Res Sect A 878, 180–190.

Furnival T, Knez D, Schmidt E, Leary RK, Kothleitner G, Hofer F, Bristowe

PD & Midgley PA (2018). Adatom dynamics and the surface reconstruc-
tion of Si(110) revealed using time-resolved electron microscopy. Appl
Phys Lett 113(18), 183104.

Furnival T, Leary RK & Midgley PA (2017). Denoising time-resolved micros-
copy image sequences with singular value thresholding. Ultramicroscopy

178, 112–124.
Gonnissen J, De Backer A, den Dekker AJ, Sijbers J & Van Aert S (2017).

Atom-counting in high resolution electron microscopy:TEM or STEM –

That’s the question. Ultramicroscopy 174, 112–120.
Guo H, Sautet P & Alexandrova AN (2020). Reagent-triggered isomerization

of fluxional cluster catalyst via dynamic coupling. J Phys Chem Lett 11(8),
3089–3094.

Heo J, Dumett Torres D, Banerjee P & Jain PK (2019). In-situ electron
microscopy mapping of an order-disorder transition in a superionic con-
ductor. Nat Commun 10(1), 1505.

Microscopy and Microanalysis 13

https://doi.org/10.1017/S1431927622000356
Downloaded from https://www.cambridge.org/core, IP address: 72.216.146.87, on subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.



Hovden R, Xin HL & Muller DA (2012). Channeling of a subangstrom elec-
tron beam in a crystal mapped to two-dimensional molecular orbitals. Phys
Rev B 86(19), 195415.

Kong H, Akakin HC & Sarma SE (2013). A generalized Laplacian of Gaussian
filter for blob detection and its applications. IEEE Trans Cybern 43(6),
1719–1733.

LaGrange T, Reed BW, Santala MK, McKeown JT, Kulovits A, Wiezorek

JMK, Nikolova L, Rosei F, Siwick BJ & Campbell GH (2012).
Approaches for ultrafast imaging of transient materials processes in the
transmission electron microscope. Micron 43(11), 1108–1120.

Lawrence EL, Levin BDA, Boland T, Chang SLY & Crozier PA (2021).
Atomic scale characterization of fluxional cation behavior on nanoparticle
surfaces: Probing oxygen vacancy creation/annihilation at surface sites.
ACS Nano 15(2), 2624–2634.

Lawrence EL, Levin BDA, Miller BK & Crozier PA (2019). Approaches to
exploring spatio-temporal surface dynamics in nanoparticles with in situ
transmission electron microscopy. Microsc Microanal 26(1), 86–94.

Levin BDA, Lawrence EL & Crozier PA (2020). Tracking the picoscale spatial
motion of atomic columns during dynamic structural change.
Ultramicroscopy 213, 112978.

Li Y, Kottwitz M, Vincent JL, Enright MJ, Liu Z, Zhang L, Huang J,

Senanayake SD, Yang W-CD, Crozier PA, Nuzzo RG & Frenkel AI

(2021). Dynamic structure of active sites in ceria-supported Pt catalysts
for the water gas shift reaction. Nat Commun 12(1), 914.

Lin R, Zhang R, Wang C, Yang X-Q & Xin HL (2021). TEMImagenet train-
ing library and AtomSegNet deep-learning models for high-precision atom
segmentation, localization, denoising, and deblurring of atomic-resolution
images. Sci Rep 11(1), 5386.

Lindeberg T (1993). Scale-Space Theory in Computer Vision.
Lindeberg T (1998). Feature detection with automatic scale selection. Int J

Comput Vis 30(2), 79–116.
Lindeberg T (2015). Image matching using generalized scale-space interest

points. J Math Imaging Vis 52(1), 3–36.
Lowe DG (2004). Distinctive image features from scale-invariant keypoints. Int

J Comput Vis 60(2), 91–110.
Ma C, Cheng Y, Yin K, Luo J, Sharafi A, Sakamoto J, Li J, More KL, Dudney

NJ & Chi M (2016). Interfacial stability of Li metal–solid electrolyte eluci-
dated via in situ electron microscopy. Nano Lett 16(11), 7030–7036.

Malm JO & O’Keefe MA (1997). Deceptive “lattice spacings” in high-resolution
micrographs of metal nanoparticles. Ultramicroscopy 68(1), 13–23.

McMullan G, Faruqi AR, Clare D & Henderson R (2014). Comparison of
optimal performance at 300 keV of three direct electron detectors for use
in low dose electron microscopy. Ultramicroscopy 147, 156–163.

Mehdi BL, Qian J, Nasybulin E, Park C, Welch DA, Faller R, Mehta H,

Henderson WA, Xu W, Wang CM, Evans JE, Liu J, Zhang JG, Mueller

KT & Browning ND (2015). Observation and quantification of nanoscale
processes in lithium batteries by operando electrochemical (S)TEM. Nano
Lett 15(3), 2168–2173.

Möbus G, Saghi Z, Sayle DC, Bhatta UM, Stringfellow A & Sayle TXT

(2011). Dynamics of polar surfaces on ceria nanoparticles observed in
situ with single-atom resolution. Adv Funct Mater 21(11), 1971–1976.

Moehring NK, Fort MJ, McBride JR, Kato M, Macdonald JE & Kidambi PR

(2020). In situ observations of thermally induced phase transformations in
iron sulfide nanoparticles. Mater Today Adv 6, 100057.

Mukherjee D, Miao L, Stone G & Alem N (2020). Mpfit: A robust method for
fitting atomic resolution images with multiple Gaussian peaks. Adv Struct

Chem Imaging 6(1), 1.
Nord M, Vullum PE, MacLaren I, Tybell T & Holmestad R (2017). Atomap:

A new software tool for the automated analysis of atomic resolution images
using two-dimensional Gaussian fitting. Adv Struct Chem Imaging 3(1), 9.

Sinclair R, Lee SC, Shi Y & Chueh WC (2017). Structure and chemistry of
epitaxial ceria thin films on yttria-stabilized zirconia substrates, studied
by high resolution electron microscopy. Ultramicroscopy 176, 200–211.

Sun G, Alexandrova AN & Sautet P (2020). Structural rearrangements of sub-
nanometer Cu oxide clusters govern catalytic oxidation. ACS Catal 10(9),
5309–5317.

Tao F & Crozier PA (2016). Atomic-scale observations of catalyst structures
under reaction conditions and during catalysis. Chem Rev 116(6), 3487–
3539.

Tsen SCY, Crozier PA & Liu J (2003). Lattice measurement and alloy com-
positions in metal and bimetallic nanoparticles. Ultramicroscopy 98(1),
63–72.

van der Walt S, Schönberger J, Nunez-Iglesias J, Boulogne F, Warner J,

Yager N, Gouillart E, Yu T & t contributors (2014). scikit-image: Image
processing in python. PeerJ 2, 453–471.

Vincent JL & Crozier PA (2021). Atomic level fluxional behavior and
activity of CeO2-supported Pt catalysts for CO oxidation. Nat Commun

12(1), 5789.
Vincent JL, Manzorro R, Mohan S, Tang B, Sheth DY, Simoncelli EP,

Matesson DS, Fernandez-Granda C & Crozier PA (2021). Developing
and evaluating deep neural network-based denoising for nanoparticle
TEM images with ultra-low signal-to-noise. Microsc Microanal 27, 1431–
1447.

Xu Y, Wu T, Gao F, Charlton JR & Bennett KM (2020). Improved small blob
detection in 3D images using jointly constrained deep learning and Hessian
analysis. Sci Rep 10(1), 326.

Yankovich AB, Berkels B, Dahmen W, Binev P, Sanchez SI, Bradley SA, Li

A, Szlufarska I & Voyles PM (2014). Picometre-precision analysis of scan-
ning transmission electron microscopy images of platinum nanocatalysts.
Nat Commun 5(1), 4155.

Yuan W, Wang Y, Li H, Wu H, Zhang Z, Selloni A & Sun C (2016).
Real-time observation of reconstruction dynamics on TiO2(001) surface
under oxygen via an environmental transmission electron microscope.
Nano Lett 16(1), 132–137.

Yuan W, Zhu B, Li X-Y, Hansen TW, Ou Y, Fang K, Yang H, Zhang Z,

Wagner JB, Gao Y & Wang Y (2020). Visualizing H2O molecules reacting
at TiO2 active sites with transmission electron microscopy. Science 367

(6476), 428.
Zhang S, Plessow PN, Willis JJ, Dai S, Xu M, Graham GW, Cargnello M,

Abild-Pedersen F & Pan X (2016). Dynamical observation and detailed
description of catalysts under strong metal–support interaction. Nano Lett

16(7), 4528–4534.

14 Ramon Manzorro et al.

https://doi.org/10.1017/S1431927622000356
Downloaded from https://www.cambridge.org/core, IP address: 72.216.146.87, on subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.


	Exploring Blob Detection to Determine Atomic Column Positions and Intensities in Time-Resolved TEM Images with Ultra-Low Signal-to-Noise
	Introduction
	Materials and Methods
	Introduction to Blob Detection (BD) Algorithm
	Atomic Information Extraction and Refinements
	Tailored Adjustments for Our Specific Experimental Dataset
	Generation of the Simulated Dataset
	Experimental Data Acquisition

	Results and Discussion
	Performance on Noise-Free Simulations
	Performance on Image Simulations with Added Poisson Noise
	Performance on Real Experimental Data

	Conclusion
	Acknowledgments
	References


