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Abstract—Fingerprinting-based indoor localization has been a
research focus for GPS denied areas. The development of neural
networks has greatly promoted its application in indoor localiza-
tion systems. However, recent studies showed that the machine
learning models, including state-of-the-art neural networks, are
vulnerable to adversarial examples, and thus, neural network-
based indoor localization systems are also under the threat
of adversarial attacks. To investigate the effect of adversarial
attacks on indoor localization systems and to make such systems
resilient to adversarial attacks, we propose AdvLoc, an adver-
sarial deep learning for indoor localization system. With the
proposed AdvLoc system, the effect of adversarial attacks on
indoor localization is studied under six types of adversarial attack
methods in both black-box attack and white-box attack scenarios.
Furthermore, adversarial training is utilized in offline train-
ing of the proposed AdvLoc system, which is effective against
first-order adversarial attacks. The proposed AdvLoc system is
implemented with commodity WiFi devices and evaluated with
extensive experiments in two representative indoor environments.
The experimental results verify the robustness of the proposed
system against first-order adversarial attacks in representative
indoor environments.

Index Terms—Adversarial defense, adversarial examples,
black-box attack, deep learning, indoor localization, white-box
attack.

I. INTRODUCTION

OCATION-BASED services have drawn significant atten-
tion driven by the increasing popularity of Internet of
Things (IoT) devices and applications for global position-
ing system (GPS) denied indoor environments. Emerging
indoor localization systems adopt various radio-frequency
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(RF) signals, such as WiFi, RFID, Bluetooth, etc., [1]-[6].
Among these, the WiFi signal has been dominant in such
systems that provide location estimation for the indoor envi-
ronment in people’s daily life, because of its omnipresence
and lower cost.

Traditionally, indoor localization systems rely on signal
processing techniques to estimate the distance between a trans-
mitter and receiver, the Angle of Arrival (AoA), or the time
of flight (TOF), for inferring the target location. For example,
SpotFi [7] utilized a modified multiple signal classification
(MUSIC) algorithm to achieve decimeter-level location accu-
racy by using AoA and ToF. Chronos [8] was able to compute
the subnanosecond ToF and estimate the target location with
decimeter-level accuracy as well. However, these techniques
are limited by the quality of the signal. In the indoor environ-
ment, WiFi signals are scattered and reflected by walls and
furniture, which result in the inevitable noisy WiFi measure-
ments, especially the phase readings. To alleviate the negative
effect contributed by the offsets, indoor localization systems
usually employ powerful but time-consuming algorithms, such
as the super-resolution algorithm used in SpotFi, which limits
their performance for real-time applications.

Deep learning has been a hot topic since it has achieved
great success in solving tasks, such as data compression,
speech recognition, and image classification. Recently, indoor
localization systems also benefit from the development of
deep learning. Compared with traditional systems, deep learn-
ing makes such systems more efficient in location estimation,
even though it would take more time for training the model.
The first work applying deep learning to indoor localization
is DeepFi [2], which leverages a stack of restricted boltz-
mann machines (RBMs) to build an autoencoder for extracting
location features from WiFi channel state information (CSI).
PhaseFi [1] and BiLoc [9] further improve the the location
accuracy by leveraging different CSI data. Due to the finger-
printing method, the localization problem is transferred to a
matching problem. In the training stage, autoencoders have to
be trained at each training location for extracting fingerprints.
The training process could be time consuming and the size
of fingerprint data may restrict the deployment of the local-
ization system in mobile devices, which usually have limited
storage. To overcome the drawbacks of the autoencoder-based
localization systems, CiFi [3] is the first work to utilize deep
convolutional neural networks (DCNN) for indoor localization.
With DCNN, location estimation is treated as a multiclass clas-
sification problem. Thus, the localization system only needs to
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train one DCNN model in the training process, and the fin-
gerprints collected in the training stage are not essential for
location estimation once the DCNN is trained successfully.
Like CiFi, received signal strength (RSS) and CSI amplitude
have also been utilized to train the DCNN model [10]-[13].
ResLoc [14], [15] proposed a sharing learning approach based
on deep residual learning, which uses the bimodal CSI tensor
data.

Even though deep neural networks (DNN) have achieved
excellent performance on classification problems, some
counter-intuitive properties of DNNs have also been exposed
along with its popularity. Szegedy et al. [16] found that
several machine learning models, including state-of-the-art
neural networks, are vulnerable to adversarial examples.
Goodfellow [17] verified the discovery by misleading the
GoogLeNet [18] with adversarial examples. Deep learning-
based indoor localization systems also face the threat of
adversarial attacks. To evaluate and counteract the threat of
adversarial attacks to DNN-based indoor localization systems,
we propose AdvLoc, an adversarial deep learning for indoor
localization system. Like traditional DCNN-based systems,
AdvLoc operates in two stages: 1) an offline training stage and
2) an online location estimation stage. We apply adversarial
attacks in the online stage, where the perturbations generated
by adversarial attacks are be introduced to the existing clean
inputs of the DCNN. In the offline stage, the DCNN-based
localization model will be trained adversarially to enhance its
robustness against the adversarial examples. Unlike the image
classification models, the DCNN model in the indoor local-
ization system processes the online inputs that do not belong
to any existing class in the training data set (i.e., the mobile
device may be placed at an arbitrary location, rather than
a known training locations). Using the AdvLoc system, we
evaluate the effects of six types of mainstream adversarial
attacks on DCNN-based indoor localization with respect to
accuracy and location error. To defend against such attacks,
adversarial training is implemented in the offline training of
the models. The experimental results validate that adversarial
training utilized in the proposed AdvLoc system is an effective
means to counteract the location errors cause by the first-order
adversarial attacks.

The main contributions made in this article can be summa-
rized in the following.

1) We demonstrate the threat of adversarial attacks to deep
learning-based indoor localization systems by visualiz-
ing the adversarial examples and evaluating the impact
of the various magnitude of perturbation of adversarial
examples to location estimation. The effect of six types
of representative adversarial attacks, including gradient-
based, optimization-based, and spatial transformation-
based attacks, on the indoor localization system, is
investigated in both white-box and black-box attack
scenarios.

2) To the best of our knowledge, this is the first work
to employ adversarial training to enhance the robust-
ness of WiFi CSlI-based indoor localization systems.
We introduce adversarial training into the traditional
DCNN-based indoor localization. In the white-box
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attack scenario, the modified loss function successfully
alleviates the negative effect resulted from the first-
order adversarial attacks, especially the fast gradient sign
attack (FGSM) [17].

3) The proposed AdvLoc system is implemented with com-
modity 5-GHz WiFi. We verified its performance in two
representative indoor environments with extensive exper-
iments. The experimental results exhibit the threat of
adversarial attacks and show that adversarial training
effectively improves the robustness of the localization
system when the input examples are manipulated by
first-order adversarial attacks.

The remainder of this article is organized as follows.
Section II reviews related work. We present the AdvLoc design
in Section III and our experimental study in Section IV.
Finally, Section V concludes this article.

II. RELATED WORK

With the advances in computing power, the availability of
data, and the development of open-source platforms, deep
learning has been recognized as a powerful tool for many
real-world problems that cannot be solved by conventional
machine learning techniques. However, as Szegedy et al. first
unveiled in [16], using image classification as an example, the
resilience of deep learning has been exposed to the threat of
adversarial attacks. Nowadays, most Al-based services, such
as Apple Face ID and Amazon Alexa, are highly dependent
on the progress of deep learning in image classification and
natural language processing (NLP). The vulnerability of deep
learning networks places user privacy and public safety at risk.

Following the discovery in [16], Finlayson ef al. [19] inves-
tigated the vulnerabilities of the medical Al systems under
adversarial attacks and pointed out that the adversarial attacks
may already be in place and contribute to medical fraud. The
diagnostic performance could be affected easily by adding
a small perturbation generated by the common adversarial
attacks, while the manipulated diagnostic probability could
deceive the automated fraud detector evaluating the medical
claims. Furthermore, Finlayson et al. also indicated that the
adversarial attacks are effective for extremely accurate med-
ical classifiers even if the prospective attackers do not have
access to the deep learning model. In [20], both white-box
and black-box projected gradient descent (PGD) attacks were
used to generate adversarial examples. The result showed that
state-of-the-art medical models were misled in both scenar-
i0s. Furthermore, researchers have applied adversarial attacks
in other real-world scenarios. For example, Thys ef al. [21]
proposed an approach to generate adversarial patches to hide a
person from a DCNN-based human detector. Sharif er al. [22]
presented an approach for generating eyeglass frames to fool
state-of-the-art face recognition systems (FRSs). The exper-
imental results showed that their techniques were effective
for black-box FRSs, as well as state-of-the-art face detection
systems (FDSs).

Not only traditional DCNNs but also the spatiotemporal
graph convolutional network (ST-GCN) is facing the threat of
adversarial attacks. Unlike the medical Al systems relying on
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DCNN for image classification, action recognition applications
utilizing ST-GCN for processing the skeleton data obtained
from RGB-D sensors [23], [24]. Liu et al. [25] proposed con-
strained iterative attacks for skeleton actions (CIASA), which
was based on FGSM and was able to disturb the joint locations
in an action sequence. Even though the features of graph nodes
and graph structure were discrete with certain predefined struc-
tures, the basic FGSM attack was able to fool the ST-GCN in
the form of nontargeted attacks.

Even though the textual data are different from image data
composed of continuous pixel values, adversarial examples
affect DNN for text-based tasks as well. Three types of pertur-
bation strategies, namely, insertion, modification, and removal,
were introduced in TextFool [26] based on the concept of
FGSM. Papernot et al. [27] showed that the recurrent neu-
ral network (RNN) is not immune to the adversarial attacks.
The attack methods used in crafting adversarial image exam-
ples could be adapted to generate sequential adversarial text
by leveraging computational graph unfolding. In a recent
work [28], we investigated the problem of adversarial attacks
on solar power generation forecasting, which is a regression
problem, and showed that both DNN and a LASSO-based
statistical model were vulnerable.

Recently, there has been considerable interest of apply-
ing deep learning to wireless communications and networking
problems [29]. Because adversarial attack has been a common
threat to deep learning systems, researchers have also inves-
tigated the impact of adversarial attacks in wireless systems.
For example, modulation recognition is a key technology of
cognitive radio (CR), for which deep learning techniques have
been developed. Sadeghi and Larsson [30] demonstrated how
adversarial examples degrade the model performance of radio
signal (modulation) classification. Compared with traditional
attacks such as jamming, the adversarial attack required much
less power since only small perturbations were generated.
Lin et al. [31] evaluated four representative adversarial attacks
on modulation recognition. The results showed that regardless
of white box or black box, adversarial attacks could reduce
the accuracy of the target model, while the performance of
iterative attacks was superior to that of single step attacks. A
thorough study of adversarial attacks on IoT device identifi-
cation (or device fingerprinting) was reported in [32], which
was to identify specific wireless transmitters based on received
signals. Although following the same specifications and using
the same protocols, the devices can still be distinguished by
the small defects incurred during the manufacturing process
or the aging process.

III. AbpvLocC SYSTEM

Due to the popularity of mobile devices, location
information has been an essential part of IoT. Recently, an
increasing number of researchers have focused on WiFi-
based indoor localization because of the ubiquitous availability
and low cost of WiFi devices. Many indoor localization
systems [1], [2], [9] rely on the fingerprinting method, which
means the fingerprints of known locations need to be measured
and stored in a database for online localization. To reduce
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Fig. 1. Indoor localization architecture.

the storage requirement, some systems [3], [10] treat indoor
WiFi fingerprinting as a classification problem, where DCNN
becomes the best choice owing to its great success in image
classification. As Szegedy et al. [16] revealed the vulnerabil-
ity of DCNN models to adversarial examples, consequently,
the DCNN-based localization systems would also be suscepti-
ble to adversarial attacks. To combat such threats, we propose
the AdvLoc system in this article, which utilizes adversarial
training in the offline stage to enhance the robustness of the
network, making it immune to adversarial examples.

A. Architecture of the AdvLoc System

Fig. 1 depicts the architecture of the proposed AdvLoc
system. Like traditional DCNN-based indoor localization
systems, AdvLoc comprises of an offline stage and an online
stage. In the offline stage, CSI tensors are constructed using the
CSI data collected at the receiver for the mobile device placed
at various known training locations. The core of AdvLoc is a
deep residual learning model, ResNet [33], that learns location
features from WiFi CSI data. The ResNet will be trained adver-
sarially using CSI tensors to generate the model for online
localization. New CSI data are collected from mobile devices
placed at an unknown location in the online stage. The adver-
sarial perturbations are generated and injected into CSI tensors
in the online stage, while the new CSI tensors are constructed
in the same way as in the offline stage. As a result, the wireless
channel has no effect on the perturbations. Launching adver-
sarial attacks during the process of CSI tensor generation is
more feasible in both white-box and black-box scenarios (than
from the channel or transmitter sides).

Specifically, in the offline stage, the training data set and
verification data set are collected from identical positions. The
collected observations, such as phase readings, are labeled by
the coordinates of corresponding positions. The location with
the highest similarity in the output of the DCNN model is
selected as the output of the system. Therefore, we could
assess how well our model fits the training data using the
verification data set by examining the verification accuracy in
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Fig. 2. Examples of CSI Tensors when different levels of pertubations are introduced, as indicated by the hyperparameter €.
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ResNet-50 { »’ l} 3x3,64| x3 3x3,128| x4 3x3,256 | x6 3x3,512 | x3 fully connected layer
maz poo 1x 1,256 1x 1,512 1x1,1024 1 x 1,2048 softmaz

Fig. 3.

this stage. In the online stage, the testing data set is collected
from the positions not used in the offline stage. Obviously, the
classification accuracy would not be persuasive to demonstrate
the localization performance of the system. In fact, the output
of ResNet is used as the similarity to calculate the estimated
location. The estimated location 7 is computed by

N
T=Y tixpi )
i=1

where p; is the output of the ResNet that depicts the similarity
between the testing location and the training location i, and ¢;
is the known training location i.

B. CSI Tensor Construction

The CSI tensor used in AdvLoc consists of three slices. Two
of the slices are generated with the estimated angle-of-arrival
(AoA) values using the phase difference data from the three
receiving antennas, while the third slice contains the measured
CSI amplitude values. Considering that the Intel WiFi Link
5300 network interface card (NIC) only supports three anten-
nas and 30 subcarriers for each antenna, the size of the CSI
tensor is set to 30 x 30 x 3. Fig. 2 depicts CSI tensors used in
our AdvLoc system when different levels of perturbations are
introduced (as indicated by the parameter €). As we can see,
when ¢ = 0, no perturbation is added and the tensor is a clean
input to the ResNet model. Whereas, the rest of the tensors
are adversarial examples generated using the FGSM method,
where € is a hyperparameter that controls the magnitude of the
perturbation. When € is less than 0.4, the perturbation added in

Architecture of the two ResNet models used in AdvLoc: ResNet-18 and ResNet-50 [33].

the tensors is negligible (i.e., visually invisible). However, the
tensor will be distorted obviously, once € is larger than 0.5.
We shall study the relationship between € and the location
estimation error in the following sections.

C. Architecture of the ResNet Models

To investigate the effect of adversarial attacks on DCNN-
based indoor localization systems, two popular ResNet models
are adopted in the AdvLoc system, including ResNet-18 and
ResNet-50 [33]. The ResNet-18 model will be leveraged as the
localization model in our study of both white-box attacks and
black attacks. In the study of black-box attacks, the ResNet-50
model will be trained as a substitute model for mimicking the
localization model, i.e., the ResNet-18 model.

Fig. 3 presents the detailed structure of the localization
models. The building blocks shown in the brackets depict the
component of each block. For example, the input block of
the ResNet-18 model includes 7 x 7 filters for generating
64 feature maps, then max pooling is leveraged to shrink the
size of the feature maps. The Conv_Block4 of the ResNet-
18 model is composed of two building units, each containing
two 3 x 3 convolution layers. The shortcut connection exists
in each building unit of the Conv_Blocks. Since localization
is treated as a classification problem in the fingerprinting-
based system, the cross-entropy loss is adopted in the training
process.

D. Adversarial Attacks

Szegedy et al. [16] showed that adversarial examples hardly
distinguishable from the originals can fool DCNN-based

Authorized licensed use limited to: Auburn University. Downloaded on November 05,2023 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.



18186

image classifiers such as AlexNet [34]. Since then, security
has become an important problem in AI/ML research, espe-
cially for privacy-sensitive applications such as localization.
To better evaluate the resilience of DCNN-based localization
systems against adversarial attacks and the effectiveness of
defense strategies, we implement the following six types of
adversarial attacks in this study.

1) Fast Gradient Sign Method: FGSM was proposed by
Goodfellow ef al. in 2015 [17]. The method obtains a pertur-
bation, denoted by 7, by calculating the gradient of the loss
function L(-) with a given input, as

2

where 6 represents the parameters of a well-trained model; x
and y are the input and its corresponding label, respectively;
and € is a hyperparameter, which controls the magnitude of the
perturbation. Since L(-) is the loss function of the model, the
perturbation n can be calculated by using the first derivative
of L(6, x,y) through the backpropagation algorithm.

In 2017, Miyato et al. [35] modified FGSM by canceling the
sign(-) function in (2). The new method, fast gradient method
(FGM), is a generalization of FGSM, where the perturbation
is give by

n =€ -sign(VyL(9, x, y))

VL0, x,y)

= T, 3
©IVeL@. % )1 )

With (3), the perturbation can be easily created. However, it
is not safe to say that the perturbation will contribute to mis-
classification, even though the loss value for the target label to
be misclassified is increased by introducing the perturbation.

2) Projected Gradient Descent: Based on the one-step
FGM, an iterative version of FGM termed PGD was proposed
in 2017 [36]. Madry et al. created the PGD adversary to
enhance the robustness of the classifier against the first-order
attacks. With the iterative method, the adversarial examples

adv ,.adv adv .
{x0 i A ,xN+1} are generated as follows:
adv __
Xy =X

adv adv

Xy, = Clip, {xN +a

VeL(0, x) } @

where o is a hyperparameter for each iteration, which is
usually set as ¢/N for a given €. With this approach, the
perturbation is always small and around the original input x
in the I ball. Also, Clip, . is used to project the perturba-
tion back into the I” ball if necessary. PGD has been verified
to be a stronger adversarial attack method than the one-step
FGM/FGSM at the cost of transferability.

3) Momentum lIterative Method: Since PGD generates
adversarial examples with a greedy approach along the direc-
tion of the gradient in each iteration, the local maxima could
be reached easily, resulting in poor transferability. To solve
this problem, the momentum-based method is integrated into
FGSM. Instead of using the gradient in one iteration to update
the perturbation, the momentum iterative method (MIM) lever-
ages the gradient of the previous iterations to guide the update
of the perturbation [37]. The memory of previous gradients can
help to avoid the local maxima, which occur in PGD. Thus,
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it breaks the dilemma of choosing between the “underfitted”
FGSM and the “overfitted” PGD.
To generate adversarial examples with MIM, we have
8 =0
X3V = x
_ ViL(0.55".)
gNy1 =M -8n T+ [VeL(6.535 ) I

+ o - sign(gy ).

adv adv (5)
N1 = XN
Note that g, includes the gradients from previous (N — 1)
iterations with a decay factor of u. Here o can also be set to
€/N when € is given. Thus, MIM retains the transferability of
adversarial examples under increased iterations.

4) DeepFool Attack: In FGSM/FGM, the choice of the
hyperparameter € significantly affects the performance of
adversarial attacks, since € decides the magnitude of per-
turbation. In DeepFool [38], perturbations are computed by
solving optimization problems. For a binary affine classifier,
f(x) = wl'x + b, the optimal perturbation is given by

7" (x) := argmin |||,

s.t. sign(f(xo + 1)) # sign(f(xo))  (6)
which has the following closed-form solution:
(x0)
rw = 150, )
lIwllz

The iterative method is adopted in DeepFool for general
binary classifiers. In each iteration, Deepfool assumes f is lin-
ear in the neighborhood of the current x. Hence the optimal
perturbation is calculated as

7 ) = argmin [,
N

st feen) + Vi) gy =0. (8)

Considering that multiclass classification can be split into
multiple binary classification, Deepfool could also find the
optimized perturbation effectively for a nonlinear multiclass
neural network. Furthermore, it has been demonstrated that the
adversarial examples generated by Deepfool have five times
smaller perturbations comparing with those from FGSM on
MNIST and CIFAR10 models.

5) Carlini Wagner Attack: Defensive distillation [39] is a
popular defensive method, which robustifies neural networks
to counteract adversarial examples. However, Carlini and
Wagner proposed a type of attacks to make defensive distilla-
tion ineffective [40]. Among the various distance metrics used
for evaluating similarities, the Carlini Wagner attacks (CW) are
designed with the L, Lo, and Ly distance metrics. For the L,
attack, adversarial examples are generated with w, obtained by
solving

1 2
min {Hi(tanh(w) +1)—x

+c ~f<%(tanh(w) + 1)) } 9)

2

where the loss function f(-) is defined as

f(xadv> = max{max{g“(x’)i ciFE ) — ;(xadv)t, —w} (10)
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where ¢(-); is a logistic for class i, ¥ controls the confidence
with which the misclassification occurs, and ¢ is a hyperpa-
rameter that tradeoffs between the magnitude of perturbation
and success rate of attack. For the L attack, considering that
the Lo metric is nondifferentiable, the pixels in x that affect
the classifier significantly are selected and attacked with the
Carlini and Wagner L, (CWL2) attack in an iterative manner.

To create adversarial examples with the L., metric, the Ly
term in (9) is replaced by a penalty for any terms that exceed

{c fx+n) + Z[(ﬂ, — 1:)+]}

where t is decreased iteratively with an initial value of 1. Even
though the CW attack has been demonstrated to have defeated
the defensive distillation method, the time cost in generating
adversarial examples using this method is much larger than
that of all the previous attack methods.

6) Spatial Transformation Method: Unlike DeepFool and
CW that construct adversarial examples by solving an
optimization problem, the spatial transformation method
(STM) constructs adversarial examples with a natural trans-
formation of the original inputs [41]. The transformation
parameters, i.e., (8,,8,,0), could be optimized by the grid
search or the PGD method. The position of a pixel (u,v) is

updated as follows:
—sin® fu n Sy
cos 6 v S |

u'|  [cosé

V[ |siné
According to [41], STM can successfully defeat the CNN that
was trained against an Lo,-bounded adversary.

Y

12)

E. White-Box and Black-Box Attacks

All the above attack methods are white-box attacks, which
means that the adversary is capable of acquiring the knowl-
edge of the target model, or even the training data set. This
possibility is usually slim in practice, especially for accessing
the model and data set related to personal privacy or homeland
security. To make adversarial attacks more feasible, the more
challenging black-box attacks have been investigated, where
the attacker has no or limited knowledge of the model. We
will also leverage black-box attack methods to evaluate the
threat of adversarial attacks to the AdvLoc system.

A comparison of white-box and black-box attacks is shown
in Fig. 4, where a substitute model is utilized to mimic
the black-box model with infinite queries. Since information
of the substitute model is open to the attacker, all of the
attack methods designed for the white-box scenarios can be
leveraged to fabricate adversarial examples in the black-box
scenario. Due to the transferability of the adversarial examples,
the black-box model would also be misled by the adversar-
ial examples. However, this strategy is easy to be detected.
Moreover, Papernot ef al. [42] noticed that it will be intractable
for attackers to build a substitute model with a limited num-
ber of queries. Thus, a jacobian-based data set augmentation
technique (JAD) will be used in our AdvLoc system, which
ensures that the substitute model is able to approximate the
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decision boundary of the black-box attack with a limited num-
ber of queries. Fig. 5 depicts the procedure of JAD. First, a
small data set Dy is collected and labeled by the black-box
model O. The substitute model will be trained with the data
set (Do, 5(Do)). Next, Dy is augmented to generate a larger
date set D given by

Dy={x+8" sign(Jp[a(x)]) cxeDofUDy  (13)
where f is a parameter of augmentation, and Jr is the Jacobian
matrix of the substitute model F. Thus, a growing augmented
dataset will be generated iteratively and be leveraged to force
the substitute model to approximate the black-box model. In
this article, we would utilize JAD for all the previous attack
methods to investigate the black-box attacks and defense for
the indoor localization systems.

F. Where to Launch Adversarial Attacks

Due to the nature of wireless communication systems,
adversarial attacks can be launched from three places, i.e.,
the transmitting side, the channel side, and the receiving side.
For indoor localization systems, e.g., WiFi-based systems, the
attacking transmitters (APs) play a role of transmitter. APs are
an essential part of the communication infrastructure, which
are usually better secured with various cybersecurity technolo-
gies. It is usually more challenging to inject perturbations
through the transmitter (i.e., AP) side. On the other hand,
adversarial attacks from the channel side would be more fea-
sible because of the open wireless channels. However, the
channel effect should be considered when generating adversar-
ial perturbations. For advLov, we assume that the adversarial
perturbations are injected when the CSI tensors are generated,
which usually happens at the user side. Compared to APs and
from the channel, receive-side (user side) attacks are more fea-
sible because it is easier to hack into a personal user device,
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e.g., using phishing and a malware, to inject adversarial pertur-
bations. Moreover, the channel effect is also eliminated when
the perturbations are introduced from the user side.

G. Adversarial Training

To make the AdvLoc system resilient to adversarial attacks,
its localization model implements adversarial training, which
enhances the robustness of the neural network by training it
with a mixture of adversarial and clean examples. The basic
idea of adversarial training is to augment the original loss
function with an adversarial term, so that it will be resistant
to adversarial examples. Goodfellow et al. [17] demonstrated
that the adversarial loss function as follows:

was effective to make the neural network immune to FGSM
attacks, where n = €-sign(V,L(0, x, y)). In (14), y is a hyper-
parameter to adjust the relative importance of the loss terms
of the original and adversarial examples, which is set to 0.5
in our implementation of AdvLoc.

In the next section, we will leverage adversarial training
to study the effect of defense for indoor localization systems
against adversarial attacks. The resulting localization model
that is adversarially trained will be called by the corresponding
attack method used in adversarial training. For example, if the
localization model is trained with loss function (14) and the
disturbance » in (14) is generated using FGSM (or MIM and
PGD), the resulting adversarially trained model will be called
FGSM-AT (or MIM-AT and PGD-AT, respectively).

IV. EXPERIMENTAL STUDY
A. Experiment Configuration

To evaluate the performance of AdvLoc under adversar-
ial attacks in the online stage, we deploy the six types of
adversarial attacks in both white-box and black-box scenar-
ios. The AdvLoc system is implemented with Intel 5300 NIC
in the 5.58-GHz band. Two laptops are configured as an access
point and a mobile device, respectively. The distance between
adjacent antennas is adjusted to 2.68 cm, which is a half of
the wavelength. To inject adversarial attacks in the online
stage, CleverHans [43] is leveraged to generate adversarial
perturbations for each new CSI tensor. Furthermore, both the
localization model trained in the offline stage and the adver-
sarial example generation model used in the online stage are
implemented with the TensorFlow framework on a NVIDIA
RTX 2080 GPU.

For the sake of diversity, we examine the AdvLoc system in
two representative indoor environments, i.e., a straight corridor
and a computer laboratory.

1) Straight Corridor: First, the AdvLoc system is deployed
in a straight corridor in Broun Hall in the Auburn
University campus. This indoor testbed covers an area of
8 x 24 m2, which includes the rooms on both sides of the
corridor. As a typical indoor structure, the straight cor-
ridor is simple. Since there is no obstacles that result
in complex scattering and reflection of WiFi signals,
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the line-of-sight (LOS) path is the dominant compo-
nent in this environment. As is shown in Fig. 6, the
red squares represent the training locations in the offline
stage, while the green dots denote the testing location in
the online stage. The single access point is placed at the
right end of the corridor in Fig. 6. The distance between
consecutive training locations is 1.8 m.

2) Computer Laboratory: Next, we assess the AdvLoc
performance in a computer laboratory, which is also
located in Broun Hall. Compared with the corridor, the
computer laboratory is a cluttered environment. Most of
the LOS paths of WiFi signals are blocked by tables,
chairs, and computer chassis. In this case, the access
point is placed close to the north center of the lab-
oratory so that it could cover the entire area. Fig. 7
depicts the selection of training positions (marked as
red squares) and testing locations (marked as green
dots). The distance between adjacent training locations
is also 1.8 m.

To evaluate the system performance, we investigate the
verification accuracy in the offline stage (see Section III-A).
Because the training dataset and testing dataset are collected
from identical locations, verification accuracy is defined as

Number of correct predictions

— 15)
Total number of predictions

which indicates the capability of the DCNN model in solving

the multiclass classification problem. In addition, we also eval-

uate the performance of the localization system by calculating

the location estimation error £, given by

E=|T-1|, (16)
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where 7 is the estimated location given in (1) and T is the
ground truth.

B. Verification Accuracy Under White-Box Attacks

We first confirm the verification accuracy of AdvLoc under
white-box attacks in both indoor environments. For indoor
localization systems, the training dataset and verification
dataset are collected from identical positions. The verifica-
tion accuracy gives us an unbiased assessment of how well
our model fits the training data. Fig. 8 depicts the verifi-
cation accuracy of the original localization model when not
being attacked (called “Original Model”), and the verification
accuracy of the original model when attacked by adversar-
ial examples generated using FGSM, MIM, and PGD [called
“Original Model (FGSM),” “Original Model (MIM),” and
“Original Model (PGD),” respectively] in the lab setting. It
shows that all the three attack methods successfully degrade
the verification accuracy as € is increased from 0.1 to 1. It
is intuitive that a larger magnitude of perturbation causes a
larger decrease in verification accuracy. Fig. 8 shows that the
effects of PGD and MIM on the original model are compara-
ble to each other, while FGSM is less effective than the two
iterative methods.

Furthermore, adversarial training has been adopted in
AdvLoc to combat adversarial attacks. Since the verifica-
tion accuracy of adversarially trained localization models (i.e.,
FGSM-AT, MIM-AT, and PGD-AT) is very close when not
being attacked, their average verification accuracy (called
“Adversarial Trained Models” in Fig. 8) is very close to that of
the original model. Thus, it is safe to say that adversarial train-
ing does not degrade the performance of the localization model
when it is not attacked. With adversarial training, the verifi-
cation accuracy of each model is enhanced remarkably when
under adversarial attacks. For FGSM-AT, the attacked verifica-
tion accuracy (the light blue line) remains above 0.74. When
€ = 1, the attacked verification accuracy of FGSM-AT reaches
0.8. Compared with the original model, FGSM-AT achieves an
improvement of 0.12 in verification accuracy when € = 0.1,
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Fig. 9.  Verification accuracy of the localization models in the corridor
environment.

and an improvement of 0.44 when € = 1. In addition, the
FGSM-AT curve is more stable for the whole range of ¢, indi-
cating that adversarial training is an effective defense against
FGSM attacks. Similar to FGSM-AT, adversarial training also
strengthens the robustness of the localization model against
MIM and PGD attacks, even though the extent of the enhance-
ments is not as notable as that of FGSM-AT. Nevertheless,
the average improvements in verification accuracy achieved
by MIM-AT and PGD-AT over the original model are still
both greater than 0.25.

Fig. 9 presents the verification accuracy of the localiza-
tion model in the corridor environment. As in Fig. 8, the
localization model is attacked by three methods: 1) FGSM;
2) MIM; and 3) PGD. Since the corridor is a LOS domi-
nant environment, the WiFi signals do not suffer from severe
multipath effects. Therefore, the overall localization accuracy
in the corridor is higher than 0.6, which is better than the lab
case. With the increment of ¢, all three attack methods con-
tribute to degraded verification accuracy gradually, which is
in accordance with the results shown in Fig. 8. In general,
PGD and MIM are more effective than FGSM, even though
FGSM decreases the verification accuracy to 0.65 when € = 1.
Moreover, adversarial training is again an effective defense
strategy for FGSM. For the adversarial examples generated by
FGSM, the verification accuracy of FGSM-AT reaches 0.88
when € is increased to 1. Both MIM-AT and PGD-AT also
provide effective defense against the corresponding attacks,
even though the extents of gains are not comparable to that of
FGSM-AT.

To better evaluate the threat of adversarial attacks to indoor
localization systems, three additional attack methods, STM,
DeepFool, and CWL2, are also leveraged in the experi-
ments. As shown in Fig. 10, the verification accuracy drops
severely under these attacks. In the corridor case, all the
three attacks reduce the verification accuracy to 0.13 or even
worse. Similarly, the verification accuracy decreases from 0.9
to lower than 0.065 by all the attacks in the lab case. Thus,
the optimization-based and the spatial transformation-based
attack methods are also harmful to indoor localization system.
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In addition, according to [44], the localization model does
not acquire transferability from the adversarial training, which
means the model is still vulnerable to other types of adver-
sarial attacks even if it is trained adversarially. Thus, further
investigation is needed on adversarial training to take vari-
ous types of attacks into account rather than a specific attack
method.

In addition to the ResNet model, we also examine the effect
of adversarial attacks and adversarial training on DCNN-based
systems. The network used for comparison is composed of
three convolutional layers. The kernel size for each layer is
8 x 8, 6 x 6, and 5 x 5, respectively, while 16 feature
maps are generated in each convolutional layer. ReLu is used
as the activation function following the convolutional layers.
As in the ResNet model, cross-entropy loss is calculated for
weight updates. Figs. 11 and 12 present the verification accu-
racy of the DCNN-based model under white-box attacks in the
lab and corridor environments. As shown in Fig. 11, all the
attack methods successfully degrade the verification accuracy
in the lab environment. When € reaches 0.4, all the verification
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accuracies are reduced to lower than 0.1. Because of the sim-
pler structure of DCNN, it is quite sensitive to adversarial
attacks. With adversarial training, the performance of all the
models is recovered to some extent. However, there is no
clear performance difference among the models. The verifi-
cation accuracy in the corridor case is presented in Fig. 12.
Unlike the lab case, the corridor case is LOS-dominant. Thus,
the verification accuracy of the original model remains at 1.
However, the performance breaks down as € goes up to 0.2.
All the three attack methods reduce the verification accuracy
to 0 when € is 0.3. Adversarial training also achieves similar
effectiveness in dealing with adversarial perturbations, even
though the verification accuracy is not recovered to over 0.85.
By examining the vanilla DCNN-based localization system,
we notice that the robustness of such systems is determined
by the complexity and depth of the network models. Shallow
networks, such as the vanilla DCNN, are highly susceptible to
the adversarial perturbations even with a low €, which ham-
pers us to examine the effect of perturbation magnitude to
the system performance. Furthermore, [15] and [3] showed
that a deeper DCNN usually achieves a better performance in
fingerprinting-based indoor localization. Thus, we will inves-
tigate the effect of adversarial attacks to localization system
using the ResNet model in the remainder of this section.

C. Location Error Under White-Box Attacks

Even though location estimation is treated as a multiclass
classification problem in DCNN-based localization systems,
a unique challenge in such localization systems is that an
online input to the trained model usually does not belong to an
existing class in the offline training dataset. For example, we
label the CSI data collected from a position between point-A
and point-B with label A in the testing dataset. The location
prediction would be correct only if the localization system pro-
duces the same label. However, the testing position is usually
between point-A and point-B. Obviously, it would be unfair to
say that the location prediction is wrong when the prediction
from the system is B. To address this issue, the output of the
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DCNN is usually used as similarity to calculate the estimated
location using a Bayesian method (see Section III-A). Thus,
test accuracy in the online stage may not precisely evaluate
the performance of the system. In this article, location error is
also utilized to measure the effect of adversarial attacks and
adversarial training on the localization system.

First, we examine the performance of AdvLoc in the lab set-
ting. Fig. 13 presents the location errors of FGSM-AT when
attacked by FGSM, and of the original model when attacked
by FGSM in verification and online testing. The blue dashed
line is the online location error of the original model using
clean inputs in online testing, while the verification location
error for the same setup is denoted by a red dashed line. The
errors are 2.28 and 0.47 m, respectively. It is obvious that
the verification error rises with the increment of € when the
localization model is under attack, which is consistent with the
verification accuracy shown in Fig. 8. For the online testing
error, it also keeps going up along with the rise of €. When
€ = 0.1, the adversarial examples increase the online testing
error to 2.368 m. The highest online testing error, 2.613 m,
occurs when € = 1. Furthermore, the performance of adver-
sarial training is verified in Fig. 13 as well. Based on the
FGSM-AT model, the upward trend of location errors in veri-
fication and online testing disappears. The online testing error
of FGSM-AT stays around the error of the original model
that leverages clean inputs. Even if € = 1, the increment of
location error is only about 0.04 m, which is negligible in a
lab environment. For the verification error, FGSM-AT guar-
antees that no verification error is higher than 0.81 m when
the model is under attack. It is noteworthy that the verification
error declines from 2.08 to 0.70 m, when ¢ is fixed at 1, once
adversarial training is leveraged in the localization model.

For the corridor case, the location errors of FGSM-AT
attacked by FGSM and the original localization model attacked
by FGSM are shown in Fig. 14. Compared with Fig. 13, the
upward trend of errors in the corridor case is not as obvi-
ous as that of in the lab case. For the online testing error
when the original localization model is attacked by FGSM,
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Fig. 15. Location error of the localization models attacked by MIM in the
lab environment.

the error does not increase with €, even though FGSM deteri-
orates the localization error from 1.36 to 1.52 m on average.
The verification location errors reveal a similar behavior. The
maximum of the verification error increment is only 0.32 m
when the original localization model is attacked by FGSM
with € = 0.6. Adversarial training is still an effective defense
strategy against FGSM in the corridor case. The green line in
Fig. 14 represents the online testing errors when FGSM-AT is
attacked by FGSM. As we can see, the errors of FGSM-AT
are obviously lower than that of the original model attacked
by FGSM. The average error of FGSM-AT is 1.36 m, which
is closed to the average error of the original model with clean
inputs, i.e., 1.3504 m.

The effect of MIM and the corresponding adversarial
training on location error is depicted in Figs. 15 and 16,
respectively. The verification error of the original model grows
significantly when attacked by MIM, which is consistent with
the results presented in Fig. 8. Furthermore, MIM causes much
larger errors than FGSM. In Fig. 15, the verification location
error reaches 2.36 m when attacked by adversarial examples
generated by MIM with € = 1, which is much higher than
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Fig. 17. Location error of the localization models attacked by PGD in the
lab environment.

that of FGSM. A similar phenomenon is observed in the cor-
ridor case. The verification error reaches 0.62 m when € = 1,
whereas the verification error is only 0.44 m when € = 1 with
FGSM. MIM is thus a stronger attack method than FGSM.
Additionally, Fig. 15 shows that MIM-AT does not effectively
eliminate the effect of MIM. However, adversarial training
successfully removes the rising trend of the online testing
error in the corridor case with MIM-AT. According to Fig. 16,
the MIM-AT model has a commensurable performance as the
unattacked original model.

Figs. 17 and 18 present the location errors of PGD related
experiments. First, the location errors in the lab case are
given in Fig. 17. Similar to MIM, PGD, as an iterative attack
method, degrades the verification precision remarkably. The
location errors climb up with the increase of € when the local-
ization model is attacked by PGD. Nevertheless, the online
testing error is not improved by adversarial training in the
lab case, which is similar to the MIM related experiments. In
the corridor case, adversarial training effectively enhances the
online testing precision and verification precision.
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It can be seen from Figs. 14, 16, and 18 that adversar-
ial training could always reduce both online testing errors and
verification errors in the corridor case. Moreover, the adversar-
ial attacks, such as FGSM, MIM, and PGD, could not degrade
much the performance of the localization model in the corri-
dor environment. This is because the multipath effect is not
as strong in the corridor case, and it is relatively easier for
the DCNN model to distinguish the WiFi signals from dif-
ferent locations. Such “easy-to-distinguish” signals contribute
to the robustness of the model, especially when the size of
the training data set is not large. As a result, the effectiveness
of adversarial attacks is constrained in the corridor case, and
adversarial training is also more effective. In the lab case,
the received WiFi signal is a superposition of the signals
from multiple paths. The localization model becomes more
gullible in facing with such noisy signals. Moreover, consid-
ering the fact that the class of the new CSI tensors in the
online stage usually does not belong to any class used in offline
training, such noisy signals make adversarial training struggle
in the online testing. Hence, even though adversarial train-
ing achieves an acceptable performance in defending FGSM
attacks, it is not as effective for stronger attacks, such as MIM
and PGD, in the online stage.

We also examine the effect of optimization-based and spa-
tial transformation-based attack methods, including CWL2,
DeepFool, and STM, and their location errors in the lab
and corridor environments are presented in Fig. 19. We find
the optimization-based attacks, i.e., CWL2 and DeepFool,
cause higher location errors in verification and online test-
ing. Compared with FGSM, MIM, and PGD, DeepFool poses
the strongest threat to localization systems in the lab case.
Moreover, both CWL2 and DeepFool increase the testing
errors in the corridor case to over 2 m, which is much higher
than that caused by the traditional one-step or iterative attacks.

D. Location Error Under Black-Box Attacks

The white-box attacks rely on knowledge of the target
DCNN model, which may not be available to adversaries in
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Fig. 20. Effect of black-box attacks on the location error of the localization
models in the lab environment.

many cases. Therefore, black-box attacks would be more prac-
tical in the real world. To investigate the threat of black-box
attacks and evaluate the corresponding defense strategies, we
implement all the previously mentioned attack methods based
on the black-box attack approach.

First, FGSM, MIM, and PGD are deployed with the black-
box approach to examine the their impacts in the lab case.
As shown in Fig. 20, all the three attack methods exhibit out-
standing performance in increasing the verification location
error. However, the online testing errors are not affected by
the attacks severely. The maximum increase in location error
is only about 0.25 m under FGSM generated perturbation with
€ = 1. Compared with the white-box attacks, the degradation
of online testing error is negligible in Fig. 20.

Fig. 21 describes the performance of the black-box attacks
in the corridor case. Because of the robustness of the local-
ization model, the online testing errors are not influenced
much by the black-box attacks. For the verification error,
the maximum increment is only about 0.3 m, even though
a slightly upward trend is observed in Fig. 21. Thus, it is
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Fig. 21. Effect of black-box attacks on the location error of the localization
models in the corridor environment.
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Fig. 22.  Location error of the localization models attacked by CWL2,
DeepFool, and STM in the black-box scenario.

safe to say that our localization model for the corridor case is
robust enough against black-box attacks. In other words, the
adversarial examples generated by the substitute model (i.e.,
ResNet-50) for black-box attack fail to mislead the original
DCNN model.

We also leverage the optimization-based and spacial
transformation-based attack methods to evaluate the system
under black-box attacks. Comparing Fig. 19 with Fig. 22, we
notice that each result in Fig. 22 is lower than the corre-
sponding result in Fig. 19. CWL2, DeepFool, and STM could
not achieve similar performance when used for the black-box
attack. The difference in the knowledge between the black-
box model (i.e., ResNet-18) and the substitute model (i.e.,
ResNet-50) limits the performance of the attacks.

V. CONCLUSION

In this article, we presented AdvLoc, an adversarial deep
learning for indoor localization system using CSI tensors,
which is resilient against the typical first-order adversarial
attacks. With the proposed AdvLoc system, we analyzed
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the effect of six types common adversarial attacks in both
white-box attack and black-box attack scenarios. The exten-
sive experimental study exposed the threat of the adversarial
attacks to indoor localization systems and validated the supe-
rior performance of the proposed AdvLoc system in defending
against first-order adversarial attacks.
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