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Abstract—Fingerprinting-based indoor localization has been a
research focus for GPS denied areas. The development of neural
networks has greatly promoted its application in indoor localiza-
tion systems. However, recent studies showed that the machine
learning models, including state-of-the-art neural networks, are
vulnerable to adversarial examples, and thus, neural network-
based indoor localization systems are also under the threat
of adversarial attacks. To investigate the effect of adversarial
attacks on indoor localization systems and to make such systems
resilient to adversarial attacks, we propose AdvLoc, an adver-
sarial deep learning for indoor localization system. With the
proposed AdvLoc system, the effect of adversarial attacks on
indoor localization is studied under six types of adversarial attack
methods in both black-box attack and white-box attack scenarios.
Furthermore, adversarial training is utilized in offline train-
ing of the proposed AdvLoc system, which is effective against
first-order adversarial attacks. The proposed AdvLoc system is
implemented with commodity WiFi devices and evaluated with
extensive experiments in two representative indoor environments.
The experimental results verify the robustness of the proposed
system against first-order adversarial attacks in representative
indoor environments.

Index Terms—Adversarial defense, adversarial examples,
black-box attack, deep learning, indoor localization, white-box
attack.

I. INTRODUCTION

L
OCATION-BASED services have drawn significant atten-

tion driven by the increasing popularity of Internet of

Things (IoT) devices and applications for global position-

ing system (GPS) denied indoor environments. Emerging

indoor localization systems adopt various radio-frequency
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(RF) signals, such as WiFi, RFID, Bluetooth, etc., [1]–[6].

Among these, the WiFi signal has been dominant in such

systems that provide location estimation for the indoor envi-

ronment in people’s daily life, because of its omnipresence

and lower cost.

Traditionally, indoor localization systems rely on signal

processing techniques to estimate the distance between a trans-

mitter and receiver, the Angle of Arrival (AoA), or the time

of flight (TOF), for inferring the target location. For example,

SpotFi [7] utilized a modified multiple signal classification

(MUSIC) algorithm to achieve decimeter-level location accu-

racy by using AoA and ToF. Chronos [8] was able to compute

the subnanosecond ToF and estimate the target location with

decimeter-level accuracy as well. However, these techniques

are limited by the quality of the signal. In the indoor environ-

ment, WiFi signals are scattered and reflected by walls and

furniture, which result in the inevitable noisy WiFi measure-

ments, especially the phase readings. To alleviate the negative

effect contributed by the offsets, indoor localization systems

usually employ powerful but time-consuming algorithms, such

as the super-resolution algorithm used in SpotFi, which limits

their performance for real-time applications.

Deep learning has been a hot topic since it has achieved

great success in solving tasks, such as data compression,

speech recognition, and image classification. Recently, indoor

localization systems also benefit from the development of

deep learning. Compared with traditional systems, deep learn-

ing makes such systems more efficient in location estimation,

even though it would take more time for training the model.

The first work applying deep learning to indoor localization

is DeepFi [2], which leverages a stack of restricted boltz-

mann machines (RBMs) to build an autoencoder for extracting

location features from WiFi channel state information (CSI).

PhaseFi [1] and BiLoc [9] further improve the the location

accuracy by leveraging different CSI data. Due to the finger-

printing method, the localization problem is transferred to a

matching problem. In the training stage, autoencoders have to

be trained at each training location for extracting fingerprints.

The training process could be time consuming and the size

of fingerprint data may restrict the deployment of the local-

ization system in mobile devices, which usually have limited

storage. To overcome the drawbacks of the autoencoder-based

localization systems, CiFi [3] is the first work to utilize deep

convolutional neural networks (DCNN) for indoor localization.

With DCNN, location estimation is treated as a multiclass clas-

sification problem. Thus, the localization system only needs to
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train one DCNN model in the training process, and the fin-

gerprints collected in the training stage are not essential for

location estimation once the DCNN is trained successfully.

Like CiFi, received signal strength (RSS) and CSI amplitude

have also been utilized to train the DCNN model [10]–[13].

ResLoc [14], [15] proposed a sharing learning approach based

on deep residual learning, which uses the bimodal CSI tensor

data.

Even though deep neural networks (DNN) have achieved

excellent performance on classification problems, some

counter-intuitive properties of DNNs have also been exposed

along with its popularity. Szegedy et al. [16] found that

several machine learning models, including state-of-the-art

neural networks, are vulnerable to adversarial examples.

Goodfellow [17] verified the discovery by misleading the

GoogLeNet [18] with adversarial examples. Deep learning-

based indoor localization systems also face the threat of

adversarial attacks. To evaluate and counteract the threat of

adversarial attacks to DNN-based indoor localization systems,

we propose AdvLoc, an adversarial deep learning for indoor

localization system. Like traditional DCNN-based systems,

AdvLoc operates in two stages: 1) an offline training stage and

2) an online location estimation stage. We apply adversarial

attacks in the online stage, where the perturbations generated

by adversarial attacks are be introduced to the existing clean

inputs of the DCNN. In the offline stage, the DCNN-based

localization model will be trained adversarially to enhance its

robustness against the adversarial examples. Unlike the image

classification models, the DCNN model in the indoor local-

ization system processes the online inputs that do not belong

to any existing class in the training data set (i.e., the mobile

device may be placed at an arbitrary location, rather than

a known training locations). Using the AdvLoc system, we

evaluate the effects of six types of mainstream adversarial

attacks on DCNN-based indoor localization with respect to

accuracy and location error. To defend against such attacks,

adversarial training is implemented in the offline training of

the models. The experimental results validate that adversarial

training utilized in the proposed AdvLoc system is an effective

means to counteract the location errors cause by the first-order

adversarial attacks.

The main contributions made in this article can be summa-

rized in the following.

1) We demonstrate the threat of adversarial attacks to deep

learning-based indoor localization systems by visualiz-

ing the adversarial examples and evaluating the impact

of the various magnitude of perturbation of adversarial

examples to location estimation. The effect of six types

of representative adversarial attacks, including gradient-

based, optimization-based, and spatial transformation-

based attacks, on the indoor localization system, is

investigated in both white-box and black-box attack

scenarios.

2) To the best of our knowledge, this is the first work

to employ adversarial training to enhance the robust-

ness of WiFi CSI-based indoor localization systems.

We introduce adversarial training into the traditional

DCNN-based indoor localization. In the white-box

attack scenario, the modified loss function successfully

alleviates the negative effect resulted from the first-

order adversarial attacks, especially the fast gradient sign

attack (FGSM) [17].

3) The proposed AdvLoc system is implemented with com-

modity 5-GHz WiFi. We verified its performance in two

representative indoor environments with extensive exper-

iments. The experimental results exhibit the threat of

adversarial attacks and show that adversarial training

effectively improves the robustness of the localization

system when the input examples are manipulated by

first-order adversarial attacks.

The remainder of this article is organized as follows.

Section II reviews related work. We present the AdvLoc design

in Section III and our experimental study in Section IV.

Finally, Section V concludes this article.

II. RELATED WORK

With the advances in computing power, the availability of

data, and the development of open-source platforms, deep

learning has been recognized as a powerful tool for many

real-world problems that cannot be solved by conventional

machine learning techniques. However, as Szegedy et al. first

unveiled in [16], using image classification as an example, the

resilience of deep learning has been exposed to the threat of

adversarial attacks. Nowadays, most AI-based services, such

as Apple Face ID and Amazon Alexa, are highly dependent

on the progress of deep learning in image classification and

natural language processing (NLP). The vulnerability of deep

learning networks places user privacy and public safety at risk.

Following the discovery in [16], Finlayson et al. [19] inves-

tigated the vulnerabilities of the medical AI systems under

adversarial attacks and pointed out that the adversarial attacks

may already be in place and contribute to medical fraud. The

diagnostic performance could be affected easily by adding

a small perturbation generated by the common adversarial

attacks, while the manipulated diagnostic probability could

deceive the automated fraud detector evaluating the medical

claims. Furthermore, Finlayson et al. also indicated that the

adversarial attacks are effective for extremely accurate med-

ical classifiers even if the prospective attackers do not have

access to the deep learning model. In [20], both white-box

and black-box projected gradient descent (PGD) attacks were

used to generate adversarial examples. The result showed that

state-of-the-art medical models were misled in both scenar-

ios. Furthermore, researchers have applied adversarial attacks

in other real-world scenarios. For example, Thys et al. [21]

proposed an approach to generate adversarial patches to hide a

person from a DCNN-based human detector. Sharif et al. [22]

presented an approach for generating eyeglass frames to fool

state-of-the-art face recognition systems (FRSs). The exper-

imental results showed that their techniques were effective

for black-box FRSs, as well as state-of-the-art face detection

systems (FDSs).

Not only traditional DCNNs but also the spatiotemporal

graph convolutional network (ST-GCN) is facing the threat of

adversarial attacks. Unlike the medical AI systems relying on
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DCNN for image classification, action recognition applications

utilizing ST-GCN for processing the skeleton data obtained

from RGB-D sensors [23], [24]. Liu et al. [25] proposed con-

strained iterative attacks for skeleton actions (CIASA), which

was based on FGSM and was able to disturb the joint locations

in an action sequence. Even though the features of graph nodes

and graph structure were discrete with certain predefined struc-

tures, the basic FGSM attack was able to fool the ST-GCN in

the form of nontargeted attacks.

Even though the textual data are different from image data

composed of continuous pixel values, adversarial examples

affect DNN for text-based tasks as well. Three types of pertur-

bation strategies, namely, insertion, modification, and removal,

were introduced in TextFool [26] based on the concept of

FGSM. Papernot et al. [27] showed that the recurrent neu-

ral network (RNN) is not immune to the adversarial attacks.

The attack methods used in crafting adversarial image exam-

ples could be adapted to generate sequential adversarial text

by leveraging computational graph unfolding. In a recent

work [28], we investigated the problem of adversarial attacks

on solar power generation forecasting, which is a regression

problem, and showed that both DNN and a LASSO-based

statistical model were vulnerable.

Recently, there has been considerable interest of apply-

ing deep learning to wireless communications and networking

problems [29]. Because adversarial attack has been a common

threat to deep learning systems, researchers have also inves-

tigated the impact of adversarial attacks in wireless systems.

For example, modulation recognition is a key technology of

cognitive radio (CR), for which deep learning techniques have

been developed. Sadeghi and Larsson [30] demonstrated how

adversarial examples degrade the model performance of radio

signal (modulation) classification. Compared with traditional

attacks such as jamming, the adversarial attack required much

less power since only small perturbations were generated.

Lin et al. [31] evaluated four representative adversarial attacks

on modulation recognition. The results showed that regardless

of white box or black box, adversarial attacks could reduce

the accuracy of the target model, while the performance of

iterative attacks was superior to that of single step attacks. A

thorough study of adversarial attacks on IoT device identifi-

cation (or device fingerprinting) was reported in [32], which

was to identify specific wireless transmitters based on received

signals. Although following the same specifications and using

the same protocols, the devices can still be distinguished by

the small defects incurred during the manufacturing process

or the aging process.

III. ADVLOC SYSTEM

Due to the popularity of mobile devices, location

information has been an essential part of IoT. Recently, an

increasing number of researchers have focused on WiFi-

based indoor localization because of the ubiquitous availability

and low cost of WiFi devices. Many indoor localization

systems [1], [2], [9] rely on the fingerprinting method, which

means the fingerprints of known locations need to be measured

and stored in a database for online localization. To reduce

Fig. 1. Indoor localization architecture.

the storage requirement, some systems [3], [10] treat indoor

WiFi fingerprinting as a classification problem, where DCNN

becomes the best choice owing to its great success in image

classification. As Szegedy et al. [16] revealed the vulnerabil-

ity of DCNN models to adversarial examples, consequently,

the DCNN-based localization systems would also be suscepti-

ble to adversarial attacks. To combat such threats, we propose

the AdvLoc system in this article, which utilizes adversarial

training in the offline stage to enhance the robustness of the

network, making it immune to adversarial examples.

A. Architecture of the AdvLoc System

Fig. 1 depicts the architecture of the proposed AdvLoc

system. Like traditional DCNN-based indoor localization

systems, AdvLoc comprises of an offline stage and an online

stage. In the offline stage, CSI tensors are constructed using the

CSI data collected at the receiver for the mobile device placed

at various known training locations. The core of AdvLoc is a

deep residual learning model, ResNet [33], that learns location

features from WiFi CSI data. The ResNet will be trained adver-

sarially using CSI tensors to generate the model for online

localization. New CSI data are collected from mobile devices

placed at an unknown location in the online stage. The adver-

sarial perturbations are generated and injected into CSI tensors

in the online stage, while the new CSI tensors are constructed

in the same way as in the offline stage. As a result, the wireless

channel has no effect on the perturbations. Launching adver-

sarial attacks during the process of CSI tensor generation is

more feasible in both white-box and black-box scenarios (than

from the channel or transmitter sides).

Specifically, in the offline stage, the training data set and

verification data set are collected from identical positions. The

collected observations, such as phase readings, are labeled by

the coordinates of corresponding positions. The location with

the highest similarity in the output of the DCNN model is

selected as the output of the system. Therefore, we could

assess how well our model fits the training data using the

verification data set by examining the verification accuracy in
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Fig. 2. Examples of CSI Tensors when different levels of pertubations are introduced, as indicated by the hyperparameter ε.

Fig. 3. Architecture of the two ResNet models used in AdvLoc: ResNet-18 and ResNet-50 [33].

this stage. In the online stage, the testing data set is collected

from the positions not used in the offline stage. Obviously, the

classification accuracy would not be persuasive to demonstrate

the localization performance of the system. In fact, the output

of ResNet is used as the similarity to calculate the estimated

location. The estimated location T̂ is computed by

T̂ =

N∑

i=1

ti × pi (1)

where pi is the output of the ResNet that depicts the similarity

between the testing location and the training location i, and ti
is the known training location i.

B. CSI Tensor Construction

The CSI tensor used in AdvLoc consists of three slices. Two

of the slices are generated with the estimated angle-of-arrival

(AoA) values using the phase difference data from the three

receiving antennas, while the third slice contains the measured

CSI amplitude values. Considering that the Intel WiFi Link

5300 network interface card (NIC) only supports three anten-

nas and 30 subcarriers for each antenna, the size of the CSI

tensor is set to 30×30×3. Fig. 2 depicts CSI tensors used in

our AdvLoc system when different levels of perturbations are

introduced (as indicated by the parameter ε). As we can see,

when ε = 0, no perturbation is added and the tensor is a clean

input to the ResNet model. Whereas, the rest of the tensors

are adversarial examples generated using the FGSM method,

where ε is a hyperparameter that controls the magnitude of the

perturbation. When ε is less than 0.4, the perturbation added in

the tensors is negligible (i.e., visually invisible). However, the

tensor will be distorted obviously, once ε is larger than 0.5.

We shall study the relationship between ε and the location

estimation error in the following sections.

C. Architecture of the ResNet Models

To investigate the effect of adversarial attacks on DCNN-

based indoor localization systems, two popular ResNet models

are adopted in the AdvLoc system, including ResNet-18 and

ResNet-50 [33]. The ResNet-18 model will be leveraged as the

localization model in our study of both white-box attacks and

black attacks. In the study of black-box attacks, the ResNet-50

model will be trained as a substitute model for mimicking the

localization model, i.e., the ResNet-18 model.

Fig. 3 presents the detailed structure of the localization

models. The building blocks shown in the brackets depict the

component of each block. For example, the input block of

the ResNet-18 model includes 7 × 7 filters for generating

64 feature maps, then max pooling is leveraged to shrink the

size of the feature maps. The Conv_Block4 of the ResNet-

18 model is composed of two building units, each containing

two 3 × 3 convolution layers. The shortcut connection exists

in each building unit of the Conv_Blocks. Since localization

is treated as a classification problem in the fingerprinting-

based system, the cross-entropy loss is adopted in the training

process.

D. Adversarial Attacks

Szegedy et al. [16] showed that adversarial examples hardly

distinguishable from the originals can fool DCNN-based
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image classifiers such as AlexNet [34]. Since then, security

has become an important problem in AI/ML research, espe-

cially for privacy-sensitive applications such as localization.

To better evaluate the resilience of DCNN-based localization

systems against adversarial attacks and the effectiveness of

defense strategies, we implement the following six types of

adversarial attacks in this study.

1) Fast Gradient Sign Method: FGSM was proposed by

Goodfellow et al. in 2015 [17]. The method obtains a pertur-

bation, denoted by η, by calculating the gradient of the loss

function L(·) with a given input, as

η = ε · sign(∇xL(θ, x, y)) (2)

where θ represents the parameters of a well-trained model; x

and y are the input and its corresponding label, respectively;

and ε is a hyperparameter, which controls the magnitude of the

perturbation. Since L(·) is the loss function of the model, the

perturbation η can be calculated by using the first derivative

of L(θ, x, y) through the backpropagation algorithm.

In 2017, Miyato et al. [35] modified FGSM by canceling the

sign(·) function in (2). The new method, fast gradient method

(FGM), is a generalization of FGSM, where the perturbation

is give by

η = ε ·
∇xL(θ, x, y)

‖∇xL(θ, x, y)‖2

. (3)

With (3), the perturbation can be easily created. However, it

is not safe to say that the perturbation will contribute to mis-

classification, even though the loss value for the target label to

be misclassified is increased by introducing the perturbation.

2) Projected Gradient Descent: Based on the one-step

FGM, an iterative version of FGM termed PGD was proposed

in 2017 [36]. Madry et al. created the PGD adversary to

enhance the robustness of the classifier against the first-order

attacks. With the iterative method, the adversarial examples

{xadv
0 , xadv

1 , . . . , xadv
N+1} are generated as follows:

xadv
0 = x

xadv
N+1 = Clipx,ε

{
xadv

N + α ·
∇xL(θ, x)

‖∇xL(θ, x, y)‖2

}
(4)

where α is a hyperparameter for each iteration, which is

usually set as ε/N for a given ε. With this approach, the

perturbation is always small and around the original input x

in the Lp ball. Also, Clipx,ε is used to project the perturba-

tion back into the Lp ball if necessary. PGD has been verified

to be a stronger adversarial attack method than the one-step

FGM/FGSM at the cost of transferability.

3) Momentum Iterative Method: Since PGD generates

adversarial examples with a greedy approach along the direc-

tion of the gradient in each iteration, the local maxima could

be reached easily, resulting in poor transferability. To solve

this problem, the momentum-based method is integrated into

FGSM. Instead of using the gradient in one iteration to update

the perturbation, the momentum iterative method (MIM) lever-

ages the gradient of the previous iterations to guide the update

of the perturbation [37]. The memory of previous gradients can

help to avoid the local maxima, which occur in PGD. Thus,

it breaks the dilemma of choosing between the “underfitted”

FGSM and the “overfitted” PGD.

To generate adversarial examples with MIM, we have
{

g0 = 0

xadv
0 = x⎧

⎨
⎩

gN+1 = µ · gN +
∇xL

(
θ,xadv

N ,y
)

∥∥∇xL
(
θ,xadv

N ,y
)∥∥

1

xadv
N+1 = xadv

N + α · sign
(
gN+1

)
.

(5)

Note that gN includes the gradients from previous (N − 1)

iterations with a decay factor of µ. Here α can also be set to

ε/N when ε is given. Thus, MIM retains the transferability of

adversarial examples under increased iterations.

4) DeepFool Attack: In FGSM/FGM, the choice of the

hyperparameter ε significantly affects the performance of

adversarial attacks, since ε decides the magnitude of per-

turbation. In DeepFool [38], perturbations are computed by

solving optimization problems. For a binary affine classifier,

f (x) = wTx + b, the optimal perturbation is given by

η∗(x) := argmin ‖η‖2

s.t. sign(f (x0 + η)) �= sign(f (x0)) (6)

which has the following closed-form solution:

η∗(x) = −
f (x0)

‖w‖2
2

w. (7)

The iterative method is adopted in DeepFool for general

binary classifiers. In each iteration, Deepfool assumes f is lin-

ear in the neighborhood of the current x. Hence the optimal

perturbation is calculated as

η∗(x) = argmin
ηN

∥∥ηN

∥∥
2

s.t. f (xN) + ∇f (xN)TηN = 0. (8)

Considering that multiclass classification can be split into

multiple binary classification, Deepfool could also find the

optimized perturbation effectively for a nonlinear multiclass

neural network. Furthermore, it has been demonstrated that the

adversarial examples generated by Deepfool have five times

smaller perturbations comparing with those from FGSM on

MNIST and CIFAR10 models.

5) Carlini Wagner Attack: Defensive distillation [39] is a

popular defensive method, which robustifies neural networks

to counteract adversarial examples. However, Carlini and

Wagner proposed a type of attacks to make defensive distilla-

tion ineffective [40]. Among the various distance metrics used

for evaluating similarities, the Carlini Wagner attacks (CW) are

designed with the L2, L∞, and L0 distance metrics. For the L2

attack, adversarial examples are generated with w, obtained by

solving

min

{∥∥∥∥
1

2
(tanh(w) + 1) − x

∥∥∥∥
2

2

+ c · f

(
1

2
(tanh(w) + 1)

)}
(9)

where the loss function f (·) is defined as

f
(

xadv
)

= max
{

max
{
ζ
(
x′

)
i

: i �= t
}

− ζ

(
xadv

)
t
,−ψ

}
(10)
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where ζ(·)i is a logistic for class i, ψ controls the confidence

with which the misclassification occurs, and c is a hyperpa-

rameter that tradeoffs between the magnitude of perturbation

and success rate of attack. For the L0 attack, considering that

the L0 metric is nondifferentiable, the pixels in x that affect

the classifier significantly are selected and attacked with the

Carlini and Wagner L2 (CWL2) attack in an iterative manner.

To create adversarial examples with the L∞ metric, the L2

term in (9) is replaced by a penalty for any terms that exceed

τ , i.e.,

min

{
c · f (x + η) +

∑

i

[(
ηi − τ

)+
]}

(11)

where τ is decreased iteratively with an initial value of 1. Even

though the CW attack has been demonstrated to have defeated

the defensive distillation method, the time cost in generating

adversarial examples using this method is much larger than

that of all the previous attack methods.

6) Spatial Transformation Method: Unlike DeepFool and

CW that construct adversarial examples by solving an

optimization problem, the spatial transformation method

(STM) constructs adversarial examples with a natural trans-

formation of the original inputs [41]. The transformation

parameters, i.e., (δu, δv, θ), could be optimized by the grid

search or the PGD method. The position of a pixel (u, v) is

updated as follows:
[

u′

v′

]
=

[
cos θ − sin θ

sin θ cos θ

]
·

[
u

v

]
+

[
δu

δv

]
. (12)

According to [41], STM can successfully defeat the CNN that

was trained against an L∞-bounded adversary.

E. White-Box and Black-Box Attacks

All the above attack methods are white-box attacks, which

means that the adversary is capable of acquiring the knowl-

edge of the target model, or even the training data set. This

possibility is usually slim in practice, especially for accessing

the model and data set related to personal privacy or homeland

security. To make adversarial attacks more feasible, the more

challenging black-box attacks have been investigated, where

the attacker has no or limited knowledge of the model. We

will also leverage black-box attack methods to evaluate the

threat of adversarial attacks to the AdvLoc system.

A comparison of white-box and black-box attacks is shown

in Fig. 4, where a substitute model is utilized to mimic

the black-box model with infinite queries. Since information

of the substitute model is open to the attacker, all of the

attack methods designed for the white-box scenarios can be

leveraged to fabricate adversarial examples in the black-box

scenario. Due to the transferability of the adversarial examples,

the black-box model would also be misled by the adversar-

ial examples. However, this strategy is easy to be detected.

Moreover, Papernot et al. [42] noticed that it will be intractable

for attackers to build a substitute model with a limited num-

ber of queries. Thus, a jacobian-based data set augmentation

technique (JAD) will be used in our AdvLoc system, which

ensures that the substitute model is able to approximate the

Fig. 4. Comparison of white-box and black-box attack approaches.

Fig. 5. Training the substitute model.

decision boundary of the black-box attack with a limited num-

ber of queries. Fig. 5 depicts the procedure of JAD. First, a

small data set D0 is collected and labeled by the black-box

model O. The substitute model will be trained with the data

set (D0, Õ(D0)). Next, D0 is augmented to generate a larger

date set D1 given by

D1 =
{
x + β · sign

(
JF

[
Õ(x)

])
: x ∈ D0

}
∪ D0 (13)

where β is a parameter of augmentation, and JF is the Jacobian

matrix of the substitute model F. Thus, a growing augmented

dataset will be generated iteratively and be leveraged to force

the substitute model to approximate the black-box model. In

this article, we would utilize JAD for all the previous attack

methods to investigate the black-box attacks and defense for

the indoor localization systems.

F. Where to Launch Adversarial Attacks

Due to the nature of wireless communication systems,

adversarial attacks can be launched from three places, i.e.,

the transmitting side, the channel side, and the receiving side.

For indoor localization systems, e.g., WiFi-based systems, the

attacking transmitters (APs) play a role of transmitter. APs are

an essential part of the communication infrastructure, which

are usually better secured with various cybersecurity technolo-

gies. It is usually more challenging to inject perturbations

through the transmitter (i.e., AP) side. On the other hand,

adversarial attacks from the channel side would be more fea-

sible because of the open wireless channels. However, the

channel effect should be considered when generating adversar-

ial perturbations. For advLov, we assume that the adversarial

perturbations are injected when the CSI tensors are generated,

which usually happens at the user side. Compared to APs and

from the channel, receive-side (user side) attacks are more fea-

sible because it is easier to hack into a personal user device,
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e.g., using phishing and a malware, to inject adversarial pertur-

bations. Moreover, the channel effect is also eliminated when

the perturbations are introduced from the user side.

G. Adversarial Training

To make the AdvLoc system resilient to adversarial attacks,

its localization model implements adversarial training, which

enhances the robustness of the neural network by training it

with a mixture of adversarial and clean examples. The basic

idea of adversarial training is to augment the original loss

function with an adversarial term, so that it will be resistant

to adversarial examples. Goodfellow et al. [17] demonstrated

that the adversarial loss function as follows:

L̃(θ , x, y) = γ · L(θ , x, y) + (1 − γ ) · L(θ , x + η, y) (14)

was effective to make the neural network immune to FGSM

attacks, where η = ε ·sign(∇xL(θ, x, y)). In (14), γ is a hyper-

parameter to adjust the relative importance of the loss terms

of the original and adversarial examples, which is set to 0.5

in our implementation of AdvLoc.

In the next section, we will leverage adversarial training

to study the effect of defense for indoor localization systems

against adversarial attacks. The resulting localization model

that is adversarially trained will be called by the corresponding

attack method used in adversarial training. For example, if the

localization model is trained with loss function (14) and the

disturbance η in (14) is generated using FGSM (or MIM and

PGD), the resulting adversarially trained model will be called

FGSM-AT (or MIM-AT and PGD-AT, respectively).

IV. EXPERIMENTAL STUDY

A. Experiment Configuration

To evaluate the performance of AdvLoc under adversar-

ial attacks in the online stage, we deploy the six types of

adversarial attacks in both white-box and black-box scenar-

ios. The AdvLoc system is implemented with Intel 5300 NIC

in the 5.58-GHz band. Two laptops are configured as an access

point and a mobile device, respectively. The distance between

adjacent antennas is adjusted to 2.68 cm, which is a half of

the wavelength. To inject adversarial attacks in the online

stage, CleverHans [43] is leveraged to generate adversarial

perturbations for each new CSI tensor. Furthermore, both the

localization model trained in the offline stage and the adver-

sarial example generation model used in the online stage are

implemented with the TensorFlow framework on a NVIDIA

RTX 2080 GPU.

For the sake of diversity, we examine the AdvLoc system in

two representative indoor environments, i.e., a straight corridor

and a computer laboratory.

1) Straight Corridor: First, the AdvLoc system is deployed

in a straight corridor in Broun Hall in the Auburn

University campus. This indoor testbed covers an area of

8×24 m2, which includes the rooms on both sides of the

corridor. As a typical indoor structure, the straight cor-

ridor is simple. Since there is no obstacles that result

in complex scattering and reflection of WiFi signals,

Fig. 6. Layout of the corridor scenario.

Fig. 7. Layout of the lab scenario.

the line-of-sight (LOS) path is the dominant compo-

nent in this environment. As is shown in Fig. 6, the

red squares represent the training locations in the offline

stage, while the green dots denote the testing location in

the online stage. The single access point is placed at the

right end of the corridor in Fig. 6. The distance between

consecutive training locations is 1.8 m.

2) Computer Laboratory: Next, we assess the AdvLoc

performance in a computer laboratory, which is also

located in Broun Hall. Compared with the corridor, the

computer laboratory is a cluttered environment. Most of

the LOS paths of WiFi signals are blocked by tables,

chairs, and computer chassis. In this case, the access

point is placed close to the north center of the lab-

oratory so that it could cover the entire area. Fig. 7

depicts the selection of training positions (marked as

red squares) and testing locations (marked as green

dots). The distance between adjacent training locations

is also 1.8 m.

To evaluate the system performance, we investigate the

verification accuracy in the offline stage (see Section III-A).

Because the training dataset and testing dataset are collected

from identical locations, verification accuracy is defined as

π =
Number of correct predictions

Total number of predictions
(15)

which indicates the capability of the DCNN model in solving

the multiclass classification problem. In addition, we also eval-

uate the performance of the localization system by calculating

the location estimation error E , given by

E =
∥∥T̂ − T

∥∥
2

(16)
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Fig. 8. Verification accuracy of the localization models in the lab environ-
ment.

where T̂ is the estimated location given in (1) and T is the

ground truth.

B. Verification Accuracy Under White-Box Attacks

We first confirm the verification accuracy of AdvLoc under

white-box attacks in both indoor environments. For indoor

localization systems, the training dataset and verification

dataset are collected from identical positions. The verifica-

tion accuracy gives us an unbiased assessment of how well

our model fits the training data. Fig. 8 depicts the verifi-

cation accuracy of the original localization model when not

being attacked (called “Original Model”), and the verification

accuracy of the original model when attacked by adversar-

ial examples generated using FGSM, MIM, and PGD [called

“Original Model (FGSM),” “Original Model (MIM),” and

“Original Model (PGD),” respectively] in the lab setting. It

shows that all the three attack methods successfully degrade

the verification accuracy as ε is increased from 0.1 to 1. It

is intuitive that a larger magnitude of perturbation causes a

larger decrease in verification accuracy. Fig. 8 shows that the

effects of PGD and MIM on the original model are compara-

ble to each other, while FGSM is less effective than the two

iterative methods.

Furthermore, adversarial training has been adopted in

AdvLoc to combat adversarial attacks. Since the verifica-

tion accuracy of adversarially trained localization models (i.e.,

FGSM-AT, MIM-AT, and PGD-AT) is very close when not

being attacked, their average verification accuracy (called

“Adversarial Trained Models” in Fig. 8) is very close to that of

the original model. Thus, it is safe to say that adversarial train-

ing does not degrade the performance of the localization model

when it is not attacked. With adversarial training, the verifi-

cation accuracy of each model is enhanced remarkably when

under adversarial attacks. For FGSM-AT, the attacked verifica-

tion accuracy (the light blue line) remains above 0.74. When

ε = 1, the attacked verification accuracy of FGSM-AT reaches

0.8. Compared with the original model, FGSM-AT achieves an

improvement of 0.12 in verification accuracy when ε = 0.1,

Fig. 9. Verification accuracy of the localization models in the corridor
environment.

and an improvement of 0.44 when ε = 1. In addition, the

FGSM-AT curve is more stable for the whole range of ε, indi-

cating that adversarial training is an effective defense against

FGSM attacks. Similar to FGSM-AT, adversarial training also

strengthens the robustness of the localization model against

MIM and PGD attacks, even though the extent of the enhance-

ments is not as notable as that of FGSM-AT. Nevertheless,

the average improvements in verification accuracy achieved

by MIM-AT and PGD-AT over the original model are still

both greater than 0.25.

Fig. 9 presents the verification accuracy of the localiza-

tion model in the corridor environment. As in Fig. 8, the

localization model is attacked by three methods: 1) FGSM;

2) MIM; and 3) PGD. Since the corridor is a LOS domi-

nant environment, the WiFi signals do not suffer from severe

multipath effects. Therefore, the overall localization accuracy

in the corridor is higher than 0.6, which is better than the lab

case. With the increment of ε, all three attack methods con-

tribute to degraded verification accuracy gradually, which is

in accordance with the results shown in Fig. 8. In general,

PGD and MIM are more effective than FGSM, even though

FGSM decreases the verification accuracy to 0.65 when ε = 1.

Moreover, adversarial training is again an effective defense

strategy for FGSM. For the adversarial examples generated by

FGSM, the verification accuracy of FGSM-AT reaches 0.88

when ε is increased to 1. Both MIM-AT and PGD-AT also

provide effective defense against the corresponding attacks,

even though the extents of gains are not comparable to that of

FGSM-AT.

To better evaluate the threat of adversarial attacks to indoor

localization systems, three additional attack methods, STM,

DeepFool, and CWL2, are also leveraged in the experi-

ments. As shown in Fig. 10, the verification accuracy drops

severely under these attacks. In the corridor case, all the

three attacks reduce the verification accuracy to 0.13 or even

worse. Similarly, the verification accuracy decreases from 0.9

to lower than 0.065 by all the attacks in the lab case. Thus,

the optimization-based and the spatial transformation-based

attack methods are also harmful to indoor localization system.
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Fig. 10. Verification accuracy of the localization models attacked by CWL2,
Deepfool, and STM.

Fig. 11. Verification accuracy of the DCNN localization models in the lab
environment.

In addition, according to [44], the localization model does

not acquire transferability from the adversarial training, which

means the model is still vulnerable to other types of adver-

sarial attacks even if it is trained adversarially. Thus, further

investigation is needed on adversarial training to take vari-

ous types of attacks into account rather than a specific attack

method.

In addition to the ResNet model, we also examine the effect

of adversarial attacks and adversarial training on DCNN-based

systems. The network used for comparison is composed of

three convolutional layers. The kernel size for each layer is

8 × 8, 6 × 6, and 5 × 5, respectively, while 16 feature

maps are generated in each convolutional layer. ReLu is used

as the activation function following the convolutional layers.

As in the ResNet model, cross-entropy loss is calculated for

weight updates. Figs. 11 and 12 present the verification accu-

racy of the DCNN-based model under white-box attacks in the

lab and corridor environments. As shown in Fig. 11, all the

attack methods successfully degrade the verification accuracy

in the lab environment. When ε reaches 0.4, all the verification

Fig. 12. Verification accuracy of the DCNN localization models in the
corridor environment.

accuracies are reduced to lower than 0.1. Because of the sim-

pler structure of DCNN, it is quite sensitive to adversarial

attacks. With adversarial training, the performance of all the

models is recovered to some extent. However, there is no

clear performance difference among the models. The verifi-

cation accuracy in the corridor case is presented in Fig. 12.

Unlike the lab case, the corridor case is LOS-dominant. Thus,

the verification accuracy of the original model remains at 1.

However, the performance breaks down as ε goes up to 0.2.

All the three attack methods reduce the verification accuracy

to 0 when ε is 0.3. Adversarial training also achieves similar

effectiveness in dealing with adversarial perturbations, even

though the verification accuracy is not recovered to over 0.85.

By examining the vanilla DCNN-based localization system,

we notice that the robustness of such systems is determined

by the complexity and depth of the network models. Shallow

networks, such as the vanilla DCNN, are highly susceptible to

the adversarial perturbations even with a low ε, which ham-

pers us to examine the effect of perturbation magnitude to

the system performance. Furthermore, [15] and [3] showed

that a deeper DCNN usually achieves a better performance in

fingerprinting-based indoor localization. Thus, we will inves-

tigate the effect of adversarial attacks to localization system

using the ResNet model in the remainder of this section.

C. Location Error Under White-Box Attacks

Even though location estimation is treated as a multiclass

classification problem in DCNN-based localization systems,

a unique challenge in such localization systems is that an

online input to the trained model usually does not belong to an

existing class in the offline training dataset. For example, we

label the CSI data collected from a position between point-A

and point-B with label A in the testing dataset. The location

prediction would be correct only if the localization system pro-

duces the same label. However, the testing position is usually

between point-A and point-B. Obviously, it would be unfair to

say that the location prediction is wrong when the prediction

from the system is B. To address this issue, the output of the
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Fig. 13. Location error of the localization models when attacked by FGSM
in the lab environment.

DCNN is usually used as similarity to calculate the estimated

location using a Bayesian method (see Section III-A). Thus,

test accuracy in the online stage may not precisely evaluate

the performance of the system. In this article, location error is

also utilized to measure the effect of adversarial attacks and

adversarial training on the localization system.

First, we examine the performance of AdvLoc in the lab set-

ting. Fig. 13 presents the location errors of FGSM-AT when

attacked by FGSM, and of the original model when attacked

by FGSM in verification and online testing. The blue dashed

line is the online location error of the original model using

clean inputs in online testing, while the verification location

error for the same setup is denoted by a red dashed line. The

errors are 2.28 and 0.47 m, respectively. It is obvious that

the verification error rises with the increment of ε when the

localization model is under attack, which is consistent with the

verification accuracy shown in Fig. 8. For the online testing

error, it also keeps going up along with the rise of ε. When

ε = 0.1, the adversarial examples increase the online testing

error to 2.368 m. The highest online testing error, 2.613 m,

occurs when ε = 1. Furthermore, the performance of adver-

sarial training is verified in Fig. 13 as well. Based on the

FGSM-AT model, the upward trend of location errors in veri-

fication and online testing disappears. The online testing error

of FGSM-AT stays around the error of the original model

that leverages clean inputs. Even if ε = 1, the increment of

location error is only about 0.04 m, which is negligible in a

lab environment. For the verification error, FGSM-AT guar-

antees that no verification error is higher than 0.81 m when

the model is under attack. It is noteworthy that the verification

error declines from 2.08 to 0.70 m, when ε is fixed at 1, once

adversarial training is leveraged in the localization model.

For the corridor case, the location errors of FGSM-AT

attacked by FGSM and the original localization model attacked

by FGSM are shown in Fig. 14. Compared with Fig. 13, the

upward trend of errors in the corridor case is not as obvi-

ous as that of in the lab case. For the online testing error

when the original localization model is attacked by FGSM,

Fig. 14. Location error of the localization model attacked by FGSM in the
corridor environment.

Fig. 15. Location error of the localization models attacked by MIM in the
lab environment.

the error does not increase with ε, even though FGSM deteri-

orates the localization error from 1.36 to 1.52 m on average.

The verification location errors reveal a similar behavior. The

maximum of the verification error increment is only 0.32 m

when the original localization model is attacked by FGSM

with ε = 0.6. Adversarial training is still an effective defense

strategy against FGSM in the corridor case. The green line in

Fig. 14 represents the online testing errors when FGSM-AT is

attacked by FGSM. As we can see, the errors of FGSM-AT

are obviously lower than that of the original model attacked

by FGSM. The average error of FGSM-AT is 1.36 m, which

is closed to the average error of the original model with clean

inputs, i.e., 1.3504 m.

The effect of MIM and the corresponding adversarial

training on location error is depicted in Figs. 15 and 16,

respectively. The verification error of the original model grows

significantly when attacked by MIM, which is consistent with

the results presented in Fig. 8. Furthermore, MIM causes much

larger errors than FGSM. In Fig. 15, the verification location

error reaches 2.36 m when attacked by adversarial examples

generated by MIM with ε = 1, which is much higher than
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Fig. 16. Location error of the localization models attacked by MIM in the
corridor environment.

Fig. 17. Location error of the localization models attacked by PGD in the
lab environment.

that of FGSM. A similar phenomenon is observed in the cor-

ridor case. The verification error reaches 0.62 m when ε = 1,

whereas the verification error is only 0.44 m when ε = 1 with

FGSM. MIM is thus a stronger attack method than FGSM.

Additionally, Fig. 15 shows that MIM-AT does not effectively

eliminate the effect of MIM. However, adversarial training

successfully removes the rising trend of the online testing

error in the corridor case with MIM-AT. According to Fig. 16,

the MIM-AT model has a commensurable performance as the

unattacked original model.

Figs. 17 and 18 present the location errors of PGD related

experiments. First, the location errors in the lab case are

given in Fig. 17. Similar to MIM, PGD, as an iterative attack

method, degrades the verification precision remarkably. The

location errors climb up with the increase of ε when the local-

ization model is attacked by PGD. Nevertheless, the online

testing error is not improved by adversarial training in the

lab case, which is similar to the MIM related experiments. In

the corridor case, adversarial training effectively enhances the

online testing precision and verification precision.

Fig. 18. Location error of the localization models attacked by PGD in the
corridor environment.

It can be seen from Figs. 14, 16, and 18 that adversar-

ial training could always reduce both online testing errors and

verification errors in the corridor case. Moreover, the adversar-

ial attacks, such as FGSM, MIM, and PGD, could not degrade

much the performance of the localization model in the corri-

dor environment. This is because the multipath effect is not

as strong in the corridor case, and it is relatively easier for

the DCNN model to distinguish the WiFi signals from dif-

ferent locations. Such “easy-to-distinguish” signals contribute

to the robustness of the model, especially when the size of

the training data set is not large. As a result, the effectiveness

of adversarial attacks is constrained in the corridor case, and

adversarial training is also more effective. In the lab case,

the received WiFi signal is a superposition of the signals

from multiple paths. The localization model becomes more

gullible in facing with such noisy signals. Moreover, consid-

ering the fact that the class of the new CSI tensors in the

online stage usually does not belong to any class used in offline

training, such noisy signals make adversarial training struggle

in the online testing. Hence, even though adversarial train-

ing achieves an acceptable performance in defending FGSM

attacks, it is not as effective for stronger attacks, such as MIM

and PGD, in the online stage.

We also examine the effect of optimization-based and spa-

tial transformation-based attack methods, including CWL2,

DeepFool, and STM, and their location errors in the lab

and corridor environments are presented in Fig. 19. We find

the optimization-based attacks, i.e., CWL2 and DeepFool,

cause higher location errors in verification and online test-

ing. Compared with FGSM, MIM, and PGD, DeepFool poses

the strongest threat to localization systems in the lab case.

Moreover, both CWL2 and DeepFool increase the testing

errors in the corridor case to over 2 m, which is much higher

than that caused by the traditional one-step or iterative attacks.

D. Location Error Under Black-Box Attacks

The white-box attacks rely on knowledge of the target

DCNN model, which may not be available to adversaries in
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Fig. 19. Location error of the localization models attacked by CWL2,
Deepfool, and STM in the white-box scenario.

Fig. 20. Effect of black-box attacks on the location error of the localization
models in the lab environment.

many cases. Therefore, black-box attacks would be more prac-

tical in the real world. To investigate the threat of black-box

attacks and evaluate the corresponding defense strategies, we

implement all the previously mentioned attack methods based

on the black-box attack approach.

First, FGSM, MIM, and PGD are deployed with the black-

box approach to examine the their impacts in the lab case.

As shown in Fig. 20, all the three attack methods exhibit out-

standing performance in increasing the verification location

error. However, the online testing errors are not affected by

the attacks severely. The maximum increase in location error

is only about 0.25 m under FGSM generated perturbation with

ε = 1. Compared with the white-box attacks, the degradation

of online testing error is negligible in Fig. 20.

Fig. 21 describes the performance of the black-box attacks

in the corridor case. Because of the robustness of the local-

ization model, the online testing errors are not influenced

much by the black-box attacks. For the verification error,

the maximum increment is only about 0.3 m, even though

a slightly upward trend is observed in Fig. 21. Thus, it is

Fig. 21. Effect of black-box attacks on the location error of the localization
models in the corridor environment.

Fig. 22. Location error of the localization models attacked by CWL2,
DeepFool, and STM in the black-box scenario.

safe to say that our localization model for the corridor case is

robust enough against black-box attacks. In other words, the

adversarial examples generated by the substitute model (i.e.,

ResNet-50) for black-box attack fail to mislead the original

DCNN model.

We also leverage the optimization-based and spacial

transformation-based attack methods to evaluate the system

under black-box attacks. Comparing Fig. 19 with Fig. 22, we

notice that each result in Fig. 22 is lower than the corre-

sponding result in Fig. 19. CWL2, DeepFool, and STM could

not achieve similar performance when used for the black-box

attack. The difference in the knowledge between the black-

box model (i.e., ResNet-18) and the substitute model (i.e.,

ResNet-50) limits the performance of the attacks.

V. CONCLUSION

In this article, we presented AdvLoc, an adversarial deep

learning for indoor localization system using CSI tensors,

which is resilient against the typical first-order adversarial

attacks. With the proposed AdvLoc system, we analyzed
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the effect of six types common adversarial attacks in both

white-box attack and black-box attack scenarios. The exten-

sive experimental study exposed the threat of the adversarial

attacks to indoor localization systems and validated the supe-

rior performance of the proposed AdvLoc system in defending

against first-order adversarial attacks.
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