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Abstract—With the rapid growth of the Internet of Things (IOT), the Radio Frequency Identification (RFID) technology has been
recognized as an effective and low-cost solution for many loT applications. In this paper, we study the problem of utilizing a sparse
RFID tag array for backscatter indoor localization. We first theoretically and experimentally validate the feasibility of using sparse tag
arrays for direction of arrival (DOA) estimation. We then present the SparseTag system, which leverages a novel sparse tag array for
high-precision backscatter indoor localization. The SparseTag system includes sparse array processing, difference co-array design,
DOA estimation using a spatial smoothing based method, and a localization method. A robust channel selection method based on the
RFID tag array is adopted for mitigating the multipath effect. The SparseTag system is implemented with commaodity RFID devices. Its
superior performance is validated in two different environments with extensive experiments and comparison to baseline schemes.

Index Terms—Radio Frequency Identification (RFID), indoor localization, direction of arrival (DOA), sparse array, difference co-array.

1 INTRODUCTION

ITH the rapid growth of the Internet of Things (I0T),
Wthe Radio Frequency Identification (RFID) technol-
ogy has been regarded as an effective and low-cost solution
for many emerging loT applications. In addition to the wide
adoption in traditional identification applications in various
fields, such as retailing, sports, library, manufacturing, and
supply chain management, positioning of RFID tags has
attracted increasing interest from researchers in recent years.
Rather than reading the stored Electronic Product Code
(EPC) from RFID tags, the low level data of the RFID
channel, such as received signal strength indication (RSSI)
and phase, can be collected from the received tag responses
and leveraged for tag localization.

RSSI-based technique has been proposed to localize
RFID tags [2], but the accuracy of such systems is usually
limited by the low resolution and randomness of the RSSI
data. Active RFID tags have been adopted in prior works,
which usually has a much higher cost than the passive
tags. For passive tag based localization, phase angle has
been widely utilized because of its high resolution and
stability. However, due to the wide beam of polarized reader
antenna and the multipath effect, high-accuracy positioning
of passive tags is still a big challenge. To achieve narrow
beams of the reader antenna for high-accuracy localization,
multiple antennas can be utilized [3], [4], but at a higher cost.
Systems with a single moving antenna or moving RFID tags
are then proposed for reduced cost [5]-[7], which generate
additional virtual antennas instead of using real ones. These
techniques can achieve high localization accuracy, but the
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moving the antenna or tag incurs time delay and requires
careful calibration of the system.

Recently, RFID tag array has been leveraged to improve
the accuracy and the robustness of RFID-based sensing
systems [1], [8]. For example, Tagyro uses a hologram-based
method to transform phase offset to orientation of the tag
array [9] for tracking the 3D orientation of passive objects.
RF-Wear is developed for orientation estimation with a uni-
form linear array (ULA) for body-frame tracking [10]. The
accuracy of direction of arrival (DOA) based localization
techniques can be improved by utilizing more antennas.
Thus leveraging a tag array with more RFID tags is an ef-
fective way to achieve high positioning accuracy. Compared
with the systems with multiple polarized antennas, the cost
of building a passive RFID tag array is negligible.

However, the technical challenges still exist for tag array-
based localization, such as how to mitigate the multipath
effect from the propagation environments and the phase
distortion caused by mutual coupling between RFID tags.
To deal with the influence of multipath effect, some existing
techniques leverage a mobile antenna to localize a tag array
in different positions [11], [12]. Although the mobile antenna
can reduce the cost, the specialized mobile shelf and motor
incur additional cost. For DOA based localization, the mul-
tipath effect could be effectively mitigated by utilizing an
RFID tag array with sufficient number of tags.

However, when the traditional ULA tag array is used,
the tag density could be high when many tags are placed
on a small surface of the object, such as a book or a small
package. In such scenarios, the accuracy will be influenced
by the strong mutual coupling effect, which introduces
additional frequency offset as well as amplitude offset of
the resonance peak [13], [14]. It has been proved by several
existing systems that mutual coupling generates consid-
erable interference to the collected phase angle of RFID
tags, which degrades the localization performance [15], [16].
Furthermore, the backscattered signal from RFID tags may
not be sufficiently strong to be detected by the antenna,
because the strength of the signal is also affected by mutual
coupling. Thus, a special tag array with a lower density
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than ULA is needed, to be resilient to mutual coupling and
deliver accurate DOA estimation.

In this paper, we propose a novel sparse RFID tag array
for tag localization [1]. We first an analysis of the mutual
coupling effect and prove that the phase difference from
pairs of tags used in our system is independent to the
coupled voltage and mutual impedance. Next, we present
the SparseTag system, i.e., a Sparse RFID Tag array system
for high-precision backscatter indoor localization, which
comprise a sparse tag array and an RFID reader with two
antennas. We analyze our sparse array processing for DOA
estimation, which is quite different from the traditional
MUSIC algorithm based methods using a ULA [17]. The
key idea is to obtain a new signal vector with a difference
co-array, which is a longer array whose antenna locations
are not evenly spaced. In addition, we design a new sparse
RFID tag array, which has a symmetric structure and is
effective for mitigating the mutual coupling effect. We de-
rive its difference co-array and prove its several important
properties, such as its hole-free feature, degrees of freedom
(DOF), and weight function. We analytically show why the
proposed sparse tag array can outperform ULA on DOA
estimation. Then, we develop a DOA estimation scheme
using the difference co-array of the proposed sparse tag
array with a spatial smoothing method. Finally, we provide
a localization method based on the two estimated DOAs,
while a robust channel selection method is proposed for
mitigating the multipath effect. We implement SparseTag
with off-the-shelf RFID tags and reader, and evaluate its
performance in two environments, including a computer
laboratory and an anechoic chamber, where superior DOA
estimation and location performance over the ULA-based
benchmark scheme are demonstrated.

The main contributions made in this paper are summa-
rized as follows.

o We justify the feasibility and advantages of utilizing
a sparse tag array for DOA based indoor localization
through analysis and experiments. To the best of
our knowledge, this is the first work to leverage
sparse tag arrays for backscatter indoor localization,
which does not require to move either the tags or the
antenna(s).

e We design the SparseTag system, which includes
sparse array processing, difference co-array design,
DOA estimation using a spatial smoothing based
method, and a localization method. We propose
a new sparse tag array design and analytically
prove its superior performance over the traditional
ULA design. In addition, a robust channel selection
method based on the sparse tag array is proposed for
mitigating the indoor multipath effect.

e We implement SparseTag with off-the-shelf RFID
tags and reader, and evaluate its performance in
two indoor environments, including a computer lab-
oratory and an anechoic chamber, with extensive
experiments. The experimental results verify the ef-
fectiveness of the proposed SparseTag system.

The remainder of this paper is organized as follows. We
analyze the mutual coupling effect on RFID phase difference
and the success rate of sampling in Section 2. The proposed
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SparseTag system is presented in Section 3 and its perfor-
mance is evaluated in Section 4. Section 5 discusses related
work and Section 6 concludes this paper.

2 ANALYSIS OF MUTUAL COUPLING
2.1 Phase Angle and Phase Difference

The FCC requires frequency hopping to avoid interference
for readers. The readers use the spectrum between 902.5
MHz and 927.5 MHz, which is divided into 50 channels.
The reader uses the Low-Level Reader Protocol (LLRP) to
interrogate tags, which can provide RF phase angle, Doppler
frequency, and Peak RSSI of the channel [18]. In particular,
the phase angle, denoted by ¢, can be written as

27 - 21

¢ = mod < + 6 4 0, + Oag, 277) , D
where [ is the distance between the tag and the reader
antenna, A is the wavelength of the signal, and 6;, §,, and
0:q4 are the offsets introduced by the reader’s transmitting
circuit, the reader’s receiving circuit, and the RFID tag’s
backscattering circuit, respectively. The challenge for RFID-
based sensing techniques is how to translate the measured
phase ¢ to distance I, under strong interference from the
phase offsets and frequency hopping.

To mitigate the impact of phase offsets, we propose to
adopt an RFID tag array. Rather than using the phase angle
from each individual tag, the difference between a pair of
neighboring tags is used. Following (1), the phase difference
between Tags 1 and 2 is given by

2 - 2([1 - ZQ)
A

where [y and [y are the distances from Tags 1 and 2 to the
reader antenna, respectively; and 044, and 0.4, are the
phase offsets due to Tags 1 and 2’s circuit, respectively. It
can be seen that the phase offsets introduced by the reader’s
circuits, i.e., 6; and 0,., are canceled in (2). In addition, the
incident wave from the reader antenna is similar to a plane
wave if the tag-antenna distance is sufficiently long. In this
case, the phase difference can be translated to the DOA, if
the pair of tags are placed closer than /4 [16].

Ale.,Q = mod ( + etagl - 9tagg>27r) ) (2)

2.2 The Mutual Coupling Effect

When a tag array is deployed, the mutual coupling effect
becomes a limiting factor of the sensing performance. The
inductive coupling of neighboring RFID antennas causes
transfer of energy between closely placed tags, which usu-
ally affect the measured phase angles and the received
signal strength at the reader. In the remainder of this section,
we will provide an analysis of the effects of mutual coupling
on phase difference and sampling effectiveness.

221

The Gen 2 protocol is adopted for the interrogation process
to avoid collision of simultaneous responses to a query from
multiple tags [19]. With this protocol, among the tags that
respond to the reader’s query with their RN16 (a 16-bit
random number), only one tag, to which the reader echoes

Impact on Phase Angle and Phase Difference
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Fig. 1. The equivalent circuit model of two tags under mutual coupling.

with its RN16, will be activated to send its EPC to the reader
in every round of interrogation.

In Fig. 1, we present the corresponding circuit models of
two tags under mutual coupling [20]. The upper plot is for
the case when Tag 1 is activated, and the lower plot is for the
case when Tag 2 is activated. In the circuit models, V; and V>
represent the source voltages, and I; and I are the source
currents, when Tag 1 or Tag 2 is activated, respectively; R,
and Ry are the impedance of the microchip, and R 4; and
R 42 are the impedance of the antenna input, of the two tags,
respectively.

Theorem 1. Consider two RFID tags under strong mutual
coupling. If the tags have identical chip impedance and antenna
input impedance, i.e., Rrn = Ry and Ra1 = Rao, the ratio
of their equivalent source currents equals to the ratio of their
equivalent source voltages. That is, we have I /Iy = V1 /Va.

Proof. Consider the case when Tag 1 is activated by the
reader. Due to induced coupling of the two tags” antennas,
Tag 1’s current I; will trigger a coupled voltage Vo1 =
Ra1 - I in Tag 2. Here Ry, is the mutual impedance of Tag
2 with respect to Tag 1. The coupled voltage V5; will then
induce a current 3" in Tag 2, which next produces a coupled
voltage V12 = Ri2- 13" back at Tag 1, Here R; 5 is the mutual
impedance in Tag 1 with respect to Tag 2. Assuming the two
tags are of the same type, it follows that

L - (Rpi+Ra1)=5 -Ry=Vi+ Rz - I3} (©))
I7' - (Rra+ Ra2) = 13" - Ry = Roy - I, (4)

where Ry = Rp1+ Ra1 = Rr2+ Rao is a constant. Assume
the two tags have identical mutual impedance [20], ie.,
Ri2 = Ro1 = R,,. Then current I; can be written as

Vi

L=—f .
"7 Ro - R%, /Ry

©)

3

We can drive the same relationship for the case when Tag 2
is activated, as

I" - (Rpi+Ra1) =I" Ry = Ria - I» (6)
Iy (Rpa+ Ra2) =1z - Ry = Vo + Roy - ITY, ()

where I7" is the induced current in Tag 1 by the coupling
voltage V2. We can solve for the current I in Tag 2 as
_ Va

Ry — R2,/Ry’
Then we conclude from (5) and (8) that I1 /I, = V1 /V5. O

Iy 8)

Rewrite the complex current and voltages as I; = |I;| Z1;
and V; = |V;| £V}, i = 1,2, where || is the amplitude and £
is the phase angle. According to Theorem 1, we have

L — LIy =LV — LV, )

The measured phase angle by the reader is determined by
the distance and the phase of the current that generates the
tag response signal [21]. But the measured phase difference
will be independent to the coupling voltage and mutual
impedance. That is, mutual coupling has a negligible impact on
the phase difference, although the phase angle itself is highly
susceptible to the couple effect, as shown in (5) and (8).
Theorem 1 and the following analysis justify the feasibility
of leveraging tag arrays for DOA estimation in the presence
of mutual coupling effect.

We designed three experiments to validate the above
analysis. The first experiment is to measure the phase angle
from a tag, while placing another tag next to it at various
distances. To assess the interference induced by mutual
coupling, we also measure the ground truth phase angle
when the second tag is absent. The measured phase errors
(i.e., the difference between with or without the second tag)
are presented in the upper plot of Fig. 2 for various distances
between the two tags. It can be seen from the plot that the
phase errors are all quite big until the second tag is placed at
a large distance, e.g., 16 cm, from the target tag. Therefore,
in order to avoid the large phase interference induced by
mutual coupling, the tags should be placed at least 16 cm
away from each other.

The second experiment is to measure the phase difference
by placing the two tags in parallel on the same plane at
various distances. The experiment is conducted as illus-
trated in Fig. 3. In the first part of the experiment, we place
Tag 1 at each of the locations, which are separated 2 cm
apart. The phase angles from Tag 1 is measured at each of
these locations. Then the ground truth phase difference is
calculated by subtracting the phase angle at the left-most
position from that measured at any other locations. This
approach allow us to obtain the phase differences at various
tag-tag distances without the mutual coupling effect. In the
second part of the experiment, two tags are deployed: Tag 1
is fixed at the left-most location, while Tag 2 is put at each
of the other locations. The phase differences under mutual
coupling is then measured different tag-tag distances and
are plotted in the lower plot of Fig. 2. It can be seen that
the phase difference errors are all smaller than 0.1 radian
except when the distance is 10 cm. The phase difference
errors are mainly due to the multipath effect and random
noise; the impact of mutual coupling on phase difference is
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Fig. 2. Impacts of mutual coupling on measured phase angle (the upper
plot) and phase difference (the lower plot).
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Fig. 3. The setup of the second experiment for assessing the impact of
mutual coupling on measured phase difference.

much weaker than the case of phase angles. This experiment
validates Theorem 1.

It is worth noting that the above two experiments are
different from the Tagyro scheme [9], where the change of
phase difference is measured when a tag rotates around
another fixed tag. The relative orientation of the pair of tags
has a big impact on the mutual impedance. Thus the mutual
coupling effect of Tagyro varies with the different rotation
angles of the tags. Due to this reason, Tagyro requires careful
calibration with a hologram-based approach in order to
translate phase offset into the tag array’s orientation.

Due to the imperfections in tag production, the
impedance of different tag could still be different even if
the tags are of the same type and produced by the same
manufacturer. We design the third experiment to assess
the impact of different tag types and different tags of the
same type on phase difference measurement. Specifically,
we repeat the same experiment with three different types
of tags and three different groups of tags of each type. The
average phase difference error is summarized in Table 1. It
can be observed from the table that, although tags used in
each group are of different types, the phase difference error

4
TABLE 1
Impact of Different Types of Tags on Phase Difference Error
Type of RFID tag | Group A  GroupB  Group C
ALN-9740 0.08rad  0.06 rad  0.08 rad
SMARTRAC DogBone 0.11rad  0.08rad  0.09 rad
SMARTRAC ShortDipole | 0.08rad  0.07rad  0.07 rad

of each group are similar. This experiment validates that
the effect of imperfect tag production is negligible on phase
difference measurements.

2.2.2 Impact on the Success Rate of Sampling

Consider, for example, a ULA tag array. The reader keeps
on interrogating the tags in the array for a certain period
of time. Let n; be the number of phase angle samples read
from tag 7 in the array. The success rate of sampling of tag i
is defined as the ratio of n; over the maximum number of
samples collected from any of the tags in the ULA, i.e,,

& =

n;
—_—. 10
max;{n;} (19)

To measure the mutual coupling effect on tags’ success
rate of sampling, let P, denote the received power at the

reader, given by [22]

A\ 4R2
P.=(-2) P.G*G? A ,
(471’l) " t(RL+RA)2+(XL+XA)2

where P, is the reader’s transmit power, G; and G, are
the antenna gains of the tag and the reader, respectively, 24
and X 4 are tag antenna’s radiation resistance and reactance,
respectively, and Ry, and X, are tag chip’s radiation resis-
tance and reactance, respectively. To get a valid sample, the
received power P, should exceed the detection threshold
Py, ie, P, > Py, [22]. Otherwise, the tag cannot be
detected by the reader.

)

Theorem 2. Assume the tag chip’s impedance Ry, is constant.
If the tag antenna and chip’s reactance satisfy X4 = — Xy, the
received power at the reader P, will be an increasing function of
R 4 when the tag-reader distance [ is fixed.

Proof. If the tag antenna’s and chip’s reactances satisfy
X4 = —Xp (assuming perfect tag production), we have
from (11) that

P. = ()‘)413 G2G2$
" \dnl) "' (Rp/Ra+1)%

It can be easily verify that the received power P, is an
increasing function of R4, when all other parameters are
fixed. O

When the two tags are placed closer, the tag antenna’s
radiation resistance R4 will become smaller due to the
mutual coupling effect [22]. According to Theorem 2, the
reader’s received power will be lower if the two tags are
placed closer to each other. On the other hand, with mutual
coupling, (X 4 + X1,)? will not be zero anymore [22], which
also reduces the received power as given in (11). In the tag
array, mutual coupling could reduce the received powers of
some tags, leading to a low success rate of sampling for such
affected tags.
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Fig. 4. Impact of mutual coupling on the success rate of sampling, when
five tags are placed at 2 cm, 4 cm, and 6 cm intervals.

Fig. 4 presents the success rates of sampling of a ULA
comprising five tags, placed at 2.1 m away from the reader
antenna. We find that the success rates of sampling of all
the tags are over 90% when the distance between tags is 6
cm, and the success rates of sampling of all tags are higher
than 70% at a 4 cm tag intervals. However, when the tags
are placed at 2 cm apart, the success rate of sampling of
Tag 2 becomes lower than 10%. That is, this tag cannot
be effectively detected on most channels, which generally
happens for a tag placed at the center of the ULA, because
the mutual coupling effect caused by the tags on both sides
are strong. To ensure that all tags in the array be effectively
sampled by the reader, the density of the tag array should
not be too high. This observation motivates us to design a
sparse array for localization.

3 THE SPARSETAG SYSTEM
3.1 Overview

Fig. 5 provides an overview of the proposed SparseTag
system, where an RFID tag array and a reader with two
antennas are utilized. We assume the position of the tag
array is unknown (i.e., to be detected), while the locations
of the two reader antennas are know a priori. The main
idea of the SparseTag design is to utilize a sparse tag array
to detect the DOAs at the center of the array from both
antennas. Then the position of the center of the array will be
solved from the known locations of the two antennas and
the estimated DOA values.

In typical applications, the tag array is attached to, or
even woven into, a small object (e.g., a book, a tablet, or a
shirt). The key challenge in the design of SparseTag is how to
accurately estimate the DOAs by leveraging the sparse tag
array. With a traditional ULA, the sensor element spacing
should be smaller than half of the wavelength, while the
MUSIC algorithm can be applied to estimate the DOA [17].
As discussed in Section 2, a ULA may not be suitable for
positioning a small object. This is because for RFID systems
operated in the 900 MHz band, half of a wavelength is
already 16 cm. Furthermore, with an N-element ULA, the
MUSIC algorithm only estimates up to (N — 1) DOAs.

Antenna 2

Antenna |

d=1/16

Fig. 5. An overview of the proposed SparseTag system, comprising of a
sparse tag array and a reader with two antennas. The antenna locations
are known and the center of the tag array is to be localized.

Usually spatial smoothing is adopted to decorrelate un-
correlated sources, which takes half of the elements and
consequently, the maximum number of estimated DOAs
will be halved [23]. In this paper, a novel sparse RFID tag
array structure is proposed to achieve high success rate
of sampling for the tags in the array, while the minimum
spacing of the tags can be as small as A/16. Since usually a
tag, e.g., an ALN-9740 tag, is about 1 cm wide, the minimum
spacing of the tags should be no smaller than 1 cm such
that the tags will not overlap with each other. Consequently,
the minimum spacing of the proposed array structure is
set to A/16, which is roughly 2 cm for the 900 MHz band.
Moreover, we derive the difference co-array of the sparse
tag array, which can provide a higher DOA resolution for
more accurate localization performance.

The proposed SparseTag system mainly comprise four
modules, i.e., (i) Sparse Array Processing, (ii) Co-array De-
sign, (iii) DOA Estimation, and (iv) Location estimation. We
describe the design of each of the modules in the following.

3.2 Sparse Array Design

In order to adopt tag arrays to localize small objects, the
number of tags, as well as the tag spacing, cannot be too
big. To address these issues, we propose to adopt a sparse
array that comprises of N tags with a nonuniform linear
placement, which is quite different from the traditional ULA
plus MUSIC approach [17].

Let the steering vector for direction o be denoted by
d(c), with elements exp{j2Zd; sina}, where d; is the lo-
cation of tag 7 and X is the wavelength of the carrier
frequency. Assume there are D multipath components from
the propagation environment, each having direction «; and
power 02, i = 1,2, ..., D. The received signal at time ¢ can
be written as

D
gl = > d(an)s [t + At = AsT +7lt),  (12)
1

.
Il

where A = [d(aq),d(a2),...,d(ap)] denotes the array
manifold matrix, 5[t] = [s1[t], s2[t], ..., sp[t]]T denotes the
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source signal vector, and 7i[t] is the additive white noise
vector. Assuming the multipath components are temporally
uncorrelated, the source autocorrelation matrix will then
assume a diagonal structure. Considering the second-order
information of the received signal §(t), its covariance matrix,
denoted by R, can be derived as

Ry, = E[G(1)§(t)"] = AR, AT + 071
D

(13)
> ojd(es)d(oq) + oL
1

We next vectorize the Ryq in (13) to derive the measure-
ment vector, which is given by

D
7 =vec(Ryy) = vec {Z old(ay)d(a) | + o021, (14)
i=1
= (A" O AP+ 021,
where ' = [07,03,...,03]T, 1, = [éF,é],...,é4]7, and &

is a column vector whose ith element is “1” and all other
elements are “0.” Here the measurement vector is regarded
as the signal received at an array with a manifold of (A* ®
A) [24], where ® represents the Khatri-Rao (KR) product.
The matrix (A* ® A) can be regarded as the manifold of a
longer array, whose antenna positions are determined by the
different values in the set {#; —Z;}, 1 <iand j < N, where
Z; is the location vector of Tag 4. This new array is termed
the difference co-array [24]. In SparseTag, DOA is estimated
with the difference co-array, which effectively exploits the
second-order statistics of the signal for an increased DOF.

3.3 Difference Co-array Design

In the following, we first present several basic definitions
related to the difference co-array. We then present the design
of the difference co-array for the sparse tag array used in
SparseTag.

3.3.1 Definitions

Definition 1. (Difference Co-Array). Consider a sparse, N-
element tag array. Let X; be the location vector of Tag i. The
difference co-array of the sparse array is defined as [24]

D={#—#,1<ij<N}. (15)

The difference co-array can be regarded as a new array,
where the tags are placed at the locations given in the set
D. In addition, the values of the cross correlation elements
in the covariance matrix of the received signal by the sparse
tag array are determined by the number of elements in the
difference co-array, which is helpful to improve the number
of estimated DOAs.

Definition 2. (Restricted Array). A sparse, N-element tag array
is a restricted array if its difference co-array is hole-free [25].

If the difference co-array is hole-free, it is also a ULA.
Therefore, the traditional subspace based MUSIC algorithm
can be employed to estimate DOA using a hole-free dif-
ference co-array. For instance, the tags are placed at the
positions given by the set S, which is given by

S={m-d, m=1,2,4}. (16)

6

where d is the minimum spacing between tags. The corre-
sponding difference co-array can be derived as

- = - = =

D= {—?7, - 17)
Although the position 3d is missing in this sparse array
(see (16)), there is no missing vector in the difference co-
array set D (i.e., it includes all the vectors from —3to §,
see (17)). Consequently, this array is still useful for DOA
estimation using the MUSIC algorithm.

Definition 3. (Degree of Freedom (DOF): The DOF of a sparse
array is the cardinality of its difference co-array D [24].

The DOF of a sparse array can be derived by the car-
dinality of its difference co-array D, which indicates the
maximum number of DOAs that can be estimated.

Definition 4. (Weight Function). For a sparse, N-element tag
array, its weight function w(d) is defined as the number of tag
pairs that can achieve the difference co-array element d. The
weight function is given by [24]

w(cf) = ‘{(fz,fj)‘fz — fj = CT} ,

The weight function indicates the how serious the mu-
tual coupling effect is, which is helpful for our proposed
sparse tag array.

deD. (18)

3.3.2 Difference Co-array

Assume N is an odd number. Then the tag placement in the
N-element sparse tag array are given in the set S, which is

S={m-d,m=1,..,(N+1)/2—-1,

(N+1)/24+1,(N+1)/2+3,..,N+2}, (19

where the tag minimum spacing is set to d = \/16; such
small spacing allows us to use a small-sized tag array to
localize small objects. The proposed sparse tag array has a
symmetric structure; its left and right halves have the same
tag spacing arrangement. In add1t10r1 the e gaps from the two
tags placed at positions (=5~ NEL_1)dand ( NEL+3)d to the tag
placed at the center of the array (1.e. at posmon (N 1 1)d)
is both 2d. Thus the proposed array is a sparse array.

The sparse tag array used in SparseTag has the following
three key advantages. First, its symmetric structure helps to
suppress the mutual coupling effect, which usually limits
the performance of traditional tag arrays. The reduced mu-
tual coupling leads to less interference in measured phase
difference and thus, higher accuracy in the estimation of
DOAs. Second, the sparse structure also helps to mitigate
the degradation of the success rate of sampling of the
tags in the array, specifically, the tag at the center of the
array. Third, it allows us to use tag arrays with a smaller
physical dimension. Such smaller-sized tag arrays help to
improve the DOA resolution and are easier to deploy, such
as attached to small objects or woven into clothing.

The difference co-array corresponding to the proposed
sparse array is given by the following placement set Sg.

Sq={m-d, m=—(N+1),-N,...,N,(N+1)}. (20)

Theorem 3. The proposed sparse array is a restricted array. That
is, it is a hole-free difference co-array.
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Proof. The difference co-array of the proposed sparse array
is a ULA. It is easy to verify that it is a hole-free difference
co-array, with the given placement set S;. Thus we conclude
that it is a restricted array. O

Corollary 3.1. The proposed sparse array’s co-array is the same
as that of an (N + 2) ULA.

Proof. The proposed sparse array has the same left-most and
right-most tag positions at d and (N + 2)d, respectively,
as that of an (N + 2) ULA. In addition, both arrays are
restricted arrays. Therefore, we conclude that the proposed
sparse array has the same co-array as that of the (N + 2)-
element ULA. O

Theorem 4. The DOF of the sparse N-element array is 2N + 3.

Proof. The proposed sparse array is given by the position set
S, and the cardinality of its difference co-array Sq is 2NV + 3.
Therefore we conclude that the DOF of the sparse array is
2N + 3 according to Definition 3. O

Theorem 5. The weight function of the proposed N-element
sparse array is w(d=0)=Nandw(d=1)=N —3.

Proof. When &; = Z;, we have the case d = 0. This case
occurs N times for an N-element array, i.e.,, when i = j =

., N. Therefore we have w(cf = 6) = N according to
Definition 4.

Furthermore, consider two different subarrays given by
sets S = {m-d,m = 1,2,., % — 1} and S, = {m -
d,m = N+1 =+ 3, NH +4,. N + 2} respectively. The case
d=1 takes place for (M — 2) times in each subarray.
Furthermore, for the subarray given by set S, = {m-d,m =
ML, ML g ML 3} the case d = I does not arise

atall.Itfollowsthatw(d =2 -2)x2=N-3 O

We make the following observations from the above
theorems and corollary.

o The proposed N-element sparse array has the same
DOF as an (N +2)-element ULA. Using the proposed
sparse array, we can achieve a higher maximum
number of estimated DOAs than using a ULA with
the same amount of tags and the MUSIC algorithm.

o Using the proposed sparse array can achieve a higher
sampling rate of the tags. This is because its weight
function, i.e., w(d = I) = N — 3, is smaller than that
of an (N +2)-element ULA. In Fig. 6, we compare a 7-
tag ULA with a 5-tag proposed sparse array. In each
figure, the upper plot shows the placement of the
tags, while the lower plot presents the corresponding
weight function w(n). It can be seen that the 5-tag
sparse array has the same DOF, i.e., 13, as the 7-tag
ULA, since they share the same difference co-array.
Furthermore, it shows that w(1) = 2 for the 5-tag
sparse array and w(1) = 6 for the 7-tag ULA.

e There are other types of sparse arrays, e.g., the co-
prime array [26], nested array [24], and super nested
array [27], which can also achieve a larger DOF than
the proposed sparse array. However, such arrays
may not be suitable for the deployment of tag arrays.
This is because such arrays all require a relatively
larger physical space, which may not be available

ULA

5
5
D
Y
D
5
D
24

Antenna Sign
o
W

0
1 2 3 4 5 6 7
Location Index
10
2
et 1] T T 179
6 4 2 0 2 4 6

Co-array Location Index n

(a) A 7-tag ULA and its weight function w(n). Upper: antenna
sign is 1 means a tag is placed at the corresponding location;
Lower: the weight function.
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(b) A 5-tag sparse array and its weight function w(n). Upper:
antenna sign is 1 means a tag is placed at the corresponding
location; Lower: the weight function.

Fig. 6. A 7-tag ULA versus a 5-tag sparse array.

for small objects. Moreover, such arrays’ structures
are not symmetric. Therefore, they may incur more
serious mutual coupling among the tags, leading
to large interference in the RFID phase and phase
difference samples.

3.4 Estimation of DOA

The difference co-array of the proposed sparse array is then
leveraged for DOA estimation. A spatial smoothing based
method is employed, which is different from the existing
approach that utilizes spatial smoothing to mitigate corre-
lated sources [24]. The SparseTag approach constructs an
observation matrix for the difference co-array, which does
not require using high-order cumulative signals.
Specifically, we first derive the array manifold (A* ® A)
following (14), which has a dimension N? x D. According
to Theorem 4, we next construct a matrix B with dimension
(2N +3) x D by removing the repeated rows from the array
manifold. Next, we sort this constructed matrix to ensure
that row ¢ corresponds to the tag position (—N — 1 + i)d
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in the proposed difference co-array. Then we obtain a new
vector i/, which is written as

7 =Bp+ o3¢, (21)

where & € RZN+3)x1 is a vector whose (N + 1)th element
is “1” and all other elements are “0.”

Following the placement set (20), we divide the co-array
into (N + 1) overlapping subarrays, each having (N + 1)
elements, while the ith subarray is given by the following
placement set:

Sti)={(—i+14+m)-d, m=0,1,...,N}. (22

Let (i) be a new vector for subarray 4 that comprises the
same elements of i ranging from the (N+1—i+1)th element
to the (2N + 1 — ¢ + 1)th element:

§(i) = B(i)p+ opé(i), (23)

where B(7) is a matrix with dimension (N +1) x D, compris-
ing the same rows of B ranging from the (N+1—i+1)th row
to the (2N 4+ 1 — i + 1)th row; and €(i) is a vector whose ith
element is “1” and all other elements are “0.” Consequently,
the spatially smoothed matrix R is obtained as

1 N+1
Rs _ ) e\ o H.
N7 L T

We then utilize R to estimate DOA. With our approach,
N DOAs can be estimated, which is considerably larger
than what can be obtained with the MUSIC plus ULA
approach (i.e., (N — 1)/2). SparseTag incorporates a direc-
tional antenna for increased range. The line-of-sight (LOS)
component is dominant and a strong incident wave. The
proposed sparse array can achieve a higher angle resolution
than the existing approach.

(24)

3.5 Location Estimation with DOAs

The proposed SparseTag system comprises a tag array and
a reader with two directional antennas, each of which oper-
ates on 50 channels in the 900 MHz band and samples phase
angle of the received tag response. Some channel informa-
tion may not be reliable due to the multipath propagation.

Fig. 7 presents the phase angles collected from a five-
tag sparse array from the 50 channels. It can be seen the
phase difference of two adjacent tags on most channels are
similar. This is due to the small distance between the pair
of tags (e.g., 2 cm or 4 cm); and the 0.5 MHz change of
channel frequency caused by channel hopping can hardly
cause a sufficient change in phase. We also find from Fig. 7
that the phase difference collected from some channels are
highly different from others. Such difference is caused by
the multipath effect on different channels. Some channels
are more susceptible to the multipath effect; so the phase
angles collected from such channels should be filtered out
before DOA estimation.

To address this issue, SparseTag adopts a channel se-
lection procedure. Denote ¢(; 7, )(t) as the phase angle
sampled from Tag ¢ on channel f,, at time ¢. The phase
difference between Tag ¢ and Tag ¢ + 1 at time ¢, denoted by
A1) (1), is given by

Agi () = ¢(i+17fm)(t) - qb(i,fm)(t), 1=1,2,...,N —1.
(25)

(=)
T

(91

Unwrapped Phase
w s

Tag Index

Fig. 7. Phases angles sampled from a 5-tag sparse array over 50
channels (each line corresponds to a different channel).

We select the medium value of all the phase differences from
all the channels for robustness, since in many cases only a
few channels are impaired. After selecting the right channel,
we recalculate the phase angles of all the tags in the array.
Using the Tag 1 phase angle as a reference and assuming
B(1,f,,)(t) = 0 at time ¢, the phase value of Tag i is

Bl f) () = Pi—1,£,) (1) + Dgiz1,,) (), = 2,3,..., N.
(26)

The received signal is next reconstructed as

g(t) — [e(j(2ﬂ_¢(l,fm)(t))), .y e(j(27f—¢(zv,fm)(t)))]_ (27)

Note that we have the terms (27 — ¢(; 7,.)(t)) in (27) due
to the reader operation of the phase angle. Two DOAs are
estimated using multiple snapshots of received signal (each
comprising samples from all the 50 channels and each tag),
one for each reader antenna. In Fig. 8, we plot the power
spectrum density obtained by SparseTag and ULA arrays
from the same experimental setting. The ground truth of
DOA is marked by the red vertical line in the figure, which
indicates 28°. Fig. 8 shows that the peak of the SparseTag
curve is considerably sharper and closer to the ground truth
than the peak of the ULA curve obtained using the MUSIC
algorithm. DOA estimation with SparseTag is more accurate
than with ULA, because SparseTag achieves larger DOFs
than ULA.

The center of the tag array can be derived from the
two estimated DOAs and the known coordinates of the two
antennas. Consider a coordinate system where the direction
of the tag array is the z-axis and the y-axis be perpendicular
to the tag array. Assume (x;,¥;) is the known coordinates
of antenna ¢, i = 1,2, and let (z., y.) denote the coordinates
of the center of the tag array. The two DOAs and the
coordinates satisfy the following conditions (see Fig. 5).

cot(ar) = L7 cot(an) = 2292,

Te— 1 Te — X2

(28)

The cotangent function in (28) is given by cot(a) =
cos(a)/ sin(a). We solve (28) for the coordinates of the
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Fig. 8. DOA estimation results obtained using SparseTag and ULA. The
red vertical dashed line marks the ground truth of 28°.

center of the RFID tag array (., y.), which is given by

_ xpcot(ar) — xpcot(az) + Y2 — y1
cot(ay) — cot(az)
(21 — 22) cot(a) cot(az) + y2 cot(ar) — y1 cot(az)

c — .

cot(ay) — cot(az)
(30)

(29)

4 EXPERIMENTAL VALIDATION
4.1 System Implementation and Experiment Setup

We develop an implementation of SparseTag using an com-
modity Impinj R420 RFID reader equipped with two circular
polarized antennas and different types of RFID tags. When
scanning the tags, the reader hops among 50 channels in the
range of 902.5 MHz to 927.5 MHz, as required by the FCC.
A Lenovo Thinkpad S3 laptop is used to control the reader
and process the collected data. The RFID reader samples
channel related data from received tag responses such as
time stamp, phase angle, RSSI, and Doppler shift using a
Low-level Reader Protocol (LLRP) [18]. Furthermore, we
build the RFID tag arrays using three different types of
passive tags, including ALN-9740, SMARTRAC DogBone,
and SMARTRAC ShortDipole.

Extensive experiments are conducted in two different
environments, including a 7.5 x 5.6 m? computer laboratory
and an 8 x 2.4 m? anechoic chamber, which are illustrated
in Fig. 9. The computer lab is a more cluttered environment
with computers and furniture, which cause the multipath
propagation of RFID signals. We also try to introduce more
severe multipath effect by placing chairs in the LOS path
between the tag array and antennas. In the anechoic cham-
ber setup, most multipath effects are eliminated due to the
special absorbing material mounted on the wall, ceiling,
and floor. In the experiments, we mark various positions on
the floor, which are considered as ground-truth. The tagged
object (e.g., a book) is hold by an easel to be in the same
horizontal plane as the two reader antennas. As discussed,
the target of localization is the center of the tag array. The
same experiments are conducted using the ULA tag array
with identical hardware and environment setup to assess
the strengths of the proposed sparse tag array.

(@) The computer lab setup.

(b) The anechoic chamber setup.

Fig. 9. The setup of two experimental scenarios for SparseTag perfor-
mance evaluation.
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Fig. 10. CDFs of DOA errors achieved by SparseTag with a 5-tag sparse
array in the computer lab and anechoic chamber scenarios.

4.2 Evaluation in Different Localization Scenarios

We conduct experiments in both the lab and anechoic
chamber environments. In Fig. 10 and Fig. 11, we plot the
cumulative distribution function (CDF) of the DOA and
location errors obtained by SparseTag with a 5-tag sparse
array. The median error of DOA estimation in the anechoic
chamber scenario is 1.125°, while the median error in the
computer lab scenario is 1.872°. Fig. 10 also shows that
the maximum error in anechoic chamber is only 4.024°.
The angle estimation accuracy is higher when the system
is tested in the anechoic chamber than the computer lab
experiments, because the multipath effect is eliminated in
the anechoic chamber setup. Fig. 11 also shows that the
location error in the anechoic chamber scenario is smaller
than that in the computer lab scenario. The median location
error in the anechoic chamber environment is 3.419 cm, and
the median location error in the computer lab environment
is 5.012 cm.

To validate the performance of SparseTag in an environ-
ment with stronger multipath effect, we place some chairs
as obstacles in the LOS path between the tag array and
the reader antennas. The mean localization errors of all
the three scenarios are plotted in Fig. 12, where both the
SparseTag errors and the ULA errors are provided. It is
shown in the figure that, the mean estimation error of the
5-tag SparseTag array in the rich multipath environment is
5.637 cm, while the mean error in the typical Computer Lab
environment is 5.158 cm. For the 5-tag ULA array, the errors
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Fig. 11. CDFs of localization errors achieved by the 5-tag SparseTag in
the computer laboratory and anechoic chamber scenarios.
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Fig. 12. Mean localization errors achieved by the 5-tag ULA array and
SparseTag array in three different scenarios.

in the same environments increase to 8.967 cm and 7.450
cm, respectively. These results validate that the proposed
spare array is more robust to the multipath effect than the
ULA array with the same number of tags.

4.3 Comparison with Baseline Scheme

To validate the strengths of the proposed sparse tag array,
we conduct more experiments to compare SparseTag with
the traditional ULA plus MUSIC localization system [10],
[17]. Fig. 13 presents a comparison of SparseTag with ULA
in the computer lab environment. The CDFs of DOA errors
obtained with a 5-tag ULA and a 5-tag SparseTag systems
are plotted. We find that the maximum estimated DOA
error of ULA is 9.198°, while the maximum DOA error of
SparseTag is 6.161°. The median errors for ULA and Sparse-
Tag are 2.909° and 1.831°, respectively. In addition, 90% of
SparseTag estimated DOA errors are below 5°. We conclude
that SparseTag is more accurate for DOA estimation than
ULA, because SparseTag achieves a higher angle resolution
than ULA. With the spatially smoothed matrix R, in (24),
the number of estimated DOAs is more than that of ULA
with the same number of tags, which means the sparse tag
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Fig. 13. CDFs of DOA errors achieved by a 5-tag SparseTag and a 5-tag
ULA in the computer lab experiment.
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Fig. 14. CDFs of localization errors achieved by a 5-tag SparseTag and
a 5-tag ULA in the computer lab experiment.

array performs better in rich multipath environments than
the ULA array.

Fig. 14 presents the CDFs of localization errors obtained
with the 5-tag SparseTag and 5-tag ULA. The same localiza-
tion estimation method is used with the two different tag
arrays in the same environment. We find that the median
error of SparseTag is 4.985 cm, while the median error of
ULA is 7.611 cm. Usually an UHF passive tag is about
10 cm long. For instance, the ALN-9740 tag used in our
experiments is 98.2 mm x 12.3 mm. The SparseTag’s median
error is about half of the tag length; therefore it is sufficiently
accurate for many practical applications. Fig. 14 also shows
that the maximum error of SparseTag is 10.114 cm, which
is much smaller than the ULA’s maximum error. Thus it is
validated that SparseTag can achieve a higher accuracy of
localization than ULA.

We also compare the proposed system with an existing
RFID tag array based localization technique using a mobile
antenna [12] in the same rich multipath environment where
the results in Fig. 12 are obtained. Rather than leveraging
two antennas, a single mobile antenna is utilized for posi-
tioning of 5-tag ULA array and the sparse array. The mean
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Fig. 15. Mean localization errors obtained by the 5-tag ULA array and the
SparseTag array with two stationary antennas and with a single mobile
antenna.

estimation errors are presented in Fig. 15. As the figure
shows, the ULA’s localization error decreases from 8.967
cm to 5.666 cm, when the mobile antenna is leveraged in the
system. This is because, the mobile antenna can be consid-
ered as multiple virtual antennas, which help to mitigate the
multipath effect. However, for SparseTag, the improvement
in accuracy brought about by the use of the mobile antenna
is not obvious. This experiment result indicates that the
multipath effect has already been effectively mitigated by
using the proposed 5-tag sparse array, so use of the mobile
antenna does not further improve the localization accuracy.
We thus conclude that the proposed SparseTag system
achieves high accuracy without using moving antennas,
making it easier to deploy and more adaptable.

4.4

To further assess the proposed system, we conduct more
experiments on the influence of several design factors. Since
directional antennas are used in our experiments, we also
evaluate how the relative angle of the directional antenna
affects the estimation results. Fig. 16 shows the estimation
errors for different antenna angles, including -30°, -15°, 0°,
15°, and 30°, where 0° means the antenna directly faces the
tag array. From Fig. 16, we can see that the estimation errors
at different angles are all around 2°, and the error does
not increase as the angle of the antenna is changed. This
experiment shows that the estimated DOA is not seriously
affected by the relative angle of the directional antenna.

We also examine the effect of the number of snapshots
on DOA estimation. Recall that each snapshot comprises
samples from all the 50 channels and from each tag. Fig. 17
shows that the DOA error obtained by one to 10 snapshots.
It can be seen that when there are less than three snapshots,
the DOA error is about 3°, while the error remains at about
2° with five or more snapshots. This is because only one
or two snapshots cannot effectively remove the white noise
in the RFID signals. If the number of snapshots is larger
than nine, the effect of noise can be mostly removed using a
spatial smoothing based method. As a result, we choose 10
snapshots in our SparseTag system.

Impact of System Design Factors

11
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Fig. 16. Impact of the angle of the directional antenna.
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Fig. 17. Impact of the number of snapshots.

Fig. 18 illustrates the impact of the difference between
the heights of the reader antennas and the tag array. The
height difference is represented by the angle between the
horizontal plan and the line connecting the antenna and the
center tag, as illustrated in Fig. 19. When the sparse tag
array is not on the same horizon plane as the antennas,
the DOA estimation error will increase quickly. This is
because SparseTag mainly focuses on 2D localization; when
the antennas are at a different height from the tag array, an
additional phase offset will be introduced. The phase offset
is related to the height difference, and so the DOA error will
increase as the height difference becomes larger.

Fig. 20 presents the estimated DOA errors obtained
using different types of arrays. In our experiments, we
evaluate the DOA estimation accuracy of 4 types of tag
arrays. The first and the second arrays are ULA with 3 and
5 tags, respectively, while the third and the fourth arrays are
sparse tag arrays, which consist of 5 tags at positions (0, d,
3d, 5d, 6d), and 7 tags at positions (0, d, 2d, 4d, 6d, 7d, 8d),
respectively. From Fig. 20, we can see that the angle errors of
ULA are both higher than 3°, while both sparse tag arrays
achieve lower errors about 2°. This is because the sparse tag
array achieves a higher angle resolution than ULA with the
same number of tags. Fig. 20 also shows that the errors of the
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Fig. 18. Impact of the height difference between the tag array and the
antennas, which is represented by the angle as shown in Fig. 19.
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Fig. 19. The height difference between the tag array and the antennas
is represented by the angle between the horizontal plan and the line
connecting the antenna and the center tag.
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Fig. 20. Impact of different array types on DOA estimation error. The first
and second arrays are ULA with 3 and 5 tags, respectively, while the third
and fourth arrays are sparse tag arrays, with 5 tags at positions (0, d, 3d,
5d, 6d), and 7 tags at positions (0, d, 2d, 4d, 6d, 7d, 8d), respectively.

5-tag sparse array is close but lower than that of the 7-tag
sparse array. The 5-tag sparse array is sufficient to estimate
DOA accurately.

4.5 Evaluation of the Near-field Effect

According to the FCC regulation on transmit power, the
distance between the reader antenna and the tag array is
usually not large. The tag array is placed within 3 m from
the polarized antennas in all our experiments. Otherwise,
the tag array can hardly be detected by the reader due to

12
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-

Error caused by near-field
measurements

Fig. 21. lllustrate the error introduced by the near-field measurements.

extremely weak RSS. The MUSIC algorithm is adopted for
DOA estimation, which assumes the incident wave to the
array is a plane wave. Such an assumption may not be
rigorous in near-field communications scenarios, and will
cause extra estimation errors. Fig. 21 shows an antenna and
a simple 2-tag array, where the tags are placed d apart from
each other. The tag-to-reader distances are L; and L, for
Tag 1 and Tag 2, respectively. Here a,, is the DOA to be
estimated. If we assume the incident wave to Tag 1 and the
wave to Tag 2 are along two parallel lines (i.e., the plane
wave assumption holds true), (L1 — L2) can be consider as
an edge of the right angled triangle as shown in the figure.
Thus o, can be easily computed as:

Q= arcsin (d/ (L1 — Lq)), (31)
where (L; — L2) can be estimated from the phase difference
of the two tags. However, when the two tags are close to
the antenna, the two incident waves will not be parallel
and the relationship (31) will not hold true, which leads to
additional DOA errors.

To evaluate the influence of such near-field effect, we
conduct two experiments to find out the effective range of
the SparseTag system. We first test the influence of the dis-
tance between the tag array and the antennas. We estimate
DOAs under different tag-to-reader distances, ranging from
0.5 m to 2.5 m, and the results are presented in Fig. 22. We
find that when the distance is 0.5 m or lower, the DOA error
will be higher than 3.6°. When the distance is 1 m or larger,
the DOA error will be lower than 3°. These results show
that the influence of the tag-to-antenna distance is not strong
since in typical applications the tag array will placed more
than 1 m away from the antenna.

The second experiment examines the influence of dif-
ferent measuring angle on DOA error. We place the tag
array at a fixed distance (e.g., 2 m) from the reader, and
estimate the DOA from different relative antenna-tag array
positions, where the ground truth DOA ranges from —75°
to 75°. The estimation errors are presented in Fig. 23. We
find that the DOA error is lower than 3.5° when the tag
array is place between —60° and 60°. However, the error
becomes considerably large when the DOA is over 75°. This
is because when the angle is too large, the polarized antenna
can hardly collect phase values from all the channels and
from each tag in the array. From these two experiments, we
conclude that the effective range of our proposed system is
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Fig. 23. Impact of different ground truth DOA values.

from 0.5 m to 2.5 m and the effective range of estimated
DOA should be between -75° and 75°.

5 RELATED WORK

With the rapid development of Internet of Things, indoor
localization attracts increasing attention in recent years.
As an RFID-based indoor localization system, our work is
closely related to the RF based localization techniques in
prior work. In this section we mainly focus on WiFi based
techniques and RFID based techniques.

WiFi signals are widely utilized for indoor localization
because of its low-cost, wide coverage, and ubiquitous
deployment. Among various techniques, Angle of Arrival
(AoA) is a typical method to estimate the location of the
transmitter [28], but the accurate AoA is hard to estimate
because of the multipath effect on the WiFi signal. To
mitigate the multipath effect, antenna array-based systems
are proposed to estimate the angle of multiple incoming
paths of WiFi signal and distinguish the Line-of-sight (LoS)
component [23], [29]. In addition, rather than directly calcu-
late the AoA of the LOS path, some prior works leverage
machine learning to estimate the position of the transmitter
by learning the location features from collected channel state

13
TABLE 2
Features in Different RFID Tag Localization Techniques
Localization Hardware Tag Antenna | Dynamic Tags
Technique Modification | Array Array or Antennas
LANDMARC No No Yes No
RF-IDraw No No Yes No
Tagoram No No No Yes
RFfind Yes No No No
SparseTag No Yes No No

data. For example, Radar is is a WiFi fingerprinting scheme
using RSS [30]. Channel State Information (CSI) is regarded
as fine-grained representation of the WiFi channel and can
achieve more accurate localization performance [31], [32].
However, a well-trained neural network is usually sensitive
to changes in the environment, the network parameters
need to be updated once the testing environment is changed.
Compared with these antenna array based systems, our
sparse tag array can achieve high resolution of angle esti-
mation as well as having a low cost.

The RFID technology has been regarded as an effec-
tive and low-cost solution for many emerging IoT appli-
cations [33]-[38]. Although RFID-based systems are limited
by the short communication range, the multipath effect on
RFID systems is usually much smaller than that on WiFi sys-
tems. Thus, various RFID based localization schemes have
been proposed to achieve higher accuracy and convenient
deployment than WiFi-based systems.

Existing works on RFID tag localization can be classified
into received signal strength Indicator (RSSI)-based and
phase-based methods. These works mainly focus on locating
a single tag, i.e., one tag is located at a time. For RSSI-based
methods, a large number of reference tags are deployed at
known locations. By comparing the RSSI data with reference
tags, the position of the target tag can be determined [2].
In fact, RSSI values are raw channel information and are
not stable, due to the factors such as multipath propaga-
tion, tag’s orientation, RFID reader’s transmit power, etc.
RSSI based methods usually do not achieve high accuracy
in indoor localization. On the other hand, phase based
methods have been developed for estimating distance and
direction of arrival (DOA) [3]. However, the measured phase
is periodic, which leads to phase ambiguity and makes it
less useful. Moreover, considerable measured phase errors
are introduced by the reader antennas and the tag itself.

To address these issues, the synthetic aperture radar
(SAR) technique is proposed for DOA estimation by moving
the reader antenna around [5]. The second solution is the
hologram technique, which computes the probability of
each known position as the tag source within an area of
interest and then chooses the most likely position as the
tag location [6], [7]. Another solution is the hyperbolic-
based method for distance estimation, which locates a static
tag [4]. However, this solution does not achieve high local-
ization accuracy due to limited number of reader antennas.
In addition, the RFind system achieves higher localization
accuracy using a large virtual bandwidth to estimate time-
of-flight, but it requires a special hardware [39]. The features
of several state-of-the-art RFID tag localization techniques
are summarized in Table 2.
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6 CONCLUSIONS

In this paper, we investigated the problem of localizing an
RFID tag array. The proposed system was termed Sparse-
Tag, i.e.,, a sparse RFID tag array system for high accu-
racy backscatter indoor localization. The SparseTag system
comprised four key components: (i) sparse array process-
ing, (ii) difference co-array design, (iii) DOA estimation
using a spatial smoothing method, and (iv) a DOA-based
localization method. We implemented the SparseTag system
using off-the-shelf RFID tags and reader, and assessed its
performance with extensive experiments in two settings.
The experimental results validated the effectiveness and
high location accuracy of the proposed SparseTag system.
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