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Abstract
Cellular structures manifest their outstanding mechanical properties in many
biological systems. One key challenge for designing and optimizing these geo-
metrically complicated structures lies in devising an effective geometric repre-
sentation to characterize the system’s spatially varying cellular evolution driven
by objective sensitivities. A conventional discrete cellular structure, for example,
a Voronoi diagram, whose representation relies on discrete Voronoi cells and
faces, lacks its differentiability to facilitate large-scale, gradient-based topology
optimizations. We propose a topology optimization algorithm based on a dif-
ferentiable and generalized Voronoi representation that can evolve the cellular
structure as a continuous field. The central piece of our method is a hybrid
particle-grid representation to encode the previously discrete Voronoi diagram
into a continuous density field defined in a Euclidean space. Based on this
differentiable representation, we further extend it to tackle anisotropic cells,
free boundaries, and functionally-graded cellular structures. Our differentiable
Voronoi diagram enables the integration of an effective cellular representa-
tion into the state-of-the-art topology optimization pipelines, which defines a
novel design space for cellular structures to explore design options effectively
that were impractical for previous approaches. We showcase the efficacy of our
approach by optimizing cellular structures with up to thousands of anisotropic
cells, including femur bone and Odonata wing.
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1 INTRODUCTION

Cellular and foam structures are ubiquitous in nature. Examples range from honeycombs,1 bone interiors,2 insect
wings,3 to foam bubbles,4 all of which exhibit a wide range of material properties and functionalities that cannot be real-
ized with traditional engineering configurations. Developing mechanistic understanding and numerical optimization of
cellular structures with complex geometric patterns have received extensive attention in both scientific and engineering
communities.5 For example, experiments, simulations, and data analysis have been carried out to study the insect wing
morphology,6 leaf vein topology,7 and sponge cake formation,8 for the sake of uncovering the structural principles and
developmental mechanics underpinning these biological systems. However, most of the existing studies and cellular
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structural designs are based on trial-and-error experiments,9 stochastic sampling,10,11 and proceduralmethods,12,13 which
heavily relied on the materials’ homogenized properties and human engineers’ prior expertise. First-principle methods
guided by mathematically rigorous sensitivities and numerically efficient optimization frameworks have remained an
unexplored field due to three interleaving challenges in tackling cellular structures’ differentiation, generalization, and
discretization.

First, devising a differentiable representation for complex cellular structures is challenging. To the best of our knowl-
edge, no current numerical approach can differentiate and optimize the topological evolution of a complex cellular
structure on a single-cell level, that is, to co-optimize the size, shape, and topology of each local cell nested in the design
domain by following continuous sensitivities of a specific design objective. Traditional cellular representations, with
Voronoi diagrams14 as a particular example, represent the geometry and topology of a cellular pattern on a discrete mesh.
By defining a distance field based on a set of site points and extracting the level set with an equal distance to the two
closest points, a Voronoi diagram partitions a domain into a set of discrete cells, with each cell represented by a set of
faces, which are borders between incident cells, and vertices, which are intersections of incident faces. On the simulation
side, numerical solvers discretized on a Voronoi diagram, or its many variations (e.g., Power diagrams15), have been used
widely to facilitate adaptive simulations of large-scale fluid,16,17 solid,18 and cosmology19 systems in scientific computing.
On the geometry processing side, discrete mesh generation algorithms for Voronoi diagrams, or its dual, Delauney tessel-
lations, have been integrated into the state-of-the-art computational geometry libraries (e.g., CGAL20) to render support
for various computational geometry applications. Recently, a new line of efforts has been devoted to developing parallel
algorithms to generate large-scale Voronoi diagrams on modern GPUs.21,22 Despite the rapid advent of forward simula-
tion and mesh generation, inverse procedures to differentiate a Voronoi diagram, that is, to calculate the sensitivity of
a Voronoi diagram’s geometric shape and topological pattern with respect to its design variables, which are essential to
accommodate the various structural design and optimization applications, has remained unexplored. In the state of the
art, most of the computational design of Voronoi structures in a specific physical context relies on non-gradient or pro-
cedural algorithms for the design parameter exploration. Instances include,23 which optimizes the Voronoi structure by
distributing the site points heuristically according to the structure’s stress,24 which initializes Voronoi site points inside
high-density boundaries according to standard topology optimization results, and Reference 25, which iteratively delet-
ing and adding site points to obtain a desired stress distribution on the surface. None of the above methods optimizes
a Voronoi structure based on continuous sensitivity analysis. An algorithmic strategy to probe the optimal solution, by
structuring the design space or enforcing strong heuristics, becomes an imperative necessity to establish an effective
numerical optimization paradigm for cellular structures.

The second challenge for cellular structural optimization lies in the representation’s generalizability.Most of the cellu-
lar patterns in nature do not rigorously satisfy the Voronoi definition. The cellular elements on thesematerials are geomet-
rically anisotropic, spatially adaptive, and with a free boundary. First, cellular structures in nature are usually anisotropic,
unlike a traditional Voronoi diagramwhose cells exhibit a uniform distancemetric in all directions. For example, the vein
network of an insect wing partitions a thin shell into regions featured by a broad range of aspect ratios, encompassing cells
that are small, large, thin, or slender.26 It has also been shown in the literature that anisotropic cellular structures can lead
to lower structural compliance than isotropic ones.27 Representing an ensemble of anisotropic cellular features within a
unified numerical framework requires an expressive geometric data representation that can characterize cellular patterns
beyond a standard Voronoi diagram. Second, spatial adaptivity is essential for a cellular structure to obtain outstand-
ing mechanical performance. The centroidal Voronoi tessellation (CVT) method,28 along with other functionally-graded
lattice structures,12,29 was invented to control the spatial distribution of Voronoi cells. Wu et al.30 utilized local volume
constraints to design infill structures on a full scale, which formed uniform lattice structures. Non-uniform local volume
constraints have been later proposed to design heterogeneous lattice structures.31,32 Lastly, numerous cellular structures
in nature form circular boundaries by themselves. But the regular Voronoi partition spans the entire domain. Other
cellular-related representations such as the open-cell porous structure have also been investigated.33,34 However, there is
no existing work that enables the representation of cellular structure with free boundaries.

Third, it is challenging to devise an efficient numerical discretization to support the cellular structure simu-
lation and optimization. The existing discrete data structures underpinning topology optimization applications are
composed mainly of grids, particles/meshes, and their hybrid. The lattice grid is the most popular data structure
empowering the density-based topology optimization.35 However, this approach requires a very high grid resolution
and well-designed filters to emerge local fine features.36,37 Homogenization-based topology optimization plus an addi-
tional dehomogenization-based post-processing step have been applied to design cellular structures in a multi-scale
way.38-40 The resulting optimized designs, however, are considered near-optimal due to the reconstruction errors from
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dehomogenization. It is noted that a similar framework has also been applied to the optimal design of microreactors with
space-fillingmicrochannel flow fields.41 By simultaneously optimizingmicro-structural cell geometries and their distribu-
tions on the macro scale, concurrent two-scale topology optimization can be used to design lattice structures.42-44 Besides
grid-basedmethods, Lagrangian representations,manifestingmainly asmeshless particles45 and simplicialmeshes,46 play
an important role in algorithms that co-optimize a target structure’s shape and topology. In these approaches, the simula-
tion is discretized directly on amesh or particles, and the optimization is enabled bymoving themesh vertices ormeshless
points in the design domain according to their sensitivities. The remeshing overhead, including repairing the simplicial
mesh or redistributing particles, is one of themain bottlenecks of these approaches. None of the existing Lagrangianmeth-
ods can handle the optimization of complex cellular structures. In addition to grid-based and particle-based approaches,
hybrid schemes were also explored extensively in topology optimization. For instance, the moving morphing compo-
nent method (MMC)47,48 and the geometric projection method49,50 optimize the geometric parameters (e.g., position
and orientation) of a set of moving primitives that characterize the structure by projecting the union of these compo-
nents on a background grid. Similar ideas can be seen in Li et al.,45 which utilizes the communication between fixed
material-point quadratures and moving particles to achieve a sub-cell representation for complex structures. Motivated
by these approaches, we propose a hybrid grid-particle representation to encode the cellular pattern. Our approach distin-
guishes itself from the previous ones by co-optimizing the particles’ positions and their local distance metric to describe
the local cellular geometry, which enabled our method to evolve complicated structures without relying on abundant
point samples or prohibitively high-resolution grid.

To address the aforementioned three challenges, we propose a computational approach that can differentiate, general-
ize, and explore the design space of complex cellular structures.We first formulate a differentiable Voronoi representation,
inspired by the soft Voronoi representation in the recent computer vision literature,51 where they devise a differentiable
Voronoi diagram and embed it into a generative deep network for solid geometry representation. Akin to their method,
we leverage a softmax function to partition the Voronoi regions in a differentiable fashion. We further devised a novel fil-
ter to extract the density-based Voronoi faces, which are essential for structural optimization, and devise a differentiable
scheme to evolve their topology with respect to the design variables. Next, we developed a generalized Voronoi represen-
tation for anisotropic, spatially adaptive, and free-boundary-enabled cellular structures. By adoptingMahalanobis metric
tensor52 on each Voronoi site point, our method enables a heterogeneous and anisotropic Voronoi tessellation. By letting
each point carry its ownmetric tensor, the anisotropy of the Voronoi cells can vary vigorously over the design space. These
localized metric tensors, in conjunction with the moving particles, enable a spatially adaptive and anisotropic represen-
tation of cellular patterns, which greatly extend the design space of the original Voronoi diagram. To represent structures
with a free boundary, we further modify our representation to support a foamy boundary, which enhances the tradi-
tional Voronoi diagram which functions primarily as a spatial partition. Last, with the hybrid grid-particle discretization,
our method incorporates the differentiable Voronoi representation into the conventional solid isotropic material with
penalizationmethod (SIMP) topology-optimization framework. Furthermore, we implement a k-nearest neighbor search
method to localize the computation of the differentiable Voronoi diagram to reduce the computational cost of the Voronoi
diagram from O(N2) to O(k logN).

The rest of the article is organized as follows. We discuss the mathematical formulation of the differentiable,
anisotropic, and spatially adaptive Voronoi partition with a free boundary in Section 2. We then integrate the Voronoi
formulation into the density-based topology optimization framework in Section 3. The overall algorithm workflow and
optimization are presented in Section 4. Section 5 presents extensive numerical results before conclusions are drawn in
Section 6.

2 DIFFERENTIABLE VORONOI DIAGRAM

In this section, we will formulate the mathematical definition for our differentiable, anisotropic, and spatially adaptive
Voronoi representation with free boundary and its sensitivity analysis.

2.1 Differentiable Voronoi diagram

Given a set of site points P = {xm | m = 1, 2, … ,Nc} in Nd dimensional domainΩ, a Voronoi diagram is a partition ofΩ
into Nc polygonal regions, called Voronoi cells, with each Voronoi cell Vm associated with a site point xm. Each Voronoi
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cell manifests a geometric property that xm is the closest of the given points to any x ∈ Vm.53 In other words, if dm(x, xm)
denotes the norm between the points x and xm, then

Vm = {x ∈ Ω | dm(x, xm) ≤ dn(x, xn) for all n = 1, 2, … ,Nc}. (1)

We remark that the norm dm can take different forms. If dm is a Euclidean norm, all Voronoi cells are bounded by
some straight segments; otherwise, the boundary of some Voronoi cells may be curved segments (non-Euclidean norms
will be discussed in Section 2.2). Based on the Euclidean norm, we show in Figure 1A the partition of a two-dimensional
domain into two Voronoi cells.

To enable a differentiable partition, we introduce a modified Voronoi partition based on the softmax function54 as
follows:

Sm(x) = f Nc

m
[
e−d1(x,x1), … , e−dNc (x,xNc )

]
, m ∈ Iv, (2)

where f Nc

m is a fractional equation

f Nc

m (x1, … , xNc ) = xm
∑

n∈Iv
xn

, (3)

and Iv is an index set with

Iv ≡ {1, … ,Nc}. (4)

The softmax function is originated from physics and statistical mechanics, which recently has also been widely used as an
activation function in modern neural networks.55 The softmax function selects one item from a group by following some
distance metric in a “soft” (and therefore differentiable) manner. In other words, we can build a program without an “if”
statement to calculate the 0–1 density distribution that specifies the region of a given Voronoi point. Figure 1B shows the
Voronoi partition formed by the softmax function, where the gray region has value one and the red region has value zero
to indicate the coverage of the lower point.

In our modified Voronoi partition, we calculate the density distribution for a specific site point in Ω as

𝜌(x) = 1 −
∑

m∈Iv

[Sm(x)]𝛽 , (5)

where 𝛽 controls the sharpness of the edge as illustrated in Figure 2. As shown in Figure 2A, when 𝛽 = 1, no edge will
appear since the soft max values are simply added together. Comparing Figure 2B,C, we can see there is a positive corre-
lation between the value of 𝛽 and the sharpness of the edges. It is noticeable that as 𝛽 increases, the thickness of edges

F IGURE 1 Visualization of different quantities formedwith twoVoronoi points. The red dots indicate the positions of the control points.
(A) Standard Voronoi tessellation; (B) Voronoi tessellation using the softmax function; (C) the extracted Voronoi edge between two regions (𝜌)
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F I GURE 2 Visualization of the softmax function 𝜎1 (blue), 𝜎2 (red), and 𝜌 (black) in one dimension with different 𝛽 values. (A) 𝛽 = 1;
(B) 𝛽 = 10; (C) 𝛽 = 50

also increases. We did not treat 𝛽 as an optimizing variable because there is a more direct relationship between the edge
thickness and metric tensor, as discussed in the next subsection.

We remark that the density distribution in Equation (5) defined based on softmax functions in Equation (2) can
subdivide the domain into approximate Voronoi cells in which the cell boundaries have a finite thickness as shown in
Figure 1C.

2.2 Anisotropic Voronoi structure

We enhance the local geometric expressiveness by defining the distance metric between points based on Mahalanobis
distance56

dm(x, xm) =
√
(x − xm)TAm(x − xm), (6)

where

Am = DmDT
m, (7)

Dm is a Nd-by-Nd symmetric matrix. This construction ensures that Am is a positive definite symmetric
matrix.

Figure 3 illustrates the difference between isotropic Voronoi tessellation (Figure 3A), anisotropic Voronoi tessellation
(Figure 3B) where metric tensors are the same for each control point, and heterogeneous anisotropic Voronoi tessellation
(Figure 3C) where metric tensors are different for each control point. Curved edges only form when we have spatially
varying metric tensor. It is worth noticing that we use “anisotropic” to feature the geometry of the Voronoi structure
characteristics, which only refers to how we define the Voronoi distance, in contrast to the material anisotropy used in
continuum mechanics.

2.3 Voronoi structure with free boundary

We introduce a positive constant 𝜖s to characterize the cellular structure with a free boundary. The key idea is to introduce
a universal virtual point that is outside all the current Voronoi points to help defining a Voronoi face that is on the free
boundary. In particular, we redefine Iv in (4) and Sm in (2) as

Iv = {0, … ,Nc}, (8)

and

Sm(x) = f Nc+1
m

[
𝜖s, e−d1(x,x1), … , e−dNc (x,xNc )

]
, m ∈ Iv. (9)
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F IGURE 3 Illustration of the anisotropic Voronoi diagram. Domain is a 1 × 1 square. (A) Isotropic Voronoi diagram with
Dm = [500, 0; 0,500]; (B) anisotropic Voronoi diagram with Dm = [750, 0; 0,250]; (C) heterogeneously anisotropic Voronoi diagram with
diagonal entries ranging [0, 1000] and off-diagonal entries ranging [−50, 50]

F IGURE 4 Illustration of Voronoi diagram with free boundary. (A) Voronoi cells without free boundaries, equivalent to 𝜖s = 0 with
Dm = 500I; (B) free boundary cells in different sizes with D1 = 500I, D2 = 400I, D3 = 300I, D4 = 200I respectively, and 𝜖s = 1e − 15; (C) free
boundary cells with Dm diagonal entries ranging [0, 1000] and off-diagonal entries ranging [−50, 50]

Here, the definition of

S0(x) =
𝜖s

∑Nc

n=1e−dn(x,xn) + 𝜖s
, (10)

and

Sm(x) =
e−dm(x,xm)

∑Nc

n=1e−dn(x,xn) + 𝜖s
, (11)

ensure that 𝜌 in (5) has a compact support.
The effect of free boundary and how different metric tensors influence the sizes and shapes of the cells are illustrated

in Figure 4. Figure 4A shows the differentiable Voronoi diagram without free boundary. Figure 4B illustrates the points
with different metric tensors Dm forming different sizes of free boundaries. Figure 4C shows cells in different shapes are
formed by also using different Dm on each control point.
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2.4 Differentiation of the modified Voronoi partition

The distribution 𝜌 in (5) with (6), (8), and (9) is determined by positions xm,m = 1, 2, … ,Nc of the Voronoi centers,
matricesDm,m = 1, 2, … ,Nc associatedwithmetrics in (7), and one constant 𝜖s. These parameters can generatematerial
distributions with different geometric properties and therefore can be used as design variables that feature a cellular
structure. For computing partial derivatives of 𝜌 with respect to parameters xm and Dm, we summarize the results as the
following theorem:

Theorem 1. Assuming 𝜌 is defined by (5) with (6), (8), and (9), its partial derivatives with respect to parameters xm,Dm can
be calculated as

⎧
⎪
⎨
⎪
⎩

𝜕𝜌(x)
𝜕xn

= −
∑Nc

m=0𝛽[Sm(x)]
𝛽−1 𝜕Sm(x)

𝜕xn
, n = 1, 2, … ,Nc

𝜕𝜌(x)
𝜕Dn

= −
∑Nc

m=0𝛽[Sm(x)]
𝛽−1 𝜕Sm(x)

𝜕Dn
, n = 1, 2, … ,Nc

,

(12)

where ∀m,n = 1, 2, … ,Nc
,

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝜕Sm(x)
𝜕xn

= Sm(x)[Sn(x) − 𝛿mn]Yn(x),
𝜕S0(x)
𝜕xn

= S0(x)Sn(x)Yn(x),
𝜕Sm(x)
𝜕Dn

= Sm(x)[Sn(x) − 𝛿mn]dn(x, xn) [Xn(x)⊗ Xn(x)]Dn,

𝜕S0(x)
𝜕Dn

= S0(x)Sn(x)dn(x, xn) [Xn(x)⊗ Xn(x)]Dn.

(13)

Here,

⎧
⎪
⎨
⎪
⎩

Xn(x) =
xn−x

dn(x,xn)
, n = 1, 2, … ,Nc

,

Yn(x) = An(x)Xn(x), n = 1, 2, … ,Nc
,

(14)

and 𝛿mn is the Kronecker delta function

𝛿mn =

{
1, m = n,
0, m ≠ n.

(15)

Proof. Equation (12) can be derived directly from the chain rule and (5). Next, we prove (13). From (9), we have
∀m, l = 1, 2, … ,Nc

⎧
⎪
⎨
⎪
⎩

𝜕Sm
𝜕dl(x,xl)

= Sm (Sn − 𝛿ml) ,

𝜕S0
𝜕dl(x,xl)

= S0Sl.
(16)

Taking the partial derivatives of (6) yields

⎧
⎪
⎨
⎪
⎩

𝜕dl(x,xl)
𝜕xn

= 𝛿lnYn,

𝜕dl(x,xl)
𝜕Dn

= 𝛿lndn(x, xn)[Xn(x)⊗ Xn(x)]Dn,
(17)

Combining (16) and (17) using the chain rule yields (13). ▪
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3 TOPOLOGY OPTIMIZATION

3.1 Incorporating Voronoi to topology optimization

In topology optimization, we store the density and projected density distributions 𝜌 on a structured Cartesian grid in
domain Ω, the density and projected density distributions at each grid point are denoted as 𝜌e, e = 1, … ,Ne. Without
causing ambiguity, we also denote 𝜌 and as vectors consisting of all discrete 𝜌e respectively. Following Reference 57,
we write a topology optimization problem as the minimization of the mean compliance c(x,D) for the filtered density
distribution 𝜌̃ in the nested formulation

minimizex,D c(x,D) ∶= FTU subject to V(𝜌̃)
V(Ω)

≤ f , (18)

where 𝜌̃ = fH(𝜌) ≡ tanh(𝛾𝜂) + tanh(𝛾(𝜌−𝜂))
tanh(𝛾𝜂) + tanh(𝛾(1−𝜂))

is the relaxed Heaviside projection58 with threshold 𝜂 = 0.5 and 𝛾 starting from
1 doubled every 50 frames, gradually producing a more binary filtered density field. F is the external force vector, U
is the global displacement vector, V(𝜌̃) is the material volume, V(Ω) is the volume of the design domain Ω, and f is
the prescribed volume fraction. Design variables are the positions x and metric tensors D of the site points. x takes
a range at least three times as large as the design domain on each axis (i.e., Voronoi points can be positioned out-
side of the design domain and not form density inside, thus not influencing the final structure). The diagonal entries
in D takes a range as large as [0, 2000], where larger range produces a more variation in edge thickness, and the
off-diagonal terms inD has range [−100,100]. The global displacement vectorU is obtained by solving the following force
equilibrium

K(x,D)U = F, (19)

where K is the global stiffness matrix.
Following the modified SIMP method, the stiffness matrix of each grid element is interpolated as follows,

Ee = Emin + 𝜌̃

p
e (E0 − Emin),

ke = Eek0,
(20)

where Ee is the interpolated Young’s modulus of each element, E0 is the Young’s modulus of a completely solid element,
Emin is a very small value to prevent singularity of the global stiffness matrix and k0 is the element stiffness matrix given
by k0 = ∫V B

TEB dV with Young’s modulus equal to 1. In the analytical expression of k0, V is the volume of one element,
B is the strain displacement Matrix and E is the stress–strain matrix. One can form the element stiffness matrix through
Gaussian quadrature discretization or a pre-calculated matrix. We refer readers to References 59 and 60 for the formula-
tion of the element stiffness matrix in 2D and 3D respectively. We assemble K as a sparse matrix by filling in the entries
of nodes associated with each element stiffness matrix. Here we choose the penalizing power p = 1 because our Voronoi
formulation forms relatively binary pattern by its definition.

3.2 Sensitivity analysis

The sensitivity analysis is given as followings using chain rule

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

𝜕c
𝜕xm

=
∑

e

𝜕c
𝜕𝜌̃e

𝜕𝜌̃e
𝜕𝜌e

𝜕𝜌e
𝜕xm

,

𝜕c
𝜕Dm

=
∑

e

𝜕c
𝜕𝜌̃e

𝜕𝜌̃e
𝜕𝜌e

𝜕𝜌e
𝜕Dm

,

𝜕V
𝜕xm

=
∑

e

𝜕V
𝜕𝜌̃e

𝜕𝜌̃e
𝜕𝜌e

𝜕𝜌e
𝜕xm

,

𝜕V
𝜕Dm

=
∑

e

𝜕V
𝜕𝜌̃e

𝜕𝜌̃e
𝜕𝜌e

𝜕𝜌e
𝜕Dm

,

(21)
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where

⎧
⎪
⎨
⎪
⎩

𝜕c
𝜕𝜌̃e

= −p𝜌̃p−1e (E0 − Emin)uTe k0ue,

𝜕𝜌̃e
𝜌e

= 𝛾

1− tanh (𝛾(𝜌e−𝜂))2

tanh(𝛾𝜂) + tanh(𝛾(1−𝜂))
,

(22)

and 𝜕𝜌e∕𝜕xm, 𝜕𝜌e∕𝜕Dm are defined as (12).

4 IMPLEMENTATION

4.1 Neighbor search

The computation cost is high for calculating the gradients with respect to x andD, since it involves double loops as shown
in (12), (13) as both m and n need to iterate from 1 to Nc. The computation cost is therefore O((Nc)2) for each 𝜕𝜌e

𝜕x
and

𝜕𝜌e
𝜕D
. However, only limited Voronoi points influence a grid element to form a high-density area as the softmax function

finds the minimum distance to a given grid point and the edges are formed in areas where the minimum distances to
multiple Voronoi points are similar. Therefore, the computation cost can be reduced to O(k2) if we only loop through
k Voronoi points closest to the grid element, and the added cost for searching k-nearest neighbor isO(k logN). Thus,
we find k-nearest neighbors every time before we compute the density formed by the Voronoi points and only use the
k-nearest neighbors also to compute the gradients. The sensitivity calculation is the performance bottleneck of our current
implementation. As shown in Figure 5, there is a linear relationship between number k and computational cost of Voronoi
density calculation (Algorithm 1) and a quadratic relationship between number k and Voronoi gradients calculation
(Algorithm 2), with significantly more time cost on the gradient calculation part. We use k in the range from 7 to 20 for
numerical examples to accommodate examples with high anisotropy.

4.2 Workflow

Overall our method has a similar optimization procedure as that of SIMP. However, our method uses Voronoi design
variables Dm and xm instead. We solve the continuous optimization problem defined by (18) using a gradient-based,
iterative optimization scheme. Fourmajor steps are computed in each iterative step. First, we need to calculate the density
𝜌 based on the positions xm and the metric tensors Dm, as shown in Algorithm 1. Second, we perform the FEM solve
using an MGPCG (multi-grid preconditioned conjugate gradient) solver to obtain displacement u of each element and
calculate the corresponding compliance c. Third, we compute the gradients of compliance c and volume V with respect
toDm and xm. For clarification, we give the pseudo-code of calculating 𝜕c

𝜕x
using neighbor search in Algorithm 2, the other

gradients are calculated similarly. Last, we update the design variables using the method of moving asymptotes method
(MMA).61,62 The pseudo-code of our overall workflow is given in Algorithm 3.

F IGURE 5 Computational cost density update and sensitivity update versus k number in a 1024 × 1024 grid with 256 Voronoi points.



10 FENG et al.

Algorithm 1. Calculation of differentiable Voronoi diagram

Input: Positions Voronoi points x, Metric tensor D
Output: Neighbors field nbs, Density field 𝜌
1: for i ← 0 to Nc do ⊳ update A
2: A[i] = D[i]@D[i].T
3: end for
4: for i ← 0 to Ne do ⊳ update neighbors
5: nbs[i] ← Find_K_Nearest_Nb(xi, x) ⊳ stores the index of the ith neighbor
6: end for
7: for i ← 0 to Ne do ⊳ update denominator in Equation (11)
8: for j ← 0 to k do
9: Sum← Sum + exp(−d(xi, xnbs[i][j]))
10: end for
11: softmax_sum[i] ← Sum + 𝜖s ⊳ store the intermediate softmax sum in a field
12: end for
13: for i ← 0 to Ne do ⊳ update 𝜌
14: for j ← 0 to k do

15: 𝜌i ← 1 −
[

exp
(

−d(xi,xnbs[i][j])
softmax_sum[i]

)]
𝛽

16: end for
17: end for

Algorithm 2. Calculation of 𝜕𝜌∕𝜕x

Input:field of int array nbs, field 𝜕c
𝜕𝜌̃e

and 𝜕𝜌̃e
𝜕𝜌e

Output: derivative of compliance with respect to Voronoi point positions 𝜕c
𝜕x

1: for e ← 0 to Ne do ⊳ calculate 𝜕𝜌e(x)
𝜕xnbs[e][m]

, parallelizable
2: form ← 0 to k do
3:

𝜕𝜌e(x)
𝜕xnbs[e][m]

← 0
4: for n ← 0 to k do
5:

𝜕Snbs[e][m](x)
𝜕xn

← Snbs[e][m](x)[Snbs[e][n](x) − 𝛿(nbs[e][m])(nbs[e][n])]Ynbs[e][n](x) ⊳ Equation (13)

6:
𝜕𝜌e(x)

𝜕xnbs[e][m]
−= 𝛽

[
Snbs[e][m](x)

]
𝛽−1 𝜕Snbs[e][m]

𝜕xnbs[e][n]
⊳ Equation (12)

7: end for
8: end for
9: end for
10: for e ← 0 to Ne do ⊳ calculate 𝜕c

𝜕xnbs[e][m]
, not parallelizable

11: form ← 0 to k do
12: 𝜕c

𝜕xnbs[e][m]
+= 𝜕c

𝜕𝜌̃e

𝜕𝜌̃e
𝜕𝜌e

𝜕𝜌e
𝜕xnbs[e][m]

⊳ (21)
13: end for
14: end for
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Algorithm 3. Topology optimization with differentiable Voronoi diagrams

Input: Volume fraction f , Number of Voronoi points Nc, Metric tensor D
Output: Density field 𝜌̃
1: Initialize positions of Voronoi points x randomly in a coarse grid
2: Iteration counter i = 0
3: Design variable change Δ = 1
4: Projection parameter 𝛽 = 1
5: while i < imax and 𝛿 > 1e − 4 do
6: Calculate 𝜌 ⊳ Equation (5), Algorithm 1
7: Density projection 𝜌̃ ← 𝜌

8: Compute compliance c ⊳ Equations (18) and (20)
9: Calculate 𝜕c

𝜕D
,

𝜕c
𝜕x
,

𝜕V
𝜕x
,

𝜕V
𝜕D

⊳ Equation (21), Algorithm 2
10: Update D and x with MMA optimizer
11: Δ = max{max

∀m
(|Di

m −Di−1
m |),max

∀m
(|xim − xi−1m |)}

12: i = i + 1
13: end while

5 NUMERICAL RESULTS

We discuss the numerical results obtained using our approach. For all the examples, we assume isotropic elasticity speci-
fied by Young’s modulus E = 1 and Poisson’s ratio 𝜇 = 0.3. In the optimization, the lower bound of Young’s modulus Emin
is 1e − 9. We use 𝛽 = 50 for the Voronoi representation. We conduct all of our numerical examples on a regular lattice
grid with square elements in 2D and cube elements in 3D. Ideally, we assume that we have an unlimited resolution of the
background grid. However, with the limited computational resource, the finite element size should be at most half of the
thickness of Voronoi edges. Our experiments consists in four parts, including the ablation tests (Section 5.1), standard
tests (Section 5.2), biomimetic applications (Section 5.3), free-boundary examples (Section 5.4), and three-dimensional
results (Section 5.5).

5.1 Ablation tests

We first conduct two ablation tests to verify the roles of position xm and metric tensor Dm separately. Both experiments
were carried out with two Voronoi points on a 512 × 512 grid. We first test the optimization of xm (see Figure 6). The
boundary condition is set as a distributive force within a narrow region on the top and the bottom nodes being fixed.
We initialize the position of two Voronoi points randomly as shown in Figure 6B, where a tilted beam is formed, not
connected with any fixed nodes on the bottom. The metric tensor D for each Voronoi point is set to be 80 multiplying
an identity to ensure an appropriate edge thickness. After convergence, as shown in Figure 6C, the beam is rotated to
the middle of the domain by the moving control points, connecting the force load and the fixed base to minimize the
structure’s compliance. We set up a similar optimization problem as in Figure 7A to verify the role ofDm. The bottom-left
and the bottom-right corners are fixed and an external load is applied in the center. We initialize two Voronoi points with
their position fixed and only optimize for theirmetric tensor. The program obtainsD1 = [282, 1.4e − 4; 1.4e − 4, 89] for the
lower point and D2 = [228,−1.3e − 4; −1.3e − 4,106] for the higher point after convergence. The optimized design forms
an arch tominimize the compliance while satisfying the pre-defined target volume constraints. The two tests jointly show
that both design variables are effective in guiding the structure to evolve to a low-compliance status.

5.2 Standard tests

We optimize x andD for cellular cantilever beam structures with aminimum compliance. The optimized design after 245
iterations is shown in Figure 8A.We first randomly initialize 18 points in a 6 × 3 coarse grid of a 512 × 256 domainwith an
initialD = [150, 0; 0,150]. Our optimized structure resembles that of a standard topology optimization result, Figure 8B,
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F IGURE 6 (A) Setup for the pushdown experiment. (B) Initial density distribution. (C) Density distribution after optimization. The
red points indicate the positions of two Voronoi points.

F IGURE 7 (A) Setup for the middle drag experiment. (B) Initial density distribution. (C) Density distribution after optimization. The
red points indicate the positions of two Voronoi points.

as the long beams are formed both on the bottom and top, connecting the fixed boundary with the loads. We did not
visualize Voronoi points outside the domain, which also contribute to the structure. The compliance of our structure is
5.5% above the one obtained by the standard method. We conjecture that the slightly larger compliance is in part due to
the wastematerials formed on the top right corner, which is not contributing to lower the compliance and the constrained
design space for cellular patterns. We show a comparable optimization convergence performance as the standard SIMP
method (see Figure 8C), in which both methods converge within 150 frames. We conjecture the spikes in the objective
curve to be caused by a relatively significant change in density distribution when the positions/metric tensors change
mildly in value. These jitters can be mitigated by further decreasing the move limits of the optimization parameters.

The second example is a framed cantilever beam with a distributed force load. The nodes on the left side are all fixed,
and downward-pointing forces are exerted in the middle region on the right side, occupying the middle 20% of the total
height. The rectangular frame of the 1 × 0.5 domain is fixed to be filled with solid materials with a beam thickness of 0.01
(in the framed cases). The target volume is set to be 0.35. The optimization results with the different number of initial
points are shown in Figure 9. From left to right, we observe that amore distributed structure is formedwithmore Voronoi
points. All optimized structures form axial beams that traverse from the left top corner to the right middle, similarly, from
the left bottom corner to the rightmiddle. Additionally, both form the dark “anchor” regions on the top left and bottom left
corners. These features demonstrate the spatially adaptive nature of our method, which are also the keys to minimizing
the compliance in this boundary setup. Comparing the upper row without density on the frame and the lower row with
density on the frame, the overall structures look similar except that there are less material connecting to the upper and
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F I GURE 8 Optimization results of two-dimensional cantilever beams. (A) Our result. (B) Result obtained using SIMP. (C) The
objective convergence comparison.

F IGURE 9 Topology optimization of Voronoi structures with distributed force load on the right side. The top row shows the results
without density on the boundary while the bottom row shows the result that has one layer of density on the boundary. The left side is the
result formed by 98 Voronoi points with resolution 512 × 256 while the results on the right side are formed by 512 Voronoi points with a grid
resolution of 1024 × 512.

lower corner in the examples without frame. For the results in the 512 × 256 grid, 17 Voronoi pointsmove to outside of the
domain in both cases. For the results in the 1024 × 512 grid, 83 Voronoi points move to outside of the active cell domain
for the case where density fills the frame while 98 points move to outside of the domain for the unframed case.

In Figure 10, we initialize the points in the centers of the coarse grids. Since the stress distribution is symmetric across
the horizontal axis, the optimization initialization of points in the 14 × 7 coarse grid exhibits asymmetrical pattern as early
as frame 1. When we optimize the structure with initialization of points in the 16 × 8, it preserves a symmetric structure
until frame 13. Also, we observe that starting from frame 13, the volume constraint is better satisfied. So we conclude that
the optimizer prioritize satisfying volume constraint than strictly following gradient from that point on.
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F IGURE 10 Optimization result of the framed cantilever beam with 14 × 7 and 16 × 8 points respectively.

F IGURE 11 Evolution of Voronoi points and corresponding density for the Diptera wing example. From left to right at iteration 1, 100,
and 299 respectively. The boundary condition is illustrated on the inset picture on the top left, where the red points indicate the fixed nodes,
blue points indicate the nodes that receive forces, and the green lines indicate the force directions.

5.3 Biomimetic structures

To demonstrate the efficacy of our approach in optimizing biomimetic cellular structures, we optimize the struc-
ture within a Diptera wing contour as in Figure 11. We randomly initialize 13 Voronoi points in a 6 × 3 grid with
D = [400, 0; 0,400]. The target volume fraction is set to 0.15. For processing the irregular boundary here, we first convert
a silhouette of the Diptera wing shape into a level set field using fast marching algorithm.63 Then, we mark the cells with
negative level set values as active andmark the cells with positive level set values as inactive cells, whichwe set 𝜌e = 0 and
do not optimize the density distribution. The nodes that have active neighbor cells and inactive neighbor cells are marked
as boundary nodes and we apply boundary forces on them. The directions of the boundary forces are partially determined
by the gradient of the level set as well. As shown in Figure 11, the Voronoi points are distributed in the design domain
evenly and the initial Voronoi tessellation is similar to a CVT. As optimization proceeds, however, the Voronoi partitions
are more elongated, which conforms to the force direction. Also, the beams on the left side connecting to the fixed points
are relatively thicker than the beams on the right side. Note that although some regions with diffused density appear as
two points closer to each other, they separate naturally in the later iterations after the stronger filter strength leads to a
more binary density pattern. A denser cellular pattern in an Odonata front wing is shown in Figure 12, where 290 points
with an initial D = [1300, 0; 0, 1300] and 1116 points with an initial D = [2600, 0; 0, 2600] are optimized after 249 itera-
tions. The irregular boundary is set similarly in this example except that the cells within a certain positive epsilon values
are marked as boundary cells with 𝜌e = 1, and the boundary nodes are in between boundary and inactive cells. It can be
observed that thick beams are formed towards the fixed nodes on the right side and there is a spectrum of variations in
the edge thickness.

We also test our algorithm to optimize a bone’s interior. As illustrated in Figure 13, we fix the bottom of the bone
shape and add distributed pulling forces on the top left and distributed pushing force on the top right. The evolution
of the topology optimization process is shown in Figure 13 at selected frames. We can see that the overall density of
distribution is reached as early as iteration 50, while amore binary and refined structure is achieved in the end. Our results
are consistent with the characteristic femur bone structure with elongated cells and inhomogeneous density distribution
across the entire domain. The result formed with 773 points has a more distributed density while maintaining the overall
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F I GURE 12 The evolution result of Odonata front wing. The boundary condition is illustrated in the inset picture on the middle left.
Top row: The optimized design with 290 Voronoi points in a 1024 × 256 domain. Bottom row: The optimized design with 1116 Voronoi points
in a 2600 × 650 domain.
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F IGURE 13 Evolution of cellular structures for the bone example. Middle: Boundary condition for the bone example. Similar to the
Diptera example, the darker blue contour indicates the boundary of the design domain. The red nodes on the bottom are the fixed nodes. The
distributed forces are applied to the two locations indicated by blue circles with green bars attached, which visualize the direction and the
strength of the forces. Top row: Left is the initialization of 196 Voronoi points on a 1024 × 1024 grid and Right is the optimized result after 249
iterations. Bottom row: Left is the initialization of 773 Voronoi points on a 1024 × 1024 grid and Right is the optimized result after 249
iterations.

cellular directions. In this example, the structure formed with fewer points achieves a lower compliance 102 than that of
the structure formed by more points (115) which implies that a less even density distribution is more desirable under this
specific boundary condition.

5.4 Foam structures with free boundary

Our method is also capable of optimizing foam structures with free boundaries, ergo, no need to connect cell walls all
the way to the border of the design domain, thus forming cellular structures seen in nature such as cell clusters. In
this subsection, we demonstrate the unprecedented cellular structure with/without enabling the anisotropic feature. All
experiments are done with the standard cantilever beam boundary condition.
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In Figure 14, we optimize only the positions of the Voronoi control points. On a 512 × 256 grid, we initialize 32 points
and 98 points randomly in coarse grids 8 × 4 and 14 × 7, respectively. The initial D is set to [250, 0; 0,250] for the experi-
ment with fewer points, and [350, 0; 0,350] for the experiment with more points. The value of 𝜖s is set to 1e − 7 to obtain
an appropriate radius for the cell size. In the beginning, the cells spread out the entire domain, without a structure. After
15 iterations, cells start to cluster in order to form a long beam connecting the left fixed sidewith the force load on the right
bottom corner. A more clear 2-beam structure forms at the 50th iteration, and final structures that more resemble a stan-
dard cantilever beam form in the end. Notice that since there is no structure connecting the force load and the fixed nodes
in the beginning, the FEM solve does not converge. However, the optimization process is not obstructed by this issue.

With the same initial setup, but enabling the optimization of D, we can obtain cellular structures with morphed cells
and lower compliance as shown in Figure 15. Similarly, the cells are dispersed randomly in a coarse grid at the start point
and start to form beam structures with less distorted cells at iteration 15. The structure at iteration 50 consists of more
distorted cells while maintaining the overall structure. In the end, thicker beams are formed on the bottom and across
from the left-top to the bottom right corner for both cases.

In Figure 16, we compare the compliance function curves of the cellular structures with free boundary formed only
optimizing x and optimizing both x and D with 32 and 98 Voronoi points respectively. In both cases, the structures
obtained by optimizing both x and D reach much lower compliance values.

Furthermore, we compare the compliance of the structure with free boundaries andwithout free boundaries as shown
in Figure 17. In this case, the final compliance of the structure with free boundaries is higher than that without free
boundaries, even though the structure with the free boundary removes the extra material on the upper right corner that
does not contribute to lowering the compliance. This is the constraint of the free boundary structure as the cells need to
form a closed cellular structure and there are no connecting cells with the fixed nodes on the left side under this volume
constraint.

F IGURE 14 Cellular structure with free boundary, only optimizing x. From left to right, the columns are optimization results at
iteration 0, 15, 50, and 249 respectively. The top row is the result formed by 32 Voronoi points while the results on the bottom are formed by
98 Voronoi points.

F IGURE 15 Anisotropic cellular structure with free boundary, optimizing both x and D. From left to right, the columns are
optimization results at iteration 0, 15, 50, and 249, respectively. The top row is the result formed by 32 points while the results on the bottom
are formed by 98 points.
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F IGURE 16 Left: The comparison of compliance function curves of cellular structures with free boundary fromed by only optimizing
x and optimizing both D and x with 32 Voronoi points. Right: The comparison of compliance function curves of cellular structures with free
boundary fromed by only optimizing x and optimizing both D and x with 98 Voronoi points

F IGURE 17 Left: The cantilever beam formed with free boundary feature. Middle: The cantilever beam formed without free boundary
feature. Right: The comparison of their compliance curves.

5.5 3D result and performance

Our method can be easily extended to 3D. Therefore we also demonstrate the 3D cantilever beam in Figure 18. Here,
we initialized 128 points inside a 256 × 128 × 128 grid with initial D = 300I. Large walls are formed on the bottom and
across the top left to the bottom right, connecting nodes receiving force load with the fixed nodes on the left side. We
use the isosurface of the optimized density field and render the images in Houdini. We can also add a free boundary for
this example in 3D space, as shown in Figure 19. 1024 points are randomly initialized in the grid with initial D = 700I.
Three-dimensional bubbles are formed and stretched after optimization, and there is no wasted material in the top right
corner. Similarly, we compare the resulting in compliance for the optimized 3D cellular structures with and without free
boundaries, as shown in Figure 20. For similar reasons, the compliance of the structure with free boundaries is not that
much different from that without free boundaries.

The statistics of our high-resolution examples are summarized as in Table 1. These examples are all run on a computer
with an Intel i9 9980 CPU, 18 cores, 4GPUNVIDIAGeForce RTX2080, and 128Gmemory. The convergence criteria given
in the table is |ci + ci−1 − ci−2 − ci−3|∕(ci−2 + ci−3) < 0.1%, where i is the iteration number. The forward part includes the
time cost of updating the density distribution based on the current variables of the Voronoi structure and the FEM solve
for node displacement. The gradient calculation is taking the most time because our algorithm needs to iterate through
each cell to calculate the derivative of compliance to each optimizable variable.

5.6 Discussion

Compared with the standard SIMP method, our topology optimization algorithm with differentiable Voronoi diagrams
manifest its computational merits in several aspects. First, the algorithm encodes a strong geometric prior into the opti-
mizer to coerce the emergence of cellular structures, providing a novel design space that was impractical to explore using
a conventional density-based method. Second, we propose a free-boundary treatment to overcome the inherent limita-
tion of Voronoi as a domain partition structure. This implicit, free-boundary representation extends our algorithm from
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F I GURE 18 Rendered 3D cantilever beam results. Left column is the structure upon initialization, right column is the optimized
structure at iteration 150. The top row is the cross-sectional view.

F IGURE 19 Rendered 3D cantilever beam with free boundary results. Left is the structure upon initialization, right is the optimized
structure at iteration 100. The top row is the cross-sectional view.

designing the interior part only to handling the optimization of both the boundary shape and the internal structures.
Third, the implicit, differentiable nature of our Voronoi diagram provides a practical way to calculate the design sensi-
tivities. Last, regarding the computational performance, the locality of our hybrid grid-particle representation avoids a
global search for point neighbors, facilitating large-scale optimizations on a high-resolution FEM grid.

Our approach also manifest several weaknesses compared with the standard SIMP method. First, as shown in the
objective curves (e.g., Figure 8C), our approach under-performs in terms of its compliance performance when compar-
ing with SIMP. Because of the additional Voronoi priors employed on top of the density representation, the results tend
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F IGURE 20 Left: The 3D cantilever beam formed with free boundary feature. Middle: The 3D cantilever beam formed without free
boundary feature. Right: The comparison of their compliance curves.

TABLE 1 Statistics of high-resolution examples

Computation time (s)

Example Resolution Forward Gradient MMA Convergence
Neighbor
number k

Framed cantilever beam 1024 × 512 0.721 1.577 0.006 70 10

Odonata wing 1024 × 256 0.511 1.429 0.004 17 15

Femur bone 1024 × 1024 1.164 4.915 0.001 49 15

3D cantilever beam 256 × 128 × 128 2.857 20.18 0.004 39 15

3D cantilever beam with free boundary 256 × 128 × 128 4.65 80.86 0.021 59 15

to exhibit an ensemble of cellular features of thin membranes and small cells. These features were not favored by a
SIMP optimizer, which, in contrast, tend to generate thick beams and large volumes. Second, the free-boundary repre-
sentation limits the search of structures with optimal compliance too. As shown in Figures 17 and 20, the results with a
free-boundary treatment, despite its removal of wasted features in the top-right corner, did not exceed the one without a
free boundary (and therefore with wasted features). Third, the computational cost of the implicit Voronoi, in particular
the sensitivity d𝜌∕dx, though accelerated by its local search strategy, is highly dependent on the number of neighboring
points within the range. A large number of neighboring points, which is necessary to accommodate highly anisotropic
cells in some examples (e.g., Figures 13 and 18), leads to a quadratic increase of the computation time for the sensitivity
calculation. Devising neighbor-pruning strategies to reduce the soft-max sum calculation for redundant neighbors (i.e.,
the points not contributing to a cell’s density), or devising anisotropic Kd-tree search algorithms, could be an interesting
direction to explore.

6 CONCLUSION

We proposed a topology optimization algorithm for generalized cellular structures. A Voronoi representation that is dif-
ferentiable, generalized, and encompassing a hybrid discretization is devised to construct an efficient gradient-based
optimization framework. The numerical examples demonstrate that the proposed method is effective in generating
organic cellular structures resembling those in nature that also minimize structural compliance. Compared to the pre-
vious literature in cellular topology optimization, our method enabled, for the first time, a differentiable representation
of the previously discrete Voronoi representation and successfully incorporated this representation in a density-based
standard topology optimization pipeline. Compared to the previous hybrid Eulerian–Lagrangian topology optimization
methods such as References 47, 49, and 45, which relied on an explicit or smoothed Lagrangian representation that can
move in an Eulerian domain, our approach encodes the optimization variables into an implicitly defined distance metric
tensor field carried on moving particles to express complex cellular structures. The differentiable nature of our geometric
representation, in conjunction with its generalized Voronoi cells based on an optimizable, non-Euclidean distance field,
allows the optimization of a broad range of organic cellular structures based on first principles.
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Still, there are some limitations to our method. First, due to the definition of our differentiable Voronoi representa-
tion, the edge formed by two control points is thinner in the middle and thicker farther away from the two points. We
anticipate solving this problem by exploring different forms of metric tensors to obtain a controllable and consistent edge
thickness over space. Second, the FEM discretization in our method relies on a high-resolution grid on the background,
which requires a fine grid discretization to represent a complex structure with many cells. Exploring more efficient
Eulerian–Lagrangian representations, in particular, those with sub-cell discretizations, would further reduce the compu-
tational cost of the entire optimization pipeline. Third, our current approach handles the free boundary with a fixed 𝜖s
value, implying a constant and non-optimizable radius for the foamy boundary. Incorporating 𝜖s into the optimization
framework can further enhance the expressiveness of the current model. Fourth, we optimize the wing-shaped struc-
tures only in two-dimensional spaces to demonstrate the expressiveness of our proposed differentiable cellular structure.
To make a comparison with the Voronoi structures of insect wings in nature, we plan to use our method on shell finite
elements. We also consider future work to investigate multi-level cellular structures, featuring cellular structures at mul-
tiple length scales with a parent-child relationship, and extend the Voronoi structural representation to other structural
optimization problems with different objectives and physical constraints, motivated by the nature of various insect wings
that are driven by different biological or mechanical models.
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