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Abstract 

Accurate detection and appropriate 
handling of disruptive talk in multi-party 
dialogue is essential for users to achieve 
shared goals. In collaborative game-based 
learning environments, detecting and 
attending to disruptive talk holds 
significant potential since it can cause 
distraction and produce negative learning 
experiences for students. We present a 
novel attention-based user-aware neural 
architecture for disruptive talk detection 
that uses a sequence dropout-based 
regularization mechanism. The disruptive 
talk detection models are evaluated with 
multi-party dialogue collected from 72 
middle school students who interacted with 
a collaborative game-based learning 
environment. Our proposed disruptive talk 
detection model significantly outperforms 
competitive baseline approaches and shows 
significant potential for helping to support 
effective collaborative learning 
experiences.   

1 Introduction 

Automatic analysis of dyadic dialogue utilizes a 
broad range of methods for intent recognition 
(Ahmadvand et al., 2019; Grau et al., 2004; Kim et 
al., 2010; Maraev et al., 2021). Compared to dyadic 
conversations, multi-party conversations are 
characterized by a high degree of complexity due 
to multi-way group interactions, thus, multi-party 
dialogue models should take into account group 
dynamics to reliably model phenomena. For 
example, previous research investigated giving less 
weight to participants whose convergence 
behaviors differ from the rest of the group (Rahimi 
and Litman, 2018) to examine which utterances 

should be clustered together (i.e., conversation 
threads) in multi-party dialogues (Mayfield et al., 
2012; Tan et al., 2019).  

In education, computer-supported collaborative 
learning environments promote social aspects of 
learning through the use of a variety of 
technological and constructive pedagogical 
strategies, including problem-based learning and 
inquiry learning (Dillenbourg et al., 2009; Hmelo-
Silver, 2004; Jeong et al., 2019). Collaborative 
game-based learning environments often provide 
students with in-game chat features to help 
promote open discussion and negotiation among 
team members, facilitating the coordination of their 
in-game learning activities (Saleh et al., 2021). 
However, students are not always effective 
collaborators and may engage in improper 
communicative behavior, distracting from the 
group learning experience. The presence of 
negative socio-emotional engagement in 
collaborative learning environments can result in 
disruptive talk and can function as a barrier to the 
development of high-quality collaborative 
communication.  

Previous work on detecting talk that can cause 
negative socio-emotional engagement (e.g., off-
task behavior, bullying, disruptive talk) in 
collaborative learning environments investigated 
computational approaches using language models 
ranging from classic approaches (e.g., n-grams) 
and word embedding approaches (e.g., BERT). 
These language models have been combined with 
classic techniques (e.g., logistic regression, random 
forest) and deep learning techniques (e.g., long-
short term memory networks) (Carpenter et al., 
2020; Nikiforos et al., 2020; Park et al., 2021). 
However, the previous work either makes 
utterance-by-utterance predictions without taking 
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context into account or treats the entire multi-party 
conversation sequence as a continuous dialogue 
flow, despite the potential presence of multiple 
concurrent message threads with different topics.  

In this paper, we propose a novel attention-
based, regularized user-aware modeling approach 
for detecting disruptive talk in multi-party dialogue 
within a collaborative game-based learning 
environment. We investigate the use of target-user 
embeddings to help the prediction model determine 
the disruptiveness of the sequence more accurately 
with an additional user-specific network and 
attention mechanism. We also investigate a 
sequence-level dropout mechanism during training 
as a regularization technique that could help avoid 
overfitting possible diluted conversation sequences 
(i.e., presence of multiple threads in a sequence) in 
training data. Experimental results demonstrate 
that our attention-based, regularized user-aware 
model offers great potential for addressing 
disruptive talk detection in multi-party dialogues.  

2 Related Work 

Diverse prediction tasks have analyzed multi-party 
dialogue focusing on the asynchronous and 
entangled nature of group conversations, such as 
dialogue act classification using group thread 
history, and thread detection as well as 
cyberbullying and toxic message detection within 
group conversations (Anikina and Kruijff-
Korbayova, 2019; Blackburn and Kwak, 2014; 
Ekiciler et al., 2021; Kim et al., 2012; Min et al., 
2021; Tan et al., 2019).  

Kim et al. (2012) investigated classic machine 
learning approaches for dialogue act classification, 
such as Naïve Bayes, support vector machines, and 
conditional random fields, along with contextual, 
structural, keyword, and dialogue interaction-
based features of utterances for dialogue act 
classification in multi-party live chat datasets. As a 
sub-task of a disaster response mission knowledge 
extraction task, Anikina and Kruijff-Korbayova 
(2019) proposed a deep learning-based 
Divide&Merge architecture utilizing LSTM and 
CNN for predicting dialogue acts. Min et al., 
(2021) investigated the use of dialogue act 
prediction utilizing conditional random fields and 
ELMo contextualized word embeddings in multi-
party team communication for providing adaptive 
team training support.  

As multiple participants are involved in multi-
party conversation, disentanglement of the 

conversation based on relevancy is another 
important task, which could enhance the 
conversational relevance rate of automated 
dialogue agents (Shamekhi et al., 2018) or improve 
summarization quality (Zhang and Cranshaw, 
2018). Tan et al. (2019) proposed three LSTM-
based context-aware thread detection architectures 
that automatically captures conversation threads in 
multi-party and multi-thread conversations, where 
the proposed model predicts which existing thread 
the current utterance belongs to (or whether it 
creates a new thread).  

Another task that has received considerable 
attention in multi-party conversation is 
cyberbullying. The ability to detect bullying or 
toxic behavior is crucial to protecting users from 
cyberbullying. In particular, researchers are 
increasingly interested in toxic behavior in 
multiplayer games, such as multiplayer online 
battle arena (MOBA) games, where players 
compete against other teams in virtual online game 
environments (Kordyaka 2018). Blackburn and 
Kwak (2014) used random forest classifiers to 
detect toxic behavior in League of Legends using 
in-game performance, user reports, and chat data. 
The conversation data included 590,000 utterances, 
which were labeled via crowdsourcing on whether 
the conversation was toxic or not. Ekiciler et al. 
(2021) presented a linguistic analysis of gender-
based toxic language usage in a Dota 2 chat dataset 
and investigated Naïve Bayes classifiers with three 
different Laplace smoothing parameters as an 
automatic approach for sexist toxic comment 
detection. A significant presence of gender 
discrimination in online games, mainly by young 
males and intense players, was revealed in their 
qualitative analysis. 

Students’ conversations can create disruption in 
collaborative learning environments, impeding 
collaborative learning processes. Recent research 
on bullying, off-task behavior, and disruptive talk 
in collaborative learning environments examined a 
range of word embedding techniques as well as a 
variety of classical machine learning and deep 
learning techniques (Carpenter et al., 2020; 
Nikiforos et al., 2020; Park et al., 2021). Nikiforos 
et al. (2020) explored the automatic detection of 
aggressive behavior (i.e., bullying) in two K-12 
computer-supported collaborative learning 
environments. They used unigrams to represent 
words and examined machine learning approaches 
such as Naïve Bayes with Laplace smoothing, 
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decision tree classifiers, and feedforward neural 
networks. The prediction results suggest that 
approaches based on deep learning outperform 
other classical machine learning approaches. 
Carpenter et al. (2020) used dialogue analysis to 
identify if students’ messages were on-task or off-
task during collaborative game-based learning. To 
develop a model capable of reliably detecting off-
task behavior, they investigated three different 
word embedding approaches (i.e., Word2Vec, 
ELMo, and BERT), various history lengths of 
previous utterances, and two deep learning and 
classical machine learning classifiers were trained 
on a feature set containing contextual information 
extracted from student chat messages. The 
empirical evaluations indicated that the LSTM-
based off-task behavior detection model with 
BERT embeddings outperformed other baseline 
approaches. Park et al. (2021) presented an LSTM-
based disruptive talk detection framework in a 
multi-party dialogue dataset from a collaborative 
game-based learning environment, utilizing 
features from chat messages, a range of linguistic 
features, gender, and pre-test scores. While this 
work has the potential to improve learning 
experiences by detecting disruptions within 
collaborative learning settings, they disregard the 
unique characteristics of multi-party dialogues. In 
our work, we improve predictive performance of 
disruptive talk detection models by incorporating 
an additional network that embeds the 
characteristics of the user of a target utterance and 
a sequence-level dropout mechanism. 

3 Corpus 

We next describe the collaborative game-based 
learning environment and its chat-interface, dataset 
collected from two field studies, and disruptive talk 
annotation process. 

3.1 ECOJOURNEYS Collaborative Game-
Based Learning Environment 

ECOJOURNEYS is a collaborative game-based 
learning environment for middle school science 
education focused on ecosystems (Mott et al., 
2019; Saleh et al., 2019) (Figure 1). Students visit 
a virtual island in the game-based learning 
environment and are tasked with determining what 
is causing a mysterious illness among the island’s 
fish population. Students work in groups of four to 
solve the mystery within the game, where each 
student works on a different laptop and interacts 

with peers in the virtual game environment. 
Individual students examine the fish illness during 
gameplay by collecting information and interacting 
with virtual characters. The virtual non-
player characters serve as local experts, providing 
context for ecosystem concepts and the unfolding 
narrative (e.g., “Dissolved oxygen is a non-living 
component that animals and plants require to 
survive.”). After investigating and gathering 
information, students meet at a virtual whiteboard 
within the game to share and categorize the 
information they have gathered and to discuss the 
most likely cause of the illness. Students are 
encouraged to exchange ideas, ask questions, and 
negotiate with their team members during the 
game’s problem-solving activities using the in-
game chat interface (Figure 1). This built-in chat 
system is accessible throughout the game. Each 
group is led by a facilitator, who is either a 
researcher or a teacher. The facilitator asks 
questions and encourages students to communicate 
with one another using the in-game chat interface. 
Facilitators can monitor and intervene on students’ 
activities and conversations using an in-game 
screen, available only for facilitators, to guide 
students’ learning. Facilitators can choose 
messages from a set of pre-written messages or 
write free-form messages using the in-game chat 
interface. 

3.2 Dataset 

The ECOJOURNEYS collaborative game-based 
learning environment was used in two classroom-
based studies. Students were either in the sixth or 
seventh grade (11-13 years old) and played 
ECOJOURNEYS during six classroom periods. In 
total, 21 groups with 84 students (4 students per 
group) were involved in the two studies. From the 
21 groups, the current work utilizes data from 18  

 
Figure 1:   ECOJOURNEYS collaborative game-based 
learning environment and its in-game chat interface. 
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groups consisting of 72 students (31 female and 41 
male) who consented to the study and completed 
all the activities in the collaborative game-based 
learning environment. There are 9,236 chat 
messages available in the resulting dataset, with 
2,440 messages from facilitators and 6,796 
messages from students. We only consider the 
students’ messages during the disruptive talk 
detection modeling working under the assumption 
that facilitators would not produce disruptive talk. 
On average, students in each group sent 382.4 
messages (min = 89, max = 900, SD = 229.7).   

3.3 Disruptive Talk Annotation 

Adapted from prior work on disruptive talk 
analysis, the present work adopted a binary 
annotation scheme, disruptive talk, and non-
disruptive talk, (Borge and Mercier, 2019). We 
labeled student utterances as disruptive talk if it had 
the potential to distract other group members from 
learning (e.g., “Um yea. yep, you can’t work”, “I 
WILL HAVE A MENTAL BREAKDOWN”) and 
to interfere with deeper learning by interrupting the 
learning activity repeatedly (e.g., sending emojis 
multiple times). Otherwise, we labeled the 
utterance as non-disruptive talk.  

Two human annotators labeled the students’ 
chat-based dialogue collected during the study. 
Approximately 20% of the corpus was labeled by 
both annotators and an inter-rater agreement of 
0.80 was achieved using Cohen’s Kappa, 
indicating substantial agreement among the 
annotators (Cohen, 1960). All utterances labeled 
differently between the two annotators were 
discussed, and agreement was reached for certain 
situations without changing the high-level 
definition of disruptive talk we defined above. An 
example of those situations is when students 
exchange non-task-related messages, seemingly 
disruptive, before everyone is logged on and before 
starting the game, we agreed to label them as non-
disruptive. A label was chosen for each utterance 
for which there was disagreement before 
proceeding with labeling the remainder of the 
corpus. Then, the remaining utterances were split 
in half and independently labeled by the annotators 
(approximately 40% each). The distribution of 

 
1http://sentiment.christopherpotts.n

et/lexicons.html 
2https://www.computerhope.com/jargon

/c/chatslan.htm 

disruptive and non-disruptive utterances among the 
dataset was determined to be 1,864 (27.4%) and 
4,932 (72.6%), respectively. 

4 Method 

4.1 Data Pre-Processing 

The disruptive talk detection framework in our 
previous work utilizes linguistic features from 
student utterances and student attributes (i.e., 
gender and prior knowledge level) to determine 
how those features collectively contribute to 
prediction performance (Park et al., 2021). Here we 
keep all feature combinations from our previous 
work (i.e., sentence embedding, sentiment, Jaccard 
similarity between utterance and game text, gender, 
and pre-test scores) with an additional text cleaning  
pass that can be helpful for dealing with informal 
chat messages (Table 1). 

We adopt a pre-trained BERT model, 
DistilBERT, a distilled version of BERT, that is a  
small, fast, and light Transformer model (Sanh et 
al., 2019). DistilBERT consists of 6 layers in the 
encoder with 40% fewer parameters than the 
BERT-base model and outputs 768-dimensional 
vectors for each word. We utilized a DistilBERT 
model that was trained on the Wikipedia dataset. 
For the sentence embedding, rather than taking the  
average of the embeddings of all the sentence 
words, we used the first token (i.e., [CLS]), a 
special token inserted in front of the input sentence 
in the BERT architecture, as it effectively 
represents what is in the input sentence and thus has 
been frequently used for BERT-based classification  
tasks (Devlin et al., 2018). 
 

Table 1: Text cleaning approaches. 

 
3 https://github.com/Azd325/gingerit 
4 https://pc.net/emoticons/ 
 

Approach Example Cleaned 

Removed lengthening 
words1 “Helllllllo” “Hello” 

Replaced slang2 “dis”, “k” “This”, “Ok” 

Spelling correction3 “who dat” “Who that?” 

Replaced abbreviated 
words 

“don’t”, 
“can’t” 

“do not”, 
“cannot” 

Replaced emoji4 “:-)” “Happy” 

http://sentiment.christopherpotts.net/lexicons.html
http://sentiment.christopherpotts.net/lexicons.html
https://www.computerhope.com/jargon/c/chatslan.htm
https://www.computerhope.com/jargon/c/chatslan.htm
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4.2 Attention-Based Regularized User-
Aware Disruptive Talk Detection 
Modeling  

When it comes to predicting disruptive talk based 
on the current message and a series of previous 
utterances, separately modeling the characteristics 
of the target user-specific utterances could be more 
effective than only utilizing messages from all 
group members equally; if a student makes a 
disruptive utterance, there is a higher chance that 
the same student will generate more disruption than 
the other group members. We propose an attention-
based user-aware network that incorporates a target 
user-specific network that embeds the utterance 
histories of the target user as well as a separate 
network for modeling group-level utterances. We 
also apply the attention mechanism adapted from 
Bahdanau et al., (2014) to this output user 
representation and the hidden states of each time 
stamp to give weights to the group sequence output 
based on the user characteristics. An illustration of 
this attention-based user-aware network is shown 
in Figure 2 

Suppose 𝑚𝑗
𝑖 is the feature embedding for the 𝑗𝑡ℎ 

message from user 𝑖  in the 𝑛  number of group 
utterance history, 𝐺𝑟𝑜𝑢𝑝𝑆𝑒𝑞, including the current 
message.  

𝐺𝑟𝑜𝑢𝑝𝑆𝑒𝑞 = {𝑚1
1, 𝑚1

2, 𝑚2
1, 𝑚2

2, 𝑚1
3, ⋯ , 𝑚𝑗

𝑖}
𝑖=1,⋯,4

 

From this group sequence, we have user sequence  
𝑈𝑠𝑒𝑟𝑠𝑒𝑞

𝑖  that only includes the utterances from user 
i.  

𝑈𝑠𝑒𝑟𝑠𝑒𝑞
𝑖 = {𝑚1

𝑖 , 𝑚2
𝑖 , ⋯ , 𝑚𝑗

𝑖} 

The user network takes the utterance sequence, 
𝑈𝑠𝑒𝑟𝑆𝑒𝑞

𝑖 , form the target-user only, then outputs a 
user embedding, 𝑈𝑠𝑒𝑟𝑒𝑚𝑏

𝑖 . 

𝑈𝑠𝑒𝑟𝑒𝑚𝑏
𝑖 = 𝐿𝑆𝑇𝑀(𝑈𝑠𝑒𝑟𝑠𝑒𝑞

𝑖 ) 

We can get the attention score between the user 
embedding and the hidden state, ℎ𝑡, at each LSTM 
time stamp of the group sequence. 

𝛼𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑈𝑠𝑒𝑟𝑒𝑚𝑏
𝑖 ⋅ ℎ𝑡)𝑡=1…𝑛 

Using this attention score, we can get the user-
aware group sequence embedding. 

𝐺𝑟𝑜𝑢𝑝𝑒𝑚𝑏 = ∑ 𝛼𝑡 ∗ ℎ𝑡

𝑛

𝑡=1

 

Finally, we get the output probability by using a 
sigmoid function that takes as input 𝑈𝑠𝑒𝑟𝑒𝑚𝑏

𝑖  and 
𝐺𝑟𝑜𝑢𝑝𝑒𝑚𝑏 via concatenation, then determine if the 
last utterance (e.g., 𝑚𝑗

2  in Figure 2) given to the 
model is an instance of disruptive talk with the 
threshold value of 0.5.  

𝑂 =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜 ∗ (𝑈𝑠𝑒𝑟𝑒𝑚𝑏
𝑖 + 𝐺𝑟𝑜𝑢𝑝𝑒𝑚𝑏)) 

We expect this attention-based user-aware 
approach will assist the model’s inference on the 
target utterance by providing specific information 
about the target student characteristics embedded 
by the user-specific network, while simultaneously 
attending to the related utterances from the group 
sequence. 

Additionally, we adopt a training approach that 
could better deal with the dynamics in multi-party 
dialogues. Different from dyad conversation, 
multiple conversation threads in the group 
conversation could make it difficult for the model 
to learn consistent and generalized aspects. We 
adopt a sequence dropout approach, which is one 
of the discourse perturbation methods used in 
(Koupaee et al., 2021), applied to the sequence 
inputs so that the model can learn different 
representations from the same context messages at 
every epoch as an approach to model 
regularization. For the given 𝐺𝑟𝑜𝑢𝑝𝑆𝑒𝑞 , we 
randomly drop utterances with a sequence dropout 
rate of r, range in (0, 0.5) excluding the target 
utterance. This sequence dropout rate can be fixed 
or can be randomly selected from the normal 
distribution. Figure 3 shows how this approach is 
applied during training. 

We anticipate that by observing the same context 
message sequence from multiple dimensions, the 
disruptive talk detection model will learn 
generalized patterns by avoiding possible 
overfitting. Note that we do not drop anything from 
the user network with an assumption that 
utterances from the same user are consistent. It 
should be noted that this sequence dropout 
mechanism is different from the dropout technique 
commonly used for recurrent neural networks, 
which drops for the linear transformation of the 
inputs or the recurrent state, by dropping for the 
entire input at random time stamps. The sequence 
dropout is applied to the training data only for 
effective training through model regularization.  
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4.3 Evaluation 

We evaluate our modeling approaches in three 
steps. First, we compare our attention-based user-
aware approach with our baseline model, which is 
based on a group sequence network with an 
attention mechanism (i.e., without the user-aware 
feature). This baseline modeling approach using 
LSTM-based disruptive talk detection model with 
DistillBERT as a sentence embedding approach, 
and 20 context messages, was adapted from our 
previous work (Park et al., 2021).  Second, by 
comparing models with a fixed sequence dropout 
rates r from 0 to 0.5, and a model that adopts a 
random rate from normal distribution, we decide 
whether we would want to fix the sequence dropout 
rate of r or bring a complete randomness into the 
training phase. We did not raise the r over 0.5 (i.e., 
dropping 50% or more utterances every time) to 
avoid any possible data loss while training. All 
results are compared with the baseline model 
trained on full sequences-only, adopted from our 
previous work (Park et al., 2021). Furthermore, to 
account for the nature of randomness of sequence 
dropout approach, we run the models 5 times and 
average the results from each fold. Finally, we 
apply both the attention-based user-aware and the 
sequence dropout approaches to see that brings an 
additional performance enhancement.  
 

We evaluate the performance of the disruptive 
talk detection models using the area under the 
receiver operating characteristic curve (AUC). 
AUC is one of the commonly used evaluation 
metrics for binary classification problems in 
machine learning, which represents the 
classification model’s ability to separate between 
classes. The ROC curve shows the trade-off 
between true positive rate and false positive rate 

 
Figure 2:  Proposed attention-based user-aware model. This figure illustrates what happens when the current 
message is from User 2. 

 
Figure 3:  Sequence dropout training approach with 
a fixed rate of r. For the same training input 
sequence, the model drops r rate of inputs randomly. 
If r is chosen at random, a different number of inputs 
will be removed every epoch. 
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when varying the threshold values. An AUC of 1 
indicates the classifier can perfectly discriminate 
between two classes, and 0.5 indicates the classifier 
cannot discriminate between two classes. We also 
evaluate the performance of the models using the 
area under the precision recall curve (PR-AUC) 
since AUC can give over-optimistic scores when 
the number of positive and negative classes are not 
balanced (Davis and Goadrich, 2006; Saito and 
Rehmsmeier, 2015). Like the ROC curve, the PR 
curve shows trade-off between precision (y-axis) 
and recall (x-axis) for different threshold values. It 
should be noted that when evaluating models based 
on the PR-AUC, it is essential to compare the 
performance with the PR-AUC of a no-skill 
classifier (i.e., Random chance), as the baseline 
performance varies depending on the task and the 
data distribution. To compare predictive 
performance, we report the average AUC and the 
average PR-AUC from cross-validation results. 

We apply stratified group-level 10-fold cross-
validation to avoid data leakage between training 
and testing data and retain the class distribution 
across folds. For each fold, we split the training 
data into a training and validation set to perform the 
early stopping based on the validation set. The 
distribution and the size of the validation set is the 
same as the test set. For all modeling approaches, 
we set the number of hidden units to 64, batch size 
to 32, and the number of epochs to 20, while using 
early stopping with a patience of 5 to avoid 
overfitting. 

5 Result and Discussion 

Table 2 shows evaluation results of the baseline 
model and the user-aware networks for disruptive 
talk detection. Our attention-based user-aware 
modeling approach outperforms the baseline 
modeling approach with respect to AUC (p=0.065), 
while it also brings improvement with respect to 
PR-AUC (p=0.161), where the statistical tests were 
conducted using the Friedman test, which is the 
non-parametric statistical test for multiple machine 
learning classifiers over multiple data sets, with a 
post-hoc analysis with the Wilcoxon signed rank 
test (Demšar, 2006). These results suggest that 
having the user-specific network was helpful for 
the model to identify whether the target utterance 
is disruptive or not. This might be because the user-
specific network examines how the messages of 
target students have been developed without being 
affected by other student messages. The model 

obtains a clearer sense of the user’s potential to be 
disruptive in a group conversation. In addition, it is 
possible that giving more weights to the hidden 
states that are more relevant to the target user 
embedding was effective to identify where to 
attend in the potentially noisy group sequence 
representation for the disruptive talk prediction of 
the target user. 

Table 3 shows the performance of sequence 
dropout approach (i.e., sequence dropout applied to 
a group-level network without a user-aware 
network) across the different sequence dropout 
rates and random choice. Except for r = 0.1, 0.2, all 
modeling approaches using different sequence 
dropout rates outperform the baseline with respect 
to AUC with a statistical significance (p < 0.05) 
when they were tested with the Wilcoxon signed 
rank test, while the model with random dropout 
rates applied perform the best. There were no 
significant differences in the performances among 
different dropout rates, except for the model using 
r is 0.1 or 0.2. These results might suggest that 
learning patterns from different sequence 
combinations were helpful for the disruptive talk 
detection model but dropping too few utterances 
would bring less significant enhancement to the 
performance. With respect to PR-AUC, the model  

Dropout Rate (r) AUC PR-AUC 
Baseline (r = 0) 0.8292 0.5504 
Random (0, 0.5) 0.8557* 0.5649 

0.1 0.8413 0.5492 
0.2 0.8426 0.5466 
0.3 0.8507* 0.5517 
0.4 0.8543* 0.5494 
0.5 0.8498* 0.5526 

Table 3: Sequence dropout approach across different 
dropout rate of r. The best performance of each 
evaluation metric is marked in bold, and * represents 
there is a statistically significant difference compared 
to the baseline. 

 
 

Model AUC PR-AUC 
No-Skill 0.5000 0.2466 
Baseline 0.8292 0.5504 

User-Aware 0.8480 0.5691 

Table 2: Results of attention-based user-aware 
network (User-Aware). The best performance of each 
evaluation metric is marked in bold. 
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with the random sequence dropout choice 
demonstrated improved performance compared to 
the other competitive modeling approaches, 
although the difference is not statistically 
significant when compared to the baseline model 
(p=0.138).  

The performance enhancement with the 
sequence dropout training mechanism suggests that 
the conversation sequences may have contained 
noise due to the presence of multiple conversation 
threads, and that the model had some trouble 
determining how to extract the essential parts of the 
conversation sequences that could help with 
disruptive talk predictions. The model was given 
the opportunity to learn multiple variants of 
utterances from the same sequence because of the 
random dropping of a different subset of sequences 
at each training epoch. It is possible that this 
method could help achieve improved predictive 
performance by regularizing the disruptive talk 
detection models to effectively deal with noisy 
conversation data.  

Finally, we compare the baseline model with the 
combined model, which utilizes both the attention-
based user-aware and sequence dropout 
approaches. We compare the performance of this 
combined model with the models from the 
previous phases. Here, we adopt the random choice 
for the sequence dropout rate since it yielded higher 
performance with respect to both AUC and PR-
AUC than the ones with the fixed sequence dropout 
rate. Results in Table 4 shows that our proposed 
disruptive talk detection model combining both 
User-Aware and Sequence dropout approaches. 
Our proposed regularized user-aware networks 
significantly outperform the baseline approach for 
both evaluation metrics (p<0.01 for AUC and 
p=0.09 for PR-AUC) with an alpha of 0.1. It also 
outperforms the models using each of the two 
proposed mechanisms: user-aware only (p<0.01 
for AUC and p=0.06 for PR-AUC) and sequence 

dropout only (p=0.08 for AUC and p=0.16 for PR-
AUC). These results suggest that the combined 
approach brings a synergetic effect to disruptive 
talk detection prediction. We observed from our 
repeated experiments (i.e., 5 executions) for all 
models using sequence dropout during training that 
the coefficient of variations (i.e., standard deviation 
/ mean) of all approaches are less than 1, which is 
considered to be low variance between the values. 
This might suggest that the models were reliably 
trained even with randomness that resulted from 
dropping for a different set of utterances in 
dialogue sequences in each run. 

Lastly, we note potential limitations of our 
research. Because of the nature of stratified group-
level sampling where the sampling procedure must 
take into account both the label distribution and the 
group index, it is not possible to apply the exact 
same distribution across different folds, which 
could result in large performance variations 
between folds. In addition, while our proposed 
modeling approach demonstrated a promising 
result in our testbed collaborative game-based 
learning environment, the proposed model could be 
evaluated with other computer-supported 
collaborative learning environments to 
demonstrate generalizability of the technique.  

6 Conclusion 

Multi-party dialogue modeling poses significant 
challenges because of the complexity driven by 
group dynamics characterized in multi-party 
conversations. Detecting disruptive talk in 
collaborative game-based learning environments is 
crucial to support high-quality collaborative 
learning. We have presented a novel deep learning-
based disruptive talk detection model that 
incorporates a user-aware attention network and a 
random sequence dropout training mechanism, 
where the model utilizing both approaches 
significantly outperform the baseline approaches. 
The proposed model shows significant promise for 
addressing key challenges in multi-party dialogue 
prediction. In the future, it will be important to test 
our model’s capability with multi-party dialogue 
corpora from other computer-supported 
collaborative learning environments to test the 
generalizability of our model. It will also be 
important to implement the disruptive talk 
detection model in a real-time setting and 
investigate how it informs adaptive support for 
collaborative student learning.  

Model AUC PR-AUC 
Baseline 0.8292 0.5504 

User-Aware 0.8480 0.5691 
Sequence Drop 0.8557* 0.5649 

SeqDrop+User-Aware 0.8675* 0.5991* 

Table 4: Disruptive talk prediction results. The best 
performance of each evaluation metric is marked in 
bold, and * represents there is a statistically 
significant difference compared to the baseline. 
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