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This paper presents ssLOTR (self-supervised learning on the rings), a system that shows the feasibility of designing self-
supervised learning based techniques for 3D finger motion tracking using a custom-designed wearable inertial measurement
unit (IMU) sensor with a minimal overhead of labeled training data. Ubiquitous finger motion tracking enables a number
of applications in augmented and virtual reality, sign language recognition, rehabilitation healthcare, sports analytics, etc.
However, unlike vision, there are no large-scale training datasets for developing robust machine learning (ML) models on
wearable devices. ssLOTR designs ML models based on data augmentation and self-supervised learning to first extract efficient
representations from raw IMU data without the need for any training labels. The extracted representations are further trained
with small-scale labeled training data. In comparison to fully supervised learning, we show that only 15% of labeled training
data is sufficient with self-supervised learning to achieve similar accuracy. Our sensor device is designed using a two-layer
printed circuit board (PCB) to minimize the footprint and uses a combination of Polylactic acid (PLA) and Thermoplastic
polyurethane (TPU) as housing materials for sturdiness and flexibility. It incorporates a system-on-chip (SoC) microcontroller
with integrated WiFi/Bluetooth Low Energy (BLE) modules for real-time wireless communication, portability, and ubiquity.
In contrast to gloves, our device is worn like rings on fingers, and therefore, does not impede dexterous finger motion.
Extensive evaluation with 12 users depicts a 3D joint angle tracking accuracy of 9.07◦ (joint position accuracy of 6.55𝑚𝑚) with
robustness to natural variation in sensor positions, wrist motion, etc, with low overhead in latency and power consumption
on embedded platforms.
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1 INTRODUCTION
3D finger motion tracking enables several exciting applications in the areas of augmented and virtual reality (AR
and VR) [43, 77], sports analytics [21, 37], sign languages [4], smart healthcare and rehabilitation, etc [39, 119].
For example, the finger motion patterns of a baseball pitcher can be analyzed for providing feedback about
pitching an effective knuckleball [24]. Flight simulation, cooking, or artwork lessons require precise motor skills
of the hand [47]. Such lessons can be delivered through VR classrooms which benefit from accurate finger motion
tracking. Finger motion patterns have also been shown to be predictive of motor neuron diseases [3, 18], and
detecting them early can facilitate preventive measures.

Motivated by the above applications, many recent works [13, 46, 86] show the ability to track 3D finger motion
using a simple monocular camera. Powered by the latest advances in machine learning (ML) combined with the
availability of large-scale labeled training data, precise finger motion tracking is possible. Even though the depth
information is unavailable in monocular cameras, the ML algorithms can learn the constraints between locations
of different finger joints and extract the 3D pose of finger motion with high accuracy. While cameras have the
above benefits, they can be susceptible to occlusions, lighting, and resolution. The tracking is also limited to
the line of sight distance of the camera. In contrast, tracking with wearable devices is independent of lighting
and occlusions, while providing completely ubiquitous and portable tracking anywhere and anytime. Unlike
vision where there is a huge number of high-quality training datasets for developing robust ML algorithms, the
wearable devices based applications lack such large-scale training data because of challenges in annotation and
labeling [38, 58, 104]. In this paper, we propose a self-supervised learning based system, ssLOTR (self-supervised
learning on the rings), to dramatically cut down the cost of training overhead for wearable devices.

Fig. 5 shows the wearable device designed for usage in ssLOTR. The device consists of five inertial measurement
unit (IMU) sensors worn on the fingers like rings, and another IMU worn on the wrist like a smartwatch. Detailed
in Section 4, the design is based on the two-layer printed circuit board (PCB) that minimizes the overall size of
the electronics. For sturdiness and flexibility in packaging the electronics and interfacing with the hand, we use
a combination of Polylactic acid (PLA) and Thermoplastic polyurethane (TPU) materials [98, 125] . Finally, a
system-on-chip (SoC) with microcontroller is incorporated with integrated WiFi/Bluetooth Low Energy (BLE) [11]
for real-time streaming of sensor data. Therefore, we believe the device is portable and comfortable for wearability
and usage. Furthermore, there is a graceful degradation in motion tracking accuracy with the number of sensors
used, thus providing further opportunities for miniaturizing the sensing device (Section 6). The overall form factor
is similar to the commercially available Tapstrap2 [122] device [9, 123, 130] for applications in typing-based and
gesture-based interaction with Internet-of-Things (IoT) devices. However, in contrast to Tapstrap2 which focuses
on typing and predefined gesture classification, ssLOTR performs continuous 3D finger motion tracking for
completely free form and arbitrary motions. A sample demo has been published with this paper. In addition, while
Tapstrap2’s technical details are closed due to the commercial nature of the device, we outline the technical details
in developing the device including plans to opensource the hardware platform. Finally, while Tapstrap2 only
provides accelerometer data, our device provides 9-axis IMU data (accelerometer, magnetometer, and gyroscope)
for fine-grained sensing and precise orientation tracking. The 9-axis IMU data from the 5 fingers and wrist are
used for performing 3D finger motion tracking which can enable several applications in AR/VR, sports analytics,
smart health, etc.
Other than the commercially available Tapstrap2 sensor discussed above, prior works mainly from academia

include data gloves [4], wrist-based sensing using capacitive sensing [129] for classifying 15 gestures, elec-
tromyography (EMG) [73, 74], thermal cameras [40], etc. While data gloves can restrict dexterous motion of
the fingers thereby compromising usability [103], the thermal cameras can be susceptible to interference from
background temperature (sun, heater, etc) and wrist motion [40]. EMG sensors on the other hand need calibration
and warming of the skin to be in proper contact with the electrodes which can even take up to 5 minutes during
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each instance of wearing, causing usability issues [87, 128, 136]. In contrast to these works, ssLOTR differs in the
following ways: (i) Performs continuous 3D finger motion tracking with completely arbitrary motion instead of
predefined gesture recognition. (ii) Robust to background lighting, occlusions, ambient temperature, etc. There is
no need for a separate calibration. (iii) Requires substantially lower overhead of labeled training data.
Such tracking of 3D finger motion with IMU is challenging for many reasons: (i) Unlike vision and speech

domains, there is a lack of large-scale labeled training datasets to develop robust ML models with IMU data. (ii)
The ML model has to be robust to diversity across users, gender, body masses, motion patterns, etc. (iii) From the
usability perspective, the sensor form factor must be convenient to wear and perform natural hand gestures.
ssLOTR exploits several opportunities to address these challenges. (i) ssLOTR designs the ML architecture

based on self-supervised learning. ssLOTR first develops efficient representations from sensor data with only
unlabeled training data. As the users continuously use the sensor for applications like AR/VR, generating unlabeled
training data is easier with no overhead of annotation and labeling. ssLOTR then uses a small amount of labeled
training data (≈ 15% of fully supervised training) to learn from the representations and achieves an accuracy
closer to fully supervised learning. This achieves a sweet spot in the trade-off between training overhead and
accuracy. (ii) The contrastive loss function used for self-supervised learning extracts representations that are
robust despite perturbations introduced via data augmentation techniques. This facilitates the ML model to
achieve inherent robustness to diversity across users. In addition, domain adaptation techniques to customize the
model developed from one user for performing inferences on another user can help handle diversity. (iii) ssLOTR
designs the hardware platform by exploiting advances in a 2-layer PCB, 3D printing materials, SoC and wireless
communication, etc., to minimize the size of the device and maximize portability and ubiquity of the device.
Fig. 1 summarizes the flow of operations in ssLOTR. Unlabeled IMU data is first pre-processed with appro-

priate filtering, coordinate alignment, and gravity subtraction algorithms. Data augmentation techniques in
combination with self-supervised learning help create efficient representations from unlabeled training data. The
representations are later fine-tuned with small-scale labeled training data, which yields an ML model capable of
accurate prediction of 3D finger motion. The details are elaborated in Section 5.

Fig. 1. Overall architecture of ssLOTR

Using the custom-built device (Fig. 5) detailed in Section 4, ssLOTR extracts 9-axis IMU data from the fingers
and wrist, and feeds them to ML models for predicting 3D finger motion. While the ML models for training are
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implemented on a Desktop Computer with an NVIDIA GTX 1070 GPU and Pytorch library [97], the inference
is done on a smartphone with TensorFlowLite [36], with a latency of 6.8 ms and low power consumption. A
systematic study with 12 users achieves a joint angle tracking accuracy of 9.07 degrees and a joint position
accuracy of 6.55𝑚𝑚. Fig. 2 shows some examples of tracking results. The performance is comparable to fully
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Fig. 2. Comparison of 3D finger tracking results between ground truth and ssLOTR

supervised learning but ssLOTR only uses 15% of labeled training data in comparison to fully supervised learning.
Building on this promise, we believe there is ample scope for extending ideas on self-supervised learning for other
aspects of wearable sensing such as body pose tracking. We plan to explore such opportunities in the future.
Summarizing the above possibilities, we enumerate our main contributions below: (i) The feasibility of self-

supervised learning to achieve a performance comparable to fully supervised learning with only ≈ 15% labeled
training data as fully supervised learning. (ii) Design of a wireless sensor device with embedded IMU sensors
while allowing comfortable usage with the ability to perform precise and natural finger motion. (iii) Ubiquitous
3D finger motion tracking (with 24 degrees of freedom, discussed in Section 3) without constraints of calibration,
interference from environmental backgrounds, robustness to sensor position, etc. (iv) A systematic user study as
well as an end-to-end implementation and evaluation on embedded platforms for validation.

2 RELATED WORK
Vision: Depth cameras including Kinect [53] and leap motion [59] sensors can track finger motion and have
revolutionized the gaming industry by gesture interfaces. More recently, even monocular RGB cameras are
being able to capture the 3D motion of fingers by exploiting advances in machine learning [13, 46, 86]. Fisheye
cameras are combined with deep learning in DeepFisheye [96] for tracking fingertips. While such works are truly
transformative in nature, vision-based approaches are non-ubiquitous and can be sensitive to lighting, background,
and resolution. Digits [52] uses wrist-mounted infrared cameras for 3D finger pose tracking. Similarly, DorsalNet
[137] uses wrist-mounted visual cameras for 3D finger motion tracking. The dorsal hand region including the
motion of bones, muscles, and tendons is analyzed with a two-stream convolutional neural network for precise 3D
motion tracking. However, the camera needs to sit high enough on the wrist or even reach the palm to capture the
full range of finger motion. Recently, FingerTrak [40] has innovatively designed wearable thermal cameras that
can track 3D finger motion, but as pointed out by the authors themselves, the system is not robust to background
temperatures (sun, heater, etc) as well as changes in sensor position due to wrist motion. In contrast to the above
works, ssLOTR’s solution is ubiquitous while being robust to environmental conditions (occlusions, lighting) as
well as natural variation in sensor positions and wrist motions.
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Finger Motion Tracking by Radio Frequency Reflections: WiFi signals have been used to classify discrete gestures
[62, 82, 106]. mmWrite [102] performs handwriting recognition using mmWave radars. RFWash [50] detects
handwashing hygiene using mmWave radars near the bathroom mirror. SignFi [76] uses channel measurements
from WiFi Access Points (APs) for sign language recognition. ExASL [105] uses range-doppler spectrum and
angle of arrival spectrum of mmWave reflections from the hand for classifying 23 discrete American Sign
Language (ASL) gestures. Google Soli [135] exploits reflections from mmWave signals in combination with deep
convolutional and recurrent neural networks to track 11 finger motion gestures. While the above works only
perform predefined gesture classification, ssLOTR performs continuous 3D motion tracking. Moreover, since the
device is worn on the body, it offers a more ubiquitous tracking without limitations on the range of sensing.

IMU, Wrist Bands, and Wearable Sensing: IMU, WiFi, and acoustic signals have also been used for hand gesture
recognition [94, 110, 131, 142]. FingerIO [88], FingerPing [139] use acoustic signals for finger gesture detection.
uWave[70] uses accelerometers for user authentication and interaction with a mobile device. Capband [129] uses
capacitive sensing for the recognition of 15 hand gestures. ElectroRing [51] attaches electrodes on the index
finger and combines them with IMU sensors for detecting six different pinch-like finger gestures. ThumbTrak
[118] detects 12 finger gestures by placing 9 proximity sensors on the thumb and measuring the distance from
thumb to other fingers and palm. ZeroNet [75] extracts training data from videos to classify 50 hand gestures.
Specifically, while the above works can only distinguish predefined finger gestures, ssLOTR performs free form
3D finger motion tracking for arbitrary motion.

Sensor-embedded gloves are popular in applications of gesture recognition. IMU, flex sensors, and capacitive
sensors have been embedded in gloves for applications in sign language translation, gaming, user interface, etc
[4]. An array of 44 stretch sensors have been used in [35] for finger pose tracking. 17 IMU sensors embedded
in gloves are used for hand pose recognition [17, 65]. Commercially available products such as CyberGlove
[19], ManusVRGlove [79], 5DT Glove [1] use flex sensors for hand gesture recognition, etc. However, wearing
gloves precludes the user from performing activities that require fine precision as studied in recent works [103]
because they may hinder natural dexterous hand motion. Accelerometer embedded rings for applications in
typing-based interfaces for smartwatches, smart-TV, and other IoT interfaces. Work in [83] evaluates Tapstrap2
[122] and achieves a typing rate of 22.1 words per minute (WPM) [130]. Work in [121] designs accelerometer
embedded rings powered by a wrist-worn device using inductive telemetry. It achieves 89.1% accuracy in detecting
characters in a typing application. Skinwire [49] shows the feasibility of laying out electronics attached to the
skin to connect IMU sensors placed on the fingers to a PCB placed on the wrist. DualRing [63] places IMU sensors
on the thumb and index fingers for tracking gestures such as pinching, scrolling, swiping, touching, tapping,
etc. However, the sensors are connected by a wire to the data processing device thereby hindering natural hand
motion. Oura ring [92] is popular for tracking heart rate, sleep cycle, and human activity. However, it does not
provide 3D motion tracking of the fingers. Also, the platform is closed with no access to raw sensor data. The
commercially available Tapstrap2 device [122] is perhaps the closest to our hardware, primarily branded as a
remote keyboard for interacting with IoT devices. In contrast to such works which focus on typing or recognition
of predefined gestures, ssLOTR performs 3D finger motion tracking for arbitrary motion, thus being suitable for
many applications in AR/VR, Sign Language Recognition (SLR), sports, etc. AuraRing [95], tracks the index finger
precisely using a magnetic wristband and a ring on the index finger. In contrast, ssLOTR tracks all fingers with
the following differences: (i) Even though AuraRing [95] tracks the index finger, the tracking only includes the
MCP joint. In contrast, ssLOTR’s experiments show the feasibility of tracking the MCP, PIP, and DIP joints of all
fingers, thus capturing a total of 24 degrees of freedom including the wrist motion. In addition, we believe the
experimental proof of validation of 24 Degrees of Freedom (DoF) finger motion is an important difference. (ii)
While AuraRing could be extended to track all fingers, the wristband needs to decouple the interference due to
magnetic field generated by individual fingers (potentially by designing protocols based on channel allocation,
multiplexing, etc). AuraRing, in its current form does not show the feasibility of resolving such interference.
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In contrast, the sensors on various fingers in ssLOTR do not interfere with each other. (iii) AuraRing can be
susceptible to interference from metallic objects as noted in the paper. In contrast, ssLOTR is immune to such
interference since ssLOTR adopts opportunistic calibration techniques based on A3 [142].
Based on techniques in Convolutional neural network (CNN), Recurrent neural network (RNN), etc, prior

works on EMG sensing perform classification of discrete hand poses [22, 26, 100, 101, 113] or track a predefined
sequence of hand poses [100, 113]. Work in [93] tracks joint angles using EMG sensors but only for one finger.
Using an array of over 50 EMG sensors placed over the entire arm, some works [115] track joint angles for
arbitrary finger motion. Recent works [73, 74] show the feasibility of sensing finger motion using EMG armbands.
However, EMG sensors need calibration and warming of the skin to be in proper contact with the electrodes
which can even take up to 5 minutes during each instance of wearing, leading to usability issues [87, 128, 136].
In contrast, ssLOTR’s solution does not need any calibration, and is therefore easy to use.

Self-Supervised Learning: Self-supervised learning is gaining in popularity because of their ability to minimize
training overhead as well as the ability to adapt to new tasks with less overhead [7]. One of the popular applications
of self-supervised learning includes the development of Bidirectional Encoder Representations from Transformers
(BERT) [23] language model, which is developed by masking words in a sentence and teaching the network to
predict the masked words, thereby learning efficient representations in the process. The representations can later
be used for a number of natural language processing (NLP) tasks in question-answering [99], text-summarizing
[140] etc. Similarly, Word2Vec [85] developed continuous representations for words with applications to tasks in
NLP. A number of recent works in computer vision exploit self-supervised learning. Rotation of images, change of
colorization, etc, have been popularly used for performing self-supervision in computer vision [33, 141]. ImageNet
classification accuracy can be boosted [14]. Works in [12] shows the feasibility of estimating human body pose by
exploiting consistency across multiple camera views to train a self-supervised representation. ssLOTR is inspired
by such foundational works on self-supervised learning. However, the model architectures and the fusion with
data augmentation techniques have been carefully designed to satisfy the constraints of our problem domain.
Self-supervised learning techniques have also been used for wearable human activity recognition. Ten classes
including walking, running, sitting, jogging, etc. are classified efficiently in [38, 69, 104]. In contrast, ssLOTR
focuses on continuous tracking of 3D finger joints involving intricate motion.

Table 1. Summary of Main Related Work. For brevity, several other works not in the table are discussed in Section 2.

System Sensor 24 DoF Finger
Tracking

Robustness to
Ambience

Supports Free
Finger Motion Portability Training

Overhead
TapStrap [122] Accelerometer ✗ ✓ ✓ ✓ N/A
FingerTrak [40] Thermal Camera ✓ ✗ ✗ ✓ Fully-supervised
Capband [129] Capacitive ✗ ✓ ✓ ✓ Fully-supervised
AuraRing [95] Magnetic ✗ ✗ ✓ ✓ Fully-supervised
Gloves [60] IMU ✓ ✓ ✗ ✓ Fully-supervised

Vision [20, 86, 96] Camera ✓ ✗ ✓ ✗ Fully-, Self- supervised
Soli [135] mmWave ✗ ✓ ✓ ✗ Fully-supervised
SignFi [76] WiFi ✗ ✓ ✓ ✗ Fully-supervised

FingerIO [88] Acoustic ✗ ✓ ✓ ✓ N/A
ssLOTR (Ours) IMU ✓ ✓ ✓ ✓ Self-supervised

3 BACKGROUND
The human hand consists of complicated anatomical structures including muscles, bones, skin, tendons, and
complex relationships between them [57]. This facilitates a high degree of articulation. In this section, we provide
a brief background of the human hand, the degrees of freedom for motion, and the anatomical structure.
Finger skeletal model: Human hands have four fingers and a thumb with a complex degree of articulation.

Fig. 3a depicts the skeletal structure of the hand while Fig. 3b shows a simplified kinematic view. Each finger,
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starting with the one closest to the TM (trapeziometacarpal) joint, has a colloquial name of i) Thumb, ii) Index
finger, iii) Middle finger, iv) Ring finger, and v) Little finger. The four fingers (except for the thumb) consist of the
distal, middle, and proximal phalanges bones. These bones support the following joints: the distal interphalangeal
(DIP), proximal interphalangeal (PIP), and metacarpal phalangeal (MCP) joints [89]. On the other hand, the thumb
consists of distal, proximal phalange, and metacarpal bones with the following joints: Interphalangeal (IP), MCP,
and Trapeziometacarpal (TM) joints. The above finger joints can be moved in complex forms to create different
gestures/poses. The MCP joints have two degrees of motion of flex/extensions and abductions/adductions as
depicted in Fig. 3c, the two angles are denoted by 𝜙𝑚𝑐𝑝,𝑓 /𝑒 and 𝜙𝑚𝑐𝑝,𝑎/𝑎 respectively. The PIP and DIP angles only
have one degree of motion (flex/extensions), and these angles are denoted by 𝜙𝑑𝑖𝑝 and 𝜙𝑝𝑖𝑝 respectively. Thus,
each of the four fingers have four degrees of freedom (DoF). The thumb has a slightly different anatomy as its
MCP and TM joints can both flex/extend and abduction/adduction, and its IP (interphalangeal) joint can only flex
or extend with a single DoF. Thus, the thumb has five DoFs including 𝜙𝑚𝑐𝑝,𝑓 /𝑒 , 𝜙𝑚𝑐𝑝,𝑎/𝑎 , 𝜙𝑡𝑚,𝑓 /𝑒 , 𝜙𝑡𝑚,𝑎/𝑎 , and 𝜙𝑖𝑝 ,
forming a 21-dimension (R21) space of finger joint angle with the other four fingers.

(a) Anatomical Structure (b) Kinematic
Model

(c) Flex/Extensions and Abduc-
tion/Adduction

Fig. 3. Anatomical and kinematic structure of finger joints

Wrist Motion: In addition to the finger skeletal model above, we also track the wrist joint angles. Several
bones (e.g., distal ends of the Radius, Ulna and the carpal bones) form the wrist joint (depicted in Fig. 4a), which
can connect the forearm to the hand palm, allowing a flexible range of motion [89]. Fig. 4b depicts 3 categories
(3 DoFs) of the wrist joint motion: i) pronation/supination, 𝜙𝑤𝑟𝑖𝑠𝑡,𝑝/𝑠 ; ii) flexion/extension, 𝜙𝑤𝑟𝑖𝑠𝑡,𝑓 /𝑒 ; and iii)
radial/ulnar deviation, 𝜙𝑤𝑟𝑖𝑠𝑡,𝑟/𝑢 . Note that unlike finger joints, each DoF of the wrist involves both positive and
negative rotations from the neutral position [8]. As discussed earlier, fingers and thumb have 21 DoFs whereas
the wrist has additional 3 DoFs, thus totaling to 24. ssLOTR aims to track these 24 degrees of freedom (24 DoF).

(a) Wrist Joint [2] (b) Range of Motion of Wrist[8]

Fig. 4. Anatomy and range of motion of the wrist
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Hand Motion Constraints: The various joint angles responsible for finger articulation exhibit a high degree
of correlation and interdependence [16, 66]. Intrafinger constraints are defined as constraints between different
joints of one finger. Such intrafinger constraints are noted below:

𝜙𝑖𝑝 =
1
2𝜙𝑚𝑐𝑝,𝑓 /𝑒 , 𝜙𝑑𝑖𝑝 =

2
3𝜙𝑝𝑖𝑝 , 𝜙𝑚𝑐𝑝,𝑓 /𝑒 = 𝑘𝜙𝑝𝑖𝑝 , 0 ≤ 𝑘 ≤ 1

2
(1)

Equation 1 suggests that in order to bend the DIP joint, the PIP joint must also bend under normal finger
motion (assuming no external force is applied on the fingers). Similarly, the range of motion for PIP is very much
limited by the MCP joint (Equation 1). Besides, there exists range of motion constraints as depicted below:

−15◦ ≤ 𝜙𝑚𝑐𝑝,𝑎𝑎 ≤ 15◦, 0◦ ≤ 𝜙𝑑𝑖𝑝 ≤ 90◦, 0◦ ≤ 𝜙𝑝𝑖𝑝 ≤ 110◦ (2)

In addition, there are also complex interdependencies between joints of different fingers, which cannot be
directly modeled by equations, but we believe that our ML models will automatically learn those constraints.

4 PLATFORM DESIGN
In this section, we outline the design and implementation details of a new wireless wearable sensor device based
on embedded IMUs and a SoC micro-controller with integrated WiFi and BLE modules.

4.1 Hardware Architecture
Our goal is to design an unobtrusive, comfortable, and portable sensor device to fit the finger while reliably
collecting IMU sensor data. Compact size, lightweight, low-latency, and wireless streaming are our main criteria
to build the sensor device so as to facilitate comfortable wearing under a natural setting. Towards this end, we
selected the ICM20948 IMU (InvenSense, USA) [44] as the main sensing unit and the Tinypico (Unexpected Maker,
USA) (Fig. 5b) [78] as the micro-controller with integrated BLE and WiFi modules. The ICM20948 provides 9
DoFs (triple-axis MEMS accelerometer, triple-axis MEMS gyroscope, and triple-axis magnetometer) and supports
on-chip 16-bit Analog to Digital Converters (ADC), and an inter-integrated circuit (𝐼 2𝐶) interface [114] for
communication with the micro-controller. The Tinypico, a breakout of ESP32, is based on Espressif [120] SoC
wireless micro-controller with WiFi and BLE. The chip ESP32-Pico-D4 (ESPRESSIF SYSTEMS, CHINA) [28],
embedded in Tinypico, has a 32-bit dual low-power Xtensa 32-bit LX6 microprocessor [138] operating at 240 MHz
and a Bluetooth BLE 4.2 and WiFi 802.11 b/g/n complaint 2.4 GHz transceiver and supports 𝐼 2𝐶 bus interface.
The Tinypico including its external antenna has a package size of 18mm × 32mm.

We designed different IMUs breakouts for fingers and wrist using two-layer PCB technology so that we could
integrate different electronic components together to minimize the size of the device. As shown in Fig. 5e and Fig.
5c, PCBs of the finger sensor module and wrist sensor module were designed using Autodesk EAGLE (Autodesk,
CA, USA) [6]. They are two-layer boards that were fabricated with JLCPCB Shenzhen, Guangdong, China [109].
The two-layer PCB enables the assembly of electronic components on both sides of the board for minimizing the
size of the device. Both layers are built using material of flame retardant standard (FR4) [31] and appearance
quality of Institute of Printed Circuits (IPC) Class 2 standard [81]. For the finger sensor module as shown in
Fig. 5a, we used Fused Deposition Modeling (FDM) technology [32] to build 3D printed housing designed by
SolidWorks 3D CAD software (Dassault Systems, Vélizy-Villacoublay, France) [112], and we chose PLA and TPU
as material of finger sensor modules for high standard of wearability, flexibility and comfortableness. Each finger
sensor module is firmly attached inside ring-shaped housing on the proximal phalanx bone of each finger and the
wrist sensor module (Fig. 5) is mounted inside watch-shaped housing made of PLA. The TPU material was used
for the ring because of elasticity and flexibility. On the other hand, the PLA material was used for casings on
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Fig. 5. Design of a portable wireless sensing device in ssLOTR: (a) IMU finger sensor module (b) Tinypico integrated with
microprocessor and BLE/WiFi module (c) Wrist IMU and multiplexer board (d) Battery (e) Finger sensor board

both fingers and the wrist because of rigidity and sturdiness. While we create several different sizes of the ring to
accommodate different users, the elasticity of the TPU material helps in snug fitting and comfortable wearing.

Depicted in Fig. 5e, each finger sensor module embeds an ICM20948 IMU. Each finger sensor module has 𝐼 2𝐶
bus for communication, using 4 channels (SCL, SDA, VIN, GND) [114] to connect with the wrist sensor module.
In addition to Tinypico (Fig. 5b), the wrist sensor module includes a PCB integrating an ICM2cr0948 IMU and a
TCA9548A multiplexer [42] (Fig. 5c). The multiplexer, an 8 channel 𝐼 2𝐶 switch by TEXAS Instruments helps
Tinypico in uniquely addressing sensors on different fingers for communication. We also embed a side tactile
switch to turn on/off the device. Overall, the size of breakout for finger sensor module and wrist sensor module
are 10 mm × 10 mm × 1.6 mm (W × L × H) and 17.78 mm × 30.48 mm × 1.6 mm (W × L × H) respectively.
The dimensions of the finger sensors are comparable to Tapstrap2 and the dimensions of the wrist sensor are
comparable to a smartwatch. The device is designed to be worn on both right and left hands with equal comfort
by simply rotating the device by 180 degrees about an axis perpendicular to the plane of the PCB boards.
To power our device, we use a 3.7V, 500mAh LiPo battery (Fig. 5d). Our device has a power consumption of

198mA while the device is actively streaming sensor data for finger motion tracking. However, the device is
put under sleep for further power savings when it is not being actively used for an interactive application, thus
prolonging the battery life. The total weight of the device is 34.9g. The average weight of each finger sensor is
2.5g, including the TPU and PLA housing (1.3g). The total weight of wrist sensor module is 22.4g, including the
PLA housing (7.3g) and the LiPo battery (9.7g). Since the SoC, wireless communication, and battery components
are housed on the wrist which offers more space with a smartwatch form factor, this makes the sensors on fingers
to be lightweight, thus allowing dexterous hand motions. The hardware specifications are summarized in Table 2.

4.2 Software Framework
The software side of the sensor device includes three main components: (i) Collecting the data from IMU sensors
on different fingers and wrist at the microcontroller; (ii) Packaging them into a packet; (iii) Sending the packets
over BLE connection to a smartphone. The software is implemented on the ESP32 microcontroller using C++ and
appropriate libraries for IMU, BLE streaming, and sensor addressing via multiplexers [27, 41, 55]. The Tinypico
first reads data from six IMUs over 𝐼 2𝐶 and then streams the data to a mobile device over BLE using Universal
Asynchronous Receiver/Transmitter (UART) profile [55] with a sampling rate at 100 Hz. The Tinypico has only
two 𝐼 2𝐶 bus interfaces, which precludes it from communicating with six IMU sensors. To solve the addressability
of different IMUs, we integrate TCA9548A into the wrist sensor module. It serves as an extension module to
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communicate with six IMUs including five IMUs on fingers and one IMU on wrist. Therefore, we can control
individual channels SCn/SDn according to different pins using Sparkfun Qwicc Mux software [27], thus solving
the addressability issue. This allows us to detect and process 9 DoFs data from six IMUs breakout efficiently, with
a low-latency of 9.7 ms. Fig. 6a depicts the IMU data streamed in real-time and plotted using Matplotlib [80] on a
desktop computer. Fig. 6b shows real-time streaming to a smartphone device that implements the ML modules
from Section 5 for 3D finger motion tracking (rendered using OpenGL ES [34]). More details on data processing
are discussed in Sections 5 and 6.

(a) Wireless streaming of sensor
data to desktop

(b) Wireless streaming of sensor
data to mobile device which per-
forms 3D finger motion tracking

Fig. 6. Interaction of ssLOTR’s sensing device with smartphones and desktops

Table 2. Summary of ssLOTR’s hardware design

Component Purpose and Description Specs and References

Sensor Chip Collecting data from accelerometer, gyroscope, and
magnetometer for finger motion tracking ICM 20948 [44]

Microcontroller (Mic) Assembling sensor data from individual fingers, packaging them into
a BLE packet and streaming to a smartphone or desktop TinyPico [78]

Hardware Communication
Protocol For transferring sensor data between sensor chips and microcontroller I2C [114]

Multiplexer Creates unique addresses for different sensor chips
for communication with microcontroller TCA9548A [42]

Wireless Streaming Protocol Streaming of sensor data to a smartphone or desktop BLE 4.2 [11]
Ring Material Flexible material used for 3d printing the ring that supports the sensor TPU [125]

Sensor and Wrist Case A sturdy material to hold sensors, microcontroller, battery, and multiplexer PLA [98]
Battery Powering the sensor and microcontroller 3.7V, 500mAh LiPo battery [68]

PCB Technology Two-layer printing for double sided PCB that minimizes hardware size Provided via JLCPCB [109]
Dimensions (Finger Module) The overall dimensions of finger sensor module 10mm x 10mm x 1.6 mm
Dimensions (Wrist Module) The overall dimensions of the wrist sensor module 17.8mm x 30mm x 1.6 mm
Weight (Finger Module) The overall weight of the finger sensor module 2.5g
Weight (Wrist Module) The overall weight of the wrist sensor module 22.4g

5 TECHNICAL MODULES
In this section, we describe the key signal processing and machine learning modules in self-supervised tracking
of 3D finger motion.
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5.1 Sensor Data Transformation
Identical finger motion can generate different sensor data depending on the position and orientation of the wrist
because of differences in coordinate frames as well as the influence of gravity [142]. Therefore, we first transform
the sensor data to a consistent frame of reference. This helps reduce variation in the distribution of the input
sensor data thus facilitating efficient learning of the ML models in ssLOTR. We elaborate on the details below.

Wrist Coordinate Frame: By computing the orientation of the sensor, the accelerometer measurements can be
converted from a local frame of reference (sensor’s x, y, and z axes) to a global frame of reference (east, north,
and up) [142]. As the hand moves continuously in 3D space, the orientation of fingers, as well as the projection
of gravity on the local frame of reference of the sensor, will change. Therefore, a similar finger motion pattern
such as curling all fingers from an open palm into a fist will generate different sensor data depending upon the
position and orientation of the wrist. Fig. 7a shows an example where the fingers were moved in curling motion

Wrist Forward & 
Palm Downward (P1)

Wrist Upward & 
Palm Forward (P2)
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Fig. 7. (a) Curling of fingers with two different wrist orientations (b) They generate different sensor data (c) After alignment
with WCF, the sensor input is similar across two wrist orientations. This increases the efficiency of learning by containing
variation in input.

with two different wrist positions/orientations – P1 and P2 as noted. As expected, the accelerometer data (of the
x-axis of index finger) for the two cases as depicted in Fig. 7b look different.

Fig. 8. Wrist Coordinate Frame and Sensor Local Frame

While it might be possible to train the ML models with such a variation in input across wrist configurations,
that will entail complex models and larger training data. Therefore, we first transform the finger sensor data
to a consistent frame of reference such that similar finger motion patterns will generate similar sensor data
irrespective of the state of the wrist. Transforming the sensor data to the global frame of reference does not solve
this problem, since the direction of motion will still be dependent on the state of the wrist. Therefore, we define
the Wrist Coordinate Frame (WCF) as depicted in Fig. 8 and consider the wrist as the reference for measuring the
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finger sensor data. The data are transformed into the global frame and then into the WCF based on the following
equation. [

𝑋𝑤𝑐𝑓 𝑌𝑤𝑐𝑓 𝑍𝑤𝑐𝑓

]
=
[
𝑋𝑙 𝑌𝑙 𝑍𝑙

]
𝑅𝑓 𝑖𝑛𝑔𝑒𝑟𝑅

𝑇
𝑤𝑟𝑖𝑠𝑡 , (3)

where, [𝑋𝑙 𝑌𝑙 𝑍𝑙 ] denotes the acceleration of the finger in the local frame of reference after subtraction of gravity.
𝑅𝑤𝑟𝑖𝑠𝑡 and 𝑅𝑓 𝑖𝑛𝑔𝑒𝑟 denote the orientations of the wrist and the fingers respectively. Finally, [𝑋𝑤𝑐𝑓 𝑌𝑤𝑐𝑓 𝑍𝑤𝑐𝑓 ]
denotes the acceleration of the finger in the WCF. Fig. 7c shows the index finger accelerometer data (of the x-axis)
for the two configurations after gravity compensation and transformation to WCF, which are now similar. Such
consistency will reduce the variation in the input distribution thus decreasing the overhead in training [45].

5.2 Preprocessing and Feature Extraction

0 0.35 0.70 1.05 1.40
Time (s)

0.3

0.2

0.1

0.0

0.1

0.2

A
cc

le
ra

ti
on

 (
m

/s
²)

(a) Time domain data

0 0.4 0.8 1.2
Time (s)

22.5

17.3

12.1

6.9

1.7

Fr
eq

ue
nc

y 
(H

z)

(b) Spectrogram

Fig. 9. Example IMU data in time and frequency domains.

Therefore, we preprocess the data to extract frequency domain features that can exploit sparsity in human
motion for efficient learning [61]. We also perform a low pass filter (cutoff frequency of 25 Hz) to eliminate
high-frequency noise. We perform short time fourier transforms (STFT) to create 2D spectrograms from the
sensor input. The sensor input includes 3-axis accelerometer data that have been subtracted with gravity and
converted to the WCF as discussed in Section 5.1. In addition to the accelerometer input, we also include the
direction vector of the y-axis ( [𝑣𝑥 𝑣𝑦 𝑣𝑧]) of each IMU with respect to WCF:[

𝑣𝑥 𝑣𝑦 𝑣𝑧
]
=
[
0 1 0

]
𝑅𝑓 𝑖𝑛𝑔𝑒𝑟𝑅

𝑇
𝑤𝑟𝑖𝑠𝑡 , (4)

Under normal wearing conditions shown in Fig. 8, the y-axis is roughly aligned with the direction between the
MCP and PIP joints. However, a careful alignment or special calibration is not needed. We note that the direction
vectors are noisy given that a small motion can produce a large change in the finger poses. Change in wrist
angles, as well as the changes in finger angles, can together influence the direction vectors in complicated ways.
Nevertheless, the ML models presented next are trained to be robust to such noises as well as combine information
across time for higher accuracy. While x-axis and z-axis direction vectors can also be similarly included as inputs
to the model, the information thus captured will have some redundancy with the y-axis. Considering the tradeoff
between a higher number of parameters with more inputs to the model and the accuracy, we did not notice a
significant difference in performance by including x and z axes direction vectors, therefore, we only include the
y-axis direction vector as an input to the ML model.

We compute the 2D spectrograms from such accelerometer and direction vectors in WCF at a sampling rate of
100 Hz. We use a Fast Fourier Transform (FFT) window size of 50, with a 50% overlap between successive FFT
computations. A Hamming window is applied before computing FFT to reduce spectral leakage and counteract
the assumptions made by FFT that the data are infinite [29]. Fig. 9 shows an example of an input accelerometer
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data converted into a 2D spectrogram. Since we have data from 6 sensors (5 fingers and 1 wrist), each with 6 axes
(acceleration and direction vectors), we will have a total of 36 spectrograms as input to the ML models.

5.3 Self-Supervised Learning for Capturing Efficient Representations from IMU Data
Fig. 10 depicts the high-level architecture of the self-supervised learning framework used in ssLOTR. The raw
sensor input (2D spectrograms) 𝑥𝑖 is first transformed into two variants (𝑥𝑖1 and 𝑥𝑖2) based on data augmentation
techniques. The transformations add perturbations to the data while still retaining the overall pattern. 𝑥𝑖1 and 𝑥𝑖2
are then fed as input to an encoder neural network that extracts representations ℎ𝑖1 and ℎ𝑖2 as shown in the self-
supervised stage of the figure. Finally, the representations are projected into a latent space before comparing them
using a contrastive loss function that attempts to maximize the similarity between 𝑦𝑖1 and 𝑦𝑖2 while minimizing the
similarity between 𝑦𝑘 and 𝑦 𝑗 , where 𝑘 ≠ 𝑗 . Since such a network tries to enforce similarity among representations
even though the inputs have been perturbed by data augmentation techniques, it is known to learn efficient
representations. Learning such representations can be done in an entirely self-supervised manner without any
labeled training data.

Fig. 10. Architecture for self-supervised and fine-tuning stages (DA = Data Augmentation)

Finally, using the representations thus learned instead of original raw inputs will dramatically decrease
the amount of labeled training data needed for supervised learning [7, 14, 20]. We now elaborate on various
components of the architecture.
Data Augmentation: Towards learning self-supervised representations as described above, we employ the

following four data augmentation techniques to perturb the input. This helps avoid overfitting as well as teaches
the algorithm to look for stable features that measure similarity. The architecture in Fig. 10 needs two data
augmentation techniques at a given instant of time. We use various combinations of two techniques from the four
techniques presented below. The results of these combinations are summarized in Section 6. (i) Time Masking: We
mask parts of the input spectrogram so as to help the ML model in capturing the spectro-temporal dependencies
in the sensor data. Fig. 11b depicts an example where the masked column is highlighted in red. Benefits: Such a
strategy is popular in language modeling such as BERT [23] where words are masked in a sentence to force the
language model to predict these words, thus facilitating learning of efficient representations of sentences. Inspired
by the success of BERT, we apply similar masking techniques to the sensor data. In time masking, a few columns

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 90. Publication date: June 2022.



90:14 • Zhou and Lu, et al.

Fr
eq

u
e

n
cy

 (
H

z)

22.5

12.1

1.7

Time (s)
0.4 0.8 1.2

(a) Raw (b) Time Masking (c) Frequency Masking (d) Random Swapping (e) Flipping

Fig. 11. Data augmentation techniques: (a) Raw Input (b) Time Masking (c) Frequency Masking (d) Random Swapping (e)
Flipping

(around 14% ≈ 1
7 based on the empirical results in Fig. 22) are randomly masked in the input spectrogram. (ii)

Frequency Masking: Similar to the temporal masking above, we perform masking across frequencies (rows) of
the input spectrogram. Fig. 11c depicts an example where the masked row is highlighted in red. Benefits: This
is the frequency domain analogue for temporal masking with similar benefits in capturing frequency domain
representations. Moreover, masking can prevent models overfitting as it masks some portions of input data, which
makes models more robust. (iii) Random Swapping:We swap columns randomly in the spectrogram corresponding
to the input data. Fig. 11d depicts an example where the swapped columns are shown in red. Benefits: The
idea of random swapping helps the model to develop robustness in the face of outliers, ultimately facilitating in
capturing efficient representations from sensor data. (iv) Horizontal Flip: We flip the sensor data across time so
as to reverse the time series. Fig. 11e is a flipped version of the spectrogram in Fig. 11a. Benefits: Flipping is
inspired by image flipping from computer vision which is an effective strategy for increasing the diversity of
the dataset [111]. Likewise, flipping in ssLOTR generates a mirrored version of the sensor data in the opposite
direction at a negligible computation cost, while increasing the diversity of the sensor dataset. This will help
the learning framework identify the key latent features of similarity across the augmented versions. In a nut
shell, the sensor data augmentations improve the quality of the feature representations in the self-supervised
framework and also prevent the model from overfitting.

Representation Learning: The encoder architecture is depicted in Fig. 10. The encoder maps a sequence of
data augmented IMU input to compact representations that can support efficient learning with minimal training
data. The dimensions of our input (i.e., 𝑥𝑖 ) is 36 × 13 × 7 which includes 36 IMU spectrograms (over 1.4s of data)
from 6 sensors at a sampling rate of 100𝐻𝑧, which are computed as discussed earlier. The dimensions of the
output representations (i.e., ℎ𝑖 ) is 2304 × 1. The input first passes through the encoder network that consists of
a series of convolutional layers with the input downsized at each layer with maxpool operation. Without any
labeled training data, the encoder attempts to learn representations that are invariant of different distortions
of the same input. The learned representations are later used for 3D finger motion tracking using a small scale
labeled training data. Batch normalization is used at each layer for accelerating convergence by controlling
variation in the input distribution at each layer [45].

Contrastive Loss Function: The encoded representations ℎ are passed through a projection head as shown
in Fig. 10, resulting in an output 𝑦 = 𝑝 (ℎ) where 𝑝 represents the action of the projection head. We apply the
contrastive loss function on 𝑦 that maximizes the similarity between two differently augmented copies of the
same input. The contrastive loss function is applied on 𝑦 whereas we use representations ℎ in the later phases for
prediction of 3D finger motion. The reasons for such a design choice are as follows. (i) Since the contrastive loss
function’s main goal is to maximize the similarity between differently augmented versions of the same input, it
might lose some information during the process. (ii) On the other hand, the encoded representation ℎ is one level
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before the projection head, and it offers the best trade-off between capturing high-level robust representations
without losing much information. Our evaluation results validate that such a design choice results in considerably
better performance than applying the contrastive loss function directly on ℎ.

The mathematical form of the contrastive loss function that enforces similarity between differently augmented
samples of the same input 𝑥𝑖 is given by:

ℓ𝑖 = − log
exp(𝑠𝑖𝑚(𝑦𝑖1, 𝑦𝑖2)/𝜏)∑2𝑁

𝑘=1 1𝑖≠𝑗 exp(𝑠𝑖𝑚(𝑦𝑖 , 𝑦 𝑗 )/𝜏)
, 𝑠𝑖𝑚(𝑢, 𝑣) = 𝑢𝑇 𝑣

| |𝑢 | | · | |𝑣 | | (5)

Here, (𝑦𝑖1,𝑦𝑖2) represents the output of the projection head from Fig. 10 that acts on differently augmented
versions 𝑥𝑖1, 𝑥𝑖2 of the same input 𝑥𝑖 . Given a batch of 𝑁 input examples {𝑥𝑖 , ∀ 𝑖 ∈ [1, 𝑁 ]}, we have 2𝑁 similarity
examples of the form {(𝑥𝑖1, 𝑥𝑖2), ∀ 𝑖 ∈ [1, 𝑁 ]}. For each similarity pair of the form (𝑥𝑖1, 𝑥𝑖2), we have 2(𝑁 − 1)
dissimilar pairs of the form {(𝑥𝑖 , 𝑥 𝑗 ), 𝑖 ≠ 𝑗 }. 1𝑖≠𝑗 indicates dissimilar pairs when 𝑖 ≠ 𝑗 , and 𝜏 denotes a temperature
parameter that controls the penalty strength on dissimilar samples [133]. In our experiments, we set 𝜏 to 0.2 to
encourage the model to have tolerance for similar samples within a batch. Both similar and dissimilar pairs are
considered in evaluating the contrastive loss function in Equation 5 thus training the network to maximize the
similarity between similar pairs as well as minimize the similarity between dissimilar pairs. The similarity metric
𝑠𝑖𝑚(𝑢, 𝑣) is also indicated in Equation 5.

5.4 Downstream Prediction of 3D Finger Joints from Self-Supervised Representations
The representations ℎ learned above based on the architecture in Fig. 10 are used for estimating 3D finger
joint angles. This is indicated as the fine-tune stage in Fig. 10. The input IMU data is first passed through the
encoder which extracts representations ℎ. For predicting the finger joint angles using ℎ, we follow a widely used
evaluation protocol [56] which can be used as a proxy indicator for the efficiency of self-supervised learning.
Specifically, a simple linear model with two fully-connected layers takes the representations ℎ and predicts joint
angles. The weights of the linear model are trained on top of the encoder network (encoder’s weights are frozen
after self-supervised stage in Fig. 10) in a supervised fashion requiring only 15% of labeled training data as fully
supervised learning for achieving similar performance.

As discussed in Section 3, finger and thumb motion has 21 DoFs whereas the wrist has additional 3 DoFs, thus
totaling to 24. Among these, the DIP angle (𝜙𝑑𝑖𝑝 ) and the IP angle (𝜙𝑖𝑝 ) can be predicted directly using constraints
from Equations 1 , whereas one of the wrist angles (𝜙𝑤𝑟𝑖𝑠𝑡,𝑝/𝑠 ) can be computed directly from the orientation of
the wrist relative to the body [72, 107, 108]. Therefore, the actual output of the network has 18 DoFs as indicated
in Fig. 10 of the fine-tune stage. Towards tracking these 18 DoFs, we observe that the sensors placed on the
proximal phalanx bone (Fig. 3a), are fairly sensitive to the motion of various finger joints. By fusing the sensor
data with constraints, both implicit (Equations from Section 3) and explicit (learned by ML models), ssLOTR is
able to track all finger joints consistently as evaluated in Section 6.

Loss Functions and Optimization: In all equations below, 𝜙 denotes the prediction by the MLmodel, whereas
𝜙 denotes the training labels from a depth camera (leap sensor [59]).

𝑙𝑜𝑠𝑠𝑚𝑐𝑝,𝑓 /𝑒 =
𝑖=4∑︁
𝑖=1

(𝜙𝑖,𝑚𝑐𝑝,𝑓 /𝑒 − 𝜙𝑖,𝑚𝑐𝑝,𝑓 /𝑒 )2, 𝑙𝑜𝑠𝑠𝑝𝑖𝑝 =

𝑖=4∑︁
𝑖=1

(𝜙𝑖,𝑝𝑖𝑝 − 𝜙𝑖,𝑝𝑖𝑝 )2, 𝑙𝑜𝑠𝑠𝑚𝑐𝑝,𝑎/𝑎 =

𝑖=4∑︁
𝑖=1

(𝜙𝑖,𝑚𝑐𝑝,𝑎𝑎 − 𝜙𝑖,𝑚𝑐𝑝,𝑎𝑎)2

(6)
The above equations capture the Mean Squared Error (MSE) loss in the prediction of joint angles of MCP

(flex/extensions and adduction/abduction) joints and PIP joints of the four fingers.

𝑙𝑜𝑠𝑠𝑡ℎ𝑢𝑚𝑏 = (𝜙𝑡ℎ,𝑚𝑐𝑝,𝑎𝑎 − 𝜙𝑡ℎ,𝑚𝑐𝑝,𝑎𝑎)2 + (𝜙𝑡ℎ,𝑚𝑐𝑝,𝑓 /𝑒 − 𝜙𝑡ℎ,𝑚𝑐𝑝,𝑓 /𝑒 )2 + (𝜙𝑡ℎ,𝑡𝑚,𝑎𝑎 − 𝜙𝑡ℎ,𝑡𝑚,𝑎𝑎)2 + (𝜙𝑡ℎ,𝑡𝑚,𝑓 /𝑒 − 𝜙𝑡ℎ,𝑚𝑐𝑝,𝑓 /𝑒 )2
(7)
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The above equation captures the MSE loss in the MCP and TM joints of the thumb.

𝑙𝑜𝑠𝑠𝑤𝑟𝑖𝑠𝑡 = (𝜙𝑤𝑟𝑖𝑠𝑡,𝑓 /𝑒 − 𝜙𝑤𝑟𝑖𝑠𝑡,𝑓 /𝑒 )2 + (𝜙𝑤𝑟𝑖𝑠𝑡,𝑟/𝑢 − 𝜙𝑤𝑟𝑖𝑠𝑡,𝑟/𝑢)2 (8)

The above equation captures the MSE loss in the flex/extension and radial/ulnar deviation angles of the wrist.
The pronation/supination is directly computed from the orientation of the wrist sensor [72, 107, 108].

𝑙𝑜𝑠𝑠𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 = | | (∇𝜙𝑡 − ∇ ˆ𝜙𝑡−1) | |22 (9)

The above equation enforces constant velocity smoothness constraint in the predicted joint angles where 𝜙𝑡
above is a representative vector of all joint angles across all fingers at a time step 𝑡 .
The overall loss function is given by the below equation.

𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑚𝑐𝑝,𝑓 /𝑒 + 𝑙𝑜𝑠𝑠𝑚𝑐𝑝,𝑎𝑎 + 𝑙𝑜𝑠𝑠𝑝𝑖𝑝 + 𝑙𝑜𝑠𝑠𝑡ℎ𝑢𝑚𝑏 + 𝑙𝑜𝑠𝑠𝑤𝑟𝑖𝑠𝑡 + 𝑙𝑜𝑠𝑠𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 (10)

Note that the loss function does not include 𝜙𝑑𝑖𝑝 , or 𝜙𝑖𝑝 because we compute them directly from anatomical
constraints: Equations 1.

Finger motion range constraints: As described in Section 3, each finger joint has a certain range of motion
for both flex/extensions and abduction/adductions. In order to apply these constraints, we first normalize the
predicted output of a joint angle by dividing it by the range constraint (for example, by 110◦ for 𝜙𝑝𝑖𝑝 ). We then
apply the bounded Rectified Linear Unit (ReLU) activation (bReLU) function [64] to the last activation layer in
our network. The bReLU adds an upper bound to constrain its final output. The bReLU outputs are multiplied
again with their range constraints such that the unit of the output is in degrees. The bReLU, in conjunction with
other loss functions based on temporal constraints (Equation 9) facilitates predicting anatomically feasible as
well as temporally smooth tracking results.

6 PERFORMANCE EVALUATION

6.1 User Study
6.1.1 Data Collection Methodology. Our study has been approved by the IRB committee. We conduct a study
with 12 users (8 males, 4 females). The users are aged between 20-33 and weigh between 47-96kgs. The users wear
the sensor device as shown in Fig. 5 with the sensor snugly fit on the fingers. The users were then instructed
to perform random finger motions and wrist motions that include flexing or extending of fingers/wrist as well
as abduction or adduction thus incorporating all range of possible hand poses across all fingers. This ensures
good convergence of the ML models as well as generalizability to arbitrary finger motions. There are no discrete
classes of gestures. The motion patterns are entirely arbitrary thus making the data collection easier.

6.1.2 Labels for Training and Testing. The collected data includes 9-axis IMU from the fingers, wrist as well as the
fingers’ 3D coordinates and joint angles captured by the leap sensor [59]. While the IMU sensors provide motion
data for 3D pose tracking, the leap sensor data serves as ground truth for validation as well as provides labels for
training ssLOTR’s ML models. These labels include joint angles for each finger. Since ssLOTR performs continuous
finger tracking instead of identifying discrete gestures, we simply employ the MSE (instead of cross-entropy) loss
between predicted joint angles (from ssLOTR) and ground truth (from leap sensor) for training and testing.

6.1.3 Training Data. Each user participates in 5 separate sessions with each session lasting for 2 minutes, with
sufficient rest between sessions. The sensor is removed and remounted across each session so as to make the
ML models robust to natural variations in sensor mounting positions and orientations. The wrist position and
orientation were varied across sessions as shown in Fig. 12. One of the configurations includes mobility of the
wrist, both translation, and rotation. Using the above training data, we mainly evaluate ssLOTR against the
following two baselines.
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Parallel Up Up (Left/Right) Bend Mobile

Fig. 12. Wrist orientations/positions

■ SL-100%: This is fully supervised learning which needs 360 seconds (more details explained in Fig. 13c) of
training data from a given user. In contrast, with self-supervised learning, ssLOTR only requires 15% (54 seconds)
of labeled training data and 5760 seconds of unlabeled training data obtained from different users. Given that the
unlabeled data can be continuously generated without supervision, it is known to be substantially less overhead
than labeled training data that needs supervision [15, 71].
■ SL-15%: Fully supervised learning that needs the same amount of labelled training data as ssLOTR (15%).
Justification for the above choice of models: ssLOTR vs SL-100% vs SL-15% provides a quantitative measure

of effectiveness of self-supervised learning techniques. For example, if the performance of ssLOTR is close to
SL-100%, this indicates that with only 15% labelled training data, ssLOTR can achieve as much performance
as fully supervised learning, thereby dramatically cutting down the training overhead. Also, the comparison
between ssLOTR and SL-15% provides a quantitative metric for the gain due to self-supervision in ssLOTR.

For ssLOTR, we develop three versions of models based on the dependence of the training data with the user:
■ User Independent model (UI): Here, the training data are derived entirely from a different user than the one

on which testing is performed.
■ User Dependent model (UD): The training data are derived from the same user on whom the testing is done.
■ User Adaptation (UA): Here, 90% of the labeled training data are derived from a different user, and only 10%

are derived from the user on whom inferences are performed.
Justification for the above choice of models: The goal here is to understand the effectiveness of domain adaptation

strategies in ssLOTR in decreasing the user dependent training overhead. For example, User Adaptation only uses
10% of user-specific training data in comparison to User Dependent model:. If the performance of the two models
are comparable, this validates the effectiveness of domain adaptation strategies in ssLOTR to dramatically cut
down user-specific training data by exploiting a pre-trained model from another user. Similarly, given that User
Independent model does not need user-specific training data, its comparison with the User Dependent models
helps understand the loss in performance due to lack of user-specific training data. The User Adapt model is
expected to offer a sweetspot in the tradeoff between training overhead and accuracy. Table 3 depicts the specific
models used in the evaluation figures. More details are provided during the description of these figures.

Table 3. Summary of models used across evaluation figures.

ssLOTR (UA)
Default version of ssLOTR ssLOTR (UD) ssLOTR (UI) 𝑆𝐿 − 100% (UA) 𝑆𝐿 − 15% (UA)

Fig. 13a, 13b ✓ ✓
Fig. 14, 15a, 20a ✓ ✓ ✓

Fig. 15b ✓ ✓ ✓
Fig. 16, 17, 20b,

20c, 21, 22 ✓

UA: User Adaptation UD: User Dependent UI: User Independent

6.1.4 Testing Data. For the model with user adaptation, we use user adaptation training data from one session,
and we evaluate the joint angle prediction accuracy over test cases from other sessions where: (i) The sensor has
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been removed and remounted on the user’s wrist and fingers. (ii) The wrist position is completely different from
the one used to train the models. Similarly, for the user dependent model, we use 3 sessions of data as training,
and the rest as test data in a 3:2 randomized cross validation across sessions. The wrist position, orientations, and
sensor positions are completely different across training and testing datasets.

6.2 Implementation
ssLOTR is implemented on a combination of desktop and smartphone devices. The ML models are implemented
with Pytorch [97] library and the training is performed on a desktop with Intel i7-6700K CPU, 16GB RAMmemory,
and an NVIDIA GTX 1070 GPU. We use the Adam optimizer [54] with a learning rate of 1e-3, 𝛽1 of 0.9 and 𝛽2 of
0.999. To avoid over-fitting issues that may happen in the training process, we apply the L2 regularization[10] on
each convolutional layer with a parameter of 0.01 and also add dropouts[132] with a parameter of 0.05 following
each ReLU activation. Once a model is generated from training, the inference is done entirely on a smartphone
device using TensorFlowLite [36] on Samsung S20 and OnePlus 9 Pro smartphones.

6.3 Performance Results
We compare the performance of ssLOTR against the two baselines SL-100% and SL-15% as discussed before. If
not stated otherwise, the reported results are under the following conditions: (i) The errors reported are for
flex/extension angles for both fingers and wrist as they are prone to more errors with a high range of motion. The
errors for abduction/adduction (fingers) and ulnar/radial deviation (wrist) are discussed separately (Fig. 16a). (iii)
The model with User Adaptation is used. User Dependent and User Independent results are discussed separately.
(iv) The error bars denote the 10𝑡ℎ percentile and the 90𝑡ℎ percentile errors.

6.3.1 Qualitative Results. Fig. 2 depicts the qualitative results of finger motion tracking. A demo video has been
published with this paper. The figure compares the tracking by ssLOTR with reference to the real hand and
ground truth (Leap). Evidently, ssLOTR is able to capture a wide range of finger motions with decent accuracy.
We believe these results are promising in the context of applications in augmented and virtual reality.

6.3.2 Overall Performance of ssLOTR. Fig. 13a depicts the comparison between ssLOTR and fully supervised
learning. Evidently, with only 15% of labeled training data as fully supervised learning, the performance of ssLOTR
is close to fully supervised learning. ssLOTR can also improve the median and 90𝑡ℎ percentile error 2.67 and 1.89
times over SL-15%, a version of supervised learning that uses the same amount of labeled training data as ssLOTR.
While Fig. 13a reports joint angle errors, Fig. 13b reports the joint position errors. Specifically, the 10𝑡ℎ , 50𝑡ℎ and
90𝑡ℎ percentile of ssLOTR in degrees are 1.57◦, 9.07◦ and 28.58◦. And joint position errors of those are 1.14𝑚𝑚,
6.55𝑚𝑚 and 20.64𝑚𝑚.

0 10 20 30 40

Error in degrees

0

0.2

0.4

0.6

0.8

1

C
D

F

SL-100%

ssLOTR

(a)

0 5 10 15 20 25 30

Error in distance (mm)

0

0.2

0.4

0.6

0.8

1

C
D

F SL-100%

ssLOTR

(b)

0 20 40 60 80 100

# of training samples (%)

10

20

30

40

50

60

M
e

d
ia

n
 e

rr
o

r 
in

 d
e

g
re

e
s

SL-(#%)

ssLOTR-(#%)

(c)

Fig. 13. Overall accuracy and training overhead. (a) Overall Accuracy ssLOTR vs Fully Supervised Learning (b) Joint position
errors of Fig. 13a measured in millimeters. (c) Training Overhead. ssLOTR converges quickly with only a small amount of
labeled training data
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6.3.3 Accuracy vs Training Overhead. Fig. 13c depicts the accuracy as a function of the size of labeled training
data. ssLOTR is able to quickly learn with a small amount of labeled data and achieve convergence. The proposed
self-supervised learning framework captures better representations from sensor data, thus leading to fast and
efficient learning. Because of this, with more labeled training data, ssLOTR can even outperform supervised
learning. Given that unlabeled data can be constantly acquired without the overhead of labeling with a high
precision ground truth, we believe the overhead of training with unlabeled data in ssLOTR is negligible. Another
observation based on the figure is that the accuracy variation for 𝑆𝐿 − 100% saturates completely beyond 360s.
Based on this observation, we note that 𝑆𝐿 − 100% needs 360 seconds of training data.

6.3.4 Robustness to Wrist Position and Orientation. Fig. 14a evaluates the robustness to changes in wrist positions
and orientation. ssLOTR incorporates appropriate WCF transformations (Section 5.1). Therefore, the predictions
by the ML model are independent of changes to wrist configurations. Accordingly, the accuracy is consistent
across changes to wrist positions/orientations. Therefore, we believe this can improve the usability in applications
like augmented reality and sports analytics where the wrist configuration can change continuously.

Parallel Up Up(L/R) Bend Mobile
0

20

40

60

E
rr

o
r 

in
 d

e
g

re
e

s

SL-15%

SL-100%

ssLOTR

90%-ile error bars

Session 1 Session 2 Session 3 Session 4 Session 5
0

20

40

60

E
rr

o
r 

in
 d

e
g

re
e

s

SL-15%

SL-100%

ssLOTR

90%-ile error bars

Thumb Index Middle Ring Little Wrist
0

20

40

60

80

E
rr

o
r 

in
 d

e
g

re
e

s

SL-15%

SL-100%

ssLOTR

90%-ile error bars

Parallel Up Up(L/R) Bend Mobile
0

10

20

30

40

50

E
rr

o
r 

in
 d

is
ta

n
c
e

 (
m

m
)

SL-15%

SL-100%

ssLOTR

90%-ile error bars

Session 1 Session 2 Session 3 Session 4 Session 5
0

10

20

30

40

E
rr

o
r 

in
 d

is
ta

n
c
e

 (
m

m
)

SL-15%

SL-100%

ssLOTR

90%-ile error bars

Thumb Index Middle Ring Little Wrist
0

20

40

60

E
rr

o
r 

in
 d

is
ta

n
c
e

 (
m

m
)

SL-15%

SL-100%

ssLOTR

90%-ile error bars

(a) (b) (c)
Fig. 14. Robustness of ssLOTR to various settings where top figures report error in degrees and bottom figures report error in
millimeter (a) Wrist position and orientation (defined in Fig. 12) (b) Different sessions with changes to IMU sensor position
and orientation (c) Different fingers and wrist

6.3.5 Robustness to Mobility. Fig. 14a also indicates the tracking accuracy when the wrist is mobile. The mobility
includes both translational and rotational motion of the wrist with the fingers being simultaneously in active
motion. Regardless of the mobility, the orientation tracking and WCF transformations are accurate, and the
sensors on the fingers are still being able to capture the dominant component of finger motions. Therefore, the
accuracy under mobility of the wrist is comparable to the accuracy under static conditions.

6.3.6 Robustness to Sensor Position. Fig. 14b depicts the variation in accuracy across different sessions. The
sensors were removed and remounted across sessions thereby helping validate any effects of changes in sensor
position or orientation with respect to the human body. Evidently, the accuracy is stable across various sessions.
This is because the sensors are fit snugly to the hands, and any minor variation in positions/orientation across
sessions is typically much smaller than the hardware noise floor, thus having a negligible impact on the accuracy.
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6.3.7 Accuracy vs Fingers and Wrist. Fig. 14c depicts the accuracy as a function of fingers and wrist. The training
data in ssLOTR incorporates the entire range of motion across all fingers and wrist. Therefore, ssLOTR is able to
track all fingers with a stable accuracy. The robustness also extends towards the tracking of wrist angles. Across
all cases, ssLOTR performs comparably to fully supervised learning with a clear gain due to self-supervision. The
middle finger has a slightly higher error because it can be more influenced by the motion of other fingers causing
minute vibrations in the middle finger. Nevertheless, we believe the overall tracking results are promising.

6.3.8 Accuracy vs Users. Fig. 15a and Fig. 15b depict the variation in accuracy across users. Our inspection of the
data suggests that the variation happens due to the following reason. Some users perform faster and complex
finger motion in comparison to other users. Nevertheless, the user with the worst performance in ssLOTR (User
Adapt. in Fig. 15b) only has 2.13◦ higher error than the average case. Therefore, we believe ssLOTR provides an
accuracy that is consistent across users with diversity in gender, body masses, sizes, etc. The contrastive learning
framework together with data augmentation techniques introduce deliberate perturbations during the process of
self-supervised learning. We believe this also helps develop inherent robustness to diversity across users. ssLOTR,
with only limited labeled training data, achieves a performance that is close to the fully supervised learning (Fig.
15a) and the user dependent model (Fig. 15b).
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Fig. 15. Accuracy across users (a) ssLOTR vs. supervised learning (b) Training process: User dependent vs. independent vs.
adaptation

6.3.9 User Dependent vs. User Adaptation. Fig. 15b depicts the accuracy of the three versions of self-supervised
learning – User Dependent, User Independent, and User Adaptation (ssLOTR). While the performance of the User
Independent model is still reasonable, with only a small number of user-specific training data, User Adaptation
model (ssLOTR) can achieve accuracy close to the User Dependent model. Overall, User Adaptation model (ssLOTR)
uses only a small fraction (≈ 10%) of user-specific training data in comparison to the User Dependent model, but
achieves close to 88.6% of the performance of the User Dependent model.

6.3.10 Flex/Extension and Abduction/Adduction. Fig. 16a shows the CDF of errors for Flex/Extension angles
in comparison with Abduction/Adduction. The figure shows the feasibility of ssLOTR in capturing the Abduc-
tion/Adduction angles which also includes radial/ulnar deviation angles for the wrist. Because of the smaller
range of motion, the Abduction/Adduction angles have a smaller error in comparison to Flex/Extension angles.
Overall, ssLOTR can capture all dimensions of finger motion reliably.

6.3.11 Transfer between Left and Right hand. Fig. 16b shows the accuracy when the model trained on the left and
right hands are used for inferences across each other. When the sensor device (Fig. 5) is removed from the left
hand and worn on the right hand, all sensors are rotated by 180 degrees about their z-axes (axis conventions in
Fig. 8). Therefore, if the model is trained on the left hand and the inference is done on the right hand, the signs of
x and y-axes of the data from the right hand have to be inverted. Evidently, the model trained on one hand is
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Fig. 16. (a) Accuracy for Flex/Extension in comparison to Abduction/Adduction (b) Accuracy for right and left hands (c)
Accuracy over joints

applicable for performing inferences on the other hand, which offers scope for further decreasing the training
overhead and making the model more consistent by aggregating data from both hands.

6.3.12 Accuracy vs Finger Joints. Fig. 16c depicts the accuracy as a function of various finger joints - MCP
(𝜙𝑚𝑐𝑝,𝑓 𝑒 ), PIP (𝜙𝑝𝑖𝑝 ), and DIP (𝜙𝑑𝑖𝑝 ). ssLOTR can track all joint angles with decent accuracy. While the sensors
placed on the fingers are sensitive to the motion of all finger joints, the motion of various joints has a high degree
of interdependence because of the constraints (Section 3), which can help reduce the search space for the correct
angle. By combining these opportunities, ssLOTR’s ML models can reliably compute various joint angles.

6.3.13 Accuracy vs. Number of Sensors. Fig. 17a depicts the accuracy as a function of the number of sensors. The
specific set of sensors used for each case is also indicated in the figure, with the bottom-most red dot denoting
the wrist sensor. Evidently, there is a graceful degradation in accuracy with fewer sensors. Because of the high
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Fig. 17. (a) Accuracy over number of sensors used (b) Power consumption analysis on different modes (c) Comparison
between our prior user study (Random Gesture Seq.) and the new user study (Comprehensive Gesture Seq.)

degree of interaction between fingers, the motion of one finger will cause other fingers to move, thus enabling
capturing 3D joint angle information even without placing sensors on all fingers. For applications that do not
need a higher precision, the footprint of the sensor can be minimized further to enhance the comfort levels.

6.3.14 Accuracy vs. Gesture Sequences. We conduct a new user study by having 12 users perform a sequence of
finger motion gestures that are known to account for all possible hand poses within the constraints of anatomical
feasibility (based on literature [67]). Specifically, the 28 finger pose gestures in Fig. 18 are known to be base
states of human hand poses, and majority of possible hand poses are known to be one of these base states or
transitioning between these poses [127] based on anatomical feasibility constraints. In our new user study, the
users are instructed to pass through all of these base states (multiple times in no specific order), thus ensuring that
all possible sequences of hand poses are accounted for. The accuracy is depicted in Fig. 17c. The median error with
the new user study (Comprehensive Gesture Sequence) is only 1.4◦ higher (tail errors are similar) and comparable
to the prior user study (Random Gesture Sequence) where the users were instructed to perform random finger
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Fig. 18. Anatomically feasible base states of human hand poses.

motion while covering a full range of motion as possible for all fingers. This suggests that ssLOTR can accurately
track anatomically feasible human hand poses.

Fig. 19. Users play VR games with OculusQuest while wearing ssLOTR’s sensor

6.3.15 Longer Session AR/VR Experiments. Towards evaluating the efficacy of ssLOTR in a realistic setting, we
perform some VR experiments with 12 users. Fig. 19 depicts a user wearing an Oculus Quest 2 [84] while being
engaged in a VR game. The fingers are simultaneously being tracked by ssLOTR’s sensors as well as the leap sensor.
Under this setting, we have 12 users who play the following three games: (i) Tiny Castles [126] (ii) VRTUOS [91]
(iii) Interdimentional matter [90]. Each game lasted for about 30 minutes. Fig. 20a depicts the results. ssLOTR
provides consistent accuracy across multiple games. When compared to the accuracy from prior user studies, the
accuracy for some games might be better. This is because the finger motions in prior user studies cover the entire
range of motion for all fingers to stress test the system under more challenging conditions. Fig. 20b shows the
median accuracy as a function of time for these VR games. Evidently, errors do not accumulate with time, and we
do not observe drift in errors because ssLOTR exploits opportunistic error compensation strategies from A3 [142].

6.3.16 Longer Session Experiments (Free Living Conditions). We conduct studies under free living conditions with
12 users to study long term effects like potential drifts. Users were instructed to wear the sensor continuously for
6 hours at their apartments. At the end of each hour, we conduct a 5-minute session of finger motion as per our
user study protocol described earlier. In between the sessions, the users conducted normal daily life activities
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Fig. 20. (a) VR Games (b) Accuracy as a function of time in three VR Games (c) Long sessions testing for drifts

which included working on their laptops (typing, browsing, etc), eating, drinking, watching movie, etc while they
continue to wear the sensor. The results are depicted in Fig. 20c. As expected, the accuracy does not degrade with
time. This is because ssLOTR does not perform long term integration of sensor data, which is the main source of
drift errors [134]. In contrast, ssLOTR opportunistically resets drift based on ideas in prior works like A3 [142].

6.3.17 Power Consumption and Latency. The power consumption of the sensor device itself was discussed in
Section 4. Here, we analyze the power consumption of the ML model of ssLOTR as implemented on smartphones.
For profiling the energy of the TensorflowLite model, we use Batterystats and Battery Historian [5] tools. We
compare the difference in power between two states: (i) The device is idle with the screen on. (ii) The device is
making inferences using the TensorflowLite model. The idle display-screen on discharge rate 3.63% per hour
while the discharge rates for various modes are shown in Fig. 17b. The power consumption is very low. Since the
architecture in ssLOTR from Fig. 10 processes data in chunks of 1.4 seconds, it will incur a delay of at least 1.4
seconds if we process the data only once in 1.4 seconds. Towards making it real-time, we make a modification
where at any given instant of time, previous 1.4 seconds segment of data is input to the network to obtain
instantaneous real-time results. This provides real-time tracking at the expense of power. Depicted in Fig. 17b this
entails continuous/redundant processing thus increasing the discharge rate to 15.35%. The low-power mode trades
off real-time performance (1.4 seconds delay) for power savings. Depending on the requirements of real-time
latency or energy efficiency, a user can choose between the two modes. The latency of execution of the ML model
on Samsung S20 and Oneplus 9 Pro are 6.8 ms and 6.3 ms respectively.

6.3.18 Contrastive Loss vs MSE. Fig. 21a shows the variation in accuracy as a function of the loss function used
for pretraining ssLOTR with unlabeled data. As expected, the contrastive loss function provides better accuracy
than the conventional MSE loss function. While the MSE loss function considers only a pair of similar samples at a
time and maximizes their similarity, the contrastive loss function tries to simultaneously maximize the similarity
between similar pairs and minimize the similarity between dissimilar pairs as outlined in Section 5.3 and Equation
5. Therefore, the contrastive loss function results in better efficiency in capturing the representations.

6.3.19 Motivation for the Projection Head. In Section 5.3, in reference to the ssLOTR’s architecture in Fig. 10,
we discussed the possibility of applying the contrastive loss function directly to the representation ℎ, or to its
projection 𝑦 = 𝑝 (ℎ). In this section, we experimentally validate the two choices. Fig. 21b compares the two design
choices. Evidently, applying the contrastive loss to 𝑦 is better by 48.7% in the median case in comparison to ℎ.
While projections 𝑦 might help enforce similarity between differently augmented versions of the same input,
there might be some loss of information. On the other hand, the representations ℎ which are one level before 𝑦
offer a good tradeoff in capturing high-level features without losing much of the information.

6.3.20 Variation across Data Augmentation Techniques. ssLOTR’s architecture in Fig. 10 needs two differently
augmented copies of the same input. We discussed four techniques for performing this data augmentation
in Section 5.3. We now evaluate all six combinations of selecting two such data augmentation techniques for
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Fig. 22. (a) Figure shows empirical results of time masking with different number of masked columns with one of the other
three data augmentations (b) Table describes comparison between combinations of data augmentation techniques

augmenting the input to pass it into the architecture in Fig. 10. Our results in Table of Fig. 22 indicate that all of
the combinations provide consistent performance without any significant difference. Moreover, we study the
effect of number of masked columns in time masking technique. Our results (Left-sided figure in Fig. 22) suggests
that randomly masking one column yields better accuracy.

6.3.21 Comparison with TapStrap2. Tapstrap2 only has accelerometers. The gyroscope andmagnetometer sensors
are not embedded. We develop self-supervised learning algorithms with such data accessed from the Tapstrap2,
based on the architecture in Fig. 10. Fig. 21c shows the performance of ssLOTR in comparison to TapStrap2. With
the same amount of labeled and unlabeled training data, the performance of ssLOTR in contrast to TapStrap2
is substantially higher. TapStrap2 also has a longer tail due to convergence issues. Accelerometer contains less
information in comparison to a 9-axis IMU sensor. Moreover, the lack of gyroscope and magnetometer makes it
difficult to estimate orientation and perform gravity compensation and coordinate alignment techniques discussed
in Section 5.1, thereby causing issues of stability and convergence of the ML models with TapStrap2 data.

7 DISCUSSION AND FUTURE WORK
Usefulness of form factor:Our primary requirement includes the ability to track 24 DoF motion of fingers while
being comfortable for wearing that allows performing natural finger motion activities without any hindrance
from the sensor. While tracking 24 DoF finger joints has been systematically validated in Section 6, we discuss
the usability aspects of the form factor in comparison to other design choices as follows. (i) Our sensors are
worn like connected rings on fingers and a smartwatch on the wrist. Based on the free-living study conducted in
Section 6 (Fig. 20c), the users were able to comfortably perform daily life activities which included working on
their laptops (typing, browsing, etc), eating, drinking, watching movie, etc while they continue to wear the sensor.
Therefore we believe that the platform is comfortable to wear, but we note that there is scope for improvement as
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noted in further comments. (ii) Prior research on glove prototypes suggest that it is difficult to perform daily
activities with precise finger motion such as typing, knitting, opening a lock, etc, while wearing gloves [103].
In contrast, ssLOTR’s sensor device allows free motion of fingers. Wristbands and armbands might be other
alternatives. Wristband based solutions like FingerTrak [40] can use infrared cameras for 24 DoF finger motion
tracking, but as pointed out by the authors themselves, the system is not robust to background temperatures
(sun, heater, etc) as well as changes in sensor position due to wrist motion. EMG armbands on the otherhand
need calibration and warming of the skin to be in proper contact with the electrodes which can even take up
to 5 minutes during each instance of wearing, leading to usability issues [87, 128, 136]. (iii) Nevertheless, we
note that the form factor in ssLOTR is still a work in progress and there is scope for improvement. One of the
goals of the paper is to explore the limits and bounds of the accuracy as a function of the number of sensors.
The experimental evidence in Section 6, Fig 17a suggests a graceful degradation in accuracy with decreasing
number of sensors. Therefore, we believe the form factor of the prototype can further be reduced with a graceful
degradation in accuracy. Building upon this promise, we will also consider prototyping ring based form factors ,
as a part of our future work. Depending on the application and accuracy requirements, perhaps the rings can
only be worn on a few fingers instead of all fingers.
Target population and potential use cases:While ssLOTR shows the feasibility of generic finger motion

tracking with the ability to be extended to any application, we list a few potential use cases below.
■ Virtual and Augmented Reality: Experiments in Fig. 20a validate the applicability of ssLOTR in a AR/VR setting.
Building on this promise, we plan to leverage the finger motion tracking from ssLOTR to create more interactive
AR/VR applications such as cooking, artwork training, sports coaching, etc. This can enable hands-on learning
experience where the tutorials are often packaged in the form of engaging game-like activities. We believe the
generic nature of 3D finger motion tracking enabled by ssLOTR can be extended towards such applications.
■ Accessibility: Accessibility applications [116] such as Sign Language Recognition and Translation can bridge
the communication gap between deaf people and hearing people. Techniques based on cameras are limited by
the need for good lighting, and resolution. Furthermore, they lack portability and ubiquity because the sensing is
limited to the range of the camera. Therefore, we believe wearable based solutions like ssLOTR can be used in
the context of Sign Language Recognition to offer a ubiquitous solution. We conduct a simple study to classify
alphabets (Fig. 23a) in American Sign Language (ASL) using ssLOTR’s finger motion tracking for classification.
Depicted in Fig. 23b, ssLOTR is able to accurately classify the alphabets. We plan to extend ssLOTR in the future
towards recognition over a larger vocabulary. ssLOTR could also be useful for people with vision impairments,
where they are required to draw or perform some gestures for user interface applications [48].
■ User Interfaces (Typing): Similar to TapStrap 2, we believe typing is another potential use case with the following
benefits over conventional keyboard: (i) Typing can be done anywhere, without a keyboard, thus offering a more
ubiquitous way of interacting with IoT devies, particularly the ones with smaller form factor (ii) Tap based typing
can be much faster (almost twice) than conventional typing [124].
■ Robotic Teleoperation: Complex and unstructured robotic operation, especially in an unregulated environment
may require human intelligence in addition to mechanical sturdiness and robustness of a robot. This might
include applications ranging from controlling a home assistant robotic avatars or a robotic avatar in a dangerous
industrial setting [25] in tasks including grasping and manipulating objects in complex ways. Towards this end,
we believe 24 DoF finger motion tracking in ssLOTR can provide a ubiquitous solution for robotic avatar control,
which is particularly useful if the control is desired from anywhere, anytime.

Scope for improving the appearance and mechanical design: Our goal with the paper is to show the
feasibility of designing a lightweight wireless sensing device for 3D finger motion tracking. However, we believe
there is more work to be done before the sensor can be turned into a finished product. The mechanical design
and appearance can be optimized. For example, stereolithograph apparatus (SLA) technology [117] can be used
to enhance the resolution of 3D printing. However, the liquid resins used in SLA can be sensitive to UV exposure
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Fig. 23. (a) American Sign Language Alphabet (b) Confusion matrix for American Sign Language characters classification

and much more expensive than PLA and TPU material used in ssLOTR [30]. Moreover, the SLA printing material
made of resin is highly toxic with safety issues for operation in a lab setting. The tradeoffs in resolution, material
cost, and manufacting cost must be carefully considered.
Scope for decreasing the number of IMU sensors: Our results in Fig. 17a show a graceful degradation in

accuracy with the number of sensors. Because of the high degree of interaction between fingers, the motion of
one finger will cause other fingers to move, thus enabling capturing 3D joint angle information even without
placing sensors on all fingers. This provides opportunities to further minimize the size of the sensing device by
only using a few sensors. We will consider alternative ways to package the sensing device with fewer sensors.

Human Body Pose Detection: ssLOTR shows the feasibility of sensing 3D finger motion with limited training
data using self-supervised learning techniques. Motivated by the promising results, we plan to explore full-body
motion tracking using a similar framework. In particular, we are interested in understanding the tradeoffs between
the number of sensors placed on the body, the amount of training data, and the achievable accuracy.

8 CONCLUSION
This paper shows the feasibility of self-supervised 3D finger motion tracking using small-scale training data. A
novel wireless sensing device was designed by exploiting advances in PCB design, 3D printed packaging, and SoC
microcontrollers with integrated WiFi/BLE for efficient sensing and comfortable wearing that enables dexterous
motion of fingers. Extensive user study with 12 users shows a median tracking error of 9.07◦ (or 6.55 mm) with
robustness to user diversity, body masses, sensor wearing positions, etc. While the results are promising, we
believe this opens ample opportunities for future research in several areas including augmented and virtual reality,
self-supervised learning for body pose tracking with non-obtrusive, and sparse sensors and limited training data.
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