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Combinatorial testing makes it possible to test large systems effectively while maintain-
ing certain coverage guarantees. At the same time, the construction of optimized covering
arrays (CAs) with a large number of columns is a challenging task. Heuristic and Meta-
heuristic approaches often become inefficient when applied to large instances, as the com-
putation of the quality for new moves or solutions during the search becomes too slow.
Recently, the generation of covering perfect hash families (CPHFs) has led to vast improve-
ments to the state of the art for many different instances of covering arrays. CPHFs can be
considered a compact form of a specific family of covering arrays. Their compact represen-
tation makes it possible to apply heuristic methods for instances with a much larger num-
ber of columns. In this work, we adapt the ideas of the well-known In-Parameter-Order
(IPO) strategy for covering array generation to efficiently construct CPHFs, and therefore
implicitly covering arrays. We design a way to realize the concept of vertical extension
steps in the context of CPHFs and discuss how a horizontal extension can be implemented
in an efficient manner. Further, we develop a horizontal extension strategy for CPHFs with
subspace restrictions that identifies candidate columns greedily based on conditional ex-
pectation. Then using a local optimization strategy, a candidate may be adjoined to the
solution or may replace one of the existing columns. An extensive set of computational
results yields many significant improvements on the sizes of the smallest known covering
arrays.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Covering Arrays (CAs) are a combinatorial design class of combinatorial designs that can be considered a generalization
of orthogonal arrays. A (uniform) CA(N;t, k, v) is an N x k array in which each entry is from a v-ary alphabet and is defined
by the property that for every possible selection of t columns, every t-tuple {0, 1,...,v— 1}' appears in at least one row
of the sub-array. Whenever such a tuple appears in a row, we consider it covered, a CA can therefore also be defined as an
array that covers all possible t-tuples in all t-selections of columns, further referred to as column selections.

The construction of CAs with a minimal number of rows is of particular interest, especially for practical applications.
Given a strength t, number of columns k and alphabet of cardinality v, we consider the problem of generating a CA(N; t, k, v)
as a CA instance and aim to construct a CA with the smallest number of rows possible. The smallest value of N for which
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Fig. 1. The permutation vector 112 is expanded for t = q = 3.

there exists a CA(N; t, k, v) is called the covering array number, denoted by CAN(t; k, v), and the respective CA is considered
optimal. At the same time, since the construction of optimal CAs is a difficult optimization problem for the general case
[1], the exact values for CAN only exist for a very limited number of instances, while only best known lower and upper
bounds on CAN exist for the majority of CA instances. Online tables at [2] collect the smallest known upper bounds on CAN
achieved by an explicit construction for CA instances with strengths 2 <t < 6, alphabets 2 < v <25 with up to k < 10000
columns.

One of the main application domains of CAs is Combinatorial Testing (CT), where CAs are used as the underlying math-
ematical structure representing combinatorial test sets. Each row in the CA represents one test case and each column cor-
responds to one parameter of the input model. The idea behind CT is based on empirical evidence that the vast majority
of faults found in software or hardware systems is caused by interactions between a small number of parameters [3]. By
applying CAs of strength t, we can ensure that all interactions of up to t parameters are tested. This method makes it pos-
sible to apply structured testing methods to systems that are by far too large to test exhaustively. For example, in past
works, CT was successfully applied to find faults in systems with more than 2000 parameters [4]. At the same time, gener-
ating uniform CAs with such a large number of columns is not an easy feat. Since even state-of-the-art combinatorial test
generation tools are unable to construct CAs with such a large number of columns, the authors had to apply a recursive
doubling construction which recursively doubles the number of columns of seed CAs generated by In-Parameter-Order (IPO)
algorithms. While this approach proved sufficient in this particular case, the generated CAs were far from optimal due to
the large number of redundancies introduced by the recursive doubling construction. It is apparent that there is still a lack
of as well as a demand for algorithms capable of generating small CAs for large CA instances effectively.

In this work we utilize a more compact form of certain families of CAs, so called Covering Perfect Hash Families (CPHFs), to
design an IPO algorithm that can be effectively applied to generate CAs for large instances. Experiments with this algorithm
confirm the effectiveness of this approach and improve the best known upper bounds for a large number of CA instances.
Further, by devising an IPO algorithm for CPHFs with subspace restrictions, we were able to establish new upper bounds
for strength t = 3 and 837 < k < 10000 for alphabet v =4 and 619 < k < 10000 for v = 5. Our work is structured as follows.
Section 2 provides a brief introduction to covering perfect hash families, while Section 3 summarizes related methods that
construct CAs and CPHFs. In Section 4 we design an In-Parameter-Order algorithm for generating CPHFs, which we evaluate
in detail in Section 5. Finally, we discuss our work on CPHFs with subspace restrictions in Section 6 and conclude the work
in Section 7.

2. Permutation vectors and covering perfect hash families

Let g be a prime power and Fq a finite field of order q. A permutation vector can be denoted as a t-tuple h=
(ho, hy, ..., he_1) with entries h; arising from Fg, not all 0 and can be expanded into a vector of length g* with symbols from
Fq by forming the scalar product between h and the base q representation (ﬁéi), l(i), ey ,Bt(i)l) ofeveryie {0,1,...,q" —1}.
Each permutation vector can therefore be considered a compact representation of a vector of length g' with symbols com-
ing from Fy. Every expanded vector has the property that each symbol of Fq appears in exactly ¢‘~! of its entries, while for
the special case of hy # 0, the vector can be partitioned into g'~! permutations of the q different symbols, hence the name
permutation vector. Fig. 1 shows an example of such an expansion. The permutation vector (1,1,2) is expanded for t =q =3

2



M. Wagner, CJ. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

by forming the scalar product between the permutation vector (1,1,2) and the base three representation (ﬂé”, ﬂl(i), ,32@ ) of
each i € {0,1,...,26}. The resulting vector of length q' = 27 can be partitioned into 9 permutations of the symbols 0,1,2.

A set of t permutation vectors is covering if the sub-array with t columns and gq' rows obtained by expanding the t
permutation vectors forms an orthogonal array (OA). The process of determining if a given t-tuple of permutation vectors
is covering is called the covering test. The naive approach of expanding all permutation vectors and confirming whether the
resulting array is an OA is quite inefficient. A better way is to utilize the fact that a t-tuple of permutation vectors is covering
if and only if the t permutation vectors are linearly independent, see [5], which can easily and efficiently be confirmed with
Gaussian elimination.

An n x k array of permutation vectors is called a Covering Perfect Hash Family (CPHF), denoted CPHF(n;k,q,t), if for
every selection of t columns there exists at least one row in which the t-tuple of permutation vectors form a covering
tuple. This property guarantees that the array obtained by expanding every permutation vector in the CPHF(n; k, q,t) is a
CA(n-q';t, k, q), since every column selection of the CA must now contain a sub-array that contains all possible t-tuples
over the g symbols.

An example of a CPHF(2; 13, 3, 3) is shown in Fig. 3. It is an array with 2 rows and 13 columns, containing permutation
vectors of length 3 with symbols arising from {0, 1,2} as entries. In each possible selection of 3 columns, one of the two
3-tuples of permutation vectors is covering.

Further, since the first element of any expanded permutation vector is always zero, the resulting CA contains n all-zero
rows, n — 1 of which are redundant and can be deleted. The CPHF in Fig. 3 therefore represents a CA with N=2.33 -1 =53
rows.

Last, we can observe that multiplication of a permutation vector with any non-zero element of F; creates a bijective
mapping between symbols in the vector obtained by expanding the permutation vectors [6]. Since symbol permutation is
considered an isomorphism in CAs, such permutation vectors can also be considered isomorphic. Therefore, it is sufficient to
only regard permutation vectors wthere the first non-zero element is the identity, reducing the number of non-isomorphic

t—1 q -1

permutation vectors to Y ;7 q' = =

3. Related work

The generation of uniform CAs is a well-studied and active field of research. Many different construction methods, such
as greedy algorithms [7], metaheuristics [8], recursive constructions [9] and exact methods [10] have been applied with
excellent success, for a comprehensive survey about uniform CA generation methods see [11]. While exact methods always
construct an optimal CAs and can therefore be used to determine the precise value of CAN, due to the combinatorial explo-
sion of the size of the search space, they can only be applied to very small CA instances. Metaheuristic algorithms have been
successfully applied to construct many of the currently best known CAs for instances with small strength and alphabets and
a medium number of columns, but become too inefficient when large instances are concerned.

One way to generate slightly larger CAs effectively are greedy algorithms. We can distinguish between algorithms that
construct a CA one test at a time, such as AETG [12] and the deterministic density algorithm (DDA) [13], and algorithms
that grow an initial array in both dimensions, such as the In-Parameter-Order (IPO) family of algorithms. Due to their fast
execution speed and their focus on column extensions which is very well-suited for CPHF generation, we will focus on IPO
algorithms in this work.

The IPO strategy was first proposed in 1998 [7]| and many different improvements and variations of the algorithm have
been devised ever since. The algorithm, outlined in Algorithm 1, starts by constructing a CA with t columns and ! rows.

Algorithm 1 [POG Strategy.
Require: ¢, k, v
A < cross-product of the set of symbols for the first t columns
fori<t,....kdo
HorizontalExtension(i)
if there are uncovered tuples then
VerticalExtension(i)
end if
end for

Afterwards, in a procedure called horizontal extension new columns are added to the CA until the target number of columns
is reached. In order to cover all missing t-tuples, the algorithm greedily selects values for all entries in the newly added
column that maximize the number of newly covered tuples. If any uncovered tuples remain at the end of such a horizontal
extension step, the algorithm performs a vertical extension in which all missing tuples are added to the array, adding rows
if necessary.

Note that it is not necessary to assign values to all entries immediately. Such unassigned values are called star values and
are deliberately left open in order to allow the algorithm to consider them in later extension steps. Classical IPO algorithms
generally ignore star values during the horizontal extension, but attempt to first merge missing tuples into existing rows by
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Fig. 2. Example of a CA generated by IPO.
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Fig. 3. Example of a CPHF(2; 13, 3, 3).

replacing star values with appropriate values. Fig. 2 shows an example of a CA(6; 2, 4,2) constructed by an IPO algorithm.
If more than 4 columns are required, the algorithm appends new columns to the CA, depicted by the blue box to the right.
The star values, denoted by = in the red box, can be replaced during the vertical extension of later extension steps in order
to merge missing tuples into existing rows. The algorithm only adds new rows to the CA (shown in green) if the missing
tuple can not be merged into any row.

As mentioned in the introduction, even greedy algorithms are not always fast enough to construct CAs for very large
instances within reasonable time. One approach to solve this issue is the application of recursive construction methods,
which can be used effectively to generate larger CAs from one or more different seed arrays. While these methods can be an
incredibly effective tool and can be applied to even the largest of instances, they also have several downsides. First, they are
highly dependent on the number of rows of the CAs that are used as seed arrays. Second, the construction process usually
introduces many redundancies in the CA, which leads to CAs with a relatively large number of rows.

Much better results for difficult CA instances can often be achieved by algorithms based on finite fields. Aside from cyclo-
tomy [14], which generates q x ¢ CAs with alphabet v and prime power q, ¢ =1 (mod v), different algorithms constructing
CPHFs have recently been used to construct many of the best known CAs for higher alphabets. Their compact representation
made it possible to apply backtracking algorithms [5] and different metaheuristics, such as [15] and [16], to instances larger
than usual. For very large instances, greedy column extension algorithms for CPHFs [17] and affine composition methods
[18] have been the most successful. One example of such column extension algorithms is the random column extension al-
gorithm proposed in [17], which we briefly review here. The algorithm starts with an initial CPHF and appends new columns
until no new CPHF can be found anymore. For each extension step, a certain number of random candidate columns are gen-
erated. If the array obtained by appending the column to the previous CPHF is again a CPHF, then the column is appended.
Otherwise, the algorithm evaluates whether one of the existing columns is part of all uncovered column selections. In this
case, said column can be replaced by the candidate, which provides some means to escape local optima.

In this work, we discuss how the In-Parameter-Order strategy can be applied effectively to generate CPHFs. In contrast
to previous column extension algorithms, instead of generating candidates randomly, the algorithm carefully selects suitable
values for the candidate columns. In addition, by introducing the concept of a vertical extension, we can move from the
problem of finding a CPHF with a maximal number of columns for a given number of rows to the problem of generating a
CPHF (and therefore a CA) with a given number of columns and minimal number of rows, which is much more common in
practical applications.

4. An In-Parameter-Order strategy for covering perfect hash families

In order to design an In-Parameter-Order algorithm for covering perfect hash families, all individual steps of classical
IPO algorithms, see Section 3 and Algorithm 1, need to be adjusted accordingly. In particular, it is necessary to generate
an initial CPHF, extend it horizontally by appending a new column and selecting appropriate values for all entries in the
newly added column and lastly cover all column selections that are still uncovered after the horizontal extension by means
of vertical extension. In the following subsections, we present how those steps can be implemented effectively as part of
the CPHFIPO algorithm, outlined in Algorithm 2, and discuss possible optimizations and their impact on the performance of
the algorithm.
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Algorithm 2 CPHFIPO.
Require: ¢, k, q
A <« Initial Array
fori<t,... . kdo
HorizontalExtension(i, A.rows)
if there are uncovered column selections then
VerticalExtension()
end if
end for

4.1. Initial array

The first step of classical IPO algorithms is to generate an initial CA of strength t with k =t columns. In classical IPO al-
gorithms, this is done by constructing the cross-product of the set of symbols for the first t columns, i.e. an array containing
all possible t-tuples on q symbols, see [7]. In CPHFIPO, to create an initial CPHF to serve as starting array for the algorithm,
a t-tuple of permutation vectors has to be constructed that is covering. From the covering test, discussed in Section 2, we
know that any non-singular matrix can be used to construct such a covering tuple. In this work, we simply select the iden-
tity matrix, the rows of which represent the t permutation vectors {e;}, i € {1,...,t}. The initial array generated at the start
of Algorithm 2 is therefore a CPHF with 1 row and t columns, where the t entries are the permutation vectors {e;}.

4.2. Horizontal Extension

The main objective of the horizontal extension is to append a new column to the current array and (greedily) select

values that maximize the number of covered tuples. For this purpose, all entries of the new column, ¢ = (cy, ..., cn)T, need
to be iterated, which can be done in order from top to bottom, such as during classical IPOG algorithms, but also different
permutations of the row indices 1,...,n, such as random permutations, can be used.

The defining part of the horizontal extension of IPO algorithms is the coverage gain computation. In this procedure,
all possible candidate values are iterated and for each candidate, the algorithm calculates the coverage gain, which is the
number of tuples that are currently uncovered, but would be covered if the candidate is selected. Finally, the candidate
with the highest coverage gain is selected. The horizontal extension of classical IPO algorithms, as well as the coverage gain
computation is discussed in detail in [19].

When designing a horizontal extension for CPHFs, there are two main differences to consider. First, instead of covering
any missing tuples, we need to consider whether all column selections contain at least one t-tuple of permutation vectors
that is covering. This information can be stored in a bit-vector of length ([i‘l), where each bit tracks the cover status of one
column selection. Second, the number of candidate values is generally far larger for any strength t > 2 than for classical IPO
algorithms, since all possible qt%ll non-isomorphic permutation vectors need to be considered.

q
Our algorithm to extend a CPHF with i columns and n rows is outlined in Algorithm 3. First, we iterate all entries in the

Algorithm 3 Horizontal Extension in CPHFIPO.

procedure HORIZONTALEXTENSION(i, 1)
for row < 1, ..., n (randomized) do
¢; < CPHF[row][i]
Compute-Coverage-Gains(row, i) > For all candidate perm. vec.
¢; < select permutation vector p that maximizes coverage gain
Mark newly covered column selection as covered
if all column selections are covered then
return
end if
end for
end procedure

newly added column ¢ in random order. For each entry c;, we consider all non-isomorphic permutation vectors as candidates
and compute the coverage gain of each candidate. For this, we first check whether a column selection is still uncovered, as
only previously uncovered column selections need to be considered. Afterwards, we compute whether the existing (t — 1)-
tuple of permutation vectors forms a covering tuple together with the candidate permutation vector. Finally, after coverage
gains have been computed for all candidates, the permutation vector with maximum coverage gain is selected, while any
ties are broken randomly. To improve the execution time of the coverage gain computation, we now discuss two possible
optimizations.
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Pre-computing covering tuples First, the computation of whether any t-tuple of permutation vectors is covering can be
conducted as a pre-processing step for all possible t-way combinations of permutation vectors. While this idea has already
been applied in previous works, we briefly want to discuss our implementation of this concept. Each permutation vector can
be represented by an integer, using a bijective packing function, such as the function specified in Eq. 1, which packs every
non-isomorphic permutation into an integer smaller than 2-¢'~!. The integer O represents the vector where all elements
h; are 0, while the integer 2 - q‘~! — 1 represents the permutation vector where hy = 1 and all other elements h; are q — 1.
While this encoding contains some redundant integers which represent the set of isomorphic permutation vectors where
ho =0 as well as the all-zero vector, which by definition is no permutation vector, creating a tighter packing into integers
up to ‘g%]l would require a more sophisticated packing method which might introduce additional computational overhead.
Since all powers of q up to g' are pre-computed at compile time, packing a permutation vector only requires t additions and
multiplications, which is why we accept this small memory overhead in this work. We plan to investigate the performance
of different packing functions in future work.

We can use the distinct integer representations of the permutation vectors p; to represent all possible t-way combina-
tions of permutation vectors by another integer value, see Eq. 2. Before the main algorithm is executed, we can therefore
compute for each possible combination of t permutation vectors if the resulting t-tuple is covering and store this informa-
tion in a bit-vector of length (2 - qt—l)t. By keeping track of the integer representation of each permutation vector in the
current CPHF, the coverage gain computation during the horizontal extension simplifies to using the packing function from
Eq. 2 for the existing (t — 1) permutation vectors in conjunction with the integer representations of all possible candidates
permutation vectors. The resulting integer value then serves as index to look up whether the corresponding tuple is cover-
ing. While this can significantly speed up the search, we want to note that this method of pre-computing covering tuples
can be very memory intensive, therefore its use is generally limited to strengths t < 3 or t = 4 when the alphabet q is small.

t—-1

pack-vector((hg, hy, ..., h_1)) = Z h; g1 )
i=0
t—1

pack-tuple((po, p1,.-.. pr-1)) = Y _pi- (2-¢1)
i=0

t—1-i

(2)

Simultaneous coverage gain computation for pre-computed covering tuples Simultaneous coverage gain computation is an
optimization that was introduced for classical IPO algorithms in [19]. Since the columns of the previous array remain con-
stant throughout the entire horizontal extension step, a constant prefix can be computed for the corresponding (t — 1)-tuple
in each column selection. This can be applied to CPHFs by tracking the coverage gains for all candidate permutation vectors
simultaneously in a vector of length 2-¢g'~1. We first iterate over all column selections and compute the prefix, which is
the integer representation of the first (t — 1) permutation vectors. Afterwards, for each candidate permutation vector, we
can compute the integer value of the entire t-tuple of permutation vectors, and therefore the index used for look-up in the
bit-vector of pre-computed covering tuples, as the sum of the prefix and the candidate. If the respective tuple is covering,
the candidate can be used as index to increment the respective element in the coverage gain vector. Thanks to this op-
timization, the prefix of each (t — 1)-tuple has to be computed only once throughout the horizontal extension, instead of
calculating it separately for each candidate. Due to the far larger number of candidates during the horizontal extension for
CPHFs when compared to classical IPO algorithms, this optimization has a significant impact on the execution time of the
algorithm. Algorithm 4 provides a detailed pseudocode of the coverage gain computation using this optimization.

Algorithm 4 Compute Coverage Gains with Precomputed Covering Tuples.

Require: t, List of precomputed covering tuples [
1: procedure COMPUTE-COVERAGE-GAINS(row, i)
2: gains[1,...,2-¢""1] <0
3 for all column selections {ji,..., j:} do
4 if column selection is marked as covered in coverage-map then
5: Skip column selection

6: end if

7

8

9

prefix < pack((CPHF[row][j1]. ..., CPHF[row][j;_1]))
for all non-isomorphic permutation vectors with integer repr. p do
if [[prefix + p] is covering then

10: Increment gains| p]
11: end if
12: end for

13: end for
14: return Index of Max(gains)
15: end procedure
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Simultaneous coverage gain computation for Gaussian elimination While the previously discussed optimizations can not be
applied as effectively to instances where pre-computing covering tuples is not feasible, there is still some merit to computing
coverage gains simultaneously. First, given a (t — 1)-tuple of permutation vectors, we can confirm if the permutation vectors
are linearly dependent. If this is the case, it is impossible to form a covering t-tuple with this set of permutation vectors
and it is therefore unnecessary to consider any candidates for this row and column selection. Further, by computing the
coverage gains simultaneously, we can first execute Gaussian elimination for the constant (t — 1) permutation vectors and
then simply confirm if each candidate permutation vector is linear independent to them. This reduces the steps necessary
during Gaussian elimination when compared to restarting from scratch for every candidate. These concepts are outlined in
Algorithm 5.

Algorithm 5 Compute Coverage Gains with Gaussian Elimination.
Require: t

1: procedure COMPUTE-COVERAGE-GAINS(row, i)

2: gains[1,...,2-¢"" 1] <0

3 for all column selections {ji,..., j:} do

4 if column selection is marked as covered in coverage-map then
5 Skip column selection

6: end if

7 Do gaussian elimination for (CPHF[row][ji],...,CPHF[row][j;_1])
8 if number of columns with a pivot #t — 1 then

9 Skip column selection

10 end if

11: for all non-isomorphic permutation vectors pv do

12: if pv can be a pivot for the missing column then

13: p < integer representation of pv

14: Increment gains[p]

15: end if

16: end for

17: end for
18: return Index of Max(gains)
19: end procedure

4.3. Vertical Extension

In classical IPO algorithms, the objective of the vertical extension is to cover all missing tuples by merging them into
existing rows and to add new rows if this is not possible. A missing tuple can be merged into an existing row if the values
in the row at the respective positions either match or are star values. The tuple can then be added by simply replacing all
star values with the corresponding values of the missing tuple. Therefore, merging tuples into existing rows is very straight
forward in classical IPO algorithms.

When adapting the vertical extension of IPO algorithms to CPHFs this problem becomes a bit more complex. The first task
of the vertical extension for CPHFs is to cover any missing column selections by replacing star values in order to generate
covering tuples. In contrast to classical IPO algorithms, where a missing tuple can be covered in exactly one way, which is
to have the specific set of values appear in one row in the respective columns of the column selection, when applied to
CPHFs, this problem becomes ambiguous, as there exist many different combinations of permutation vectors that can form
a covering tuple. In addition to determining if a row can be used to cover a missing column selection, it is therefore also
necessary to consider which permutation vectors are well suited to form a covering tuple.

Our approach for the vertical extension of CPHFs is outlined in Algorithm 6. We iterate over all column selections that do
not contain a covering tuple after the horizontal extension and cover them as follows. First, we search for a row that contains
at least one star value in the positions of the uncovered column selection, as it is impossible to produce a covering tuple if
all relevent entries already have a value assigned. Next, we determine if all non-star values are linearly independent, as no
covering tuple can be formed otherwise. This can be done by performing Gaussian elimination for the existing permutation
vectors. If the permutation vectors are linearly independant, i.e. if the number of permutation vectors that can serve as pivot
for one of the t columns is t —s, where s is the number of star values in the tuple, then it is possible to form a covering
tuple by setting the star values to the unit vectors {e;}, in order to create permutation vectors as pivots for the remaining
columns {i}. Fig. 4 shows an example of this approach. Assume there exists a row with the permutation vectors a = [1, 2, 0]
and ¢ =[1, 2, 1] in the positions of an uncovered column selection, as well as one entry b that is currently a star value. First,
to confirm that a covering tuple can be formed we apply Gaussian elimination, which results in the first permutation vector
a serving as pivot for the first column, while b is a pivot for the third column. This only leaves open the second column, for
which a pivot permutation vector can be constructed by replacing the star value with the unit vector b = [0, 1, 0].
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Algorithm 6 Vertical Extension in CPHFIPO.

procedure VERTICALEXTENSION
for all uncovered column selections cs do
if 3 row s.t. > 1 entries in cs are star values then
Do gaussian elimination
if the existing permutation vectors are linearly independent then
Replace star values with unit vectors e; to add missing pivots
Randomize unit vectors
end if
else
Add new row to CPHF containing only star values
Add a covering tuple in new row in cs
Randomize covering tuple
end if
end for
end procedure

120 1 2 0 1 2 0 1 2 0 120 ) 120
« — |2 2 2 Gauss 2 9 9 Cover o1 0ol — oo Randomize 111
121 1 2 1 0 0 1 0 0 1 121 121

Fig. 4. Example for vertical extension: First, Gaussian Elimination is used to determine missing pivot position i, which are then covered by the vector e;.
Afterwards, the new permutation vector is randomized to facilitate the search in later extension steps. In this example, this is done by multiplying it by 2
and adding the third permutation vector [121] to it.

While the resulting t-tuples of permutation vectors are covering, this approach has one major flaw. By always utilizing
unit vectors e; to form covering tuples, we introduce a lot of isomorphic permutation vectors into the CPHF, especially
whenever new rows are added. Since a tuple can not be covering if it contains two isomorphic permutation vectors, this
issue makes it difficult for the algorithm to cover missing column selections and therefore can significantly increase the
number of rows of the constructed CPHFs. In order to solve this problem, we make use of the following two operations.
First, as discussed in Section 2, multiplication of a permutation vector with any non-zero symbol of F4 creates an isomorphic
permutation vector. Second, recall that a t-tuple of permutation vectors is covering if and only if all ¢ permutation vectors
are linearly independent.

Remark. Given t linearly independent vectors {q;}, i € {1,2,...t}, if a multiple of any vector q; is added to any of the other
vectors from {a;}, then the resulting set of t vectors is again linearly independent.

This fact allows us to add permutation vectors together within a covering tuple without loss of the covering property.
Therefore, by multiplying each permutation vector of the tuple that used to be a star value by a randomly selected non-zero
symbol and adding a multiple of one of the other permutation vectors to them, we can create new permutation vectors that
are non-isomorphic to the initial ones, while still maintaining a covering tuple. Since the vertical extension is not critical
in terms of run time, we can repeat this process a few times in order to obtain good randomization. In the example in
Fig. 4, the permutation vector b = [0, 1, 0] is first multiplied by 2, then the vector c =[1, 2, 1] is added to it once, resulting
in b =1, 1, 1], which is non-isomorphic to [0,1,0].

Last, if no row exists that can be used to cover a missing column selection, we need to add a new row at the bottom
of the CPHF. This row contains star values in all positions aside from those corresponding to the missing column selection,
which are initially set to the unit vectors e; of the identity matrix, then randomized in the same manner as described above.

4.4. Further Optimizations

To further improve the performance of the algorithm, we implemented various optimizations. First, since the strength ¢t
is usually a small integer, the authors of [19] suggest to promote it to a compile-time constant. We also make use of this
idea, as it allows the compiler to perform additional optimizations, such as using fixed-size arrays for permutation vectors
as well as unrolling the loops used to pack permutation vectors as well as tuples of permutation vectors into integers. In
addition, since CPHFs are only defined for uniform alphabets of cardinality q, where ¢ is a prime power, q can also be
considered constant. This affects for example the loop that iterates all candidate values. While having two separate compile-
time constants can drastically increase the compilation time, making q a compile-time constant results in an additional
speedup by approximately a factor of two, so we consider it a worthwhile trade-off for this work.

Interleaving vertical extension Since each row in the CPHF represents q' rows in the resulting CA, it is of utmost impor-
tance to limit the number of times a new row has to be added. Therefore, the efficiency of the horizontal extension is even
more important in CPHFIPO than during classical IPO algorithms. To maximize the information available to the horizontal
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extension, we designed an approach that greedily assigns values to existing star values during the horizontal extension.
Whenever the algorithm encounters an uncovered column selection where the current row contains a star value in at least
one of the positions, it attempts to cover the tuple by selecting an appropriate value for each star value using the method
described in Section 4.3. It is important to note that a set of values that is suitable to replace existing star values for one
candidate permutation vector might not be effective for other candidates, which makes it necessary to compute and assign
those replacement values separately for each candidate. Further, since our implementation of the vertical extension is not
deterministic, in addition to the coverage gain, we need to keep track of which replacement values were used for each
candidate. When selecting the best candidate, we set all star values to the stored replacement values selected during the
evaluation step. While this optimization introduces some overhead in terms of run time, it can have a significant impact
on the number of rows of the generated CPHFs. To reduce this overhead, we track which rows contain star values and only
apply the interleaving vertical extension for rows that contain at least one.

Column replacement In [17], a random column extension algorithm for CPHFs is improved by allowing the algorithm
to replace existing columns. This concept is based on the idea that if column selections remain uncovered at the end of
a horizontal extension step, but all uncovered column selections contain one specific column ¢, in addition to the newly
added column c, then ¢, can be replaced by the new column c. While the resulting CPHF has the same number of columns
as before the horizontal extension, this approach enables the algorithm to eliminate bad columns and escape local minima.
Of course this optimization can also be applied to the CPHFIPO algorithm, where we allow the algorithm to perform a set
number of column replacements before proceeding with a vertical extension.

Retries Last, the optimal order in which entries in the newly added column should be assigned values is generally un-
known. As mentioned in Section 4.2, we iterate the rows in a random order during the horizontal extension. In order to
explore different possibilities, we introduce the concept of retries, which allows the algorithm to try a specified number of
different random permutations of row indices, in order to explore other possibilities. A vertical extension is therefore only
performed once the algorithm runs out of retries and either no column replacement is possible or the replacement limit is
reached.

5. Algorithmic evaluation

In order to evaluate the efficiency of the CPHFIPO algorithm, we conducted two sets of experiments. First, we compared
the run time in milliseconds as well as the number of rows of CAs generated by the CPHFIPO algorithm with the perfor-
mance of the FIPOG algorithm [19] of the CA generation tool CAgen [20], which can be considered state of the art in terms
of classical In-Parameter-Order algorithms [21]. In order to get a detailed comparison, we generated 10 CAs for each instance
for four different alphabets, v =¢q = 5,9, 16, 25, strengths t = 2,3 and up to k = 10000 columns. Table 1 shows the run time
as well as the minimum number of rows, with the average number of rows being provided in parenthesis whenever the
minimum and average do not match. In addition, we provide the run time of the algorithms as well as the time required to
pre-compute the list of covering tuples for CPHFIPO for each tested alphabet v and strength t. For this set of experiments,
we limited the CPHFIPO algorithm to 10 column replacements per extension step and did not allow any retries.

Strength t = 2 can be considered a special case for which CPHFs with the maximal number of columns possible can easily
be constructed for given any number of rows n. Nonetheless, we consider these instances for our experiments in order to
verify whether a translation to CPHFs improves upon classical IPO algorithms even in this special case.

As expected, even for strength 2, CPHFIPO is already significantly faster than the FIPOG algorithm and always constructs
optimal CPHFs. What is a bit surprising though is that the CAs generated by CPHFIPO are also smaller than those generated
by FIPOG in all but one of the tested instances.

While the results for strength t =2 already appear quite promising, the experiments for t =3 really showcase the
tremendous benefits of the CPHF approach. By using CPHFIPO, we managed to generate CAs with up to 10000 columns
for v=>5 and 5000 columns for all other instances within the given time budget, which was limited to 1 day per instance.
Given the same time limitations, FIPOG only managed to generate CAs with 2000 columns for v =5 and only up to 200
columns for both v =16 and v = 25. Further, the difference in the number of rows of the generated CAs between the two
algorithms is astonishing. CPHFIPO performs especially well when instances with a large alphabet are concerned. For ex-
ample, for t =3, v =25 and k = 200 columns it takes FIPOG more than 4 hours to generate a CA with 117011 rows, while
CPHFIPO finds a CA with less than half the number of rows within just 2 seconds, excluding the 74 seconds required for
pre-computing the covering tuples. In fact, CPHFIPO even manages to generate a CA with 5000 columns that still has sig-
nificantly less rows than the FIPOG generated CA with only 200 columns. Recall that CPHFIPO is based on CPHFs, which
only exist for alphabets where the cardinality v is a prime power, and can therefore only be applied to a limited set of
instances. At the same time, our experiments suggest that, due to the significant reduction in the number rows and the fast
execution times when compared to classical IPO algorithms, it is also worthwhile to make use of CPHFIPO to generate CAs
with different alphabets by simply generating a CA for the next highest prime power and remapping all redundant symbols
to valid values in a post-processing step.

In order to investigate how the algorithm performs against other state-of-the-art construction methods, we started the
CPHFIPO algorithm for instances of strengths 3 — 6 and all prime powers 3 < q <25 and compare the results with the
currently best known upper bounds on CAN as listed in [2]. Since only best known upper bounds for CAs with up to k =
10000 columns are reported in [2], we terminate our algorithm once 10,000 columns are constructed. To allow the algorithm
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Benchmarks of the FIPOG algorithm of the tool CAGEN for different instances of strength t =2 and t = 3 are compared
to the performance of CPHFIPO, when limited to 10 column replacements and no retries. Entries in bold mark instances

where an algorithm performed better in terms of the number of rows or the execution times respectively.

t=2 t=3
FIPOG CPHFIPO FIPOG CPHFIPO
v k rows time rows time rows time rows time
5 precomp 0 4
25 54 5 49 0 429 43 373 0
50 68 7 73 0 590 189 497 2
100 81 21 73 0 762 1770 621 20
200 89 49 73 1 933 16,200 745 164
500 103 114 97 9 1163 255,324 869 (881) 2583
1000 113 296 97 24 1336 2,232,303 993 (1005) 20749
2000 125 1122 121 99 1509 19,581,442 1117 168959
5000 139 7092 121 612 - timeout 1241 (1340) 2752354
10,000 149 29,164 145 2539 - timeout 1365 (1476) 21832935
9 precomp 0 155
25 184 6 161 0 2804 229 1457 0
50 214 7 161 0 3656 1991 2185 7
100 253 25 161 0 4566 19,116 2185 (2694) 58
200 289 73 241 1 5509 171,408 2913 (3058) 454
500 339 426 241 5 6814 2,939,136 3641 (3932) 6312
1000 381 1553 241 17 7842 26,100,350 4369 46664
2000 424 6040 321 90 - timeout 5097 347233
5000 482 37,144 321 561 - timeout 5825 5421992
10,000 527 155,120 321 2262 - timeout - timeout
16 precomp 0 4847
25 563 36 511 0 15,424 1666 8191 1
50 660 72 511 0 20,362 18,304 8191 19
100 770 147 511 0 25,536 186,513 12286 190
200 884 619 511 1 30,858 3,426,846 12286 (13514) 1061
500 1048 3656 766 10 - timeout 16381 (16790) 15876
1000 1172 14,164 766 33 - timeout 20476 118760
2000 1309 55,327 766 118 - timeout 20476 (21295) 918940
5000 1494 345,152 1021 710 - timeout 24571 (24980) 13900382
10,000 1639 1,380,350 1021 2990 - timeout - timeout
25 precomp 0 74034
25 1273 29 625 0 57,667 8967 31249 4
50 1548 142 1249 0 76,600 98,960 31249 27
100 1805 509 1249 0 96,521 1,189,066 31249 (32811) 285
200 2092 1994 1249 1 117,011 15,043,387 46873 2072
500 2499 13,005 1249 8 - timeout 46873 (60934) 32036
1000 2813 52,272 1873 36 - timeout 62497 (64059) 250590
2000 3138 212,995 1873 141 - timeout 78121 1995877
5000 3586 1,324,138 1873 856 - timeout 78121 (81245) 29509581
10,000 3924 5,094,138 1873 3391 - timeout - timeout

to explore more candidate columns, we set a limit of 10000, 100, 10 and 1 for the number of column replacements and
retries per extension step for strengths 3,4, 5 and 6 respectively in this set of experiments. The results of our experiments
are shown in Tables 2 - 5, where we present the number of columns of the CPHFs that CPHFIPO constructed for a given
alphabet g and number of rows n. Whenever the CAs derived from the constructed CPHFs improve upon the previously
best known upper bounds on CAN, the number of columns is provided in bold letters. Due to the complexity of the CPHF
generation problem and the dependence of the execution time on the alphabet g and strength t, we decided not to set a
limit on the number of columns during our experiments for strengths t > 4 and report any results where the algorithm has
not terminated within our available time budget with an underline.

The CAs that correspond to the CPHFs constructed by CPHFIPO over the course of these experiments establish a total of
27068, 11635, 981 and 231 new upper bounds on CAN for strengths three, four, five and six respectively. In many cases CPH-
FIPO was able to construct CPHFs with a significantly larger number of columns than previous column extension methods
[17], while improving bounds established by a variety of different algorithmic approaches, such as cyclotomy [14], recur-
sive constructions [9,22], algorithms based on transformations [23] as well as other CPHF approaches such as [17,18,24] and
[25]. While CPHFIPO does not improve any upper bounds for small instances of strength t = 3, the improvements to CA
instances with a large number of columns are often significant. For example, for ¢ = 7 and n = 8 rows, CPHFIPO constructed
a CPHF with 10,000 columns, while previous extension methods only managed to find CPHFs with 6852 columns. The CA
corresponding to the CPHF constructed by CPHFIPO therefore improves upon all best known upper bounds on CAN for
6852 < k < 10000.
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Table 2
Results of our experiments with CPHFIPO for all prime powers 3 < g < 25 and strength t = 3. The table shows the number of columns that CPHFIPO
constructed for a given number of rows and alphabet q. Entries in bold mark results that establish new upper bounds.

n\q 3 4 5 7 8 9 11 13 16 17 19 23 25
1 4 6 6 8 10 8 9 12 11 13 14 16 16
2 13 16 21 28 34 37 44 54 66 69 84 102 113
3 22 33 46 81 96 120 167 214 298 335 394 527 603
4 42 71 112 217 283 369 547 773 1186 1305 1667 2529 2978
5 77 148 253 589 841 1126 1869 2838 4915 5709 7551 10,000 10,000
6 133 302 582 1588 2409 3468 6389 10000 10,000 10,000 10,000
7 228 597 1284 4113 6522 10000 10,000
8 388 1138 2702 10000 10,000
9 657 2115 5683
10 1065 3969 10,000
11 1735 7523
12 2824 10,000
13 4716
14 7687
15 10,000

Table 3

Results of our experiments with CPHFIPO for all prime powers 3 < q <25 and strength t = 4. The table shows the
number of columns that CPHFIPO constructed for a given number of rows and alphabet q. Entries in bold mark results
that establish new upper bounds while underlined entries signify instances where the algorithm has not yet terminated
based on the limitations of 100 retries and column replacements per extension step.

n\q 3 4 5 7 8 9 1 13 16 17 19 23 25
1 5 5 6 8 9 9 9 9 10 10 11 12 12
2 10 13 14 17 19 20 23 25 30 31 34 39 41
3 14 19 23 34 37 42 51 62 75 80 89 107 121
4 22 31 42 64 74 87 114 143 186 203 233 302 344
5 31 48 69 117 149 175 239 313 451 495 587 658

6 44 76 115 225 267 339 514 712 871

7 56 108 184 389 491 672 1017

8 76 156 282 653 935 1206

9 99 228 435 1136 1407

10 129 333 631 2065

11 170 438 1005 3493
12 227 633 1591

13 301 911 2550

14 404 1376 3886

15 478 2048

16 647 2992

17 869 4102

18 1133
19 1494
20 2026
21 2694
22 3582
23 4382
24 4712

The experiments for higher strengths highlight three important aspects of the performance of CPHFIPO. First, despite
the fast execution speed of the algorithm, for higher strength, instances with a large number of columns become too time
consuming for the algorithm. This can be attributed to the large number of candidates that need to be iterated when v
and t become large. Remember that there exist ‘5%11 non-isomorphic permutation vectors, so for instance, in the case of
q =25 and t =6, which is the most difficult instance we tested, the algorithm needs to compute the coverage gain for
more than 10 million candidates for each row. In these extreme cases, random column extension algorithms in combination
with our proposed vertical extension or recursive methods should be better suited. At the same time, each row of such
a CPHF(n; k,25,6) corresponds to almost 250 million rows in the resulting CA. Therefore, even for a small number of
columns, these arrays are already too large to be used in most practical applications. Second, with increasing strength,
CPHFIPO is able to find improvements to the best known upper bounds for smaller and smaller instances. For t = 3 the
smallest instance where new upper bounds were established had 589 columns, while the algorithm improved upper bounds
for instances with as little as 51, 21 and even only 14 columns for strengths t = 4,5, 6 respectively. Last, Table 3 nicely
shows how effective our optimizations for pre-computed tuples are, in particular the shared prefix computation during the
simultaneous coverage gain computation. Due to memory limitations we were only able to make use of that optimization for

1



M. Wagner, CJ. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

Table 4

Results of our experiments with CPHFIPO for all prime powers 3 < q <25 and strength t = 5. The table
shows the number of columns that CPHFIPO constructed for a given number of rows and alphabet q. En-
tries in bold mark results that establish new upper bounds while underlined entries signify instances where
the algorithm has not yet terminated based on the limitations of 10 retries and column replacements per
extension step.

n\q 3 4 5 7 8 9 1 13 16 17 19 23 25
1 6 6 6 8 8 10 9 10 10 10 10 11 11
2 10 11 12 14 14 16 16 19 21 21 23 24 25
3 13 14 17 22 24 26 30 33 39 41 45 51 54
4 15 21 26 34 37 43 51 62 73 80 89 107 113
5 21 27 35 52 60 70 89 111 145 136

6 24 38 50 78 95 115 159 188

7 32 50 69 118 156 187

8 40 61 94 188 246

9 49 81 133 277
10 60 107 187

11 67 143 263

12 82 190

13 100 252

14 125
15 148
16 172
17 213
18 257
19 309
20 371
Table 5

Results of our experiments with CPHFIPO for all prime powers 3 <q <25 and strength t = 6.
The table shows the number of columns that CPHFIPO constructed for a given number of rows
and alphabet q. Entries in bold mark results that establish new upper bounds while underlined
entries signify instances where the algorithm has not yet terminated based on the limitations of
1 retry and column replacement per extension step.

n\q 3 4 5 7 8 9 n 13 16 17 19 23 25
1 7 7 7 8 9 10 9 9 10 10 10 11 11
2 12 11 11 13 14 14 15 16 18 17 18 20 20
3 12 13 15 18 19 21 23 25 28 29 31 34 36
4 14 17 20 25 27 31 35 39 46 48

5 16 21 25 34 39 44 48 56

6 19 26 32 49 54 61

7 23 33 43 67 72

8 27 40 56 93

9 31 50 72

11 41 77 114

15 79
16 92
17 103
18 114
19 135
20 147
21 179

instances with q < 7. Therefore we can observe a significant drop in the number of columns CPHFIPO managed to construct
within the same time frame between the alphabets ¢ =7 and q = 8.

6. IPO strategies for CPHFs with subspace restrictions

Section 5 demonstrated that CPHFIPO is capable of generating small CAs effectively for many different CA instances.
Nevertheless, every row added to a CPHF represents vf — 1 rows in the respective CA, which can result in large jumps in
the number of rows of CAs with a similar number of columns. For example, when considering the results from Table 2, if
we were interested in constructing a CA of strength t = 3, v = 11 with k = 550 columns, a CPHF with n =5 rows would be
required, while a CPHF with only 3 fewer columns would require only n = 4 rows. This results in a CA with 73,201 rows

12
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111 122 120 111 112 110 101 100 110 101 102 102 120
101 122 100 111 122 100 101 110 100 111 102 112 120
121 102 120 122 120 100 100 102 112 101 111 110 122
111 121 110 O10 111 010 012 110 110 102 120 112 102

Fig. 5. Example for Sy, ,-restricted CPHFs: The first 13 columns of a S; ;-restricted CPHF(4; 28, 4, 3) are depicted.
Table 6

Results of our experiments for SCPHFs for all prime powers 3 < q < 25 and strength t = 3. The table shows the number of columns of
constructed SCPHFs for a given number of rows and alphabet q. Entries in bold mark results that establish new upper bounds.

n\q 3 4 5 7 8 9 1 13 16 17 19 23 25

2 10 15 22 31 36 41 50 62 77 84 91 112 120
3 22 34 49 84 105 125 173 222 299 334 392 519 592
4 37 70 117 227 280 356 533 761 1168 1328 1651 2492 2976
5 61 137 228 555 792 1058 1802 2758 4712 5414 7326 10000 10000
6 101 241 502 1473 2234 3249 5585 9393 10000 10000 10000

7 156 467 1083 3739 6086 8473 10000

8 248 880 2287 8924 10000 10000

9 400 1652 4571 10000

10 643 2870 8979

11 1013 5183 10000

12 1402 8892

13 2071

14 3167

15 4871

16 7002

instead of only 58561, a massive difference. In order to obtain a more granular distribution of results and construct good
CAs for a far larger range of columns, we use the concept of subspace restrictions.

In CAs, a row that is identical to any other row is replicated and can be removed from the CA. Subspace restrictions can
be used to ensure the presence of such replicated rows by enforcing certain limitations on the elements of the permutation
vectors. Let F; p be the set of all p-tuples of distinct entries from {0,...,t — 1}. This can be considered all different combi-
nations of length p of the t different entries in a permutation vector. A subspace restriction of dimension p and replication
r consists of an r-tuple (xq,...x;) of distinct entries from {1, ..., n}, which represent a set of r row indices, and an r-tuple
(Ui, ....Up), Ui € Ft,p, which can be considered a set of positions within a permutation vector. If we denote a CPHF(n; k, q, t)
as A = (a;;) in which each entry g;; is a permutation vector of length ¢, then we can address the ¢th element of this vector
as a;j,. Given a subspace restriction S defined by (xi,...,%) and (Uj,...Ur) and denoting the element of Uy in position b
as ug, then A satisfies the restriction S only if ay jyu, = Gy, ju, forall 1<j<kand 1<¢<p, 1 <cd=r. In short, the
elements of the permutation vectors at the positions specified in U; need to match for all permutation vectors in the rows
(X1,...,xr), this has to be the case for all columns.

An example of a CPHF with subspace restrictions is given in Fig. 5, which satisfies two different subspace restrictions.
The first restriction can be defined by the set of row indices (1,2,3), representing the first three rows of the CPHF, and the
set of permutation vector indices U; = (0). Due to this restriction, in each column the first elements (hg) of all permutation
vectors have to be the same in the rows with index 1, 2 and 3, or more formally: a; jo = a, jo = a3 jo for all 1 < j < k. The
second restriction can be defined by the set of row indices (1,2) and the set of permutation vector indices U; = (0, 2). This
restriction enforces for each column that the permutation vectors in the first 2 rows not only match in hg, but also in hy,
S0 Ay jo=0yjoand ay jo=0ay o forall 1 <j<k

The reason this induces replicated rows in the resulting CA derives from the computation that expands permutation
vectors. Whenever one or more positions in the permutation vector match, then the scalar product with a vector that is 0
in all non-matching positions will yield the same result. When forming the scalar product between the permutation vectors
{ho,hy,...hy_1} and the base q representations (ﬂé‘), 1(’), . t(i)]) of every i € {0,1,...q" — 1}, this is the case for exactly
qP multiplications. Since the subspace restriction is enforced on all columns, this creates a set gP rows in the resulting CA
which are replicated for each row in (xq,...,x;). Therefore, a subspace restriction of dimension p and replication r induces
(r—1) - gP replicated rows in the resulting CA that can be deleted.

Every CPHF has a subspace restriction of replication n and dimension 0, resulting in (n — 1) replicated rows. These are
the previously discussed all-zero rows due to the first symbol of an expanded permutation vectors always being 0. Special
cases of CPHFs are the Sherwood Covering Perfect Hash Families (SCPHFs), in which the first element of every permutation
vector is 1. This corresponds to a subspace restriction with (x1,...,x,) = (1,2,...,n) and U; = (0) for 1 <i < n, which in-
duces (n — 1) - q replicated rows in the CA. Table 6 depicts the results of our experiments for SCPHFs. Similar to the results
for unrestricted CPHFs, the algorithm often improves upon previous SCPHF generation methods by constructing SCPHFs with
more columns than random extension methods [17], metaheuristics [25] and even 3-stage methods [24]. It further improves
upon best known upper bounds achieved by cyclotomy [14] and recursive constructions [9]. In total, our experiments with

13
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SCPHFs achieve improvements to 23,283 upper bounds on CAN. As expected, applying CPHFIPO to unrestricted CPHFs con-
structed CPHFs with more columns than the SCPHF algorithm in all cases, given the same number of rows n. However, due
to the smaller number of rows in the respective CAs, the results in Table 6 improve upon 14244 of the new upper bounds
reported by CPHFIPO for strength three in Table 2.

Finally, in order to investigate a much broader range of subspace restrictions, we employed a variation on our earlier
algorithm, which is outlined in Algorithm 7. The algorithm starts with a randomly constructed CPHF with n rows, typically

Algorithm 7 CPHFIPO for CPHFs with subspace restrictions.
Require: t, n, q, m, u, iteration limit iterlim
A < Random Sy, y-restricted CPHF
iterations < 0
k < A.columns
whilen>m>u>0orm=u=0do
while iterations < iterlim do
¢ < empty new column

for row < 1, ..., n (randomized) do
Crow < Dermutation vector respecting Sp that maximizes coverage gain
end for

if all column selections are covered then
Adjoin c to A
iterations < 0
k<~k+1
else
if all column selections not involving column ¢’ are covered then
Replace column ¢’ by column ¢
end if
end if
end while
Decrement m and/or u
end while

one that contains a maximal number of subspace restrictions. It appends new columns to the CPHF one at a time or replaces
existing columns, as described in Section 4.4. During this horizontal extension, the values maximizing the number of newly
covered column selections are selected, while respecting the constraints set by the subspace restrictions. In contrast to
CPHFIPO, which performs a vertical extension if the horizontal extension meets a termination criterion, the algorithm for
restricted CPHFs takes a different approach. Instead of adding a new row, the algorithm relaxes the subspace restrictions,
which increases the number of available candidate permutation vectors and often permits the algorithm to find new suitable
columns. In this work we examine more complex sets of subspace restrictions, described below.

Table 7

Results for Sy, ,-restricted CPHF(6; k, 4, 3). The left side shows
the number of columns of the generated CPHFs, while the right
side shows the number of rows in the respective CA.

n==6 Columns in CPHF

m
ul 0 2 3 4 5 6

0 301 279 270 263 256 241
1 227 227 213 211 200
2 194 190 184 182
3 171 161 151
4 140 133
5 111
n=6 Rows in CA

m

ul 0 2 3 4 5 6

0 379 376 373 370 367 364
1 364 361 358 355 352
2 349 346 343 340
3 334 331 328
4 319 316
5 304
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Table 8

Sm.u-restricted CPHF(n; k,4,3)s that yield CA(N;3,k,4)s for
364 < N < 598. Bold entries indicate best new bounds on the
size of the covering array.

N Entries k (nm.y)
364 231 (775) 241 (660)
367 234 (7¢5) 256 (650)
370 263 (640)
373 270 (630)
376 268 (77.4) 279 (620)
379 278 (76.4) 301 (600)
382 293 (75.4)
388 308 (773)
391 322 (763)
394 334 (753)
397 342 (743)
400 338 (8s.7) 347 (772)
403 364 (76.2)
406 378 (75.)
409 392 (743)
412 392 (771) 394 (8s6)
402 (735)
415 405 (76,1) 408 (876)
418 427 (75.1)
421 438 (741)
424 452 (73.1) 457 (8g;5)
467 (77,0)
427 470 (75.1) 473 (875)
485 (76,0)
430 490 (865) 500 (750)
433 522 (749)
436 519 (8s.4) 541 (739)
439 541 (87.4) 560 (750)
442 561 (8.4) 606 (790)
445 580 (85.4)
448 572 (99.3) 592 (8s3)
451 616 (873)
454 639 (863)
457 660 (853)
460 664 (99.7) 677 (8s2)
681 (843)
463 691 (95.7) 694 (872)
466 715 (86.2)
469 747 (852)
472 749 (83.1) 764 (996)
783 (842)
475 774 (871) 800 (9s6)
816 (832)
478 807 (86.1) 825 (976)
N Entries k (nm.u)
481 837 (85.1)
484 871 (84.1) 874 (995) 884 (83,)
487 897 (9s.5) 907 (83.1) 909 (87,)
490 936 (82.1) 939 (86.0) 940 (975)
493 959 (96.5) 978 (850)
496 958 (1010.9) 984 (99.4) 1001 (840)
499 1019 (9s.4) 1030 (85,)
502 1063 (83,0) 1064 (97.4)
505 1085 (96.4) 1159 (800)
508 1093 (99.3) 1097 (10408) 1099 (954)
511 1145 (1095) 1149 (953)
514 1183 (973)
517 1197 (93)
520 1199 (992) 1215 (1019.7) 1235 (953)
523 1246 (932) 1276 (943) 1291 (1097)
526 1305 (972) 1323 (1057)
529 1352 (%)
532 1366 (10106) 1372 (99.1) 1392 (95,)
535 1430 (95.1) 1445 (1096) 1490 (942)
538 1482 (97.1) 1490 (1056) 1529 (937)
541 1504 (96.1) 1539 (1076)

(continued on next page)
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Table 8 (continued)

N Entries k (nm.y)

544 1545 (1010.5) 1551 (95.1) 1565 (1141.10)
1652 (990)

547 1596 (941) 1599 (1095) 1662 (950)

550 1645 (931) 1660 (1055) 1694 (97,)

553 1711 (1075) 1723 (92.1) 1751 (9,0)

556 1740 (1171.9) 1772 (1050.4) 1797 (9s.0)
1809 (10g5)

559 1759 (11309) 1787 (10q.4) 1868 (940)

562 1838 (1054) 1934 (95)

565 1936 (1074) 2014 (9,)

568 1929 (11415) 1936 (10593) 1990 (106.4)
2117 (90,0)

571 2008 (1093) 2023 (11105) 2041 (105.4)

574 2041 (10g3) 2148 (11gg)

577 2178 (1073)

580 2168 (10192) 2200 (10g3) 2222 (1141 7)

583 2224 (1095) 2250 (11197) 2262 (1053)

586 2303 (10g5) 2339 (1043) 2370 (1197)

589 2394 (1157) 2404 (107,)

592 2348 (1213.11) 2412 (10101) 2465 (11316)
2475 (10g5)

595 2485 (1091) 2533 (11106) 2543 (1055)

598 2548 (10g1) 2587 (11gg) 2619 (1045)

Define Sp; .y to be the set of subspace restrictions consisting of

1 (xg,..0, xm)=(1,2,..., m), and U; = (0) for 1 <i < m;
2. for1<i<u,

(1,2) and U; = (0, 1) if

i
(x1,%)=13(G(—-1,i+1)and U; = (0,2) if i
(i-1,i+1)and U;=(0,1) if i

1
2,3 (mod 4)
0,1 (mod 4),i>1

A CPHF(n; k, q,t) with t > 3 may be Sy y-restricted provided that m,u >0, m>u+1 if u > 0, and n > m. For such re-
strictions, the reduction in the number of rows in the generated CA can be substantial. Elementary counting ensures that
replicated rows can be removed to produce a CA with n(¢g‘ —1) +1 —max(m —1,0)(q—1) —uq(q— 1) rows.

Such a CPHF consists of one subspace restriction of dimension p =1 and replication r = m, which forces the first el-
ements in the permutation vectors to match in m different rows. In addition, this set of restrictions contains u separate
subspace restrictions of dimension p =2 and restriction r = 2, where in addition to the first element, either the second or
the third element of the permutation vectors match in two rows. Recall that for strength t = 3 restrictions of dimension
p > 2 do not make any sense, since they would yield a replicated row in the entire CPHF. Therefore, by layering subspace
restrictions with r = d = 2 in the manner described, we obtain a compact packing for subspace restrictions for t = 3. The set
of subspace restrictions satisfied by the CPHF depicted in Fig. 5 follow this design with one restriction of dimension p =1
and replication r = 3 as well as one restriction with p=d =2 and can therefore be described as S3 ;.

Our algorithm starts with a Sy, y_n_1-restricted CPHF and thereafter either reduces u or m, with u < m. To evaluate the
performance of this method, we first examine the existence of Sy, y-restricted CPHF(6; k, 4, 3)s for admissible choices of m
and u. Table 7 shows the largest value of k for which such CPHFs were constructed by our method on the left side, while
the right side displays the numbers of rows of the respective CA after all replicated rows are removed.

Imposing stronger restrictions typically reduces the number of columns in the CPHF, as expected. At the same time,
however, it also reduces the number of rows in the CA that is generated. Different restrictions can yield the same number
of rows in the CA: For example, an Sg o-restricted CPHF(6; k, 4, 3), an S, ;-restricted CPHF(6; k, 4, 3), and an Sy s5-restricted
CPHF(7;k,4,3) all yield a CA(364, 3.k, 4). In the results presented, we focus on selected Sy, ,-restricted CPHFs for which
we find improved covering array numbers, noting that other choices of m and u can also prove useful in obtaining such
improvements.

Our results for Sy y-restricted CPHFs are given in Tables 8 and 9 when g =4 and Table 10 when q = 5. By employing
different sets of subspace restrictions, we constructed CAs with a large diversity of numbers of rows. The results for both
alphabet sizes yield significant improvements over the best previously known bounds.

For q = 4, the majority of best known CAs had been constructed with a greedy-metaheuristic 3-stage method [24] that
first constructs a CPHF that may contain missing combinations using Simulated Annealing, then converts the CPHF to a CA
while adding any missing tuples before finally applying a post-optimization method to reduce the number of rows of the
generated CA. The results in Tables 8 and 9 improve every bound for v=q =4 for 799 < k < 10000 columns, improving
upon previously best known upper bounds by up to 30 rows. Because many different choices of n, m, and u can lead to the
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Table 9
Sm.u-restricted CPHF(n; k, 4, 3)s that yield CA(N; 3, k, 4)s for 601 < N < 739. Bold entries indi-
cate best new bounds on the size of the covering array.

N Entries k (nm.y)

601 2678 (1071) 2709 (103,) 2726 (11¢)
604 2730 (11y15) 2744 (1212.10) 2753 (10g1) 2825 (1176) 2870 (1049)

607 2803 (124119) 2811 (105) 2860 (1119.5) 2921 (1090)

610 2938 (11g5) 2950 (1047) 2975 (105,)

613 3025 (107) 3032 (105;) 3057 (1155)

616 3036 (12129) 3046 (11114) 3058 (1060) 3062 (10, ;) 3126 (11,5)

619 3111 (1211) 3154 (11104) 3164 (10s,) 3266 (1155)

622 3202 (12409) 3219 (1194) 3420 (1040)

625 3276 (11g4) 3494 (1030)

628 3246 (12125) 3369 (11113) 3379 (117.4) 3581 (10,)

631 3422 (12418) 3431 (11593) 3511 (1154) 3820 (100,0)

634 3531 (12495) 3552 (1193) 3677 (1154)

637 3646 (1245) 3708 (1153)

640 3606 (1313.12) 3643 (12127) 3807 (1173) 3846 (11712)

643 3769 (12417) 3886 (1163) 3909 (11495)

646 3876 (12197) 4022 (119,) 4084 (11s3)

649 4070 (127) 4154 (115,) 4227 (1143)

652 4004 (131311) 4138 (12126) 4244 (1257) 4280 (117,) 4345 (111)

655 4164 (12116) 4217 (131211) 4354 (1159,) 4418 (1165)

658 4433 (12105) 4448 (1) 4594 (115-)

661 4578 (11g;) 4673 (12¢6) 4723 (1142)

664 4558 (1313.10) 4693 (12125) 4762 (117) 4845 (1256) 4891 (113,) 5183 (1111,0)
667 4758 (1312.10) 4919 (1151) 4922 (12415) 5055 (1276) 5185 (1119,0)

670 4840 (1311.10) 5069 (1151) 5100 (12195) 5213 (11g,)

673 5212 (1141) 5233 (1295) 5309 (1150)

676 5220 (13130) 5394 (115;) 5436 (1255) 5491 (117,) 5495 (12134)

679 5377 (1312.9) 5533 (1211.4) 5582 (1275) 5613 (112.1) 5709 (1160)

682 5629 (13110) 5679 (12104) 5853 (1255) 5933 (11s0)

685 5819 (13190) 5881 (120,4) 6158 (1140)

688 5581 (141413) 5991 (13135) 6097 (12123) 6113 (1254) 6335 (1130)

691 6132 (12413) 6187 (13125) 6326 (127.4) 6465 (115)

694 6382 (12193) 6450 (13115) 6462 (1254) 6865 (1190)

697 6632 (1243) 6646 (1254) 6663 (13105)

700 6472 (141412) 6526 (13137) 6822 (12122) 6858 (1395) 6898 (1253)

703 6514 (141312) 6782 (1312.7) 6971 (1245) 7020 (1273)

706 6989 (13117) 7221 (12495) 7254 (1253)

709 7188 (13197) 7438 (1295) 7459 (1253)

712 7296 (141411) 7425 (1212.1) 7451 (13136) 7481 (1397) 7588 (125,) 7684 (1243)
715 7349 (1413.11) 7577 (12411) 7691 (1312) 7834 (1357) 7911 (1275)

718 7608 (1412.11) 7852 (12101) 7963 (13116) 8064 (12,)

721 8181 (13105) 8221 (1201) 8348 (1252)

724 8129 (141410) 8151 (1313,5) 8458 (1251) 8509 (1356) 8638 (124,) 8892 (12120)
727 8491 (143.10) 8529 (13125) 8608 (121) 8759 (1355) 8982 (1211) 8983 (123-)
730 8775 (1412.10) 8787 (13115) 8874 (1261) 9141 (137) 9294 (1210,0)

733 9176 (1411.10) 9176 (13105) 9367 (125.1) 9552 (129,0)

736 8499 (151514) 8768 (14149) 8942 (13134) 9569 (1395) 9620 (1241) 9771 (125)
739 9597 (14139) 10000 (127)

same number of rows in the generated covering array, in Tables 8 and 9, we sort the results by the number of rows in the
covering array generated. Entries in each row of the form “k (npn,)” indicate that an Sy y-restricted CPHF(n; k, 4,3) was
found. By so doing, one can see directly which choices of n, m, and u yield the better results. Choices that yield best known
covering arrays are shown in bold typeface in the table.

The results for g = 5 (Table 10) also yield improvements on the best known upper bounds on CAN for all instances with
619 < k < 10000. Within the range of parameters, few different choices of n, m, and u lead to covering arrays with the same
numbers of rows; moreover, we have not carried out computations for all different choices. Nevertheless, results are given
in the same manner as in Tables 8 and 9: Here, entries in each row of the form “k (nn,)” indicate that an Sy, ,-restricted
CPHF(n; k, 5,3) was found. Most of the previously known upper bounds arose from a simulated annealing algorithm that
constructs CPHFs with subspace restrictions [25], while some were from a recursive method [9]. Again, best new bounds
on covering array numbers are shown in bold in Table 10. Despite the substantial improvements for CPHFs with subspace
restrictions by applying horizontal extension, we do not expect that these are the best possible sizes for covering arrays.
Indeed the success appears to stem from the focus on horizontal extension, permitting the relatively rapid selection of a
most suitable column to add. Simulated annealing explores a larger search space; in principle, this enables it to find better
solutions, but in practice this becomes prohibitively slow.
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Table 10

Lower bounds on k for selected
Smu-restricted CPHF(n; k, 5, 3)s that
yield CA(N;3,k,5)s. Bold entries
improve on the size of the best
known covering array.

N k (nm.u)

525 108 (5s54)
545 126 (553)
549 131 (543)
565 160 (552)
569 165 (542)
573 170 (532)
585 177 (551)
589 183 (541)
593 187 (531)
597 195 (52.1)
605 228 (550)
609 233 (549)
613 236 (530)
617 244 (5;9)
621 254 (5¢,0)
625 209 (665)
645 261 (664)
649 267 (654)
665 306 (663)
669 315 (653)
673 323 (643)
685 353 (662)
689 367 (65,)
693 378 (642)
697 385 (633)
705 406 (661)
709 421 (651)
713 424 (64,)
717 433 (631)
721 449 (65.1)
725 406 (776)
502 (66,0)
729 516 (65,)
733 522 (649)
737 545 (639)
741 554 (659)
745 478 (775)
578 (60.0)
749 508 (765)
765 581 (77.4)
769 595 (76.4)
773 619 (754)
785 675 (773)
789 691 (763)
793 711 (753)
797 724 (743)
805 785 (772)
809 803 (752)
813 825 (755)
817 845 (745)
821 863 (733)
N Entries k (nm.y)
825 771 (837) 889 (771)
829 905 (751)
833 941 (751)
837 961 (741)
841 975 (751)
845 914 (8s6) 991 (72.1)
1083 (77,)
849 932 (876) 1111 (76y)
853 1129 (75,)
857 1164 (740)
861 1181 (73)
865 1065 (8s5) 1212 (730)
869 1088 (875) 1291 (7¢0)

(continued on next page)
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Table 10 (continued)
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N k (Nmu)

873 1115 (865)

885 1240 (8s.4)

889 1274 (87.4)

893 1306 (85.4)

897 1339 (854)

905 1417 (8g3)

909 1469 (873)

913 1509 (8¢3)

917 1541 (8s3)

921 1567 (843)

925 1389 (9953) 1608 (8s.>)

929 1688 (872)

933 1717 (862)

937 1766 (85,)

941 1805 (84>)

945 1641 (997) 1836 (8s1)
1870 (83)

949 1674 (9s.7) 1879 (87.1)

953 1921 (8¢1)

957 1969 (851)

961 2041 (841)

965 1908 (996) 2089 (851)
2288 (830)

969 1925 (9s6) 2109 (831)
2316 (87,)

973 1995 (976) 2352 (86,0)

977 2406 (8s)

981 2459 (849)

985 2233 (995) 2555 (83))

989 2271 (95) 2573 (820)

993 2330 (97.5) 2687 (80,0)

997 2363 (9.5)

1005 2554 (99.4)

1009 2641 (9g4)

1013 2689 (974)

1017 2711 (9.4)

1021 2766 (9s4)

1025 2357 (10199) 2778 (993)

N Entries k (nm.y)

1029 2890 (953)

1033 3111 (973)

1037 3169 (9%3)

1041 3216 (9s3)

1045 2725 (10198) 3195 (992) 3240 (943)

1049 2823 (1095) 3303 (9s)

1053 3534 (97,)

1057 3629 (9.)

1061 3657 (95,)

1065 3230 (10197) 3672 (942) 3734 (99.1)

1069 3269 (1097) 3723 (93.,) 3780 (95.1)

1073 3384 (10s7) 3829 (97.1)

1077 4037 (9%.1)

1081 4100 (95 1)

1085 3624 (10196) 4121 (94.1) 4571 (99,)

1089 3779 (1096) 4208 (95.1) 4643 (9s,)

1093 3916 (1056) 4263 (92.1) 4743 (970)

1097 4012 (1076) 4754 (9.0)

1101 4811 (95,)

1105 4304 (10195) 4871 (940)

1109 4389 (1095) 5014 (95)

1113 4494 (1035) 5110 (92,)

1117 4580 (1075) 5335 (9,0)

1121 4720 (10g5)

1125 5078 (1019.4)

1129 5150 (1094)

1133 5215 (1054)

1137 5356 (1074)

1141 5476 (10¢4)

1145 5541 (10493) 5598 (105 4)

(continued on next page)
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Table 10 (continued)

N k (nmu)

1149 5680 (1045)
1153 5833 (10g3)

1157 5949 (10,5)

1161 6129 (1053)

1165 6307 (1010) 6326 (1055)
1169 6496 (1043) 6503 (105 )
1173 6693 (10g,)

1177 6887 (10;5)

1181 7084 (105,)

1185 7058 (1019.1) 7276 (1055)
1189 7332 (10g,1) 7470 (1045)
1193 7562 (10s) 7574 (1035)
1197 7709 (105,)

1201 7941 (105,)

1205 8979 (1050,)

1209 9007 (1090)

1213 9180 (10g,)

1217 9395 (105,)

1221 9517 (10g0)

1225 9727 (10s,)

1229 10000 (104,)

7. Conclusion

Our work combines the popular In-Parameter-Order strategy with the very potent representation of a certain family of
CAs, namely covering perfect hash families. We describe in detail how such an algorithm can be designed and optimized.
Our experiments, which improve upon tens of thousands of best known upper bounds, showcase the tremendous potential
of this algorithmic approach. In addition, applying similar methods to CPHFs with subspace restrictions yielded significant
improvements to the best known upper bounds on CAN for the vast majority of instances of strength three and v =4, 5.

At each stage of our methods, the current solution being extended is always a covering perfect hash family. Although
we have reported on computations that start from scratch, the same horizontal extension techniques can be applied to
any CPHF, no matter how it was initially produced. This opens the door to hybrid methods that combine the strengths of
simulated annealing for smaller parameters, and of recursive and direct constructions, with the ability of the IPO methods
to extend these for larger parameters. Viewed in this way, our methods complement, rather than replace, existing methods.
However, the question of when to use each of the known methods in a hybrid approach remains to be determined, and
surely depends on the total computation time available.
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