
Applied Mathematics and Computation 421 (2022) 126952

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

In-Parameter-Order strategies for covering perfect hash

families

Michael Wagner a , Charles J. Colbourn
b , Dimitris E. Simos a , ∗

a SBA Research, MATRIS, Floragasse 7, Wien 1040, Austria
b School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona, USA

a r t i c l e i n f o

Article history:

Received 14 August 2021

Revised 11 January 2022

Accepted 13 January 2022

Available online 28 January 2022

Keywords:

Covering array

Covering perfect hash families

In-Parameter-Order

Algorithms

Permutation vector

a b s t r a c t

Combinatorial testing makes it possible to test large systems effectively while maintain-

ing certain coverage guarantees. At the same time, the construction of optimized covering

arrays (CAs) with a large number of columns is a challenging task. Heuristic and Meta-

heuristic approaches often become inefficient when applied to large instances, as the com-

putation of the quality for new moves or solutions during the search becomes too slow.

Recently, the generation of covering perfect hash families (CPHFs) has led to vast improve-

ments to the state of the art for many different instances of covering arrays. CPHFs can be

considered a compact form of a specific family of covering arrays. Their compact represen-

tation makes it possible to apply heuristic methods for instances with a much larger num-

ber of columns. In this work, we adapt the ideas of the well-known In-Parameter-Order

(IPO) strategy for covering array generation to efficiently construct CPHFs, and therefore

implicitly covering arrays. We design a way to realize the concept of vertical extension

steps in the context of CPHFs and discuss how a horizontal extension can be implemented

in an efficient manner. Further, we develop a horizontal extension strategy for CPHFs with

subspace restrictions that identifies candidate columns greedily based on conditional ex-

pectation. Then using a local optimization strategy, a candidate may be adjoined to the

solution or may replace one of the existing columns. An extensive set of computational

results yields many significant improvements on the sizes of the smallest known covering

arrays.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Covering Arrays (CAs) are a combinatorial design class of combinatorial designs that can be considered a generalization

of orthogonal arrays. A (uniform) CA (N; t, k, v) is an N × k array in which each entry is from a v -ary alphabet and is defined
by the property that for every possible selection of t columns, every t-tuple { 0 , 1 , . . . , v − 1 } t appears in at least one row
of the sub-array. Whenever such a tuple appears in a row, we consider it covered , a CA can therefore also be defined as an

array that covers all possible t-tuples in all t-selections of columns, further referred to as column selections .

The construction of CAs with a minimal number of rows is of particular interest, especially for practical applications.

Given a strength t , number of columns k and alphabet of cardinality v , we consider the problem of generating a CA (N; t, k, v)
as a CA instance and aim to construct a CA with the smallest number of rows possible. The smallest value of N for which
∗ Corresponding author.

E-mail addresses: mwagner@sba-research.org (M. Wagner), Charles.Colbourn@asu.edu (C.J. Colbourn), dsimos@sba-research.org (D.E. Simos).

https://doi.org/10.1016/j.amc.2022.126952

0 096-30 03/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.amc.2022.126952
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2022.126952&domain=pdf
mailto:mwagner@sba-research.org
mailto:Charles.Colbourn@asu.edu
mailto:dsimos@sba-research.org
https://doi.org/10.1016/j.amc.2022.126952

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

Fig. 1. The permutation vector 112 is expanded for t = q = 3 .

there exists a CA (N; t, k, v) is called the covering array number , denoted by CAN (t; k, v) , and the respective CA is considered

optimal . At the same time, since the construction of optimal CAs is a difficult optimization problem for the general case

[1] , the exact values for CAN only exist for a very limited number of instances, while only best known lower and upper

bounds on CAN exist for the majority of CA instances. Online tables at [2] collect the smallest known upper bounds on CAN

achieved by an explicit construction for CA instances with strengths 2 ≤ t ≤ 6 , alphabets 2 ≤ v ≤ 25 with up to k ≤ 10 0 0 0

columns.

One of the main application domains of CAs is Combinatorial Testing (CT), where CAs are used as the underlying math-

ematical structure representing combinatorial test sets. Each row in the CA represents one test case and each column cor-

responds to one parameter of the input model. The idea behind CT is based on empirical evidence that the vast majority

of faults found in software or hardware systems is caused by interactions between a small number of parameters [3] . By

applying CAs of strength t , we can ensure that all interactions of up to t parameters are tested. This method makes it pos-

sible to apply structured testing methods to systems that are by far too large to test exhaustively. For example, in past

works, CT was successfully applied to find faults in systems with more than 20 0 0 parameters [4] . At the same time, gener-

ating uniform CAs with such a large number of columns is not an easy feat. Since even state-of-the-art combinatorial test

generation tools are unable to construct CAs with such a large number of columns, the authors had to apply a recursive

doubling construction which recursively doubles the number of columns of seed CAs generated by In-Parameter-Order (IPO)

algorithms. While this approach proved sufficient in this particular case, the generated CAs were far from optimal due to

the large number of redundancies introduced by the recursive doubling construction. It is apparent that there is still a lack

of as well as a demand for algorithms capable of generating small CAs for large CA instances effectively.

In this work we utilize a more compact form of certain families of CAs, so called Covering Perfect Hash Families (CPHFs), to

design an IPO algorithm that can be effectively applied to generate CAs for large instances. Experiments with this algorithm

confirm the effectiveness of this approach and improve the best known upper bounds for a large number of CA instances.

Further, by devising an IPO algorithm for CPHFs with subspace restrictions, we were able to establish new upper bounds

for strength t = 3 and 837 ≤ k ≤ 10 0 0 0 for alphabet v = 4 and 619 ≤ k ≤ 10 0 0 0 for v = 5 . Our work is structured as follows.

Section 2 provides a brief introduction to covering perfect hash families, while Section 3 summarizes related methods that

construct CAs and CPHFs. In Section 4 we design an In-Parameter-Order algorithm for generating CPHFs, which we evaluate

in detail in Section 5 . Finally, we discuss our work on CPHFs with subspace restrictions in Section 6 and conclude the work

in Section 7 .

2. Permutation vectors and covering perfect hash families

Let q be a prime power and F q a finite field of order q . A permutation vector can be denoted as a t-tuple h =
(h 0 , h 1 , . . . , h t−1) with entries h i arising from F q , not all 0 and can be expanded into a vector of length q

t with symbols from

F q by forming the scalar product between h and the base q representation (β(i)
0

, β(i)
1

, . . . , β(i)
t−1

) of every i ε { 0 , 1 , . . . , q t − 1 } .
Each permutation vector can therefore be considered a compact representation of a vector of length q t with symbols com-

ing from F q . Every expanded vector has the property that each symbol of F q appears in exactly q
t−1 of its entries, while for

the special case of h 0 � = 0 , the vector can be partitioned into q t−1 permutations of the q different symbols, hence the name

permutation vector . Fig. 1 shows an example of such an expansion. The permutation vector (1,1,2) is expanded for t = q = 3
2

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

by forming the scalar product between the permutation vector (1,1,2) and the base three representation (β(i)
0

, β(i)
1

, β(i)
2

) of

each i ε { 0 , 1 , . . . , 26 } . The resulting vector of length q t = 27 can be partitioned into 9 permutations of the symbols 0,1,2.

A set of t permutation vectors is covering if the sub-array with t columns and q t rows obtained by expanding the t

permutation vectors forms an orthogonal array (OA). The process of determining if a given t-tuple of permutation vectors

is covering is called the covering test . The naive approach of expanding all permutation vectors and confirming whether the

resulting array is an OA is quite inefficient. A better way is to utilize the fact that a t-tuple of permutation vectors is covering

if and only if the t permutation vectors are linearly independent, see [5] , which can easily and efficiently be confirmed with

Gaussian elimination.

An n × k array of permutation vectors is called a Covering Perfect Hash Family (CPHF), denoted CPHF (n ; k, q, t) , if for

every selection of t columns there exists at least one row in which the t-tuple of permutation vectors form a covering

tuple. This property guarantees that the array obtained by expanding every permutation vector in the CPHF (n ; k, q, t) is a

CA (n · q t ; t, k, q) , since every column selection of the CA must now contain a sub-array that contains all possible t-tuples

over the q symbols.

An example of a CPHF (2 ;13 , 3 , 3) is shown in Fig. 3 . It is an array with 2 rows and 13 columns, containing permutation

vectors of length 3 with symbols arising from { 0 , 1 , 2 } as entries. In each possible selection of 3 columns, one of the two

3-tuples of permutation vectors is covering.

Further, since the first element of any expanded permutation vector is always zero, the resulting CA contains n all-zero

rows, n − 1 of which are redundant and can be deleted. The CPHF in Fig. 3 therefore represents a CA with N = 2 · 3 3 − 1 = 53

rows.

Last, we can observe that multiplication of a permutation vector with any non-zero element of F q creates a bijective

mapping between symbols in the vector obtained by expanding the permutation vectors [6] . Since symbol permutation is

considered an isomorphism in CAs, such permutation vectors can also be considered isomorphic. Therefore, it is sufficient to

only regard permutation vectors where the first non-zero element is the identity, reducing the number of non-isomorphic

permutation vectors to
∑ t−1

i =0 q
i =

q t −1
q −1 .

3. Related work

The generation of uniform CAs is a well-studied and active field of research. Many different construction methods, such

as greedy algorithms [7] , metaheuristics [8] , recursive constructions [9] and exact methods [10] have been applied with

excellent success, for a comprehensive survey about uniform CA generation methods see [11] . While exact methods always

construct an optimal CAs and can therefore be used to determine the precise value of CAN, due to the combinatorial explo-

sion of the size of the search space, they can only be applied to very small CA instances. Metaheuristic algorithms have been

successfully applied to construct many of the currently best known CAs for instances with small strength and alphabets and

a medium number of columns, but become too inefficient when large instances are concerned.

One way to generate slightly larger CAs effectively are greedy algorithms. We can distinguish between algorithms that

construct a CA one test at a time, such as AETG [12] and the deterministic density algorithm (DDA) [13] , and algorithms

that grow an initial array in both dimensions, such as the In-Parameter-Order (IPO) family of algorithms. Due to their fast

execution speed and their focus on column extensions which is very well-suited for CPHF generation, we will focus on IPO

algorithms in this work.

The IPO strategy was first proposed in 1998 [7] and many different improvements and variations of the algorithm have

been devised ever since. The algorithm, outlined in Algorithm 1 , starts by constructing a CA with t columns and v t rows.

Algorithm 1 IPOG Strategy.

Require: t, k, v
A ← cross-product of the set of symbols for the first t columns

for i ← t, . . . , k do

HorizontalExtension(i)

if there are uncovered tuples then

VerticalExtension(i)

end if

end for

Afterwards, in a procedure called horizontal extension new columns are added to the CA until the target number of columns

is reached. In order to cover all missing t-tuples, the algorithm greedily selects values for all entries in the newly added

column that maximize the number of newly covered tuples. If any uncovered tuples remain at the end of such a horizontal

extension step, the algorithm performs a vertical extension in which all missing tuples are added to the array, adding rows

if necessary.

Note that it is not necessary to assign values to all entries immediately. Such unassigned values are called star values and

are deliberately left open in order to allow the algorithm to consider them in later extension steps. Classical IPO algorithms

generally ignore star values during the horizontal extension, but attempt to first merge missing tuples into existing rows by
3

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

Fig. 2. Example of a CA generated by IPO.

Fig. 3. Example of a CPHF (2 ;13 , 3 , 3) .

replacing star values with appropriate values. Fig. 2 shows an example of a CA (6 ;2 , 4 , 2) constructed by an IPO algorithm.

If more than 4 columns are required, the algorithm appends new columns to the CA, depicted by the blue box to the right.

The star values, denoted by ∗ in the red box, can be replaced during the vertical extension of later extension steps in order

to merge missing tuples into existing rows. The algorithm only adds new rows to the CA (shown in green) if the missing

tuple can not be merged into any row.

As mentioned in the introduction, even greedy algorithms are not always fast enough to construct CAs for very large

instances within reasonable time. One approach to solve this issue is the application of recursive construction methods,

which can be used effectively to generate larger CAs from one or more different seed arrays . While these methods can be an

incredibly effective tool and can be applied to even the largest of instances, they also have several downsides. First, they are

highly dependent on the number of rows of the CAs that are used as seed arrays. Second, the construction process usually

introduces many redundancies in the CA, which leads to CAs with a relatively large number of rows.

Much better results for difficult CA instances can often be achieved by algorithms based on finite fields. Aside from cyclo-

tomy [14] , which generates q × q CAs with alphabet v and prime power q , q ≡ 1 (mod v) , different algorithms constructing

CPHFs have recently been used to construct many of the best known CAs for higher alphabets. Their compact representation

made it possible to apply backtracking algorithms [5] and different metaheuristics, such as [15] and [16] , to instances larger

than usual. For very large instances, greedy column extension algorithms for CPHFs [17] and affine composition methods

[18] have been the most successful. One example of such column extension algorithms is the random column extension al-

gorithm proposed in [17] , which we briefly review here. The algorithm starts with an initial CPHF and appends new columns

until no new CPHF can be found anymore. For each extension step, a certain number of random candidate columns are gen-

erated. If the array obtained by appending the column to the previous CPHF is again a CPHF, then the column is appended.

Otherwise, the algorithm evaluates whether one of the existing columns is part of all uncovered column selections. In this

case, said column can be replaced by the candidate, which provides some means to escape local optima.

In this work, we discuss how the In-Parameter-Order strategy can be applied effectively to generate CPHFs. In contrast

to previous column extension algorithms, instead of generating candidates randomly, the algorithm carefully selects suitable

values for the candidate columns. In addition, by introducing the concept of a vertical extension, we can move from the

problem of finding a CPHF with a maximal number of columns for a given number of rows to the problem of generating a

CPHF (and therefore a CA) with a given number of columns and minimal number of rows, which is much more common in

practical applications.

4. An In-Parameter-Order strategy for covering perfect hash families

In order to design an In-Parameter-Order algorithm for covering perfect hash families, all individual steps of classical

IPO algorithms, see Section 3 and Algorithm 1 , need to be adjusted accordingly. In particular, it is necessary to generate

an initial CPHF, extend it horizontally by appending a new column and selecting appropriate values for all entries in the

newly added column and lastly cover all column selections that are still uncovered after the horizontal extension by means

of vertical extension. In the following subsections, we present how those steps can be implemented effectively as part of

the CPHFIPO algorithm, outlined in Algorithm 2 , and discuss possible optimizations and their impact on the performance of

the algorithm.
4

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

Algorithm 2 CPHFIPO.

Require: t, k, q

A ← Initial Array

for i ← t, . . . , k do

HorizontalExtension(i, A.rows)

if there are uncovered column selections then

VerticalExtension()

end if

end for

4.1. Initial array

The first step of classical IPO algorithms is to generate an initial CA of strength t with k = t columns. In classical IPO al-

gorithms, this is done by constructing the cross-product of the set of symbols for the first t columns, i.e. an array containing

all possible t-tuples on q symbols, see [7] . In CPHFIPO, to create an initial CPHF to serve as starting array for the algorithm,

a t-tuple of permutation vectors has to be constructed that is covering. From the covering test, discussed in Section 2 , we

know that any non-singular matrix can be used to construct such a covering tuple. In this work, we simply select the iden-

tity matrix, the rows of which represent the t permutation vectors { e i } , i ε { 1 , . . . , t} . The initial array generated at the start
of Algorithm 2 is therefore a CPHF with 1 row and t columns, where the t entries are the permutation vectors { e i } .

4.2. Horizontal Extension

The main objective of the horizontal extension is to append a new column to the current array and (greedily) select

values that maximize the number of covered tuples. For this purpose, all entries of the new column, c = (c 1 , . . . , c n)
T , need

to be iterated, which can be done in order from top to bottom, such as during classical IPOG algorithms, but also different

permutations of the row indices 1 , . . . , n , such as random permutations, can be used.

The defining part of the horizontal extension of IPO algorithms is the coverage gain computation. In this procedure,

all possible candidate values are iterated and for each candidate, the algorithm calculates the coverage gain, which is the

number of tuples that are currently uncovered, but would be covered if the candidate is selected. Finally, the candidate

with the highest coverage gain is selected. The horizontal extension of classical IPO algorithms, as well as the coverage gain

computation is discussed in detail in [19] .

When designing a horizontal extension for CPHFs, there are two main differences to consider. First, instead of covering

any missing tuples, we need to consider whether all column selections contain at least one t-tuple of permutation vectors

that is covering. This information can be stored in a bit-vector of length
(

k
t−1

)
, where each bit tracks the cover status of one

column selection. Second, the number of candidate values is generally far larger for any strength t > 2 than for classical IPO

algorithms, since all possible q
t −1
q −1 non-isomorphic permutation vectors need to be considered.

Our algorithm to extend a CPHF with i columns and n rows is outlined in Algorithm 3 . First, we iterate all entries in the

Algorithm 3 Horizontal Extension in CPHFIPO.

procedure HorizontalExtension (i, n)

for row ← 1 , . . . , n (randomized) do

c i ← CP HF [row][i]

Compute-Coverage-Gains(row, i) � For all candidate perm. vec.

c i ← select permutation vector p that maximizes coverage gain

Mark newly covered column selection as covered

if all column selections are covered then

return

end if

end for

end procedure

newly added column c in random order. For each entry c i , we consider all non-isomorphic permutation vectors as candidates

and compute the coverage gain of each candidate. For this, we first check whether a column selection is still uncovered, as

only previously uncovered column selections need to be considered. Afterwards, we compute whether the existing (t − 1) -

tuple of permutation vectors forms a covering tuple together with the candidate permutation vector. Finally, after coverage

gains have been computed for all candidates, the permutation vector with maximum coverage gain is selected, while any

ties are broken randomly. To improve the execution time of the coverage gain computation, we now discuss two possible

optimizations.
5

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

Pre-computing covering tuples First, the computation of whether any t-tuple of permutation vectors is covering can be

conducted as a pre-processing step for all possible t-way combinations of permutation vectors. While this idea has already

been applied in previous works, we briefly want to discuss our implementation of this concept. Each permutation vector can

be represented by an integer, using a bijective packing function, such as the function specified in Eq. 1 , which packs every

non-isomorphic permutation into an integer smaller than 2 · q t−1 . The integer 0 represents the vector where all elements

h i are 0, while the integer 2 · q t−1 − 1 represents the permutation vector where h 0 = 1 and all other elements h i are q − 1 .

While this encoding contains some redundant integers which represent the set of isomorphic permutation vectors where

h 0 = 0 as well as the all-zero vector, which by definition is no permutation vector, creating a tighter packing into integers

up to q
t −1
q −1 would require a more sophisticated packing method which might introduce additional computational overhead.

Since all powers of q up to q t are pre-computed at compile time, packing a permutation vector only requires t additions and

multiplications, which is why we accept this small memory overhead in this work. We plan to investigate the performance

of different packing functions in future work.

We can use the distinct integer representations of the permutation vectors p i to represent all possible t-way combina-

tions of permutation vectors by another integer value, see Eq. 2 . Before the main algorithm is executed, we can therefore

compute for each possible combination of t permutation vectors if the resulting t-tuple is covering and store this informa-

tion in a bit-vector of length (2 · q t−1)
t
. By keeping track of the integer representation of each permutation vector in the

current CPHF, the coverage gain computation during the horizontal extension simplifies to using the packing function from

Eq. 2 for the existing (t − 1) permutation vectors in conjunction with the integer representations of all possible candidates

permutation vectors. The resulting integer value then serves as index to look up whether the corresponding tuple is cover-

ing. While this can significantly speed up the search, we want to note that this method of pre-computing covering tuples

can be very memory intensive, therefore its use is generally limited to strengths t ≤ 3 or t = 4 when the alphabet q is small.

pack-vector ((h 0 , h 1 , . . . , h t−1)) =

t−1 ∑

i =0

h i · q t−1 −i (1)

pack-tuple ((p 0 , p 1 , . . . , p t−1)) =

t−1 ∑

i =0

p i · (2 · q t−1)
t−1 −i

(2)

Simultaneous coverage gain computation for pre-computed covering tuples Simultaneous coverage gain computation is an

optimization that was introduced for classical IPO algorithms in [19] . Since the columns of the previous array remain con-

stant throughout the entire horizontal extension step, a constant prefix can be computed for the corresponding (t − 1) -tuple

in each column selection. This can be applied to CPHFs by tracking the coverage gains for all candidate permutation vectors

simultaneously in a vector of length 2 · q t−1 . We first iterate over all column selections and compute the prefix, which is

the integer representation of the first (t − 1) permutation vectors. Afterwards, for each candidate permutation vector, we

can compute the integer value of the entire t-tuple of permutation vectors, and therefore the index used for look-up in the

bit-vector of pre-computed covering tuples, as the sum of the prefix and the candidate. If the respective tuple is covering,

the candidate can be used as index to increment the respective element in the coverage gain vector. Thanks to this op-

timization, the prefix of each (t − 1) -tuple has to be computed only once throughout the horizontal extension, instead of

calculating it separately for each candidate. Due to the far larger number of candidates during the horizontal extension for

CPHFs when compared to classical IPO algorithms, this optimization has a significant impact on the execution time of the

algorithm. Algorithm 4 provides a detailed pseudocode of the coverage gain computation using this optimization.

Algorithm 4 Compute Coverage Gains with Precomputed Covering Tuples.

Require: t , List of precomputed covering tuples l

1: procedure Compute-Coverage-Gains (row, i)

2: gains [1 , . . . , 2 · q t−1] ← 0

3: for all column selections { j 1 , . . . , j t } do
4: if column selection is marked as covered in coverage-map then

5: Skip column selection

6: end if

7: pre f ix ← pack ((C P HF [row][j 1] , . . . , C P HF [row][j t−1]))

8: for all non-isomorphic permutation vectors with integer repr. p do

9: if l[pre f ix + p] is covering then

10: Increment gains [p]

11: end if

12: end for

13: end for

14: return Index of Max (gains)

15: end procedure
6

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

Simultaneous coverage gain computation for Gaussian elimination While the previously discussed optimizations can not be

applied as effectively to instances where pre-computing covering tuples is not feasible, there is still some merit to computing

coverage gains simultaneously. First, given a (t − 1) -tuple of permutation vectors, we can confirm if the permutation vectors

are linearly dependent. If this is the case, it is impossible to form a covering t-tuple with this set of permutation vectors

and it is therefore unnecessary to consider any candidates for this row and column selection. Further, by computing the

coverage gains simultaneously, we can first execute Gaussian elimination for the constant (t − 1) permutation vectors and

then simply confirm if each candidate permutation vector is linear independent to them. This reduces the steps necessary

during Gaussian elimination when compared to restarting from scratch for every candidate. These concepts are outlined in

Algorithm 5 .

Algorithm 5 Compute Coverage Gains with Gaussian Elimination.

Require: t

1: procedure Compute-Coverage-Gains (row, i)

2: gains [1 , . . . , 2 · q t−1] ← 0

3: for all column selections { j 1 , . . . , j t } do
4: if column selection is marked as covered in coverage-map then

5: Skip column selection

6: end if

7: Do gaussian elimination for (C P HF [row][j 1] , . . . , C P HF [row][j t−1])

8: if number of columns with a pivot � = t − 1 then

9: Skip column selection

10: end if

11: for all non-isomorphic permutation vectors pv do
12: if pv can be a pivot for the missing column then

13: p ← integer representation of pv
14: Increment gains [p]

15: end if

16: end for

17: end for

18: return Index of Max (gains)

19: end procedure

4.3. Vertical Extension

In classical IPO algorithms, the objective of the vertical extension is to cover all missing tuples by merging them into

existing rows and to add new rows if this is not possible. A missing tuple can be merged into an existing row if the values

in the row at the respective positions either match or are star values. The tuple can then be added by simply replacing all

star values with the corresponding values of the missing tuple. Therefore, merging tuples into existing rows is very straight

forward in classical IPO algorithms.

When adapting the vertical extension of IPO algorithms to CPHFs this problem becomes a bit more complex. The first task

of the vertical extension for CPHFs is to cover any missing column selections by replacing star values in order to generate

covering tuples. In contrast to classical IPO algorithms, where a missing tuple can be covered in exactly one way, which is

to have the specific set of values appear in one row in the respective columns of the column selection, when applied to

CPHFs, this problem becomes ambiguous, as there exist many different combinations of permutation vectors that can form

a covering tuple. In addition to determining if a row can be used to cover a missing column selection, it is therefore also

necessary to consider which permutation vectors are well suited to form a covering tuple.

Our approach for the vertical extension of CPHFs is outlined in Algorithm 6 . We iterate over all column selections that do

not contain a covering tuple after the horizontal extension and cover them as follows. First, we search for a row that contains

at least one star value in the positions of the uncovered column selection, as it is impossible to produce a covering tuple if

all relevent entries already have a value assigned. Next, we determine if all non-star values are linearly independent, as no

covering tuple can be formed otherwise. This can be done by performing Gaussian elimination for the existing permutation

vectors. If the permutation vectors are linearly independant, i.e. if the number of permutation vectors that can serve as pivot

for one of the t columns is t − s , where s is the number of star values in the tuple, then it is possible to form a covering

tuple by setting the star values to the unit vectors { e i } , in order to create permutation vectors as pivots for the remaining

columns { i } . Fig. 4 shows an example of this approach. Assume there exists a row with the permutation vectors a = [1 , 2 , 0]

and c = [1 , 2 , 1] in the positions of an uncovered column selection, as well as one entry b that is currently a star value. First,

to confirm that a covering tuple can be formed we apply Gaussian elimination, which results in the first permutation vector

a serving as pivot for the first column, while b is a pivot for the third column. This only leaves open the second column, for

which a pivot permutation vector can be constructed by replacing the star value with the unit vector b = [0 , 1 , 0] .
7

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

Algorithm 6 Vertical Extension in CPHFIPO.

procedure VerticalExtension

for all uncovered column selections cs do

if ∃ row s.t. ≥ 1 entries in cs are star values then

Do gaussian elimination

if the existing permutation vectors are linearly independent then

Replace star values with unit vectors e i to add missing pivots

Randomize unit vectors

end if

else

Add new row to CP HF containing only star values

Add a covering tuple in new row in cs

Randomize covering tuple

end if

end for

end procedure

Fig. 4. Example for vertical extension: First, Gaussian Elimination is used to determine missing pivot position i , which are then covered by the vector e i .

Afterwards, the new permutation vector is randomized to facilitate the search in later extension steps. In this example, this is done by multiplying it by 2

and adding the third permutation vector [121] to it.

While the resulting t-tuples of permutation vectors are covering, this approach has one major flaw. By always utilizing

unit vectors e i to form covering tuples, we introduce a lot of isomorphic permutation vectors into the CPHF, especially

whenever new rows are added. Since a tuple can not be covering if it contains two isomorphic permutation vectors, this

issue makes it difficult for the algorithm to cover missing column selections and therefore can significantly increase the

number of rows of the constructed CPHFs. In order to solve this problem, we make use of the following two operations.

First, as discussed in Section 2 , multiplication of a permutation vector with any non-zero symbol of F q creates an isomorphic

permutation vector. Second, recall that a t-tuple of permutation vectors is covering if and only if all t permutation vectors

are linearly independent.

Remark. Given t linearly independent vectors { a i } , i ε { 1 , 2 , . . . t} , if a multiple of any vector a i is added to any of the other

vectors from { a i } , then the resulting set of t vectors is again linearly independent.

This fact allows us to add permutation vectors together within a covering tuple without loss of the covering property.

Therefore, by multiplying each permutation vector of the tuple that used to be a star value by a randomly selected non-zero

symbol and adding a multiple of one of the other permutation vectors to them, we can create new permutation vectors that

are non-isomorphic to the initial ones, while still maintaining a covering tuple. Since the vertical extension is not critical

in terms of run time, we can repeat this process a few times in order to obtain good randomization. In the example in

Fig. 4 , the permutation vector b = [0 , 1 , 0] is first multiplied by 2, then the vector c = [1 , 2 , 1] is added to it once, resulting

in b = [1 , 1 , 1] , which is non-isomorphic to [0,1,0].

Last, if no row exists that can be used to cover a missing column selection, we need to add a new row at the bottom

of the CPHF. This row contains star values in all positions aside from those corresponding to the missing column selection,

which are initially set to the unit vectors e i of the identity matrix, then randomized in the same manner as described above.

4.4. Further Optimizations

To further improve the performance of the algorithm, we implemented various optimizations. First, since the strength t

is usually a small integer, the authors of [19] suggest to promote it to a compile-time constant. We also make use of this

idea, as it allows the compiler to perform additional optimizations, such as using fixed-size arrays for permutation vectors

as well as unrolling the loops used to pack permutation vectors as well as tuples of permutation vectors into integers. In

addition, since CPHFs are only defined for uniform alphabets of cardinality q , where q is a prime power, q can also be

considered constant. This affects for example the loop that iterates all candidate values. While having two separate compile-

time constants can drastically increase the compilation time, making q a compile-time constant results in an additional

speedup by approximately a factor of two, so we consider it a worthwhile trade-off for this work.

Interleaving vertical extension Since each row in the CPHF represents q t rows in the resulting CA, it is of utmost impor-

tance to limit the number of times a new row has to be added. Therefore, the efficiency of the horizontal extension is even

more important in CPHFIPO than during classical IPO algorithms. To maximize the information available to the horizontal
8

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

extension, we designed an approach that greedily assigns values to existing star values during the horizontal extension.

Whenever the algorithm encounters an uncovered column selection where the current row contains a star value in at least

one of the positions, it attempts to cover the tuple by selecting an appropriate value for each star value using the method

described in Section 4.3 . It is important to note that a set of values that is suitable to replace existing star values for one

candidate permutation vector might not be effective for other candidates, which makes it necessary to compute and assign

those replacement values separately for each candidate. Further, since our implementation of the vertical extension is not

deterministic, in addition to the coverage gain, we need to keep track of which replacement values were used for each

candidate. When selecting the best candidate, we set all star values to the stored replacement values selected during the

evaluation step. While this optimization introduces some overhead in terms of run time, it can have a significant impact

on the number of rows of the generated CPHFs. To reduce this overhead, we track which rows contain star values and only

apply the interleaving vertical extension for rows that contain at least one.

Column replacement In [17] , a random column extension algorithm for CPHFs is improved by allowing the algorithm

to replace existing columns. This concept is based on the idea that if column selections remain uncovered at the end of

a horizontal extension step, but all uncovered column selections contain one specific column c o in addition to the newly

added column c, then c o can be replaced by the new column c. While the resulting CPHF has the same number of columns

as before the horizontal extension, this approach enables the algorithm to eliminate bad columns and escape local minima.

Of course this optimization can also be applied to the CPHFIPO algorithm, where we allow the algorithm to perform a set

number of column replacements before proceeding with a vertical extension.

Retries Last, the optimal order in which entries in the newly added column should be assigned values is generally un-

known. As mentioned in Section 4.2 , we iterate the rows in a random order during the horizontal extension. In order to

explore different possibilities, we introduce the concept of retries , which allows the algorithm to try a specified number of

different random permutations of row indices, in order to explore other possibilities. A vertical extension is therefore only

performed once the algorithm runs out of retries and either no column replacement is possible or the replacement limit is

reached.

5. Algorithmic evaluation

In order to evaluate the efficiency of the CPHFIPO algorithm, we conducted two sets of experiments. First, we compared

the run time in milliseconds as well as the number of rows of CAs generated by the CPHFIPO algorithm with the perfor-

mance of the FIPOG algorithm [19] of the CA generation tool CAgen [20] , which can be considered state of the art in terms

of classical In-Parameter-Order algorithms [21] . In order to get a detailed comparison, we generated 10 CAs for each instance

for four different alphabets, v = q = 5 , 9 , 16 , 25 , strengths t = 2 , 3 and up to k = 10 0 0 0 columns. Table 1 shows the run time

as well as the minimum number of rows, with the average number of rows being provided in parenthesis whenever the

minimum and average do not match. In addition, we provide the run time of the algorithms as well as the time required to

pre-compute the list of covering tuples for CPHFIPO for each tested alphabet v and strength t . For this set of experiments,

we limited the CPHFIPO algorithm to 10 column replacements per extension step and did not allow any retries.

Strength t = 2 can be considered a special case for which CPHFs with the maximal number of columns possible can easily

be constructed for given any number of rows n . Nonetheless, we consider these instances for our experiments in order to

verify whether a translation to CPHFs improves upon classical IPO algorithms even in this special case.

As expected, even for strength 2, CPHFIPO is already significantly faster than the FIPOG algorithm and always constructs

optimal CPHFs. What is a bit surprising though is that the CAs generated by CPHFIPO are also smaller than those generated

by FIPOG in all but one of the tested instances.

While the results for strength t = 2 already appear quite promising, the experiments for t = 3 really showcase the

tremendous benefits of the CPHF approach. By using CPHFIPO, we managed to generate CAs with up to 10 0 0 0 columns

for v = 5 and 50 0 0 columns for all other instances within the given time budget, which was limited to 1 day per instance.

Given the same time limitations, FIPOG only managed to generate CAs with 20 0 0 columns for v = 5 and only up to 200

columns for both v = 16 and v = 25 . Further, the difference in the number of rows of the generated CAs between the two

algorithms is astonishing. CPHFIPO performs especially well when instances with a large alphabet are concerned. For ex-

ample, for t = 3 , v = 25 and k = 200 columns it takes FIPOG more than 4 hours to generate a CA with 117011 rows, while

CPHFIPO finds a CA with less than half the number of rows within just 2 seconds, excluding the 74 seconds required for

pre-computing the covering tuples. In fact, CPHFIPO even manages to generate a CA with 50 0 0 columns that still has sig-

nificantly less rows than the FIPOG generated CA with only 200 columns. Recall that CPHFIPO is based on CPHFs, which

only exist for alphabets where the cardinality v is a prime power, and can therefore only be applied to a limited set of

instances. At the same time, our experiments suggest that, due to the significant reduction in the number rows and the fast

execution times when compared to classical IPO algorithms, it is also worthwhile to make use of CPHFIPO to generate CAs

with different alphabets by simply generating a CA for the next highest prime power and remapping all redundant symbols

to valid values in a post-processing step.

In order to investigate how the algorithm performs against other state-of-the-art construction methods, we started the

CPHFIPO algorithm for instances of strengths 3 − 6 and all prime powers 3 ≤ q ≤ 25 and compare the results with the

currently best known upper bounds on CAN as listed in [2] . Since only best known upper bounds for CAs with up to k =
10 0 0 0 columns are reported in [2] , we terminate our algorithm once 10,0 0 0 columns are constructed. To allow the algorithm
9

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

Table 1

Benchmarks of the FIPOG algorithm of the tool CAGEN for different instances of strength t = 2 and t = 3 are compared

to the performance of CPHFIPO, when limited to 10 column replacements and no retries. Entries in bold mark instances

where an algorithm performed better in terms of the number of rows or the execution times respectively.

t = 2 t = 3

FIPOG CPHFIPO FIPOG CPHFIPO

v k rows time rows time rows time rows time

5 precomp 0 4

25 54 5 49 0 429 43 373 0

50 68 7 73 0 590 189 497 2

100 81 21 73 0 762 1770 621 20

200 89 49 73 1 933 16,200 745 164

500 103 114 97 9 1163 255,324 869 (881) 2583

1000 113 296 97 24 1336 2,232,303 993 (1005) 20749

2000 125 1122 121 99 1509 19,581,442 1117 168959

5000 139 7092 121 612 - timeout 1241 (1340) 2752354

10,000 149 29,164 145 2539 - timeout 1365 (1476) 21832935

9 precomp 0 155

25 184 6 161 0 2804 229 1457 0

50 214 7 161 0 3656 1991 2185 7

100 253 25 161 0 4566 19,116 2185 (2694) 58

200 289 73 241 1 5509 171,408 2913 (3058) 454

500 339 426 241 5 6814 2,939,136 3641 (3932) 6312

1000 381 1553 241 17 7842 26,100,350 4369 46664

2000 424 6040 321 90 - timeout 5097 347233

5000 482 37,144 321 561 - timeout 5825 5421992

10,000 527 155,120 321 2262 - timeout - timeout

16 precomp 0 4847

25 563 36 511 0 15,424 1666 8191 1

50 660 72 511 0 20,362 18,304 8191 19

100 770 147 511 0 25,536 186,513 12286 190

200 884 619 511 1 30,858 3,426,846 12286 (13514) 1061

500 1048 3656 766 10 - timeout 16381 (16790) 15876

1000 1172 14,164 766 33 - timeout 20476 11876 0

2000 1309 55,327 766 118 - timeout 20476 (21295) 918940

5000 1494 345,152 1021 710 - timeout 24571 (24980) 13900382

10,000 1639 1,380,350 1021 2990 - timeout - timeout

25 precomp 0 74034

25 1273 29 625 0 57,667 8967 31249 4

50 1548 142 1249 0 76,600 98,960 31249 27

100 1805 509 1249 0 96,521 1,189,066 31249 (32811) 285

200 2092 1994 1249 1 117,011 15,043,387 46873 2072

500 2499 13,005 1249 8 - timeout 46873 (60934) 32036

1000 2813 52,272 1873 36 - timeout 62497 (64059) 250590

2000 3138 212,995 1873 141 - timeout 78121 1995877

5000 3586 1,324,138 1873 856 - timeout 78121 (81245) 29509581

10,000 3924 5,094,138 1873 3391 - timeout - timeout

to explore more candidate columns, we set a limit of 10 0 0 0 , 10 0 , 10 and 1 for the number of column replacements and

retries per extension step for strengths 3 , 4 , 5 and 6 respectively in this set of experiments. The results of our experiments

are shown in Tables 2 - 5 , where we present the number of columns of the CPHFs that CPHFIPO constructed for a given

alphabet q and number of rows n . Whenever the CAs derived from the constructed CPHFs improve upon the previously

best known upper bounds on CAN, the number of columns is provided in bold letters. Due to the complexity of the CPHF

generation problem and the dependence of the execution time on the alphabet q and strength t , we decided not to set a

limit on the number of columns during our experiments for strengths t ≥ 4 and report any results where the algorithm has

not terminated within our available time budget with an underline.

The CAs that correspond to the CPHFs constructed by CPHFIPO over the course of these experiments establish a total of

27068, 11635, 981 and 231 new upper bounds on CAN for strengths three, four, five and six respectively. In many cases CPH-

FIPO was able to construct CPHFs with a significantly larger number of columns than previous column extension methods

[17] , while improving bounds established by a variety of different algorithmic approaches, such as cyclotomy [14] , recur-

sive constructions [9,22] , algorithms based on transformations [23] as well as other CPHF approaches such as [17,18,24] and

[25] . While CPHFIPO does not improve any upper bounds for small instances of strength t = 3 , the improvements to CA

instances with a large number of columns are often significant. For example, for q = 7 and n = 8 rows, CPHFIPO constructed

a CPHF with 10,0 0 0 columns, while previous extension methods only managed to find CPHFs with 6852 columns. The CA

corresponding to the CPHF constructed by CPHFIPO therefore improves upon all best known upper bounds on CAN for

6852 < k ≤ 10 0 0 0 .
10

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

Table 2

Results of our experiments with CPHFIPO for all prime powers 3 ≤ q ≤ 25 and strength t = 3 . The table shows the number of columns that CPHFIPO

constructed for a given number of rows and alphabet q. Entries in bold mark results that establish new upper bounds.

n \ q 3 4 5 7 8 9 11 13 16 17 19 23 25

1 4 6 6 8 10 8 9 12 11 13 14 16 16

2 13 16 21 28 34 37 44 54 66 69 84 102 113

3 22 33 46 81 96 120 167 214 298 335 394 527 603

4 42 71 112 217 283 369 547 773 1186 1305 1667 2529 2978

5 77 148 253 589 841 1126 1869 2838 4915 5709 7551 10,000 10,000

6 133 302 582 1588 2409 3468 6389 10000 10,000 10,000 10,000

7 228 597 1284 4113 6522 10000 10,000

8 388 1138 2702 10000 10,000

9 657 2115 5683

10 1065 3969 10,000

11 1735 7523

12 2824 10,000

13 4716

14 7687

15 10,000

Table 3

Results of our experiments with CPHFIPO for all prime powers 3 ≤ q ≤ 25 and strength t = 4 . The table shows the

number of columns that CPHFIPO constructed for a given number of rows and alphabet q. Entries in bold mark results

that establish new upper bounds while underlined entries signify instances where the algorithm has not yet terminated

based on the limitations of 100 retries and column replacements per extension step.

n \ q 3 4 5 7 8 9 11 13 16 17 19 23 25

1 5 5 6 8 9 9 9 9 10 10 11 12 12

2 10 13 14 17 19 20 23 25 30 31 34 39 41

3 14 19 23 34 37 42 51 62 75 80 89 107 121

4 22 31 42 64 74 87 114 143 186 203 233 302 344

5 31 48 69 117 149 175 239 313 451 495 587 658

6 44 76 115 225 267 339 514 712 871

7 56 108 184 389 491 672 1017

8 76 156 282 653 935 1206

9 99 228 435 1136 1407

10 129 333 631 2065

11 170 438 1005 3493

12 227 633 1591

13 301 911 2550

14 404 1376 3886

15 478 2048

16 647 2992

17 869 4102

18 1133

19 1494

20 2026

21 2694

22 3582

23 4382

24 4712

The experiments for higher strengths highlight three important aspects of the performance of CPHFIPO. First, despite

the fast execution speed of the algorithm, for higher strength, instances with a large number of columns become too time

consuming for the algorithm. This can be attributed to the large number of candidates that need to be iterated when v
and t become large. Remember that there exist q t −1

q −1 non-isomorphic permutation vectors, so for instance, in the case of

q = 25 and t = 6 , which is the most difficult instance we tested, the algorithm needs to compute the coverage gain for

more than 10 million candidates for each row. In these extreme cases, random column extension algorithms in combination

with our proposed vertical extension or recursive methods should be better suited. At the same time, each row of such

a CPHF (n ; k, 25 , 6) corresponds to almost 250 million rows in the resulting CA. Therefore, even for a small number of

columns, these arrays are already too large to be used in most practical applications. Second, with increasing strength,

CPHFIPO is able to find improvements to the best known upper bounds for smaller and smaller instances. For t = 3 the

smallest instance where new upper bounds were established had 589 columns, while the algorithm improved upper bounds

for instances with as little as 51, 21 and even only 14 columns for strengths t = 4 , 5 , 6 respectively. Last, Table 3 nicely

shows how effective our optimizations for pre-computed tuples are, in particular the shared prefix computation during the

simultaneous coverage gain computation. Due to memory limitations we were only able to make use of that optimization for
11

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

Table 4

Results of our experiments with CPHFIPO for all prime powers 3 ≤ q ≤ 25 and strength t = 5 . The table

shows the number of columns that CPHFIPO constructed for a given number of rows and alphabet q. En-

tries in bold mark results that establish new upper bounds while underlined entries signify instances where

the algorithm has not yet terminated based on the limitations of 10 retries and column replacements per

extension step.

n \ q 3 4 5 7 8 9 11 13 16 17 19 23 25

1 6 6 6 8 8 10 9 10 10 10 10 11 11

2 10 11 12 14 14 16 16 19 21 21 23 24 25

3 13 14 17 22 24 26 30 33 39 41 45 51 54

4 15 21 26 34 37 43 51 62 73 80 89 107 113

5 21 27 35 52 60 70 89 111 145 136

6 24 38 50 78 95 115 159 188

7 32 50 69 118 156 187

8 40 61 94 188 246

9 49 81 133 277

10 60 107 187

11 67 143 263

12 82 190

13 100 252

14 125

15 148

16 172

17 213

18 257

19 309

20 371

Table 5

Results of our experiments with CPHFIPO for all prime powers 3 ≤ q ≤ 25 and strength t = 6 .

The table shows the number of columns that CPHFIPO constructed for a given number of rows

and alphabet q. Entries in bold mark results that establish new upper bounds while underlined

entries signify instances where the algorithm has not yet terminated based on the limitations of

1 retry and column replacement per extension step.

n \ q 3 4 5 7 8 9 11 13 16 17 19 23 25

1 7 7 7 8 9 10 9 9 10 10 10 11 11

2 12 11 11 13 14 14 15 16 18 17 18 20 20

3 12 13 15 18 19 21 23 25 28 29 31 34 36

4 14 17 20 25 27 31 35 39 46 48

5 16 21 25 34 39 44 48 56

6 19 26 32 49 54 61

7 23 33 43 67 72

8 27 40 56 93

9 31 50 72

10 36 61 88

11 41 77 114

12 49 89

13 59 107

14 65 129

15 79

16 92

17 103

18 114

19 135

20 147

21 179

instances with q ≤ 7 . Therefore we can observe a significant drop in the number of columns CPHFIPO managed to construct

within the same time frame between the alphabets q = 7 and q = 8 .

6. IPO strategies for CPHFs with subspace restrictions

Section 5 demonstrated that CPHFIPO is capable of generating small CAs effectively for many different CA instances.

Nevertheless, every row added to a CPHF represents v t − 1 rows in the respective CA, which can result in large jumps in

the number of rows of CAs with a similar number of columns. For example, when considering the results from Table 2 , if

we were interested in constructing a CA of strength t = 3 , v = 11 with k = 550 columns, a CPHF with n = 5 rows would be

required, while a CPHF with only 3 fewer columns would require only n = 4 rows. This results in a CA with 73,201 rows
12

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

Fig. 5. Example for S m,u -restricted CPHFs: The first 13 columns of a S 3 , 1 -restricted CPHF (4 ;28 , 4 , 3) are depicted.

Table 6

Results of our experiments for SCPHFs for all prime powers 3 ≤ q ≤ 25 and strength t = 3 . The table shows the number of columns of

constructed SCPHFs for a given number of rows and alphabet q. Entries in bold mark results that establish new upper bounds.

n \ q 3 4 5 7 8 9 11 13 16 17 19 23 25

2 10 15 22 31 36 41 50 62 77 84 91 112 120

3 22 34 49 84 105 125 173 222 299 334 392 519 592

4 37 70 117 227 280 356 533 761 1168 1328 1651 2492 2976

5 61 137 228 555 792 1058 1802 2758 4712 5414 7326 10000 10000

6 101 241 502 1473 2234 3249 5585 9393 10000 10000 10000

7 156 467 1083 3739 6086 8473 10000

8 248 880 2287 8924 10000 10000

9 400 1652 4571 10000

10 643 2870 8979

11 1013 5183 10000

12 1402 8892

13 2071

14 3167

15 4871

16 7002

instead of only 58561, a massive difference. In order to obtain a more granular distribution of results and construct good

CAs for a far larger range of columns, we use the concept of subspace restrictions .

In CAs, a row that is identical to any other row is replicated and can be removed from the CA. Subspace restrictions can

be used to ensure the presence of such replicated rows by enforcing certain limitations on the elements of the permutation

vectors. Let F t,p be the set of all p-tuples of distinct entries from { 0 , . . . , t − 1 } . This can be considered all different combi-

nations of length p of the t different entries in a permutation vector. A subspace restriction of dimension p and replication

r consists of an r-tuple (x 1 , . . . x r) of distinct entries from { 1 , . . . , n } , which represent a set of r row indices, and an r-tuple

(U 1 , . . . , U r) , U i ∈ F t,p , which can be considered a set of positions within a permutation vector. If we denote a CPHF (n ; k, q, t)

as A = (a i j) in which each entry a i j is a permutation vector of length t , then we can address the � th element of this vector

as a i j� . Given a subspace restriction S defined by (x 1 , . . . , x r) and (U 1 , . . . U r) and denoting the element of U a in position b

as u ab , then A satisfies the restriction S only if a x c , j,u c� = a x d , j,u d�
for all 1 ≤ j ≤ k and 1 ≤ � ≤ p, 1 ≤ c, d ≤ r. In short, the

elements of the permutation vectors at the positions specified in U i need to match for all permutation vectors in the rows

(x 1 , . . . , x r) , this has to be the case for all columns.

An example of a CPHF with subspace restrictions is given in Fig. 5 , which satisfies two different subspace restrictions.

The first restriction can be defined by the set of row indices (1,2,3), representing the first three rows of the CPHF, and the

set of permutation vector indices U i = (0) . Due to this restriction, in each column the first elements (h 0) of all permutation

vectors have to be the same in the rows with index 1, 2 and 3, or more formally: a 1 , j, 0 = a 2 , j, 0 = a 3 , j, 0 for all 1 ≤ j ≤ k . The

second restriction can be defined by the set of row indices (1,2) and the set of permutation vector indices U i = (0 , 2) . This

restriction enforces for each column that the permutation vectors in the first 2 rows not only match in h 0 , but also in h 2 ,

so a 1 , j, 0 = a 2 , j, 0 and a 1 , j, 2 = a 2 , j, 2 for all 1 ≤ j ≤ k .

The reason this induces replicated rows in the resulting CA derives from the computation that expands permutation

vectors. Whenever one or more positions in the permutation vector match, then the scalar product with a vector that is 0

in all non-matching positions will yield the same result. When forming the scalar product between the permutation vectors

{ h 0 , h 1 , . . . h t−1 } and the base q representations (β(i)
0

, β(i)
1

, . . . β(i)
t−1

) of every i ε { 0 , 1 , . . . q t − 1 } , this is the case for exactly
q p multiplications. Since the subspace restriction is enforced on all columns, this creates a set q p rows in the resulting CA

which are replicated for each row in (x 1 , . . . , x r) . Therefore, a subspace restriction of dimension p and replication r induces

(r − 1) · q p replicated rows in the resulting CA that can be deleted.

Every CPHF has a subspace restriction of replication n and dimension 0, resulting in (n − 1) replicated rows. These are

the previously discussed all-zero rows due to the first symbol of an expanded permutation vectors always being 0. Special

cases of CPHFs are the Sherwood Covering Perfect Hash Families (SCPHFs), in which the first element of every permutation

vector is 1. This corresponds to a subspace restriction with (x 1 , . . . , x n) = (1 , 2 , . . . , n) and U i = (0) for 1 ≤ i ≤ n , which in-

duces (n − 1) · q replicated rows in the CA. Table 6 depicts the results of our experiments for SCPHFs. Similar to the results

for unrestricted CPHFs, the algorithm often improves upon previous SCPHF generation methods by constructing SCPHFs with

more columns than random extension methods [17] , metaheuristics [25] and even 3-stage methods [24] . It further improves

upon best known upper bounds achieved by cyclotomy [14] and recursive constructions [9] . In total, our experiments with
13

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

SCPHFs achieve improvements to 23,283 upper bounds on CAN. As expected, applying CPHFIPO to unrestricted CPHFs con-

structed CPHFs with more columns than the SCPHF algorithm in all cases, given the same number of rows n . However, due

to the smaller number of rows in the respective CAs, the results in Table 6 improve upon 14244 of the new upper bounds

reported by CPHFIPO for strength three in Table 2 .

Finally, in order to investigate a much broader range of subspace restrictions, we employed a variation on our earlier

algorithm, which is outlined in Algorithm 7 . The algorithm starts with a randomly constructed CPHF with n rows, typically

Algorithm 7 CPHFIPO for CPHFs with subspace restrictions.

Require: t, n, q, m, u , iteration limit iterlim

A ← Random S m,u -restricted CPHF

iterations ← 0

k ← A.columns

while n ≥ m > u ≥ 0 or m = u = 0 do

while iterations < iterlim do

c ← empty new column

for row ← 1 , . . . , n (randomized) do

c row ← permutation vector respecting S m,u that maximizes coverage gain

end for

if all column selections are covered then

Adjoin c to A

iterations ← 0

k ← k + 1

else

if all column selections not involving column c ′ are covered then

Replace column c ′ by column c

end if

end if

end while

Decrement m and/or u

end while

one that contains a maximal number of subspace restrictions. It appends new columns to the CPHF one at a time or replaces

existing columns, as described in Section 4.4 . During this horizontal extension, the values maximizing the number of newly

covered column selections are selected, while respecting the constraints set by the subspace restrictions. In contrast to

CPHFIPO, which performs a vertical extension if the horizontal extension meets a termination criterion, the algorithm for

restricted CPHFs takes a different approach. Instead of adding a new row, the algorithm relaxes the subspace restrictions,

which increases the number of available candidate permutation vectors and often permits the algorithm to find new suitable

columns. In this work we examine more complex sets of subspace restrictions, described below.
Table 7

Results for S m,u -restricted CPHF (6 ; k,4 ,3) . The left side shows

the number of columns of the generated CPHFs, while the right

side shows the number of rows in the respective CA.

n = 6 Columns in CPHF

m

u ↓ 0 2 3 4 5 6

0 301 279 270 263 256 241

1 227 227 213 211 200

2 194 190 184 182

3 171 161 151

4 140 133

5 111

n = 6 Rows in CA

m

u ↓ 0 2 3 4 5 6

0 379 376 373 370 367 364

1 364 361 358 355 352

2 349 346 343 340

3 334 331 328

4 319 316

5 304

14

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

Table 8

S m,u -restricted CPHF (n ; k,4 ,3) s that yield CA (N;3 , k, 4) s for

364 ≤ N ≤ 598 . Bold entries indicate best new bounds on the

size of the covering array.

N Entries k (n m,u)

364 231 (7 7 , 5) 241 (6 6 , 0)

367 234 (7 6 , 5) 256 (6 5 , 0)

370 263 (6 4 , 0)

373 270 (6 3 , 0)

376 268 (7 7 , 4) 279 (6 2 , 0)

379 278 (7 6 , 4) 301 (6 0 , 0)

382 293 (7 5 , 4)

388 308 (7 7 , 3)

391 322 (7 6 , 3)

394 334 (7 5 , 3)

397 342 (7 4 , 3)

400 338 (8 8 , 7) 347 (7 7 , 2)

403 364 (7 6 , 2)

406 378 (7 5 , 2)

409 392 (7 4 , 2)

412 392 (7 7 , 1) 394 (8 8 , 6)

402 (7 3 , 2)

415 405 (7 6 , 1) 408 (8 7 , 6)

418 427 (7 5 , 1)

421 438 (7 4 , 1)

424 452 (7 3 , 1) 457 (8 8 , 5)

467 (7 7 , 0)

427 470 (7 2 , 1) 473 (8 7 , 5)

485 (7 6 , 0)

430 490 (8 6 , 5) 500 (7 5 , 0)

433 522 (7 4 , 0)

436 519 (8 8 , 4) 541 (7 3 , 0)

439 541 (8 7 , 4) 560 (7 2 , 0)

442 561 (8 6 , 4) 606 (7 0 , 0)

445 580 (8 5 , 4)

448 572 (9 9 , 8) 592 (8 8 , 3)

451 616 (8 7 , 3)

454 639 (8 6 , 3)

457 660 (8 5 , 3)

460 664 (9 9 , 7) 677 (8 8 , 2)

681 (8 4 , 3)

463 691 (9 8 , 7) 694 (8 7 , 2)

466 715 (8 6 , 2)

469 747 (8 5 , 2)

472 749 (8 8 , 1) 764 (9 9 , 6)

783 (8 4 , 2)

475 774 (8 7 , 1) 800 (9 8 , 6)

816 (8 3 , 2)

478 807 (8 6 , 1) 825 (9 7 , 6)

N Entries k (n m,u)

481 837 (8 5 , 1)

484 871 (8 4 , 1) 874 (9 9 , 5) 884 (8 8 , 0)

487 897 (9 8 , 5) 907 (8 3 , 1) 909 (8 7 , 0)

490 936 (8 2 , 1) 939 (8 6 , 0) 940 (9 7 , 5)

493 959 (9 6 , 5) 978 (8 5 , 0)

496 958 (10 10 , 9) 984 (9 9 , 4) 1001 (8 4 , 0)

499 1019 (9 8 , 4) 1030 (8 3 , 0)

502 1063 (8 2 , 0) 1064 (9 7 , 4)

505 1085 (9 6 , 4) 1159 (8 0 , 0)

508 1093 (9 9 , 3) 1097 (10 10 , 8) 1099 (9 5 , 4)

511 1145 (10 9 , 8) 1149 (9 8 , 3)

514 1183 (9 7 , 3)

517 1197 (9 6 , 3)

520 1199 (9 9 , 2) 1215 (10 10 , 7) 1235 (9 5 , 3)

523 1246 (9 8 , 2) 1276 (9 4 , 3) 1291 (10 9 , 7)

526 1305 (9 7 , 2) 1323 (10 8 , 7)

529 1352 (9 6 , 2)

532 1366 (10 10 , 6) 1372 (9 9 , 1) 1392 (9 5 , 2)

535 1430 (9 8 , 1) 1445 (10 9 , 6) 1490 (9 4 , 2)

538 1482 (9 7 , 1) 1490 (10 8 , 6) 1529 (9 3 , 2)

541 1504 (9 6 , 1) 1539 (10 7 , 6)

(continued on next page)

15

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

Table 8 (continued)

N Entries k (n m,u)

544 1545 (10 10 , 5) 1551 (9 5 , 1) 1565 (11 11 , 10)

1652 (9 9 , 0)

547 1596 (9 4 , 1) 1599 (10 9 , 5) 1662 (9 8 , 0)

550 1645 (9 3 , 1) 1660 (10 8 , 5) 1694 (9 7 , 0)

553 1711 (10 7 , 5) 1723 (9 2 , 1) 1751 (9 6 , 0)

556 1740 (11 11 , 9) 1772 (10 10 , 4) 1797 (9 5 , 0)

1809 (10 6 , 5)

559 1759 (11 10 , 9) 1787 (10 9 , 4) 1868 (9 4 , 0)

562 1838 (10 8 , 4) 1934 (9 3 , 0)

565 1936 (10 7 , 4) 2014 (9 2 , 0)

568 1929 (11 11 , 8) 1936 (10 10 , 3) 1990 (10 6 , 4)

2117 (9 0 , 0)

571 2008 (10 9 , 3) 2023 (11 10 , 8) 2041 (10 5 , 4)

574 2041 (10 8 , 3) 2148 (11 9 , 8)

577 2178 (10 7 , 3)

580 2168 (10 10 , 2) 2200 (10 6 , 3) 2222 (11 11 , 7)

583 2224 (10 9 , 2) 2250 (11 10 , 7) 2262 (10 5 , 3)

586 2303 (10 8 , 2) 2339 (10 4 , 3) 2370 (11 9 , 7)

589 2394 (11 8 , 7) 2404 (10 7 , 2)

592 2348 (12 12 , 11) 2412 (10 10 , 1) 2465 (11 11 , 6)

2475 (10 6 , 2)

595 2485 (10 9 , 1) 2533 (11 10 , 6) 2543 (10 5 , 2)

598 2548 (10 8 , 1) 2587 (11 9 , 6) 2619 (10 4 , 2)

Define S m,u to be the set of subspace restrictions consisting of

1. (x 1 , . . . , x m) = (1 , 2 , . . . , m) , and U i = (0) for 1 ≤ i ≤ m ;

2. for 1 ≤ i ≤ u ,

(x 1 , x 2) =

{

(1 , 2) and U i = (0 , 1) if i = 1
(i − 1 , i + 1) and U i = (0 , 2) if i ≡ 2 , 3 (mod 4)
(i − 1 , i + 1) and U i = (0 , 1) if i ≡ 0 , 1 (mod 4) , i > 1

A CPHF (n ; k, q, t) with t ≥ 3 may be S m,u -restricted provided that m, u ≥ 0 , m ≥ u + 1 if u > 0 , and n ≥ m . For such re-

strictions, the reduction in the number of rows in the generated CA can be substantial. Elementary counting ensures that

replicated rows can be removed to produce a CA with n (q t − 1) + 1 − max (m − 1 , 0)(q − 1) − uq (q − 1) rows.

Such a CPHF consists of one subspace restriction of dimension p = 1 and replication r = m , which forces the first el-

ements in the permutation vectors to match in m different rows. In addition, this set of restrictions contains u separate

subspace restrictions of dimension p = 2 and restriction r = 2 , where in addition to the first element, either the second or

the third element of the permutation vectors match in two rows. Recall that for strength t = 3 restrictions of dimension

p > 2 do not make any sense, since they would yield a replicated row in the entire CPHF. Therefore, by layering subspace

restrictions with r = d = 2 in the manner described, we obtain a compact packing for subspace restrictions for t = 3 . The set

of subspace restrictions satisfied by the CPHF depicted in Fig. 5 follow this design with one restriction of dimension p = 1

and replication r = 3 as well as one restriction with p = d = 2 and can therefore be described as S 3 , 1 .
Our algorithm starts with a S m = n,u = n −1 -restricted CPHF and thereafter either reduces u or m , with u < m . To evaluate the

performance of this method, we first examine the existence of S m,u -restricted CPHF (6 ; k, 4 , 3) s for admissible choices of m

and u . Table 7 shows the largest value of k for which such CPHFs were constructed by our method on the left side, while

the right side displays the numbers of rows of the respective CA after all replicated rows are removed.

Imposing stronger restrictions typically reduces the number of columns in the CPHF, as expected. At the same time,

however, it also reduces the number of rows in the CA that is generated. Different restrictions can yield the same number

of rows in the CA: For example, an S 6 , 0 -restricted CPHF (6 ; k,4 ,3) , an S 2 , 1 -restricted CPHF (6 ; k,4 ,3) , and an S 7 , 5 -restricted
CPHF (7 ; k,4 ,3) all yield a CA (364 , 3 , k, 4) . In the results presented, we focus on selected S m,u -restricted CPHFs for which

we find improved covering array numbers, noting that other choices of m and u can also prove useful in obtaining such

improvements.

Our results for S m,u -restricted CPHFs are given in Tables 8 and 9 when q = 4 and Table 10 when q = 5 . By employing

different sets of subspace restrictions, we constructed CAs with a large diversity of numbers of rows. The results for both

alphabet sizes yield significant improvements over the best previously known bounds.

For q = 4 , the majority of best known CAs had been constructed with a greedy-metaheuristic 3-stage method [24] that

first constructs a CPHF that may contain missing combinations using Simulated Annealing, then converts the CPHF to a CA

while adding any missing tuples before finally applying a post-optimization method to reduce the number of rows of the

generated CA. The results in Tables 8 and 9 improve every bound for v = q = 4 for 799 ≤ k ≤ 10 0 0 0 columns, improving

upon previously best known upper bounds by up to 30 rows. Because many different choices of n , m , and u can lead to the
16

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

Table 9

S m,u -restricted CPHF (n ; k,4 ,3) s that yield CA (N;3 , k,4) s for 601 ≤ N ≤ 739 . Bold entries indi-

cate best new bounds on the size of the covering array.

N Entries k (n m,u)

601 2678 (10 7 , 1) 2709 (10 3 , 2) 2726 (11 8 , 6)

604 2730 (11 11 , 5) 2744 (12 12 , 10) 2753 (10 6 , 1) 2825 (11 7 , 6) 2870 (10 10 , 0)

607 2803 (12 11 , 10) 2811 (10 5 , 1) 2860 (11 10 , 5) 2921 (10 9 , 0)

610 2938 (11 9 , 5) 2950 (10 4 , 1) 2975 (10 8 , 0)

613 3025 (10 7 , 0) 3032 (10 3 , 1) 3057 (11 8 , 5)

616 3036 (12 12 , 9) 3046 (11 11 , 4) 3058 (10 6 , 0) 3062 (10 2 , 1) 3126 (11 7 , 5)

619 3111 (12 11 , 9) 3154 (11 10 , 4) 3164 (10 5 , 0) 3266 (11 6 , 5)

622 3202 (12 10 , 9) 3219 (11 9 , 4) 3420 (10 4 , 0)

625 3276 (11 8 , 4) 3494 (10 3 , 0)

628 3246 (12 12 , 8) 3369 (11 11 , 3) 3379 (11 7 , 4) 3581 (10 2 , 0)

631 3422 (12 11 , 8) 3431 (11 10 , 3) 3511 (11 6 , 4) 3820 (10 0 , 0)

634 3531 (12 10 , 8) 3552 (11 9 , 3) 3677 (11 5 , 4)

637 3646 (12 9 , 8) 3708 (11 8 , 3)

640 3606 (13 13 , 12) 3643 (12 12 , 7) 3807 (11 7 , 3) 3846 (11 11 , 2)

643 3769 (12 11 , 7) 3886 (11 6 , 3) 3909 (11 10 , 2)

646 3876 (12 10 , 7) 4022 (11 9 , 2) 4084 (11 5 , 3)

649 4070 (12 9 , 7) 4154 (11 8 , 2) 4227 (11 4 , 3)

652 4004 (13 13 , 11) 4138 (12 12 , 6) 4244 (12 8 , 7) 4280 (11 7 , 2) 4345 (11 11 , 1)

655 4164 (12 11 , 6) 4217 (13 12 , 11) 4354 (11 10 , 1) 441 8 (11 6 , 2)

658 4433 (12 10 , 6) 4448 (11 9 , 1) 4594 (11 5 , 2)

661 4578 (11 8 , 1) 4673 (12 9 , 6) 4723 (11 4 , 2)

664 4558 (13 13 , 10) 4693 (12 12 , 5) 4762 (11 7 , 1) 4845 (12 8 , 6) 4891 (11 3 , 2) 5183 (11 11 , 0)

667 4758 (13 12 , 10) 4919 (11 6 , 1) 4922 (12 11 , 5) 5055 (12 7 , 6) 5185 (11 10 , 0)

670 4840 (13 11 , 10) 5069 (11 5 , 1) 5100 (12 10 , 5) 5213 (11 9 , 0)

673 5212 (11 4 , 1) 5233 (12 9 , 5) 5309 (11 8 , 0)

676 5220 (13 13 , 9) 5394 (11 3 , 1) 5436 (12 8 , 5) 5491 (11 7 , 0) 5495 (12 12 , 4)

679 5377 (13 12 , 9) 5533 (12 11 , 4) 5582 (12 7 , 5) 5613 (11 2 , 1) 5709 (11 6 , 0)

682 5629 (13 11 , 9) 5679 (12 10 , 4) 5853 (12 6 , 5) 5933 (11 5 , 0)

685 5819 (13 10 , 9) 5881 (12 9 , 4) 6158 (11 4 , 0)

688 5581 (14 14 , 13) 5991 (13 13 , 8) 6097 (12 12 , 3) 6113 (12 8 , 4) 6335 (11 3 , 0)

691 6132 (12 11 , 3) 6187 (13 12 , 8) 6326 (12 7 , 4) 6465 (11 2 , 0)

694 6382 (12 10 , 3) 6450 (13 11 , 8) 6462 (12 6 , 4) 6865 (11 0 , 0)

697 6632 (12 9 , 3) 6646 (12 5 , 4) 6663 (13 10 , 8)

700 6472 (14 14 , 12) 6526 (13 13 , 7) 6822 (12 12 , 2) 6858 (13 9 , 8) 6898 (12 8 , 3)

703 6514 (14 13 , 12) 6782 (13 12 , 7) 6971 (12 11 , 2) 7020 (12 7 , 3)

706 6989 (13 11 , 7) 7221 (12 10 , 2) 7254 (12 6 , 3)

709 7188 (13 10 , 7) 7438 (12 9 , 2) 7459 (12 5 , 3)

712 7296 (14 14 , 11) 7425 (12 12 , 1) 7451 (13 13 , 6) 7481 (13 9 , 7) 7588 (12 8 , 2) 7684 (12 4 , 3)

715 7349 (14 13 , 11) 7577 (12 11 , 1) 7691 (13 12 , 6) 7834 (13 8 , 7) 7911 (12 7 , 2)

718 7608 (14 12 , 11) 7852 (12 10 , 1) 7963 (13 11 , 6) 8064 (12 6 , 2)

721 8181 (13 10 , 6) 8221 (12 9 , 1) 8348 (12 5 , 2)

724 8129 (14 14 , 10) 8151 (13 13 , 5) 8458 (12 8 , 1) 8509 (13 9 , 6) 8638 (12 4 , 2) 8892 (12 12 , 0)

727 8491 (14 13 , 10) 8529 (13 12 , 5) 8608 (12 7 , 1) 8759 (13 8 , 6) 8982 (12 11 , 0) 8983 (12 3 , 2)

730 8775 (14 12 , 10) 8787 (13 11 , 5) 8874 (12 6 , 1) 9141 (13 7 , 6) 9294 (12 10 , 0)

733 9176 (14 11 , 10) 9176 (13 10 , 5) 9367 (12 5 , 1) 9552 (12 9 , 0)

736 8499 (15 15 , 14) 8768 (14 14 , 9) 8942 (13 13 , 4) 9569 (13 9 , 5) 9620 (12 4 , 1) 9771 (12 8 , 0)

739 9597 (14 13 , 9) 10000 (12 7 , 0)

same number of rows in the generated covering array, in Tables 8 and 9 , we sort the results by the number of rows in the

covering array generated. Entries in each row of the form “k (n m,u) ” indicate that an S m,u -restricted CPHF (n ; k,4 ,3) was

found. By so doing, one can see directly which choices of n , m , and u yield the better results. Choices that yield best known

covering arrays are shown in bold typeface in the table.

The results for q = 5 (Table 10) also yield improvements on the best known upper bounds on CAN for all instances with

619 ≤ k ≤ 10 0 0 0 . Within the range of parameters, few different choices of n , m , and u lead to covering arrays with the same

numbers of rows; moreover, we have not carried out computations for all different choices. Nevertheless, results are given

in the same manner as in Tables 8 and 9 : Here, entries in each row of the form “k (n m,u) ” indicate that an S m,u -restricted

CPHF (n ; k, 5 , 3) was found. Most of the previously known upper bounds arose from a simulated annealing algorithm that

constructs CPHFs with subspace restrictions [25] , while some were from a recursive method [9] . Again, best new bounds

on covering array numbers are shown in bold in Table 10 . Despite the substantial improvements for CPHFs with subspace

restrictions by applying horizontal extension, we do not expect that these are the best possible sizes for covering arrays.

Indeed the success appears to stem from the focus on horizontal extension, permitting the relatively rapid selection of a

most suitable column to add. Simulated annealing explores a larger search space; in principle, this enables it to find better

solutions, but in practice this becomes prohibitively slow.
17

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

Table 10

Lower bounds on k for selected

S m,u -restricted CPHF (n ; k,5 ,3) s that

yield CA (N;3 , k,5) s. Bold entries

improve on the size of the best

known covering array.

N k (n m,u)

525 108 (5 5 , 4)

545 126 (5 5 , 3)

549 131 (5 4 , 3)

565 160 (5 5 , 2)

569 165 (5 4 , 2)

573 170 (5 3 , 2)

585 177 (5 5 , 1)

589 183 (5 4 , 1)

593 187 (5 3 , 1)

597 195 (5 2 , 1)

605 228 (5 5 , 0)

609 233 (5 4 , 0)

613 236 (5 3 , 0)

617 244 (5 2 , 0)

621 254 (5 0 , 0)

625 209 (6 6 , 5)

645 261 (6 6 , 4)

649 267 (6 5 , 4)

665 306 (6 6 , 3)

669 315 (6 5 , 3)

673 323 (6 4 , 3)

685 353 (6 6 , 2)

689 367 (6 5 , 2)

693 378 (6 4 , 2)

697 385 (6 3 , 2)

705 406 (6 6 , 1)

709 421 (6 5 , 1)

713 424 (6 4 , 1)

717 433 (6 3 , 1)

721 449 (6 2 , 1)

725 406 (7 7 , 6)

502 (6 6 , 0)

729 516 (6 5 , 0)

733 522 (6 4 , 0)

737 545 (6 3 , 0)

741 554 (6 2 , 0)

745 478 (7 7 , 5)

578 (6 0 , 0)

749 508 (7 6 , 5)

765 581 (7 7 , 4)

769 595 (7 6 , 4)

773 619 (7 5 , 4)

785 675 (7 7 , 3)

789 691 (7 6 , 3)

793 711 (7 5 , 3)

797 724 (7 4 , 3)

805 785 (7 7 , 2)

809 803 (7 6 , 2)

813 825 (7 5 , 2)

817 845 (7 4 , 2)

821 863 (7 3 , 2)

N Entries k (n m,u)

825 771 (8 8 , 7) 889 (7 7 , 1)

829 905 (7 6 , 1)

833 941 (7 5 , 1)

837 961 (7 4 , 1)

841 975 (7 3 , 1)

845 914 (8 8 , 6) 991 (7 2 , 1)

1083 (7 7 , 0)

849 932 (8 7 , 6) 1111 (7 6 , 0)

853 1129 (7 5 , 0)

857 1164 (7 4 , 0)

861 1181 (7 3 , 0)

865 1065 (8 8 , 5) 1212 (7 2 , 0)

869 1088 (8 7 , 5) 1291 (7 0 , 0)

(continued on next page)

18

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

Table 10 (continued)

N k (n m,u)

873 1115 (8 6 , 5)

885 1240 (8 8 , 4)

889 1274 (8 7 , 4)

893 1306 (8 6 , 4)

897 1339 (8 5 , 4)

905 1417 (8 8 , 3)

909 1469 (8 7 , 3)

913 1509 (8 6 , 3)

917 1541 (8 5 , 3)

921 1567 (8 4 , 3)

925 1389 (9 9 , 8) 1608 (8 8 , 2)

929 1688 (8 7 , 2)

933 1717 (8 6 , 2)

937 1766 (8 5 , 2)

941 1805 (8 4 , 2)

945 1641 (9 9 , 7) 1836 (8 8 , 1)

1870 (8 3 , 2)

949 1674 (9 8 , 7) 1879 (8 7 , 1)

953 1921 (8 6 , 1)

957 1969 (8 5 , 1)

961 2041 (8 4 , 1)

965 1908 (9 9 , 6) 2089 (8 3 , 1)

2288 (8 8 , 0)

969 1925 (9 8 , 6) 2109 (8 2 , 1)

2316 (8 7 , 0)

973 1995 (9 7 , 6) 2352 (8 6 , 0)

977 2406 (8 5 , 0)

981 2459 (8 4 , 0)

985 2233 (9 9 , 5) 2555 (8 3 , 0)

989 2271 (9 8 , 5) 2573 (8 2 , 0)

993 2330 (9 7 , 5) 2687 (8 0 , 0)

997 2363 (9 6 , 5)

1005 2554 (9 9 , 4)

1009 2641 (9 8 , 4)

1013 2689 (9 7 , 4)

1017 2711 (9 6 , 4)

1021 2766 (9 5 , 4)

1025 2357 (10 10 , 9) 2778 (9 9 , 3)

N Entries k (n m,u)

1029 2890 (9 8 , 3)

1033 3111 (9 7 , 3)

1037 3169 (9 6 , 3)

1041 3216 (9 5 , 3)

1045 2725 (10 10 , 8) 3195 (9 9 , 2) 3240 (9 4 , 3)

1049 2823 (10 9 , 8) 3303 (9 8 , 2)

1053 3534 (9 7 , 2)

1057 3629 (9 6 , 2)

1061 3657 (9 5 , 2)

1065 3230 (10 10 , 7) 3672 (9 4 , 2) 3734 (9 9 , 1)

1069 3269 (10 9 , 7) 3723 (9 3 , 2) 3780 (9 8 , 1)

1073 3384 (10 8 , 7) 3829 (9 7 , 1)

1077 4037 (9 6 , 1)

1081 4100 (9 5 , 1)

1085 3624 (10 10 , 6) 4121 (9 4 , 1) 4571 (9 9 , 0)

1089 3779 (10 9 , 6) 4208 (9 3 , 1) 4643 (9 8 , 0)

1093 3916 (10 8 , 6) 4263 (9 2 , 1) 4743 (9 7 , 0)

1097 4012 (10 7 , 6) 4754 (9 6 , 0)

1101 4811 (9 5 , 0)

1105 4304 (10 10 , 5) 4871 (9 4 , 0)

1109 4389 (10 9 , 5) 5014 (9 3 , 0)

1113 4494 (10 8 , 5) 5110 (9 2 , 0)

1117 4580 (10 7 , 5) 5335 (9 0 , 0)

1121 4720 (10 6 , 5)

1125 5078 (10 10 , 4)

1129 5150 (10 9 , 4)

1133 5215 (10 8 , 4)

1137 5356 (10 7 , 4)

1141 5476 (10 6 , 4)

1145 5541 (10 10 , 3) 5598 (10 5 , 4)

(continued on next page)

19

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

Table 10 (continued)

N k (n m,u)

1149 5680 (10 9 , 3)

1153 5833 (10 8 , 3)

1157 5949 (10 7 , 3)

1161 6129 (10 6 , 3)

1165 6307 (10 10 , 2) 6326 (10 5 , 3)

1169 6496 (10 4 , 3) 6503 (10 9 , 2)

1173 6693 (10 8 , 2)

1177 6887 (10 7 , 2)

1181 7084 (10 6 , 2)

1185 7058 (10 10 , 1) 7276 (10 5 , 2)

1189 7332 (10 9 , 1) 7470 (10 4 , 2)

1193 7562 (10 8 , 1) 7574 (10 3 , 2)

1197 7709 (10 7 , 1)

1201 7941 (10 6 , 1)

1205 8979 (10 10 , 0)

1209 9007 (10 9 , 0)

1213 9180 (10 8 , 0)

1217 9395 (10 7 , 0)

1221 9517 (10 6 , 0)

1225 9727 (10 5 , 0)

1229 10000 (10 4 , 0)

7. Conclusion

Our work combines the popular In-Parameter-Order strategy with the very potent representation of a certain family of

CAs, namely covering perfect hash families. We describe in detail how such an algorithm can be designed and optimized.

Our experiments, which improve upon tens of thousands of best known upper bounds, showcase the tremendous potential

of this algorithmic approach. In addition, applying similar methods to CPHFs with subspace restrictions yielded significant

improvements to the best known upper bounds on CAN for the vast majority of instances of strength three and v = 4 , 5 .

At each stage of our methods, the current solution being extended is always a covering perfect hash family. Although

we have reported on computations that start from scratch, the same horizontal extension techniques can be applied to

any CPHF, no matter how it was initially produced. This opens the door to hybrid methods that combine the strengths of

simulated annealing for smaller parameters, and of recursive and direct constructions, with the ability of the IPO methods

to extend these for larger parameters. Viewed in this way, our methods complement, rather than replace, existing methods.

However, the question of when to use each of the known methods in a hybrid approach remains to be determined, and

surely depends on the total computation time available.

Acknowledgements

This research was carried out partly in the context of the Austrian COMET K1 program and publicly funded by the

Austrian Research Promotion Agency (FFG) and the Vienna Business Agency (WAW). Research of the second author is funded

by the U .S. National Science Foundation grants #1421058 and #1813729.

References

[1] L. Kampel , D.E. Simos , A survey on the state of the art of complexity problems for covering arrays, Theor Comput Sci 800 (2019) 107–124 .

[2] C. J. Colbourn, Covering Array Tables for t = 2,3,4,5,6, (Available at http://www.public.asu.edu/ ∼ccolbou/src/tabby/catable.html , Accessed on 2021-08-03).
[3] D.R. Kuhn , R.N. Kacker , Y. Lei , et al. , Practical combinatorial testing, NIST special Publication 800 (142) (2010) 142 .

[4] D. Jarman , R. Smith , G. Gosney , L. Kampel , M. Leithner , D.E. Simos , R. Kacker , R. Kuhn , Applying combinatorial testing to large-scale data processing at
adobe, in: 2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), 2019, pp. 190–193 .

[5] G.B. Sherwood , S.S. Martirosyan , C.J. Colbourn , Covering arrays of higher strength from permutation vectors, J. Comb. Des. 14 (3) (2006) 202–213 .
[6] J. Torres-Jimenez , I. Izquierdo-Marquez , Covering arrays of strength three from extended permutation vectors, Designs, Codes and Cryptography 86

(11) (2018) 2629–2643 .

[7] Y. Lei , K.C. Tai , In-parameter-order: a test generation strategy for pairwise testing, in: Proceedings Third IEEE International High-Assurance Systems
Engineering Symposium (Cat. No.98EX231), 1998, pp. 254–261 .

[8] J. Torres-Jimenez , H. Avila-George , Search-based software engineering to construct binary test-suites, in: J. Mejia, M. Munoz, A. Rocha, J. Calvo-Manzano
(Eds.), Trends and Applications in Software Engineering, Springer International Publishing, 2016, pp. 201–212 .

[9] M.B. Cohen , C.J. Colbourn , A.C.H. Ling , Constructing strength three covering arrays with augmented annealing, Discrete Math 308 (13) (2008)
2709–2722 .

[10] B. Garn , D.E. Simos , Algebraic modelling of covering arrays, in: I.S. Kotsireas, E. Martínez-Moro (Eds.), Applications of Computer Algebra, Springer

International Publishing, Cham, 2017, pp. 149–170 .
[11] J. Torres-Jimenez , I. Izquierdo-Marquez , H. Avila-George , Methods to construct uniform covering arrays, IEEE Access 7 (2019) 42774–42797 .

[12] L. Kampel , M. Leithner , D.E. Simos , Sliced AETG: a memory-efficient variant of the AETG covering array generation algorithm, Optimization Letters 14
(6) (2020) 1543–1556 .

[13] R.C. Bryce , C.J. Colbourn , A density-based greedy algorithm for higher strength covering arrays, Softw. Test. Verif. Reliab. 19 (1) (2009) 37–53 .
[14] C.J. Colbourn , Covering arrays from cyclotomy, Designs, Codes and Cryptography 55 (2) (2010) 201–219 .
20

https://doi.org/10.13039/501100004955
https://doi.org/10.13039/100007249
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0001
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0001
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0001
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0003
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0003
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0003
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0003
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0003
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0004
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0004
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0004
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0004
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0004
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0004
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0004
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0004
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0004
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0005
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0005
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0005
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0005
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0006
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0006
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0006
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0007
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0007
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0007
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0008
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0008
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0008
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0009
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0009
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0009
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0009
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0010
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0010
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0010
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0011
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0011
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0011
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0011
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0012
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0012
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0012
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0012
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0013
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0013
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0013
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0014
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0014

M. Wagner, C.J. Colbourn and D.E. Simos Applied Mathematics and Computation 421 (2022) 126952

[15] J. Torres-Jimenez , I. Izquierdo-Marquez , A simulated annealing algorithm to construct covering perfect hash families, Mathematical Problems in Engi-
neering 2018 (2018) .

[16] R.A. Walker II , C.J. Colbourn , Tabu search for covering arrays using permutation vectors, J Stat Plan Inference 139 (1) (2009) 69–80 .
[17] C.J. Colbourn , E. Lanus , K. Sarkar , Asymptotic and constructive methods for covering perfect hash families and covering arrays, Designs, Codes and

Cryptography 86 (4) (2018) 907–937 .
[18] C.J. Colbourn , E. Lanus , Subspace restrictions and affine composition for covering perfect hash families, The Art of Discrete and Applied Mathematics

1 (2) (2018) P2–03 .

[19] K. Kleine , D.E. Simos , An Efficient Design and Implementation of the In-Parameter-order Algorithm, Mathematics in Computer Science (2017) .
[20] M. Wagner , K. Kleine , D.E. Simos , R. Kuhn , R. Kacker , Cagen: A fast combinatorial test generation tool with support for constraints and higher-index

arrays, in: 2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), 2020, pp. 191–200 .
[21] A. Bombarda , E. Crippa , A. Gargantini , An environment for benchmarking combinatorial test suite generators, in: 2021 IEEE International Conference

on Software Testing, Verification and Validation Workshops (ICSTW), IEEE, 2021, pp. 48–56 .
[22] C.J. Colbourn , S.S. Martirosyan , T. Van Trung , R.A. Walker , Roux-type constructions for covering arrays of strengths three and four, Designs, Codes and

Cryptography 41 (1) (2006) 33–57 .
[23] C.J. Colbourn , G. Kéri , P.P. Rivas Soriano , J.C. Schlage-Puchta , Covering and radius-covering arrays: constructions and classification, Discrete Appl. Math.

158 (2010) 1158–1190 .

[24] I. Izquierdo-Marquez , J. Torres-Jimenez , B. Acevedo-Juárez , H. Avila-George , A greedy-metaheuristic 3-stage approach to construct covering arrays, Inf
Sci (Ny) 460 (2018) 172–189 .

[25] J. Torres-Jimenez , I. Izquierdo-Marquez , Improved covering arrays using covering perfect hash families with groups of restricted entries, Appl Math
Comput 369 (2020) 124826 .
21

http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0015
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0015
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0015
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0016
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0016
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0016
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0017
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0017
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0017
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0017
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0018
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0018
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0018
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0019
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0019
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0019
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0020
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0020
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0020
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0020
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0020
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0020
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0021
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0021
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0021
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0021
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0022
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0022
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0022
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0022
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0022
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0023
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0023
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0023
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0023
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0023
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0024
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0024
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0024
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0024
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0024
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0025
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0025
http://refhub.elsevier.com/S0096-3003(22)00038-8/sbref0025

	In-Parameter-Order strategies for covering perfect hash families
	1 Introduction
	2 Permutation vectors and covering perfect hash families
	3 Related work
	4 An In-Parameter-Order strategy for covering perfect hash families
	4.1 Initial array
	4.2 Horizontal Extension
	4.3 Vertical Extension
	4.4 Further Optimizations

	5 Algorithmic evaluation
	6 IPO strategies for CPHFs with subspace restrictions
	7 Conclusion
	Acknowledgements
	References

