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Abstract—This paper shows the feasibility of fluid intake esti-
mation using earphone sensors, which are gaining in popularity.
Fluid consumption estimation has a number of healthcare-related
applications in tracking dehydration and overhydration which
can be connected to issues in fatigue, irritability, high blood pres-
sure, kidney stones, etc. Therefore, accurate tracking of hydration
levels not only has direct benefits to users in preventing such
disorders but also offers diagnostic information to healthcare
providers. Towards this end, this paper employs a voice pick-
up microphone that captures body vibrations during fluid con-
sumption directly from skin contact and body conduction. This
results in the extraction of stronger signals while being immune
to ambient environmental noise. However, the main challenge
for accurate estimation is the lack of availability of large-scale
training datasets to train machine learning models (ML). To
address the challenge, this paper designs robust ML models
based on techniques in data augmentation and semi-supervised
learning. Extensive user study with 12 users shows a per-swallow
volume estimation accuracy of 3.35 mL (≈ 19.17% error) and
a cumulative error of 3.26% over an entire bottle, while being
robust to body motion, container type, liquid temperature, sensor
position, etc. The ML models are implemented on smartphones
with low power consumption and latency.

I. INTRODUCTION

Sufficient hydration is essential for blood circulation,

metabolism, temperature regulation, and overall smooth func-

tioning of the human body. However, several surveys have

indicated that 50-75% of people can have a net fluid loss (fluid

intake is lesser than fluid release), thus leading to chronic

dehydration over time [6], [8]. While short-term effects of

dehydration include fatigue, foggy memory, irritability, etc.,

[15], [38] long-term effects due to chronic dehydration can

lead to high blood pressure, kidney stones, etc. This can lead to

further complications depending on the condition of the body

[7]. Proper hydration levels improve cognitive performance

and mood [81] while sustaining an overall healthy lifestyle in

the long run.

Towards detecting dehydration and alerting users, this paper

presents a system called LiquidMeter, which shows the feasi-

bility of estimating the volume of fluid intake by exploiting

earphone sensors that are gaining in popularity with an ex-

pectation to reach a $45.7 billion market by 2026 [35]. At a

high level, LiquidMeter performs drinking volume estimation

by analyzing body sounds during drinking by using bone

conduction microphones in the earphones, detailed in Sec. III

as Voice-pickup-units (VPU). As the fluid is swallowed, the

fluid’s motion and the opening and closing of the esophagus

(food pipe) for letting the fluid into the stomach will produce

acoustic vibrations. These vibrations propagate through the

skull, captured in the ears through earphone VPU. In contrast

to an ordinary microphone, the VPU measures vibrations

directly from a solid surface, thus resulting in a stronger

reception and isolation from external noise and interference.

Motivated by the need for monitoring hydration levels, fluid

intake monitoring is an active area of research [28]. Vision-

based approaches [19], [27] are prevalent in monitoring activ-

ities of daily living, including drinking detection. Similarly,

smartwatch sensors have also been employed for detecting

activities related to drinking vs. eating classification [41], [46],

[77]. Smart surfaces that use load cells, pressure sensors, etc.,

can monitor liquid and food intake when the container is

placed on them before and after drinking [61], [76], [83].

Finally, smart containers that utilize capacitive, conductive,

pressure, radar sensors, etc., can estimate the drinking volume

for fluids consumed with the container [40], [48], [65].

In contrast to prior works, LiquidMeter provides the follow-

ing advantages: (i) Sensing by vision-based approaches can

be limited to the camera’s view and be susceptible to light-

ing, resolution, and occlusions. In contrast, LiquidMeter uses

earphone sensors which can be ubiquitous without limitations

on the range of sensing, lighting, or occlusions. (ii) Solutions

based on smartwatch devices can mainly detect the action of

drinking. The volume estimation is limited to special cases

where the user stays still while drinking, and the bottle has

to be placed on a flat surface before and after drinking. In

contrast, LiquidMeter works under adhoc and natural condi-

tions, including body and head motion. (iii) Solutions based on

smart surfaces or smart containers work under specific settings

of having a specialized surface or drinking using a particular

container. In contrast, LiquidMeter’s solution works on any

surface or container since the sensing is done directly on the

human body.

Estimation of fluid consumption volume with earphone sen-

sors is challenging for many reasons: (i) Because of the nature

of the biological process involved during fluid consumption,

sound generation, and its propagation through the face, the

relationship between the fluid consumption volume and its

acoustic fingerprint can be complex. While machine learning

(ML) algorithms can be used to learn this relationship, the

training data is limited. Unlike vision and speech domains,

there are no large-scale training datasets for the relatively new

earphone VPU sensors, or wearable devices [56]. (ii) While

LiquidMeter designs synthetic training data to address the

above challenge, such data is unlabelled (elaborated in Sec.

IV-B). (iii) The drinking activity and its acoustic fingerprint



Fig. 1. Overview of LiquidMeter: The vibration data from earphones is first used for identifying drinking activity. Drinking related vibration data is combined
with data augmentation and semi-supervised learning (teacher-student training) for accurate estimation of the volume of fluid intake with limited training data

can vary across users because of diversity in body sizes,

drinking characteristics, etc. (iv) Drinking activities need to be

separated from non-drinking activities such as eating, speak-

ing, etc. (v) The choice of earphone sensors in LiquidMeter

must ensure robustness to external noise and interference.

Enumerated below, LiquidMeter exploits a combination of

algorithmic and systems-based opportunities to tackle the

above challenges. (i) LiquidMeter designs data augmentation

techniques to transform the limited real data into several

samples of synthetic training data by creating variations in

pitch, introducing time-shifts, and adding noise. (ii) While

the augmented synthetic data may not retain the original

labels, LiquidMeter designs ML models based on teacher-

student learning strategies to train efficiently with unlabelled

synthetic data. (iii) LiquidMeter exploits techniques in domain

adaptation for customizing a pre-trained model on other users

for a new user. While pretraining helps quickly generate a

base model for the new user, domain adaptation will fine-tune

the model to customize it to a specific user. (iv) LiquidMeter

first performs classification of the activity (eating vs. drinking

vs. speaking) and triggers the ML model for drinking volume

estimation only when a drinking activity is detected. (v)

LiquidMeter uses bone conduction microphones in contrast to

ordinary microphones. This provides isolation from external

noise since these microphones have to be in contact with a

vibrating surface to detect the sound.

The overall architecture of LiquidMeter is depicted in Fig.

1. The VPU data from earphones is first used for isolating

drinking activity from other activities such as eating, speaking,

etc. When a drinking activity is detected, the ML modules for

drinking volume estimation are triggered. These models are

trained by exploiting ideas in data augmentation, and semi-

supervised learning to handle the challenge of limited training

data. Finally, domain adaptation is done on the model thus

trained to handle user diversity.

LiquidMeter uses two earphone sensors developed by So-

nion. The earphones are embedded with special microphones

that can detect vibrations directly from the ear’s surface

through which the body sound can be captured. The ML mod-

els are implemented on smartphones using TensorFlowLite.

Evaluated over 6 categories of liquids known to account for ≈
85% of fluid consumption [33], the error in volume estimation

during each swallow instance is about 19.17%, whereas the

cumulative error over an entire bottle of liquid is around 3.26%

(details in Sec. V). Furthermore, our experiments validate

robustness to natural variation in earphone wearing positions,

body and head motion, ambient acoustic interference, temper-

ature of the fluid, container-type, etc. Therefore, we believe

LiquidMeter offers a practical solution.

Considering the above possibilities, we summarize Liquid-

Meter’s contributions below: (i) Estimation of liquid intake

volume using off-the-shelf earphones under natural and adhoc

conditions. (ii) Design of ML models based on data aug-

mentation and student-teacher learning to work with limited

training data. (iii) Extensive user study across different liquids,

container types, temperature, body-motion, etc to validate the

feasibility of the system. (iv) Implementation on embedded

devices with low latency and power consumption.

II. BACKGROUND

We will begin with a brief background on the biological

process of swallowing activity and sound generation.

Swallowing food, fluids, and saliva is an essential life-

sustaining activity like breathing. Humans swallow 500-700



Fig. 2. (a) Flow of contents during human swallowing. Source of image [36]
(b) Posterior tongue and hyoid bone can help people to swallow. Source of
image [2]

times per day, including 3 times per hour while sleeping

and even more while awake [69]. Fig. 2(a) depicts the flow

of contents (fluid/food) during swallowing. The three stages

involved in the process are: (i) Oral Stage: The food is chewed

by the posterior tongue, including support from the hyoid bone

(tongue bone) depicted in Fig. 2(b). The food is converted

into a paste form called bolus, whereas, in the case of fluids,

chewing may not be needed as it is already in the desired form.

(ii) Pharyngeal stage: Here, the larynx (voice box) moves, and

the epiglottis closes with the sole aim of preventing the bolus

from entering the windpipe. The hyoid bone now elevates, and

cricopharynx opens to force the bolus into the food pipe. (iii)

Esophageal Stage: Muscular contractions of the esophagus

(food pipe) will now propel the bolus into the stomach. Finally,

the larynx and the epiglottis will resume their resting position

to prepare for the next swallowing bout [10], [45].

The above three stages generate acoustic vibrations char-

acterized as follows: (i) During the pharyngeal stage, the

opening of the cricopharynx to force bolus motion into the

esophagus creates initial discrete sounds (IDS). (ii) During

the esophageal stage, a gurgling sound is produced due to

the motion of the bolus in the esophagus called bolus trans-

mission sounds (BTS). (iii) Sometimes, a final discrete sound

(FDS) might be generated as the bolus reaches the stomach

[10]. LiquidMeter’s ML models extract features predictive of

volume consumed from such sounds. Although the acoustic

pattern might vary across people, the typical intensity during

swallowing of a fluid varies between 28-62 dB, whereas the

frequency varies between 660-1170 Hz [29]. This property is

exploited for performing data augmentation (Sec. IV-A).

III. PLATFORM DESCRIPTION

We now discuss the detection of the generated sound on

earphones via bone conduction using our platform. We begin

by describing the hearing activity, and the role of bone con-

duction [44]. A spoken sound, will travel through the air and

reach the eardrums (depicted as air conduction in Fig. 3). Here,

the cochlea will convert the acoustic vibrations into electrical

impulses to be processed by the brain [18]. In addition to air

conduction, the figure also depicts a bone conduction path,

through which the sound can reach the cochlea and eventually

be converted into electrical impulses reaching the brain [17].

Fig. 3. Bone conduction. Source of image [67]

Ludwig Van Beethoven, a great composer was known to

attach a rod between the piano and his head to exploit bone

conduction to aid his hearing after he was diagnosed with a

hearing loss [59]. We will exploit the bone conduction path

for picking up body sounds during fluid intake because of

its higher quality and robustness to external noise, especially

when fluids are consumed in spaces with high noise such as

restaurants, industrial settings, travel (train, plane), etc.

Fig.4 depicts our platform from Sonion [68] which consists

of a voice pick-up (VPU) bone sensor. The VPU consists of

a microphone (INVN ICS-40619 [3]) in low power mode.

A mass-spring is connected to the microphone at its audio

port. The role of the mass-spring is to pick up the bone-

conducted sound which is much stronger than air-conducted

sound. Fig.5 depicts the amplitude of captured vibrations for

the utterance of “Let’s grab a drink” with a VPU and an

ordinary microphone with a light membrane. Evidently, the

VPU can capture stronger vibrations.

Fig. 4. VPU with and without additional mass-spring
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Fig. 5. Noisy Environment: (a) VPU data (b) Microphone data

Fig. 6 depicts an example of raw audio captured by the VPU

sensor when a user drank 18.43 mL of water. The patterns,

IDS, BTS, and FDS discussed earlier can be clearly seen.

LiquidMeter’s technical modules discussed next will convert



this raw audio into an estimation of the volume of fluid

consumed.

Fig. 6. Raw drinking data showing swallowing stages

IV. TECHNICAL MODULES

In this section, we discuss ideas for estimating the volume

of the liquid consumed based on the sound pattern captured by

the earphones. Because of the nature of the biological process

involved during fluid consumption, sound generation, and its

propagation through the face, the relationship between the

fluid consumption volume and its acoustic fingerprint can be

complex. Therefore, we design ML models to automatically

extract the relationship. However, the success of ML models

depends on the availability of large quantities of training

datasets. Unlike vision and speech domains, there are no large-

scale training datasets for the relatively new earphone VPU

sensors, or wearable devices [56]. Given the lack of availability

of such training datasets, we exploit opportunities in data

augmentation and semi-supervised learning in achieving a

sweet spot in the trade-off between accuracy and training

overhead. We expand on various modules in the high-level

architecture in Fig. 1.

A. Data Augmentation

Towards handling the challenge of limited training data,

we generate synthetic training data by designing a number of

transformations to small-scale real training data. The specific

data augmentation techniques for performing such transfor-

mations are discussed below.

Temporal Shift: The ML model accepts 0.75 seconds of

audio from the earphone as the input. We create additional

input instances by shifting the audio randomly by 0-0.15

seconds towards the right (fast forward) or left (rewind). With

fast forward, we add a few seconds of noise at the beginning of

the input instance, whereas with rewind, we add a few seconds

of noise at the end. Alternatively, the noise in the original

recording will also do as well as explicitly adding noise at the

beginning or end. This creates alternative instances of the input

where the swallow event happens at a slightly different instant

of time (since the drink was taken into the mouth) than the

original input instance. Fig. 7(b) shows an augmented version

of the signal in Fig. 7(a) based on time-shifting.

Changing Pitch: The pitch of a sound is related to the

perception of the frequency of the sound by the human ear. The

pitch of the sound can vary across, gender, age, and person.

Given an instance of drinking sound, we change the pitch [4]

randomly so as to emulate the generation of a similar drinking

activity by a different person, thereby creating more training

examples. Fig. 7(c) shows an augmented version of the signal

in Fig. 7(a) based on changing the pitch.

Noise Augmentation: We add white gaussian noise to

audio samples to create augmented versions of the data. The

noise variance is chosen so that the signal-to-noise ratio (SNR)

of the original audio degrades from about 40 to 35 dB.

Fig. 7(d) shows an augmented version of the signal in Fig.

7(a) based on noise addition. The semi-supervised learning

strategies discussed next will build on these data augmentation

techniques.

B. Semi-Supervised Learning with Teacher Student Training

Building on the data augmentation techniques discussed

above, LiquidMeter designs ML models based on teacher-

student learning to efficiently train ML models with limited

training data. Teacher-Student learning is an active area with a

number of applications in improving the efficiency of training.

Heavy ML models can be compressed to run efficiently on

embedded devices like smartphones through knowledge distil-

lation [58], [74]. Image recognition performance on ImageNet

and COCO datasets can be enhanced [78], [85]. Distant speech

recognition and beamforming techniques also reap benefits

[75]. At a high level, LiquidMeter’s ML models are inspired

by these works. However, the feature representations, network

architectures, data augmentation techniques, etc, have been

designed carefully to suit our problem domain.

The high-level architecture is depicted in Fig. 8 (i) We

first collect small-scale real data by conducting a user study.

Using this, we train a smaller ML model (teacher, Model 1

in Fig. 8) with fewer parameters. While the teacher can learn

from small training data, the accuracy of such a model can be

very limited. (ii) Next, we use data augmentation techniques

discussed in Sec. IV-A to expand the real data into synthetic

data which is 10 times more than the real data. However,

the data augmentation techniques do not necessarily preserve

the original labels (particularly with changes to pitch and

noise addition) from which a corresponding synthetic data was

created. Therefore, the synthetic data thus generated is treated

as unlabelled data. (iii) We generated pseudo labels for the

unlabelled synthetic data using the teacher model. (iv) We

now train a larger ML model (student, Model 2 in Fig. 8)

by combining the synthetic data (with pseudo labels) and the

real data with original labels. While the pseudo labels might be

noisy, the student network is expected to have higher accuracy

than the teacher for many reasons: (a) Higher network capacity

(b) The training includes a combination of original labels and

the pseudo labels, thus providing an overall larger dataset

for training. Despite being noisy, our empirical observation is

that the pseudo labels are still informative enough to improve

the overall learning process. (c) The pseudo labels with low

confidence are discarded. (v) The student network developed

above can be used as a teacher network for performing

another iteration of teacher-student learning so as to achieve a
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Fig. 7. Data Augmentation: (a) Original Signal (b) Temporal Shift (c) Change of Pitch (d) Noise Addition

Fig. 8. High-level architecture of teacher-student-based semi-supervised
learning

better accuracy (to generate Model 3 in Fig. 8). LiquidMeter

performs two iterations of the teacher-student learning as

discussed above since more iterations beyond this resulted in

only marginal gains. We now elaborate on the details of the

teacher and student models.

Teacher (compact model): Fig. 9 depicts the architecture

of a teacher model (Model 1). The model takes time domain

and frequency domain features as inputs, computed from T
audio samples. With a sampling rate of 4000 Hz and an

input audio size of 0.75 s, T = 3000. The raw time series

data is used as the time-domain input. Therefore, the size

of the time domain input is 3000 × 2 since we have two

channels of data from the two ears. The frequency-domain

features consist of the Mel-Frequency Cepstral Coefficients

(MFCC) features. The MFCC features are known to capture

a highly compressed representation of information in the

frequency domain, thus popular in many speech processing

applications [53]. We compute 13 MFCC co-coefficients from

25ms frames of audio. After computing the MFCC features

for the current 25ms frame, we move by 10ms to capture the

next 25ms frame, whose MFCC features are computed next.

This creates an overlap of 15ms between successive frames,

necessary to minimize information loss due to windowing

and other transformations performed while computing MFCC

features. Therefore, the size of our frequency-domain input for

a 0.75s segment of input audio from both earphones would be

13× 74× 2.

To best capture the spectro-temporal relationships, we use

both time and frequency domain features as discussed above

as inputs to the ML model. While using Short-time Fourier

transforms (STFT) might be one idea to capture spectro-

temporal features, our choice of network input design is

inspired by recent works which show that using separate

time and frequency domain inputs or even designing the

network with multiple resolutions of STFTs as input can offer

greater flexibility in spectro-temporal feature extraction than

conventional STFT-based design [79].

The input passes through a series of convolutional layers

with the input downsized at each layer with maxpool opera-

tion. The model attempts to capture a compact representation

of the input to be used for drinking volume estimation.

Batch normalization is used at each layer for accelerating

convergence by controlling variation in the input distribution

at each layer. The overall size of the model is chosen to be

smaller so that it can learn with small-scale training data.

While the accuracy of such a model might be low, the student

model discussed next will expand on the teacher model for

higher accuracy and robustness.

Student (expanded model): Fig. 9 depicts the architecture

of the student models (Model-2 and Model-3) at both iterations

of the semi-supervised learning strategy. As discussed earlier,

the student model for the first iteration serves as the teacher

for the second iteration of semi-supervised learning. While

the format of the input for the student models is similar to

the teacher model, the depth of the networks can larger with

an overall higher number of parameters to facilitate better

learning. Another key difference between the student and

teacher network is the introduction of residual connections

(in the second student model, Model 3). Residual connections

are known to accelerate training of deeper networks while

providing a sweet spot between stronger feature representation

and convergence of the model [43].

Loss Function: The loss function is the Mean Absolute

Error (MAE) for volume estimation as depicted in the simple

equation below, where Vpred and Vtruth are predicted and

ground truth values of volume estimates.

MAE =

N∑

i

|Vpred − Vtruth|/N (1)

C. Domain Adaptation to Handle User Diversity

The vibration pattern of earphone signals might vary across

users due to differences in body shape, gender, drinking

pattern, etc. While LiquidMeter designs techniques based on

semi-supervised learning to decrease the training overhead

(Sec. IV-B), we also explore domain adaptation techniques to

further reduce the overhead of training across multiple users.



Fig. 9. ML model architectures used in teacher-student learning.

Despite differences across users, the overall biological process

of drinking has a lot of similarities. Therefore, LiquidMeter

designs domain adaptation techniques to adapt a pretrained

model on one user to perform inferences on a new user with

minimal training overhead.

Transfer-learning-based domain adaptation is popular in

vision and speech processing. For example, AlexNet model

[55] pretrained on ImageNet database [30] was fine-tuned for

classifying images in medical domain [84], remote-sensing

[42] and breast-cancer [63]. Similarly, a pre-trained BERT

language model [31] was fine-tuned for tasks such as text-

summarizing [80], question answering, [66] etc. This signif-

icantly reduces the burden of training for a new task. In a

similar spirit, we use pretrained model from one user and fine-

tune it for a different user to significantly decrease the training

overhead (Fig. 17(b)) without losing much accuracy.

Domain adaptation is performed as enumerated below: (i)

We generate a model for one user by first training the model

with labeled data from that user – known as the pretrained

model. (ii) We collect small training data from the new (target)

user. Instead of developing the model for the target user from

scratch, we initialize the model weights to be the same as the

pretrained model. (iii) We make all layers untrainable except

the (BN) layers. Using small-scale training data from the target

user, we update the BN layers to minimize the loss function.

This is called fine tuning. (iv) Unlike supervised learning,

LiquidMeter designs ML models based on semi-supervised

learning and teacher-student interactions. Therefore, the pro-

cess of fine-tuning goes through exactly identical iterations of

teacher-student training described in Sec. IV-B. However, in

contrast to updating the weights of the entire network, only

the BN layers are updated. The model thus generated will be

used for making inferences on the target user.

Finetuning the BN layers help with domain adaptation

because of their ability to contain wide oscillations in the

distributions of input fed from one layer to the next. Given the

sufficient success in BN layers (with only a few parameters)

for accelerating convergence by minimizing covariate shift

[49], we exploit them towards domain adaptation as well.

The success of this approach has already been shown in other

domains such as computer vision [23], [60]. The BN layers

will learn to sufficiently transform the distribution from target

user to a distribution of the source user on which the model

is pretrained on. If successful, the pre-trained model from the

source user can be used for performing inferences on the target

user with the finetuning steps discussed here. As discussed in

Sec. V, this results in a reduction of training overhead on the

target user significantly.

D. Activity Detection: Drinking vs Eating vs Speaking vs Null

LiquidMeter needs to identify the activity of the user

before performing volume estimation. Therefore, we design a

classifier to detect and eliminate other activities such as eating,

drinking, or the null activity. Our definition of null activity

includes other normal activities involving body motion such as

walking as long as the user is not drinking, eating, or speaking

during that time. Whenever a drinking activity is detected, the

corresponding data is analyzed further for volume estimation.

Our architecture for the classification network is similar to the

architectures in Fig. 9 and Fig. 8 that exploit semi-supervised

learning for minimizing the training overhead. The last layers

and loss functions are different since the classification network

needs to label 4 classes (Eating, Drinking, Speaking, Null). In

contrast to volume estimation which includes ReLU activation

and MAE loss function, the last layers include SoftMax

activation and cross-entropy loss function in the classification

network. In the interest of space, we skip detailing out the

entire architecture in a separate figure. The evaluation results

are discussed next.

V. PERFORMANCE EVALUATION

A. User Study

We conduct a study with 12 users (8 males, 4 females). The

users are aged between 20-52, and weigh between 47-96 kgs.

Data Collection Methodology: Our study was approved

by the IRB committee. The users wear the smart earphones

(Sec. III) as shown in Fig.10 on both ears. The users were then



Fig. 10. User wearing earphone sensors while drinking water

instructed to drink six liquids: Water, Milk, Coffee, Tea, Soda,

and Juice (Orange). Our chosen category of liquids is known to

account for ≈ 85% of fluid intake under daily living conditions

[33]. The rest 15% includes special drinks or alcohol, not a

part of this study due to IRB restrictions. We allowed the user

to drink naturally which includes various speeds depending on

their levels of comfort. We decided not to explicitly instruct the

users to drink fast or slow since we wanted to be careful with

issues such as water getting into the windpipe, therefore we

simply instructed the users to drink naturally. Three different

containers were used – Bottle, Cup, and Straw – for consuming

the fluids. In addition to drinking, the users also performed

other activities such as eating, speaking, or the null class where

they could walk, or move randomly, or be idle, but they did

not speak, eat, or drink. The sensor data was streamed to

a smartphone over the audio jack, with a sampling rate of

4000 Hz since higher frequencies are heavily attenuated by

the human body [70].

Labels for Training and Testing: The VPU sensor data

from both earphones are collected as the user drinks the fluid

for predicting the volume of consumption. We use a high-

precision weighing scale [1] to measure the ground truth. The

user is instructed to place the container on the scale before

and after each drinking bout, and the difference in weight as

measured by the scale is noted. The weight is later divided by

the density of the liquid to obtain the ground truth of volume.

We note that the weighing scale is only used for collecting

ground truth, it is not a part of our system. The labels for

activity classification (eating, speaking, drinking, null class)

were derived manually.

Training Data: Towards keeping the volume of fluids con-

sumed per session within natural and comfortable limits, we

spread the user study across six different days, with over four

sessions per day at different times. Over the period of six days,

each user consumed about 2100 mL of water, and 600 mL of

each of the 5 other types of liquids: Milk, Coffee, Tea, Soda,

and Orange Juice. An equal amount of liquid was consumed

each day. We used bottled mineral water at room temperature

for “water” studies above. Half of Milk, Coffee, and Tea was

tested under both “hot” and “room temperature” conditions,

whereas, Soda and Orange Juice were tested under “room

temperature”, and “cold” conditions. Given ideas in semi-

supervised learning discussed in Sec. IV-B, our evaluation

depicts that the data thus collected is sufficient for generating

robust ML models. The initial data collection was further

augmented as elaborated later in this section to test special

cases of usability. For activity classification, approximately

20 minutes of data per day was collected for each of the

non-drinking activities (eating, speaking, null class). Three

kinds of models were developed using the training data: (i)

User-dependent model: A model for each user that requires

training data from the same user. (ii) Model with domain

adaptation: A model for each user where a pre-trained model

from a different user is taken and fine-tuned using techniques

in Section IV-C such that only a small fraction of user-specific

training data is used for developing a model for the user. (iii)

Multi-user model: This is a user-independent model. Here,

we train a model based on training data from multiple users.

The trained model is directly used for inferences on a new

user without any training data from the new user.

Test Data: Because of data augmentation and semi-

supervised learning strategies, the user-dependent model con-

verged with only a small amount of training data – 65 instances

of drinking events (swallowing the liquid) – which is approx-

imately 1500 mL of liquid, and the testing was done with

the rest of the data in a randomized cross-validation manner

such that the training and the test data are not taken from the

same day. With domain adaptation, even lesser training data is

needed (15 swallow instances, details in Fig. 17(b)). We only

used water for training the model, which generalizes well to

other fluids in the study (details in Fig. 12). Given that training

and testing data are sampled from different days, the earphone

sensor has to be removed and remounted between training and

testing, thus providing a benchmark for validating robustness

to natural variation in sensor positions. In addition, various

other test cases including drinking while walking, drinking

with head movements, ambient acoustic interference were

considered as described in detail in appropriate subsections.

Metrics of Evaluation: In addition to MAE from Equation

1, we also use the mean absolute percentage error (MAPE),

and mean percentage error (MPE), depicted in Equation 2.

These are popular metrics for validating fluid intake accu-

racy [28]. While MAPE computes the absolute error, MPE

computes the cumulative sum of errors over time where the

positive and negative errors may cancel out. MPE might be

more relevant in the context of longer intervals of tracking

(over an entire bottle of drink). However, MAPE computes

average error across instances of swallowing a drink, providing

an estimate of worst-case errors.



MAPE =
100

N

N∑

i

|V (Predicted)− V (GroundTruth)|

V (GroundTruth)

MPE =
100

N

N∑

i

V (Predicted)− V (GroundTruth)

V (GroundTruth)

(2)

B. Implementation

LiquidMeter is implemented on a combination of desktop

and smartphone devices. The ML model is implemented with

TensorFlow [9] packages and the training is performed on a

desktop with Intel i7-8700K CPU, 16GB RAM memory, and

Nvidia GTX 1080 GPU. We use the Adam optimizer [52] with

a learning rate of 0.1, β1 of 0.9 and β2 of 0.999. To avoid

over-fitting issues that may happen in the training process, we

apply the L2 regularization [16] on each CONV layer with a

parameter of 0.01 and also add dropouts [72] with a parameter

of 0.1 following each RELU activations. Once a model is

generated from training, the inference is done entirely on a

smartphone device using TensorFlowLite [39] on Samsung

S20, and Oneplus 9 Pro smartphones.

C. Performance Results

While we mainly provide MAPE and MPE errors in the

graphs for brevity, the MAE errors are discussed while eval-

uating the training overhead of the ML models. If not stated

otherwise, the general reported results are from the model

with domain adaptation. The results from other models (user

dependent, multi-user) are discussed separately.

Activity Classification: Eating vs Speaking vs Drinking

vs Null: A user could be performing any activity such as being

idle, walking, speaking, or eating in addition to drinking. We

first identify the activity. If a drinking activity is detected, the

ML module for volume estimation is triggered. We did not

have a single instance of missed classification and the accuracy

was 100%. Because of the vast differences in generated sounds

across activities, they are easily distinguishable.

Accuracy vs Users: Fig.11(a) shows the breakup of ac-

curacy across users. Although the direct use of a model

trained from 11 users (multi-user model) and tested on a new

user (without domain adaptation) provides a decent accuracy

(MAPE = 34.89%, MPE = 7.11%), domain adaptation in

LiquidMeter can significantly cut down the errors (MAPE =

19.17%, MPE = 3.26%), the performance is close to user-

dependent model with less training overhead. The overall
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accuracy is robust with diversity in users, body mass indices,

gender, etc.

Accuracy vs Type of Drink: Fig. 12 depicts the overall

accuracy as a function of the liquid. Evidently, the model
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Fig. 12. Accuracy vs type of liquid

trained with water continues to hold well for other liquids,

with only small differences. Because of similarity in sound

generated across liquids, reliable classification of the type of

drink from the VPU data was not possible. However, we

believe that because of the same reason, the model trained

with water continues to hold for other liquids as well. The

accuracy is consistent across liquids, indicating promise in

seamless monitoring of fluid intake for commonly used liquids.

Accuracy vs Volume Consumed: Fig. 13(a) depicts the

MAE as a function of the amount of liquid consumed. The

accuracy is slightly higher within the 10-30 mL regime. Given

that the natural distribution of volumes of liquid consumed per

swallowing instance (in Fig. 13(b)) tends to be more within

10-30 mL, the ML models are trained with more data within

this domain, thus resulting in higher accuracy. Nevertheless,
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Fig. 13. (a) Accuracy vs volume of liquid consumed per swallow (b)
Distribution of volume intake per swallow event

the overall MPE is less than 5%, thus showing promise in

accurately tracking the volume over time.

Accuracy vs Type of Container Fig. 14(a) depicts the

accuracy vs popularly used containers for drinking the liquid.

Evidently, the accuracy is consistent across all containers.

This is because the container only influences how the liquid

is ingested into the mouth. On the other hand, the volume

estimation depends on the sound produced when the liquid

passes through the food pipe from the mouth, which is

independent of the type of container. Our experiments are in

agreement with this hypothesis.

Accuracy vs Temperature: Fig. 14(b) depicts the accuracy

variation with temperature. While beverages are typically

served hot, the safe temperature for a hot beverage is known

to be below 56◦ [20], and we maintain the temperatures of

our hot beverage below this value. Similarly, we maintain the

temperature of our cold beverage above 4◦ using a refrigerator.
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Under these conditions, we observe that the acoustic vibrations

generated in the body are similar to those when the drink is

taken at room temperature. Accordingly, the volume estimation

accuracy is consistent across all temperatures.

Accuracy vs Number of Earbuds: Fig. 14(c) depicts

the accuracy for individual earphones as well as the overall

accuracy when both are used. The accuracy is uniform across

all cases. Inspection of raw recordings reveals that there is

substantial redundancy in information captured across both

earphones. Thus, we believe it is sufficient to put a VPU sensor

in one earphone.

Robustness to Sensor Position Variation: Fig. 14(d)

depicts the accuracy over different days of the user study.

Although the earphones can fit snugly, there might be small

variations in sensor position across days. The training and test

data sets were sampled across completely different days to

validate robustness to sensor positions. Evidently, the accuracy

is consistent across days. The ML models have been trained

with noisy data augmentation techniques, we believe this

makes the model robust.

Accuracy vs Hands: Fig. 15 depicts the accuracy as a

function of the hand used for drinking. Given that the volume

estimation depends on sounds produced when the liquid is

passing through the food pipe, which is independent of the

hand, we did not notice a difference in accuracy due to the

hand used for drinking.
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Robustness to Ambient Noise: Since the VPU sensor used

in LiquidMeter picks up vibrations directly from bone conduc-

tion, it is immune to interference from ambient acoustic noise.

To validate the hypothesis, we simulate a noise environment

by playing airport noise in the ambiance. The volume of the

noise was set to 60 dB which is at similar levels to actual

ambient noise in an airport. Our results in Fig. 16(a) indicate

that the ambient noise levels do not affect the accuracy in

comparison to a clean environment.

Robustness to Head and Body Motion: In a natural

setting, a user may consume drinks while walking (in a

party), or moving the head while talking to others. To evaluate

clean noise
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Fig. 16. Robustness to (a) Ambient Noise (b) Body Motion

robustness under such conditions, we test the accuracy under

the following conditions: (i) Turning head to the right (ii)

Turning head to the left (iii) Walking (iv) Static. Depicted

in Fig. 16(b), our results indicate that the accuracy is stable

across conditions of mobility, close to static conditions.

Effectiveness of Semi-Supervised Learning: Fig. 17(a)

depicts median and 90th percentile MAE for for the fol-

lowing three cases: (i) without data augmentation or semi-

supervision (base) (ii) with one iteration of teacher-student

training (Iteration-1) (iii) with two iterations of teacher-student

training (Iteration-2). Evidently, the semi-supervision in Liq-

uidMeter creates robust ML models bringing down the error

substantially from 10.4 mL to 3.91 mL and 3.35 mL after

the first and second iterations respectively. Similarly, the 90th

percentile errors are cut down from 21.19 mL to 7.54 mL and

6.50 mL with the two iterations. Additional iterations beyond

this result in only marginal gains.

Fig. 17. Accuracy Variation with (a) Iterations of Semi-Supervision (b) Size
of Training Data

Training Overhead: Fig.17(b) shows the median and 90th

percentile MAE as a function of the size of training data.

Because of data augmentation and semi-supervised learning

techniques (Sec. IV) incorporated in LiquidMeter, even with

the user dependent model, we only need 65 instances of

drinking (swallowing) events to converge and achieve an MAE

of 3.12 mL. While we believe, the user dependent model

does not have a big training overhead, domain adaptation can

further cut down the number of training instances (swallow

events) to 15 with MAE levels (3.35 mL) close to the user

dependent model.

Latency and Power Consumption: Fig. 18(a) depicts

the latency of executing ML models in LiquidMeter on

smartphone devices. Evidently, the latency for both activity



classification and volume estimation is very low. For profiling

the energy of the TensorflowLite model, we use Batterystats

and Battery Historian [5] tools. We compare the difference

in power between two states: (i) The device is idle with

the screen on. (ii) The device is making inferences using

the TensorflowLite model. Fig. 18(b) depicts a low power

consumption profile for both activity detection and volume

estimation modules. The earphone sensor draws 55uA at 1.8V,

thus consuming a small power [67].

Activity Classification

Volume Estimation

0

5

10

L
a
te

n
c
y
 (

m
s
)

Samsung S20

OnePlus 9 Pro

Idle Screen on

Activity Classification

Volume Estimation

0

5

10

P
o

w
e

r 
C

o
n

s
u

m
p

ti
o

n
 p

e
r 

H
o

u
r 

(%
)

Samsung S20

OnePlus 9 Pro

Fig. 18. System evaluation (a) Latency (b) Power Consumption

VI. RELATED WORK

Vision: Work in [27] uses a depth camera installed on

the ceiling to detect activities such as eating and drinking

by using Artificial neural Networks (ANN) on the depth

+ RGB images. Work in [22] uses Kinect cameras on a

mobile robot to detect various activities in daily life including

drinking. The information from depth, color, and optical flow,

etc., is integrated into a 3D CNN algorithm for performing

activity detection. Work in [50] performs eating and drinking

activity classification by exploiting both spatial as well as

temporal variation of the human body pose detected by a

camera. Linear Discriminant Analysis (LDA) is used to map

the input to a compact feature representation space so as

to facilitate classification based on clustering algorithms in

the feature space. Similarly, the work in [19] uses skeleton

structures extracted from two Kinect sensors to detect eating

and drinking activities in a meeting room. While vision based

sensing can be passive, they can be susceptible to occlusion

and lighting conditions. Also, all of the above works only

perform detection of drinking but do not estimate the actual

volume of the content consumed. In contrast, LiquidMeter’s

solution is more ubiquitous while being able to continuously

estimate the volume of fluid consumption.

Smart Surface: Work in [21] designs a diet aware dining

table where the surface of the table is embedded with RFID

and weight detection sensors for tracking food and drink

consumption. Work in [83] designs a smart table embedded

with a fine grained pressure sensing textile matrix as well as a

weight sensitive tablet. Various fine grained activities such as

cutting, spooking, poking, etc., can be detected for monitoring

eating and drinking related actions. Similarly, work in [61]

uses a table with embedded weighing scale to detect bits of

eating and drinking. In contrast to above works, a portable

sensing mat [76] with embedded sensors is designed to track

food and drink consumption. While sensor embedded surfaces

can track fine grained eating and drink related activities, the

sensing is only restricted to the surface, and the food/drink has

to be placed on the smart surface before and after consumption.

In contrast, LiquidMeter provides a more ubiquitous solution.

Inertial Sensors: Inertial sensors worn on the wrist and

the head are explored in [77] for performing drinking activity

detection. Work in [13] first uses a waist worn inertial sensor

to determine whether a person is sitting, standing, and moving.

This information is fused with wrist worn inertial sensors to

detect eating and drinking activities. Similarly, work in [14]

uses a single wrist watch inertial sensor worn on the dominant

hand for eating and drinking detection. The above works

do not perform drinking volume estimation. Works in [41],

[46] estimates drinking volume using smart watch sensors.

However, the subject has to remain relatively still while

drinking and has to place the bottle down before beginning

another bout of drinking. In contrast, LiquidMeter’s solution is

more generic with ability to estimate the volume under adhoc

conditions including mobility.

Sensors on the Throat and Neck: Capacitive sensors have

been used on the throat and neck for classifying activities

such as chewing, swallowing, speaking, and sighing [24],

[25]. Bioimpedance and pressure sensor have similarly been

used for detection of swallow events [82]. EMG sensors in

combination with throat microphones have been used for

detecting swallow events as well as classifying volume con-

sumption into three categories: low, medium, and high [12].

Electroglottography (EGG) [37] signals have also been used

for detecting food intake. In contrast to these works that detect

and classify activities at a higher granularity, LiquidMeter

tracks fluid intake at a finer granularity of milliliters.

Radio Frequency (RF) based Sensing: RFID sensors are

attached at the bottom of the liquid container for detecting

drinking events [51]. UltraWideBand [32] and RFID sensors

[73] have been used to detect liquids placed in a container

based on properties of RF reflections. Several RFID tags

are attached to the container and the volume level in the

container is estimated at a resolution of 35 mL based on

properties of signals received from these tags by a RFID

reader [54]. While these works are innovative in nature, the

range of RF based solutions is limited to the environment in

which the infrastructure is installed. In contrast to these works,

LiquidMeter offers an order of magnitude higher accuracy

levels, while being fully ubiquitous.

Smart Container: A number of smart containers have been

made commercially available for estimation of fluid volume

consumption [34], [40], [47], [48], [65], [71]. HydrateSpark

[48] uses capacitive and IMU sensors to estimate the volume.

The data syncs with a smartphone app using Bluetooth and the

smart container includes an LED based reminder if the user

has not consumed enough fluid. On the other hand, H2OPal

[40] uses load cells and IMU sensors at the bottom of the

device. Any container with similar size can be inserted into

the device for tracking. The Thermos Smart Lid [71] includes

sensors in the lid to measure liquid levels and the temperature.

In addition to tracking volume consumption, the Ozmo smart

bottle [65] can also differentiate between coffee and water.

While effective in tracking, the user has to use the same

container for drinking any fluid. In contrast, LiquidMeter’s

solution works with any container.



Activity Detection using Earphones: Earphone sensors

are gaining in popularity with a number of applications in

emotion sensing, dental hygiene detection, smart health, and

augmented reality [26]. The feasibility of sensing eog (eye),

eeg (brain), and emg (facial muscles) signals at earphone

electrodes has been explored in LIBS [64] for applications in

healthcare. EarFS [62] and ECTF [11] show the feasibility

of detecting facial expressions by detects electrical signals

in earphones as well as embedded microphones. Perhaps,

closest to our work related to food consumption is [57], where

earphone sensors are used for classifying activities such as

head nodding, speaking, eating, etc. They do not estimate

liquid volume consumption. In contrast to above works, to

our best knowledge, LiquidMeter is the first work that uses

earphone sensors for drinking volume estimation.

VII. DISCUSSION: LIMITATIONS AND FUTURE WORK

Wireless Streaming of Earphone Sensor Data: Our plat-

form developed by Sonion currently does not support wireless

streaming of sensor data, the earphones need to be connected

to the smartphone’s audio port. We believe providing wireless

streaming of sensor data will improve the usability of the

system. While LiquidMeter shows the feasibility of sensing,

we plan to incorporate this feature in our future work.

Food Classification and Quantification: We plan to extend

this work towards the identification and quantification of food

intake. Diverse classes of food such as bread, rice, pizza, salad,

etc might generate different sound patterns at the earphones.

Analysis of such information might offer valuable insights

about food intake which is a part of our future investigation.

Earphone Wearability for Whole Day: One of the lim-

itations of LiquidMeter is that it can only track drinking

volume when the users are wearing earphones. Given the rise

in popularity of smart earphones, particularly in the context of

healthcare applications such as monitoring of respiration rate,

blood pressure, and sleep stages, etc, we believe earphones in

the future could be suitable for long-term wearability.

VIII. CONCLUSION

Ensuring proper hydration levels is critical for the smooth

functioning of the human body. Towards this end, this paper

presented a system called LiquidMeter that shows the fea-

sibility of estimating the volume of fluid intake using smart

earphones. The bone conduction sensor in the earphones picks

up acoustic vibrations during fluid intake which is analyzed for

estimating the volume of intake. While the lack of large-scale

training data is a challenge, LiquidMeter builds robust ML

models by designing techniques based on data augmentation

and semi-supervised learning. Extensive measurement based

evaluation across diverse users depicts an accuracy of 3.35

mL (≈ 19.17% error) over commonly consumed liquids. Fur-

thermore, the accuracy is robust to sensor mounting positions,

body, and head motion, ambient acoustic interference, con-

tainer type, temperature, etc. While the results are promising,

we believe there are additional opportunities to be explored in

the space of smart healthcare such as food intake monitoring,

nutrient, and calorie estimation, etc.
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