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Abstract—This paper shows the feasibility of fluid intake esti-
mation using earphone sensors, which are gaining in popularity.
Fluid consumption estimation has a number of healthcare-related
applications in tracking dehydration and overhydration which
can be connected to issues in fatigue, irritability, high blood pres-
sure, kidney stones, etc. Therefore, accurate tracking of hydration
levels not only has direct benefits to users in preventing such
disorders but also offers diagnostic information to healthcare
providers. Towards this end, this paper employs a voice pick-
up microphone that captures body vibrations during fluid con-
sumption directly from skin contact and body conduction. This
results in the extraction of stronger signals while being immune
to ambient environmental noise. However, the main challenge
for accurate estimation is the lack of availability of large-scale
training datasets to train machine learning models (ML). To
address the challenge, this paper designs robust ML models
based on techniques in data augmentation and semi-supervised
learning. Extensive user study with 12 users shows a per-swallow
volume estimation accuracy of 3.35 mL (= 19.17% error) and
a cumulative error of 3.26% over an entire bottle, while being
robust to body motion, container type, liquid temperature, sensor
position, etc. The ML models are implemented on smartphones
with low power consumption and latency.

I. INTRODUCTION

Sufficient hydration is essential for blood circulation,
metabolism, temperature regulation, and overall smooth func-
tioning of the human body. However, several surveys have
indicated that 50-75% of people can have a net fluid loss (fluid
intake is lesser than fluid release), thus leading to chronic
dehydration over time [6], [8]. While short-term effects of
dehydration include fatigue, foggy memory, irritability, etc.,
[15], [38] long-term effects due to chronic dehydration can
lead to high blood pressure, kidney stones, etc. This can lead to
further complications depending on the condition of the body
[7]. Proper hydration levels improve cognitive performance
and mood [81] while sustaining an overall healthy lifestyle in
the long run.

Towards detecting dehydration and alerting users, this paper
presents a system called LiquidMeter, which shows the feasi-
bility of estimating the volume of fluid intake by exploiting
earphone sensors that are gaining in popularity with an ex-
pectation to reach a $45.7 billion market by 2026 [35]. At a
high level, LiquidMeter performs drinking volume estimation
by analyzing body sounds during drinking by using bone
conduction microphones in the earphones, detailed in Sec. III
as Voice-pickup-units (VPU). As the fluid is swallowed, the
fluid’s motion and the opening and closing of the esophagus
(food pipe) for letting the fluid into the stomach will produce
acoustic vibrations. These vibrations propagate through the

skull, captured in the ears through earphone VPU. In contrast
to an ordinary microphone, the VPU measures vibrations
directly from a solid surface, thus resulting in a stronger
reception and isolation from external noise and interference.

Motivated by the need for monitoring hydration levels, fluid
intake monitoring is an active area of research [28]. Vision-
based approaches [19], [27] are prevalent in monitoring activ-
ities of daily living, including drinking detection. Similarly,
smartwatch sensors have also been employed for detecting
activities related to drinking vs. eating classification [41], [46],
[77]. Smart surfaces that use load cells, pressure sensors, etc.,
can monitor liquid and food intake when the container is
placed on them before and after drinking [61], [76], [83].
Finally, smart containers that utilize capacitive, conductive,
pressure, radar sensors, etc., can estimate the drinking volume
for fluids consumed with the container [40], [48], [65].

In contrast to prior works, LiquidMeter provides the follow-
ing advantages: (i) Sensing by vision-based approaches can
be limited to the camera’s view and be susceptible to light-
ing, resolution, and occlusions. In contrast, LiquidMeter uses
earphone sensors which can be ubiquitous without limitations
on the range of sensing, lighting, or occlusions. (ii) Solutions
based on smartwatch devices can mainly detect the action of
drinking. The volume estimation is limited to special cases
where the user stays still while drinking, and the bottle has
to be placed on a flat surface before and after drinking. In
contrast, LiquidMeter works under adhoc and natural condi-
tions, including body and head motion. (iii) Solutions based on
smart surfaces or smart containers work under specific settings
of having a specialized surface or drinking using a particular
container. In contrast, LiquidMeter’s solution works on any
surface or container since the sensing is done directly on the
human body.

Estimation of fluid consumption volume with earphone sen-
sors is challenging for many reasons: (i) Because of the nature
of the biological process involved during fluid consumption,
sound generation, and its propagation through the face, the
relationship between the fluid consumption volume and its
acoustic fingerprint can be complex. While machine learning
(ML) algorithms can be used to learn this relationship, the
training data is limited. Unlike vision and speech domains,
there are no large-scale training datasets for the relatively new
earphone VPU sensors, or wearable devices [56]. (ii) While
LiquidMeter designs synthetic training data to address the
above challenge, such data is unlabelled (elaborated in Sec.
IV-B). (iii) The drinking activity and its acoustic fingerprint
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Overview of LiguidMeter: The vibration data from earphones is first used for identifying drinking activity. Drinking related vibration data is combined

with data augmentation and semi-supervised learning (teacher-student training) for accurate estimation of the volume of fluid intake with limited training data

can vary across users because of diversity in body sizes,
drinking characteristics, etc. (iv) Drinking activities need to be
separated from non-drinking activities such as eating, speak-
ing, etc. (v) The choice of earphone sensors in LiquidMeter
must ensure robustness to external noise and interference.

Enumerated below, LiquidMeter exploits a combination of
algorithmic and systems-based opportunities to tackle the
above challenges. (i) LiquidMeter designs data augmentation
techniques to transform the limited real data into several
samples of synthetic training data by creating variations in
pitch, introducing time-shifts, and adding noise. (ii) While
the augmented synthetic data may not retain the original
labels, LiquidMeter designs ML models based on teacher-
student learning strategies to train efficiently with unlabelled
synthetic data. (iii) LiquidMeter exploits techniques in domain
adaptation for customizing a pre-trained model on other users
for a new user. While pretraining helps quickly generate a
base model for the new user, domain adaptation will fine-tune
the model to customize it to a specific user. (iv) LiquidMeter
first performs classification of the activity (eating vs. drinking
vs. speaking) and triggers the ML model for drinking volume
estimation only when a drinking activity is detected. (v)
LiquidMeter uses bone conduction microphones in contrast to
ordinary microphones. This provides isolation from external
noise since these microphones have to be in contact with a
vibrating surface to detect the sound.

The overall architecture of LiquidMeter is depicted in Fig.
1. The VPU data from earphones is first used for isolating
drinking activity from other activities such as eating, speaking,
etc. When a drinking activity is detected, the ML modules for
drinking volume estimation are triggered. These models are
trained by exploiting ideas in data augmentation, and semi-

supervised learning to handle the challenge of limited training
data. Finally, domain adaptation is done on the model thus
trained to handle user diversity.

LiquidMeter uses two earphone sensors developed by So-
nion. The earphones are embedded with special microphones
that can detect vibrations directly from the ear’s surface
through which the body sound can be captured. The ML mod-
els are implemented on smartphones using TensorFlowLite.
Evaluated over 6 categories of liquids known to account for ~
85% of fluid consumption [33], the error in volume estimation
during each swallow instance is about 19.17%, whereas the
cumulative error over an entire bottle of liquid is around 3.26%
(details in Sec. V). Furthermore, our experiments validate
robustness to natural variation in earphone wearing positions,
body and head motion, ambient acoustic interference, temper-
ature of the fluid, container-type, etc. Therefore, we believe
LiquidMeter offers a practical solution.

Considering the above possibilities, we summarize Liquid-
Meter’s contributions below: (i) Estimation of liquid intake
volume using off-the-shelf earphones under natural and adhoc
conditions. (ii) Design of ML models based on data aug-
mentation and student-teacher learning to work with limited
training data. (iii) Extensive user study across different liquids,
container types, temperature, body-motion, etc to validate the
feasibility of the system. (iv) Implementation on embedded
devices with low latency and power consumption.

II. BACKGROUND

We will begin with a brief background on the biological
process of swallowing activity and sound generation.

Swallowing food, fluids, and saliva is an essential life-
sustaining activity like breathing. Humans swallow 500-700
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Fig. 2. (a) Flow of contents during human swallowing. Source of image [36]
(b) Posterior tongue and hyoid bone can help people to swallow. Source of
image [2]

times per day, including 3 times per hour while sleeping
and even more while awake [69]. Fig. 2(a) depicts the flow
of contents (fluid/food) during swallowing. The three stages
involved in the process are: (i) Oral Stage: The food is chewed
by the posterior tongue, including support from the hyoid bone
(tongue bone) depicted in Fig. 2(b). The food is converted
into a paste form called bolus, whereas, in the case of fluids,
chewing may not be needed as it is already in the desired form.
(ii) Pharyngeal stage: Here, the larynx (voice box) moves, and
the epiglottis closes with the sole aim of preventing the bolus
from entering the windpipe. The hyoid bone now elevates, and
cricopharynx opens to force the bolus into the food pipe. (iii)
Esophageal Stage: Muscular contractions of the esophagus
(food pipe) will now propel the bolus into the stomach. Finally,
the larynx and the epiglottis will resume their resting position
to prepare for the next swallowing bout [10], [45].

The above three stages generate acoustic vibrations char-
acterized as follows: (i) During the pharyngeal stage, the
opening of the cricopharynx to force bolus motion into the
esophagus creates initial discrete sounds (IDS). (ii) During
the esophageal stage, a gurgling sound is produced due to
the motion of the bolus in the esophagus called bolus trans-
mission sounds (BTS). (iii) Sometimes, a final discrete sound
(FDS) might be generated as the bolus reaches the stomach
[10]. LiquidMeter’s ML models extract features predictive of
volume consumed from such sounds. Although the acoustic
pattern might vary across people, the typical intensity during
swallowing of a fluid varies between 28-62 dB, whereas the
frequency varies between 660-1170 Hz [29]. This property is
exploited for performing data augmentation (Sec. IV-A).

III. PLATFORM DESCRIPTION

We now discuss the detection of the generated sound on
earphones via bone conduction using our platform. We begin
by describing the hearing activity, and the role of bone con-
duction [44]. A spoken sound, will travel through the air and
reach the eardrums (depicted as air conduction in Fig. 3). Here,
the cochlea will convert the acoustic vibrations into electrical
impulses to be processed by the brain [18]. In addition to air
conduction, the figure also depicts a bone conduction path,
through which the sound can reach the cochlea and eventually
be converted into electrical impulses reaching the brain [17].
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Fig. 3. Bone conduction. Source of image [67]

Ludwig Van Beethoven, a great composer was known to
attach a rod between the piano and his head to exploit bone
conduction to aid his hearing after he was diagnosed with a
hearing loss [59]. We will exploit the bone conduction path
for picking up body sounds during fluid intake because of
its higher quality and robustness to external noise, especially
when fluids are consumed in spaces with high noise such as
restaurants, industrial settings, travel (train, plane), etc.

Fig.4 depicts our platform from Sonion [68] which consists
of a voice pick-up (VPU) bone sensor. The VPU consists of
a microphone (INVN ICS-40619 [3]) in low power mode.
A mass-spring is connected to the microphone at its audio
port. The role of the mass-spring is to pick up the bone-
conducted sound which is much stronger than air-conducted
sound. Fig.5 depicts the amplitude of captured vibrations for
the utterance of “Let’s grab a drink” with a VPU and an
ordinary microphone with a light membrane. Evidently, the
VPU can capture stronger vibrations.
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Fig. 4. VPU with and without additional mass-spring
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Fig. 5. Noisy Environment: (a) VPU data (b) Microphone data

Fig. 6 depicts an example of raw audio captured by the VPU
sensor when a user drank 18.43 mL of water. The patterns,
IDS, BTS, and FDS discussed earlier can be clearly seen.
LiquidMeter’s technical modules discussed next will convert



this raw audio into an estimation of the volume of fluid
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IV. TECHNICAL MODULES

In this section, we discuss ideas for estimating the volume
of the liquid consumed based on the sound pattern captured by
the earphones. Because of the nature of the biological process
involved during fluid consumption, sound generation, and its
propagation through the face, the relationship between the
fluid consumption volume and its acoustic fingerprint can be
complex. Therefore, we design ML models to automatically
extract the relationship. However, the success of ML models
depends on the availability of large quantities of training
datasets. Unlike vision and speech domains, there are no large-
scale training datasets for the relatively new earphone VPU
sensors, or wearable devices [56]. Given the lack of availability
of such training datasets, we exploit opportunities in data
augmentation and semi-supervised learning in achieving a
sweet spot in the trade-off between accuracy and training
overhead. We expand on various modules in the high-level
architecture in Fig. 1.

A. Data Augmentation

Towards handling the challenge of limited training data,
we generate synthetic training data by designing a number of
transformations to small-scale real training data. The specific
data augmentation techniques for performing such transfor-
mations are discussed below.

Temporal Shift: The ML model accepts 0.75 seconds of
audio from the earphone as the input. We create additional
input instances by shifting the audio randomly by 0-0.15
seconds towards the right (fast forward) or left (rewind). With
fast forward, we add a few seconds of noise at the beginning of
the input instance, whereas with rewind, we add a few seconds
of noise at the end. Alternatively, the noise in the original
recording will also do as well as explicitly adding noise at the
beginning or end. This creates alternative instances of the input
where the swallow event happens at a slightly different instant
of time (since the drink was taken into the mouth) than the
original input instance. Fig. 7(b) shows an augmented version
of the signal in Fig. 7(a) based on time-shifting.

Changing Pitch: The pitch of a sound is related to the
perception of the frequency of the sound by the human ear. The
pitch of the sound can vary across, gender, age, and person.

Given an instance of drinking sound, we change the pitch [4]
randomly so as to emulate the generation of a similar drinking
activity by a different person, thereby creating more training
examples. Fig. 7(c) shows an augmented version of the signal
in Fig. 7(a) based on changing the pitch.

Noise Augmentation: We add white gaussian noise to
audio samples to create augmented versions of the data. The
noise variance is chosen so that the signal-to-noise ratio (SNR)
of the original audio degrades from about 40 to 35 dB.
Fig. 7(d) shows an augmented version of the signal in Fig.
7(a) based on noise addition. The semi-supervised learning
strategies discussed next will build on these data augmentation
techniques.

B. Semi-Supervised Learning with Teacher Student Training

Building on the data augmentation techniques discussed
above, LiquidMeter designs ML models based on teacher-
student learning to efficiently train ML models with limited
training data. Teacher-Student learning is an active area with a
number of applications in improving the efficiency of training.
Heavy ML models can be compressed to run efficiently on
embedded devices like smartphones through knowledge distil-
lation [58], [74]. Image recognition performance on ImageNet
and COCO datasets can be enhanced [78], [85]. Distant speech
recognition and beamforming techniques also reap benefits
[75]. At a high level, LiquidMeter’s ML models are inspired
by these works. However, the feature representations, network
architectures, data augmentation techniques, etc, have been
designed carefully to suit our problem domain.

The high-level architecture is depicted in Fig. 8 (i) We
first collect small-scale real data by conducting a user study.
Using this, we train a smaller ML model (teacher, Model 1
in Fig. 8) with fewer parameters. While the feacher can learn
from small training data, the accuracy of such a model can be
very limited. (ii) Next, we use data augmentation techniques
discussed in Sec. IV-A to expand the real data into synthetic
data which is 10 times more than the real data. However,
the data augmentation techniques do not necessarily preserve
the original labels (particularly with changes to pitch and
noise addition) from which a corresponding synthetic data was
created. Therefore, the synthetic data thus generated is treated
as unlabelled data. (iii) We generated pseudo labels for the
unlabelled synthetic data using the teacher model. (iv) We
now train a larger ML model (student, Model 2 in Fig. 8)
by combining the synthetic data (with pseudo labels) and the
real data with original labels. While the pseudo labels might be
noisy, the student network is expected to have higher accuracy
than the teacher for many reasons: (a) Higher network capacity
(b) The training includes a combination of original labels and
the pseudo labels, thus providing an overall larger dataset
for training. Despite being noisy, our empirical observation is
that the pseudo labels are still informative enough to improve
the overall learning process. (c) The pseudo labels with low
confidence are discarded. (v) The student network developed
above can be used as a feacher network for performing
another iteration of teacher-student learning so as to achieve a
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better accuracy (to generate Model 3 in Fig. 8). LiquidMeter
performs two iterations of the feacher-student learning as
discussed above since more iterations beyond this resulted in
only marginal gains. We now elaborate on the details of the
teacher and student models.

Teacher (compact model): Fig. 9 depicts the architecture
of a teacher model (Model 1). The model takes time domain
and frequency domain features as inputs, computed from 7'
audio samples. With a sampling rate of 4000 Hz and an
input audio size of 0.75 s, T' = 3000. The raw time series
data is used as the time-domain input. Therefore, the size
of the time domain input is 3000 x 2 since we have two
channels of data from the two ears. The frequency-domain
features consist of the Mel-Frequency Cepstral Coefficients
(MFCC) features. The MFCC features are known to capture
a highly compressed representation of information in the
frequency domain, thus popular in many speech processing
applications [53]. We compute 13 MFCC co-coefficients from
25ms frames of audio. After computing the MFCC features
for the current 25ms frame, we move by 10ms to capture the
next 25ms frame, whose MFCC features are computed next.
This creates an overlap of 15ms between successive frames,
necessary to minimize information loss due to windowing
and other transformations performed while computing MFCC
features. Therefore, the size of our frequency-domain input for
a 0.75s segment of input audio from both earphones would be
13 x 74 x 2.

To best capture the spectro-temporal relationships, we use
both time and frequency domain features as discussed above

as inputs to the ML model. While using Short-time Fourier
transforms (STFT) might be one idea to capture spectro-
temporal features, our choice of network input design is
inspired by recent works which show that using separate
time and frequency domain inputs or even designing the
network with multiple resolutions of STFTs as input can offer
greater flexibility in spectro-temporal feature extraction than
conventional STFT-based design [79].

The input passes through a series of convolutional layers
with the input downsized at each layer with maxpool opera-
tion. The model attempts to capture a compact representation
of the input to be used for drinking volume estimation.
Batch normalization is used at each layer for accelerating
convergence by controlling variation in the input distribution
at each layer. The overall size of the model is chosen to be
smaller so that it can learn with small-scale training data.
While the accuracy of such a model might be low, the student
model discussed next will expand on the teacher model for
higher accuracy and robustness.

Student (expanded model): Fig. 9 depicts the architecture
of the student models (Model-2 and Model-3) at both iterations
of the semi-supervised learning strategy. As discussed earlier,
the student model for the first iteration serves as the teacher
for the second iteration of semi-supervised learning. While
the format of the input for the student models is similar to
the teacher model, the depth of the networks can larger with
an overall higher number of parameters to facilitate better
learning. Another key difference between the student and
teacher network is the introduction of residual connections
(in the second student model, Model 3). Residual connections
are known to accelerate training of deeper networks while
providing a sweet spot between stronger feature representation
and convergence of the model [43].

Loss Function: The loss function is the Mean Absolute
Error (MAE) for volume estimation as depicted in the simple
equation below, where Vj.cq and Vi, are predicted and
ground truth values of volume estimates.

N
MAE =" |Virea = Virunl /N e

C. Domain Adaptation to Handle User Diversity

The vibration pattern of earphone signals might vary across
users due to differences in body shape, gender, drinking
pattern, etc. While LiquidMeter designs techniques based on
semi-supervised learning to decrease the training overhead
(Sec. IV-B), we also explore domain adaptation techniques to
further reduce the overhead of training across multiple users.
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Despite differences across users, the overall biological process
of drinking has a lot of similarities. Therefore, LiquidMeter
designs domain adaptation techniques to adapt a pretrained
model on one user to perform inferences on a new user with
minimal training overhead.

Transfer-learning-based domain adaptation is popular in
vision and speech processing. For example, AlexNet model
[55] pretrained on ImageNet database [30] was fine-tuned for
classifying images in medical domain [84], remote-sensing
[42] and breast-cancer [63]. Similarly, a pre-trained BERT
language model [31] was fine-tuned for tasks such as text-
summarizing [80], question answering, [66] etc. This signif-
icantly reduces the burden of training for a new task. In a
similar spirit, we use pretrained model from one user and fine-
tune it for a different user to significantly decrease the training
overhead (Fig. 17(b)) without losing much accuracy.

Domain adaptation is performed as enumerated below: (i)
We generate a model for one user by first training the model
with labeled data from that user — known as the pretrained
model. (ii) We collect small training data from the new (tfarget)
user. Instead of developing the model for the target user from
scratch, we initialize the model weights to be the same as the

pretrained model. (iii) We make all layers untrainable except
the (BN) layers. Using small-scale training data from the target
user, we update the BN layers to minimize the loss function.
This is called fine tuning. (iv) Unlike supervised learning,
LiquidMeter designs ML models based on semi-supervised
learning and teacher-student interactions. Therefore, the pro-
cess of fine-tuning goes through exactly identical iterations of
teacher-student training described in Sec. IV-B. However, in
contrast to updating the weights of the entire network, only
the BN layers are updated. The model thus generated will be
used for making inferences on the rarget user.

Finetuning the BN layers help with domain adaptation
because of their ability to contain wide oscillations in the
distributions of input fed from one layer to the next. Given the
sufficient success in BN layers (with only a few parameters)
for accelerating convergence by minimizing covariate shift
[49], we exploit them towards domain adaptation as well.
The success of this approach has already been shown in other
domains such as computer vision [23], [60]. The BN layers
will learn to sufficiently transform the distribution from target
user to a distribution of the source user on which the model
is pretrained on. If successful, the pre-trained model from the
source user can be used for performing inferences on the target
user with the finetuning steps discussed here. As discussed in
Sec. V, this results in a reduction of training overhead on the
target user significantly.

D. Activity Detection: Drinking vs Eating vs Speaking vs Null

LiquidMeter needs to identify the activity of the user
before performing volume estimation. Therefore, we design a
classifier to detect and eliminate other activities such as eating,
drinking, or the null activity. Our definition of null activity
includes other normal activities involving body motion such as
walking as long as the user is not drinking, eating, or speaking
during that time. Whenever a drinking activity is detected, the
corresponding data is analyzed further for volume estimation.
Our architecture for the classification network is similar to the
architectures in Fig. 9 and Fig. 8 that exploit semi-supervised
learning for minimizing the training overhead. The last layers
and loss functions are different since the classification network
needs to label 4 classes (Eating, Drinking, Speaking, Null). In
contrast to volume estimation which includes ReLU activation
and MAE loss function, the last layers include SoftMax
activation and cross-entropy loss function in the classification
network. In the interest of space, we skip detailing out the
entire architecture in a separate figure. The evaluation results
are discussed next.

V. PERFORMANCE EVALUATION

A. User Study

We conduct a study with 12 users (8 males, 4 females). The
users are aged between 20-52, and weigh between 47-96 kgs.

Data Collection Methodology: Our study was approved
by the IRB committee. The users wear the smart earphones
(Sec. III) as shown in Fig.10 on both ears. The users were then



Fig. 10. User wearing earphone sensors while drinking water

instructed to drink six liquids: Water, Milk, Coffee, Tea, Soda,
and Juice (Orange). Our chosen category of liquids is known to
account for & 85% of fluid intake under daily living conditions
[33]. The rest 15% includes special drinks or alcohol, not a
part of this study due to IRB restrictions. We allowed the user
to drink naturally which includes various speeds depending on
their levels of comfort. We decided not to explicitly instruct the
users to drink fast or slow since we wanted to be careful with
issues such as water getting into the windpipe, therefore we
simply instructed the users to drink naturally. Three different
containers were used — Bottle, Cup, and Straw — for consuming
the fluids. In addition to drinking, the users also performed
other activities such as eating, speaking, or the null class where
they could walk, or move randomly, or be idle, but they did
not speak, eat, or drink. The sensor data was streamed to
a smartphone over the audio jack, with a sampling rate of
4000 Hz since higher frequencies are heavily attenuated by
the human body [70].

Labels for Training and Testing: The VPU sensor data
from both earphones are collected as the user drinks the fluid
for predicting the volume of consumption. We use a high-
precision weighing scale [1] to measure the ground truth. The
user is instructed to place the container on the scale before
and after each drinking bout, and the difference in weight as
measured by the scale is noted. The weight is later divided by
the density of the liquid to obtain the ground truth of volume.
We note that the weighing scale is only used for collecting
ground truth, it is not a part of our system. The labels for
activity classification (eating, speaking, drinking, null class)
were derived manually.

Training Data: Towards keeping the volume of fluids con-
sumed per session within natural and comfortable limits, we
spread the user study across six different days, with over four
sessions per day at different times. Over the period of six days,
each user consumed about 2100 mL of water, and 600 mL of
each of the 5 other types of liquids: Milk, Coffee, Tea, Soda,
and Orange Juice. An equal amount of liquid was consumed

each day. We used bottled mineral water at room temperature
for “water” studies above. Half of Milk, Coffee, and Tea was
tested under both “hot” and “room temperature” conditions,
whereas, Soda and Orange Juice were tested under “room
temperature”, and “cold” conditions. Given ideas in semi-
supervised learning discussed in Sec. IV-B, our evaluation
depicts that the data thus collected is sufficient for generating
robust ML models. The initial data collection was further
augmented as elaborated later in this section to test special
cases of usability. For activity classification, approximately
20 minutes of data per day was collected for each of the
non-drinking activities (eating, speaking, null class). Three
kinds of models were developed using the training data: (i)
User-dependent model: A model for each user that requires
training data from the same user. (ii) Model with domain
adaptation: A model for each user where a pre-trained model
from a different user is taken and fine-tuned using techniques
in Section IV-C such that only a small fraction of user-specific
training data is used for developing a model for the user. (iii)
Multi-user model: This is a user-independent model. Here,
we train a model based on training data from multiple users.
The trained model is directly used for inferences on a new
user without any training data from the new user.

Test Data: Because of data augmentation and semi-
supervised learning strategies, the user-dependent model con-
verged with only a small amount of training data — 65 instances
of drinking events (swallowing the liquid) — which is approx-
imately 1500 mL of liquid, and the testing was done with
the rest of the data in a randomized cross-validation manner
such that the training and the test data are not taken from the
same day. With domain adaptation, even lesser training data is
needed (15 swallow instances, details in Fig. 17(b)). We only
used water for training the model, which generalizes well to
other fluids in the study (details in Fig. 12). Given that training
and testing data are sampled from different days, the earphone
sensor has to be removed and remounted between training and
testing, thus providing a benchmark for validating robustness
to natural variation in sensor positions. In addition, various
other test cases including drinking while walking, drinking
with head movements, ambient acoustic interference were
considered as described in detail in appropriate subsections.

Metrics of Evaluation: In addition to MAE from Equation
1, we also use the mean absolute percentage error (MAPE),
and mean percentage error (MPE), depicted in Equation 2.
These are popular metrics for validating fluid intake accu-
racy [28]. While MAPE computes the absolute error, MPE
computes the cumulative sum of errors over time where the
positive and negative errors may cancel out. MPE might be
more relevant in the context of longer intervals of tracking
(over an entire bottle of drink). However, MAPE computes
average error across instances of swallowing a drink, providing
an estimate of worst-case errors.
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B. Implementation

LiquidMeter is implemented on a combination of desktop
and smartphone devices. The ML model is implemented with
TensorFlow [9] packages and the training is performed on a
desktop with Intel i7-8700K CPU, 16GB RAM memory, and
Nvidia GTX 1080 GPU. We use the Adam optimizer [52] with
a learning rate of 0.1, B; of 0.9 and By of 0.999. To avoid
over-fitting issues that may happen in the training process, we
apply the L2 regularization [16] on each CONV layer with a
parameter of 0.01 and also add dropouts [72] with a parameter
of 0.1 following each RELU activations. Once a model is
generated from training, the inference is done entirely on a
smartphone device using TensorFlowLite [39] on Samsung
520, and Oneplus 9 Pro smartphones.

C. Performance Results

While we mainly provide MAPE and MPE errors in the
graphs for brevity, the MAE errors are discussed while eval-
uating the training overhead of the ML models. If not stated
otherwise, the general reported results are from the model
with domain adaptation. The results from other models (user
dependent, multi-user) are discussed separately.

Activity Classification: Eating vs Speaking vs Drinking
vs Null: A user could be performing any activity such as being
idle, walking, speaking, or eating in addition to drinking. We
first identify the activity. If a drinking activity is detected, the
ML module for volume estimation is triggered. We did not
have a single instance of missed classification and the accuracy
was 100%. Because of the vast differences in generated sounds
across activities, they are easily distinguishable.

Accuracy vs Users: Fig.11(a) shows the breakup of ac-
curacy across users. Although the direct use of a model
trained from 11 users (multi-user model) and tested on a new
user (without domain adaptation) provides a decent accuracy
(MAPE = 34.89%, MPE = 7.11%), domain adaptation in
LiquidMeter can significantly cut down the errors (MAPE =
19.17%, MPE = 3.26%), the performance is close to user-
dependent model with less training overhead. The overall
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accuracy is robust with diversity in users, body mass indices,
gender, etc.

Accuracy vs Type of Drink: Fig. 12 depicts the overall
accuracy as a function of the liquid. Evidently, the model
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Fig. 12. Accuracy vs type of liquid

trained with water continues to hold well for other liquids,
with only small differences. Because of similarity in sound
generated across liquids, reliable classification of the type of
drink from the VPU data was not possible. However, we
believe that because of the same reason, the model trained
with water continues to hold for other liquids as well. The
accuracy is consistent across liquids, indicating promise in
seamless monitoring of fluid intake for commonly used liquids.

Accuracy vs Volume Consumed: Fig. 13(a) depicts the
MAE as a function of the amount of liquid consumed. The
accuracy is slightly higher within the 10-30 mL regime. Given
that the natural distribution of volumes of liquid consumed per
swallowing instance (in Fig. 13(b)) tends to be more within
10-30 mL, the ML models are trained with more data within
this domain, thus resulting in higher accuracy. Nevertheless,
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Fig. 13. (a) Accuracy vs volume of liquid consumed per swallow (b)
Distribution of volume intake per swallow event

the overall MPE is less than 5%, thus showing promise in
accurately tracking the volume over time.

Accuracy vs Type of Container Fig. 14(a) depicts the
accuracy vs popularly used containers for drinking the liquid.
Evidently, the accuracy is consistent across all containers.
This is because the container only influences how the liquid
is ingested into the mouth. On the other hand, the volume
estimation depends on the sound produced when the liquid
passes through the food pipe from the mouth, which is
independent of the type of container. Our experiments are in
agreement with this hypothesis.

Accuracy vs Temperature: Fig. 14(b) depicts the accuracy
variation with temperature. While beverages are typically
served hot, the safe temperature for a hot beverage is known
to be below 56° [20], and we maintain the temperatures of
our hot beverage below this value. Similarly, we maintain the
temperature of our cold beverage above 4° using a refrigerator.
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Under these conditions, we observe that the acoustic vibrations
generated in the body are similar to those when the drink is
taken at room temperature. Accordingly, the volume estimation
accuracy is consistent across all temperatures.

Accuracy vs Number of Earbuds: Fig. 14(c) depicts
the accuracy for individual earphones as well as the overall
accuracy when both are used. The accuracy is uniform across
all cases. Inspection of raw recordings reveals that there is
substantial redundancy in information captured across both
earphones. Thus, we believe it is sufficient to put a VPU sensor
in one earphone.

Robustness to Sensor Position Variation: Fig. 14(d)
depicts the accuracy over different days of the user study.
Although the earphones can fit snugly, there might be small
variations in sensor position across days. The training and test
data sets were sampled across completely different days to
validate robustness to sensor positions. Evidently, the accuracy
is consistent across days. The ML models have been trained
with noisy data augmentation techniques, we believe this
makes the model robust.

Accuracy vs Hands: Fig. 15 depicts the accuracy as a
function of the hand used for drinking. Given that the volume
estimation depends on sounds produced when the liquid is
passing through the food pipe, which is independent of the
hand, we did not notice a difference in accuracy due to the
hand used for drinking.
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Robustness to Ambient Noise: Since the VPU sensor used
in LiquidMeter picks up vibrations directly from bone conduc-
tion, it is immune to interference from ambient acoustic noise.
To validate the hypothesis, we simulate a noise environment
by playing airport noise in the ambiance. The volume of the
noise was set to 60 dB which is at similar levels to actual
ambient noise in an airport. Our results in Fig. 16(a) indicate
that the ambient noise levels do not affect the accuracy in
comparison to a clean environment.

Robustness to Head and Body Motion: In a natural
setting, a user may consume drinks while walking (in a
party), or moving the head while talking to others. To evaluate
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robustness under such conditions, we test the accuracy under
the following conditions: (i) Turning head to the right (ii)
Turning head to the left (iii) Walking (iv) Static. Depicted
in Fig. 16(b), our results indicate that the accuracy is stable
across conditions of mobility, close to static conditions.

Effectiveness of Semi-Supervised Learning: Fig. 17(a)
depicts median and 90*" percentile MAE for for the fol-
lowing three cases: (i) without data augmentation or semi-
supervision (base) (ii) with one iteration of teacher-student
training (Iteration-1) (iii) with two iterations of teacher-student
training (Iteration-2). Evidently, the semi-supervision in Lig-
uidMeter creates robust ML models bringing down the error
substantially from 10.4 mL to 3.91 mL and 3.35 mL after
the first and second iterations respectively. Similarly, the 90"
percentile errors are cut down from 21.19 mL to 7.54 mL and
6.50 mL with the two iterations. Additional iterations beyond
this result in only marginal gains.

90%-ile
error bar

EMuser dependent
I with domain adapt.

™
=3

30

90%-ile
15 error bar
20

7 0 I | I | I V I V
RS LN Tn Bn w
0 5 10 15 20 65
Training Overhead (Number of Swallowing Events)

o
Volume MAE Error (ml)

Volume MAE Error (ml)
3

base iteration-1  iteration-2

Fig. 17. Accuracy Variation with (a) Iterations of Semi-Supervision (b) Size
of Training Data

Training Overhead: Fig.17(b) shows the median and 90"
percentile MAE as a function of the size of training data.
Because of data augmentation and semi-supervised learning
techniques (Sec. IV) incorporated in LiquidMeter, even with
the user dependent model, we only need 65 instances of
drinking (swallowing) events to converge and achieve an MAE
of 3.12 mL. While we believe, the user dependent model
does not have a big training overhead, domain adaptation can
further cut down the number of training instances (swallow
events) to 15 with MAE levels (3.35 mL) close to the user
dependent model.

Latency and Power Consumption: Fig. 18(a) depicts
the latency of executing ML models in LigquidMeter on
smartphone devices. Evidently, the latency for both activity



classification and volume estimation is very low. For profiling
the energy of the TensorflowLite model, we use Batterystats
and Battery Historian [5] tools. We compare the difference
in power between two states: (i) The device is idle with
the screen on. (ii) The device is making inferences using
the TensorflowLite model. Fig. 18(b) depicts a low power
consumption profile for both activity detection and volume
estimation modules. The earphone sensor draws 55uA at 1.8V,
thus consuming a small power [67].
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VI. RELATED WORK

Vision: Work in [27] uses a depth camera installed on
the ceiling to detect activities such as eating and drinking
by using Artificial neural Networks (ANN) on the depth
+ RGB images. Work in [22] uses Kinect cameras on a
mobile robot to detect various activities in daily life including
drinking. The information from depth, color, and optical flow,
etc., is integrated into a 3D CNN algorithm for performing
activity detection. Work in [50] performs eating and drinking
activity classification by exploiting both spatial as well as
temporal variation of the human body pose detected by a
camera. Linear Discriminant Analysis (LDA) is used to map
the input to a compact feature representation space so as
to facilitate classification based on clustering algorithms in
the feature space. Similarly, the work in [19] uses skeleton
structures extracted from two Kinect sensors to detect eating
and drinking activities in a meeting room. While vision based
sensing can be passive, they can be susceptible to occlusion
and lighting conditions. Also, all of the above works only
perform detection of drinking but do not estimate the actual
volume of the content consumed. In contrast, LiquidMeter’s
solution is more ubiquitous while being able to continuously
estimate the volume of fluid consumption.

Smart Surface: Work in [21] designs a diet aware dining
table where the surface of the table is embedded with RFID
and weight detection sensors for tracking food and drink
consumption. Work in [83] designs a smart table embedded
with a fine grained pressure sensing textile matrix as well as a
weight sensitive tablet. Various fine grained activities such as
cutting, spooking, poking, etc., can be detected for monitoring
eating and drinking related actions. Similarly, work in [61]
uses a table with embedded weighing scale to detect bits of
eating and drinking. In contrast to above works, a portable
sensing mat [76] with embedded sensors is designed to track
food and drink consumption. While sensor embedded surfaces
can track fine grained eating and drink related activities, the
sensing is only restricted to the surface, and the food/drink has
to be placed on the smart surface before and after consumption.
In contrast, LiquidMeter provides a more ubiquitous solution.

Inertial Sensors: Inertial sensors worn on the wrist and
the head are explored in [77] for performing drinking activity
detection. Work in [13] first uses a waist worn inertial sensor
to determine whether a person is sitting, standing, and moving.
This information is fused with wrist worn inertial sensors to
detect eating and drinking activities. Similarly, work in [14]
uses a single wrist watch inertial sensor worn on the dominant
hand for eating and drinking detection. The above works
do not perform drinking volume estimation. Works in [41],
[46] estimates drinking volume using smart watch sensors.
However, the subject has to remain relatively still while
drinking and has to place the bottle down before beginning
another bout of drinking. In contrast, LiquidMeter’s solution is
more generic with ability to estimate the volume under adhoc
conditions including mobility.

Sensors on the Throat and Neck: Capacitive sensors have
been used on the throat and neck for classifying activities
such as chewing, swallowing, speaking, and sighing [24],
[25]. Bioimpedance and pressure sensor have similarly been
used for detection of swallow events [82]. EMG sensors in
combination with throat microphones have been used for
detecting swallow events as well as classifying volume con-
sumption into three categories: low, medium, and high [12].
Electroglottography (EGG) [37] signals have also been used
for detecting food intake. In contrast to these works that detect
and classify activities at a higher granularity, LiquidMeter
tracks fluid intake at a finer granularity of milliliters.

Radio Frequency (RF) based Sensing: RFID sensors are
attached at the bottom of the liquid container for detecting
drinking events [51]. UltraWideBand [32] and RFID sensors
[73] have been used to detect liquids placed in a container
based on properties of RF reflections. Several RFID tags
are attached to the container and the volume level in the
container is estimated at a resolution of 35 mL based on
properties of signals received from these tags by a RFID
reader [54]. While these works are innovative in nature, the
range of RF based solutions is limited to the environment in
which the infrastructure is installed. In contrast to these works,
LiquidMeter offers an order of magnitude higher accuracy
levels, while being fully ubiquitous.

Smart Container: A number of smart containers have been
made commercially available for estimation of fluid volume
consumption [34], [40], [47], [48], [65], [71]. HydrateSpark
[48] uses capacitive and IMU sensors to estimate the volume.
The data syncs with a smartphone app using Bluetooth and the
smart container includes an LED based reminder if the user
has not consumed enough fluid. On the other hand, H20OPal
[40] uses load cells and IMU sensors at the bottom of the
device. Any container with similar size can be inserted into
the device for tracking. The Thermos Smart Lid [71] includes
sensors in the lid to measure liquid levels and the temperature.
In addition to tracking volume consumption, the Ozmo smart
bottle [65] can also differentiate between coffee and water.
While effective in tracking, the user has to use the same
container for drinking any fluid. In contrast, LiquidMeter’s
solution works with any container.



Activity Detection using Earphones: Earphone sensors
are gaining in popularity with a number of applications in
emotion sensing, dental hygiene detection, smart health, and
augmented reality [26]. The feasibility of sensing eog (eye),
eeg (brain), and emg (facial muscles) signals at earphone
electrodes has been explored in LIBS [64] for applications in
healthcare. EarFS [62] and ECTF [11] show the feasibility
of detecting facial expressions by detects electrical signals
in earphones as well as embedded microphones. Perhaps,
closest to our work related to food consumption is [57], where
earphone sensors are used for classifying activities such as
head nodding, speaking, eating, etc. They do not estimate
liquid volume consumption. In contrast to above works, to
our best knowledge, LiquidMeter is the first work that uses
earphone sensors for drinking volume estimation.

VII. DISCUSSION: LIMITATIONS AND FUTURE WORK

Wireless Streaming of Earphone Sensor Data: Our plat-
form developed by Sonion currently does not support wireless
streaming of sensor data, the earphones need to be connected
to the smartphone’s audio port. We believe providing wireless
streaming of sensor data will improve the usability of the
system. While LiquidMeter shows the feasibility of sensing,
we plan to incorporate this feature in our future work.

Food Classification and Quantification: We plan to extend
this work towards the identification and quantification of food
intake. Diverse classes of food such as bread, rice, pizza, salad,
etc might generate different sound patterns at the earphones.
Analysis of such information might offer valuable insights
about food intake which is a part of our future investigation.

Earphone Wearability for Whole Day: One of the lim-
itations of LiquidMeter is that it can only track drinking
volume when the users are wearing earphones. Given the rise
in popularity of smart earphones, particularly in the context of
healthcare applications such as monitoring of respiration rate,
blood pressure, and sleep stages, etc, we believe earphones in
the future could be suitable for long-term wearability.

VIII. CONCLUSION

Ensuring proper hydration levels is critical for the smooth
functioning of the human body. Towards this end, this paper
presented a system called LiquidMeter that shows the fea-
sibility of estimating the volume of fluid intake using smart
earphones. The bone conduction sensor in the earphones picks
up acoustic vibrations during fluid intake which is analyzed for
estimating the volume of intake. While the lack of large-scale
training data is a challenge, LiquidMeter builds robust ML
models by designing techniques based on data augmentation
and semi-supervised learning. Extensive measurement based
evaluation across diverse users depicts an accuracy of 3.35
mL (= 19.17% error) over commonly consumed liquids. Fur-
thermore, the accuracy is robust to sensor mounting positions,
body, and head motion, ambient acoustic interference, con-
tainer type, temperature, etc. While the results are promising,
we believe there are additional opportunities to be explored in

the space of smart healthcare such as food intake monitoring,
nutrient, and calorie estimation, etc.
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