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Abstract—Traditional one-time user authentication is vulner-
able to attacks when an adversary can obtain unauthorized
privileges after a user’s initial login. Continuous user authen-
tication (CA) has recently shown its great potential by enabling
seamless user authentication with few users’ participation. We
devise a low-cost system that can exploit users’ pulsatile signals
from photoplethysmography (PPG) sensors in commodity wear-
able devices to perform CA. Our system requires zero user effort
and applies to practical scenarios that have nonclinical PPG mea-
surements with human motion artifacts (MAs). We explore the
uniqueness of the human cardiac system and develop adaptive
MA filtering methods to mitigate the impacts of transient and
continuous activities from daily life. Furthermore, we identify
general fiducial features and develop an adaptive classifier that
can authenticate users continuously based on their cardiac char-
acteristics with little additional training effort. Experiments with
our wrist-worn PPG sensing platform on 20 participants under
practical scenarios demonstrate that our system can achieve a
high CA accuracy of over 90% and a low false detection rate of
4% in detecting random attacks. We show that our MA mitiga-
tion approaches can improve the CA accuracy by around 39%
under both transient and continuous daily activity scenarios.

Index Terms—Biometrics, continuous authentication (CA),
photoplethysmography (PPG), wearables.
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I. INTRODUCTION

TRADITIONAL user authentication methods rely on
users’ inputs, such as passwords and graphic patterns.

However, these methods are known to be vulnerable to
many attacks [1], [2]. Recently, multifactor authentication
(MFA) [3], [4] has been proposed to mitigate these threats
by verifying two or more confidential information from inde-
pendent sources. While many applications have adopted either
one factor or MFA, both of these two approaches use a one-
time login process, which is not secure enough to authenticate
users in the duration of certain applications. This is espe-
cially critical for a security-sensitive application, in which an
adversary could obtain unauthorized privileges after a user’s
initial login. Therefore, a practical continuous user authen-
tication (CA) solution that can periodically verify a user’s
identity without interruptions of the application usage is highly
in demand [5].

Existing CA approaches usually focus on reducing or
eliminating user involvement in the authentication process
by leveraging users’ unique behavioral patterns. For exam-
ple, keystroke/mouse dynamics [6], [7] and gait patterns [8]
have been used for user authentication since 2012. These
approaches usually rely on momentary events and can only
determine a user’s identity by monitoring particular activ-
ities (e.g., typing, mouse clicking, or walking). Recently,
researchers have also shown the potential for attacking the
behavioral-based CA systems. For instance, Yu et al. [9]
showed the practicability of an indirect eavesdropping attack
to infer keystrokes of touch screen leveraging audio devices
on a smartphone. There are studies using cardiac signals
(e.g., ECG [10], [11] and cardiac motion [12]) for CA. All
these systems require dedicated sensors (e.g., ECG or Doppler
radar sensors), which are costly and not readily available in
commodity devices. Recently, researchers find that the photo-
plethysmography (PPG) sensor can also provide unique car-
diac biometric information for user authentication [13]–[16].
However, these systems only focus on clinical scenarios, under
which strong and stable PPG measurements are collected from
the fingertips of static subjects.

Different from the existing works, we develop a low-cost
CA system, TrueHeart, which can periodically verify the iden-
tity of a user via cardiac signals (i.e., PPG) from common
wrist-worn wearable devices (e.g., smartwatches and fitness
trackers). Under a working environment shown in Fig. 1(a),
TrueHeart can continuously determine whether a current staff
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(a) (b)

Fig. 1. Two scenarios of continuous user authentication (CA) using
TrueHeart. (a) CA in office scenarios. (b) CA in living scenarios.

operating a specific device (e.g., a smartphone or a laptop) is
a legitimate user in a nonintrusive manner so that any time-
sensitive tasks will not be interrupted. As a result, a user can
continuously trade stocks, manage air traffic, or switch circuits.
As a daily life example in Fig. 1(b), each family member
with a wearable device can be periodically authenticated by
TrueHeart so that he/she can enjoy a seamless experience of
accessing or switching between user-specific apps on the smart
devices paired with TrueHeart. Therefore, each person can
watch his/her own favorite channels in a smart TV or do online
shopping via a voice assistant. The advantage of using PPG for
CA is obvious as cardiac signals are unique and ever-present
biometrics which are available without users’ involvement. In
addition, PPG requires physical contact to human skin and
is usually hidden in the back of wearable devices. Therefore,
PPG measurements are secure and difficult to counterfeit.

There are several challenges in performing CA using PPG
measurements from wearable devices. First, in contrast to
ECG signals which is electrical and generated by heart activi-
ties, PPG signals capture blood volume changes by measuring
reflected light from human skins. Therefore, PPG signals
are relatively coarse grained, noisy, and more susceptible to
interference than ECG signals. Initial works have shown that
PPG measurements from fingertips contain unique features to
be used for user authentication in clinical environments but
these features are not persistent in the PPG signals collected
from wearable devices in practice. Second, wrist-worn wear-
able devices are usually associated with a lot of hand or body
movements from daily activities. These movements would
result in various motion artifacts (MAs) which make cardiac
signals in PPG measurements often unavailable in practice.
Third, due to various types of imprecisions in PPG sensors
in wearable devices and loose contacts between them and
human skins, cardiac signals from PPG measurements could
vary among days or even in the same day.

To address these challenges, we particularly investigate
and determine general fiducial features that are not only
persistent in various users’ PPG measurements but also
can capture unique characteristics of cardiac motions for
CA. Additionally, we study the MAs of different types of
body movements in practical scenarios and develop effective
MA detection methods to differentiate two types of MAs:
1) transient MAs and 2) continuous MAs according to their
occurrence frequency and durations. We categorize the tran-
sient MAs into two categories depending on whether they are
caused by far-wrist activities or near-wrist activities. Transient
MA mitigation/removal mechanisms are designed to either

recover cardiac signals from weak transient MAs from far-
wrist activities or remove the sensor measurements containing
strong transient MAs from near-wrist activities. Moreover,
a continuous MA mitigation pipeline is proposed to miti-
gate the impacts from continuous MAs effectively. We exploit
advanced machine learning methods and adopt the gradient
boost tree (GBT) classifier to enable robust and accurate
CA under practical scenarios in our daily lives. Our system
also adopts an adaptive updating mechanism to automati-
cally accommodate the user’s cardiac signal changes over
time based on an adaptive training mechanism. The main
contributions of our work are summarized as follows.

1) We develop TrueHeart, the first low-cost CA system that
can authenticate users by using unique cardiac biomet-
rics extracted from PPG sensors in wrist-worn wearable
devices. Our system can be easily deployed in any PPG-
enabled wearable device (e.g., smartwatches and activity
trackers).

2) We extensively study the characteristics of MAs under
various practical scenarios and develop an MA detection
method that can effectively identify different categories
of MAs with various durations and intensities. A robust
transient MA mitigation/removal mechanism and a con-
tinuous MA mitigation pipeline are proposed to eliminate
the impacts from the transient MAs and continuous MAs,
respectively.

3) We identify general fiducial features that can capture the
uniqueness of users’ cardiac patterns to build an adap-
tive GBT-based classifier that is not susceptible to PPG
signal drifts and various practical attacks during when
authenticating users.

4) We build a prototype of TrueHeart using both com-
modity PPG sensors and smartwatches. The experimen-
tal results involving 20 participants demonstrate that
TrueHeart can achieve a high average CA accuracy of
over 90% while maintaining a low false detection rate
of 4% when detecting random attacks.

II. RELATED WORK

Recent user authentication systems often use users’ biomet-
rics (e.g., behavioral or physiological information) to reduce
user involvement and facilitate CA. Behavioral pattern is con-
sidered a distinct biometric that can make CA possible based
on users’ daily activities. For example, Mondol et al. [17]
proposed a user authentication system leveraging motion sen-
sors in smartwatches to capture users’ signatures in the air for
authentication. Casale et al. [18] developed a wearable-based
authentication system based on users’ walk patterns. However,
these approaches rely on users’ involvement in specific activ-
ities in such a great deal to easily cause inconvenience.

Physiological-based biometrics (e.g., cardiac and respira-
tory motions) are popularly used for building CA systems
because they can be obtained without users’ active partici-
pation. For instance, Lin et al. [12] proposed a CA system,
Cardiac Scan, which utilizes DC-coupled continuous-wave
radar to capture distinct heart motions in the user identifica-
tion process. Rahman et al. [19] developed a method that uses
the Doppler radar to identify users based on their respiratory
motions. Although these systems provide a sound foundation
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for CA using wireless technology, they use dedicated devices
that might not be available for users yet. Recently advanced
sensing technologies enable unobtrusive and continuous user
authentication based on unique cardiac biometrics captured
by electrocardiogram (ECG) sensors [20], [21]. While mostly
available under clinical environments, these systems require
users to wear electrodes at various locations. This again turns
out to be inconvenient for the uses in practice.

Unlike ECG, PPG is widely used in commodity wearable
devices, such as smartwatches and fitness trackers. Some initial
studies have explored PPG-based authentications. For exam-
ple, fiducial features [13], [14] have been discovered to capture
unique characteristics in human cardiac systems so they can
facilitate user authentication processes. Recently, nonfiducial
features [i.e., discrete wavelet transform (DWT) coefficients]
of PPG signals are proposed to build CA systems [15], [16].
However, all of the aforementioned studies collect PPG mea-
surements from users’ fingertips thus require users to wear
dedicated PPG sensors and keep motionless. These require-
ments are different to meet in reality.

Different from the existing work, we build the first low-cost
PPG-based system that can perform CA in practical scenar-
ios with various body movements by leveraging PPG sensors
in commodity wrist-worn devices. We identify general fidu-
cial features that can capture distinct cardiac biometrics of
diverse PPG measurements collected from users’ wrist areas.
In addition, we extensively study the PPG MAs caused by
daily activities and develop the robust methods to mitigate
the impacts from transient and continuous MAs accordingly.
Moreover, our system employs an adaptive user authentica-
tion method that can reduce the impact of system drifts and
provide long-term PPG-based CA.

III. APPROACH OVERVIEW

A. Attack Model

In this article, we assume that attackers cannot compro-
mise users’ wearable devices (i.e., gaining access to their
memory storages for raw PPG measurements). Based on this,
the possible attacks to our CA system are as follows:

Random Attack: Attackers or their accomplices wear users’
wearable devices and expect the PPG measurements captured
can pass our PPG-based CA system. This random attack model
is similar to the brute-force attack.

Synthesis Attack: To launch this attack, attackers first need
to obtain users’ blood flow patterns through either medi-
cal records or vision-based technologies [e.g., remote PPG
(rPPG) [22]]. However, these patterns and the PPG mea-
surements collected from users’ wrist areas are different in
collection approaches and conditions. In addition, the PPG
signals are collected in an enclosed environment (between the
back of wearable devices and skin contact areas) so that it
is very hard for the attacker to obtain the user’s PPG mea-
surements. As a result, synthesis attacks will not be easily
launched.

B. Feasibility Study

Intuition of Using Wearable PPG for CA: Human cardiac
systems have been studied and known to be distinct among

(a) (b)

Fig. 2. Illustration of the critical landmarks in raw PPG measurements and
its second derivative. (a) Raw PPG measurements. (b) Second derivative of
raw PPG measurements.

(a) (b)

Fig. 3. Example of PPG data from fingertip and wrist and their corresponding
DWT. (a) Fingertip PPG data and DWT coefficients. (b) Wrist PPG data and
DWT coefficients.

people [23]. Along this direction, initial studies [14], [24] have
shown that fiducial features derived from critical landmarks in
the raw PPG measurements and their derivatives (i.e., the sys-
tolic/diastolic peaks, dicrotic notch, and points a/b/c in Fig. 2)
can be used as users’ unique biometric information. However,
these studies only analyze PPG data collected from clinical
settings with quite strict requirements. Thus, how to design
and realize a PPG-based CA system using wrist-worn devices
in practices remains a challenging task.

Difference Between Wrist-Worn PPG and Fingertip PPG:
To illustrate such a difference, we collect PPG measurements
from both fingertip and wrist areas of the same users simul-
taneously using our prototype PPG sensing platform. The top
two panels of Fig. 3 show that the PPG measurements from the
wrist area are stable but with less detectable and critical land-
marks than those from the fingertip area. This indicates that the
existing fiducial-feature-based authentication approaches [14],
[24] are not applicable directly to the PPG from wearable
devices. We further generate nonfiducial feature for both PPG
measurements using the Daubechies wavelet of order 4 (db4)
with four levels of decomposition. The bottom two panels in
Fig. 3 show that the fingertip PPG readings have repetitive and
stable DWT coefficients with respect to each heartbeat in four
levels, whereas the wrist area PPG readings are embedded with
many noisy and irregular DWT coefficients, which will signif-
icantly impact the performance of the nonfiducial-based PPG
authentication work [15], [16]. Therefore, instead of adopting
nonfiducial features, there is a need to explore more general
fiducial features in the PPG signal from the wrist area for
CA, which is explained at PPG Feature Extraction and User
Authentication in Section IV.
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Fig. 4. Architecture of TrueHeart.

Impact of Daily Activities: To better understand the impact
of daily activities as MAs, we categorize them into two types:
1) transient MAs and 2) continuous MAs according to their
occurrence frequency and durations. In particular, transient
MAs refer to the MAs with a very short time duration, which
are generated by the transient daily activities (e.g., drinking
water movements last less than 10 s). Depending on the dis-
tance from the location of the MA to the wrist and their
impacts on PPG signal, we further define three categories
for transient MAs: 1) far wrist; 2) near wrist; and 3) whole
body. The far-wrist activities are the major arm movements
without involving tendons and muscles of the wrist area. In
contrast, the near-wrist activities are finger-level and/or wrist-
level movements, which have direct impacts on blood volume
changes in the wrist area and more significant impacts on PPG
measurements from wearable devices. The whole-body activ-
ities are associated with most human body parts. We find that
some whole-body activities of low intensity, such as leisure
walking, do not have noticeable impacts on the PPG mea-
surements. More strenuous activities, such as running, would
change PPG readings significantly. Different from the tran-
sient MAs, continuous MAs refer to the MAs lasting for a
much longer period time, which are generated by continu-
ous daily activities (e.g., brushing teeth lasts at least 1 min).
Continuous MAs can have different degrees of impact on PPG
signals during their long-time occurrences. Such character-
istics make them more challenging to tackle. In this work,
we focus on the static and moving scenarios involving the
transient MAs and continuous MAs, which cover the main
scenarios in continuous user authentication in daily life. We
present the detailed design of our system in the following
sections.

C. System Overview

The architecture of our PPG-based continuous user authen-
tication system is shown in Fig. 4. The system collects
PPG measurements constantly from users’ wearable devices

as the input. Due to hardware imperfection, the raw PPG
measurements inevitably contain baseline drifts and high-
frequency interferences. Therefore, our system first performs
Noise Reduction Using Filtering to reduce such impacts. A
band-pass filter is used to extract pulsatile components in
PPG measurements. After filtering, the system conducts Pulse
Segmentation to determine the PPG segment that is likely to
contain a complete cardiac cycle. The insight is that each
cardiac cycle should include a systolic peak, which could be
identified in the PPG measurement during typical diastole and
systole phases.

Next, we design MA Filtering to mitigate MAs caused by
daily physical activities. In PPG measurements, MAs arise
from tissue deformations and local blood flow changes in
the wrist area. While pulsatile signals are repetitive in PPG
measurements, most MAs have burst PPG waveforms. We
calculate statistical measures, such as kurtosis, skewness, and
standard deviation (STD), in pulse waveforms and MA signals
to determine whether a PPG segment contains a pulse or an
MA in the MA detection process. If MAs are detected, our
system adaptively performs two MA mitigation approaches
according to the duration of the MAs. Specifically, when
the detected MAs are transient and scattered, our system
performs transient MA mitigation. Those transient MAs are
either mitigated or removed based on their classified impacting
sources (i.e., far-wrist and near-wrist activities), respectively.
When the detected MAs last for a long time continuously,
our system performs the continuous MA mitigation pipeline
to separate the pulse waveforms from continuous MAs. After
the MA Filtering, the data processing of our system is sepa-
rated into two phases: 1) Training Phase and 2) Authentication
Phase.

Training Phase: In this phase, our system performs General
Fiducial Feature Extraction to extract the unique cardiac fea-
tures from the PPG segment and its second derivative. This
process applies to both wrist PPG measurements and fingertip
ones. Next, we perform Binary Gradient Boosting Classifier
Construction to train a binary classifier for each user. In par-
ticular, we construct a user’s profile based on some extracted
features and use the GBT in training the classifier when the
user enrolls in the system. Furthermore, our system regularly
updates the classifier with new training data to accommodate
PPG drifts over time in Adaptive Updating.

Authentication Phase: In the Authentication Phase, our
system collects PPG segments in real time and determines
whether a current user is legitimate based on the PPG seg-
ments in a sliding window. Specifically, after our system filters
MAs out from the PPG segments, it would further extract
general fiducial features. Then, our system performs Cardiac
User Identification Using Gradient Boosting Tree by using
the binary gradient boosting classifiers generated in the train-
ing phase to determine the user’s identity based on each PPG
segment. Finally, our system utilizes a majority-vote rule on
the classified results of the PPG segments in the sliding win-
dow to perform CA. In addition, our CA system is suitable
for commodity wearable devices since their PPG sensors con-
sume low power (e.g., 4 mA) compared to battery capacities
of these devices.
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D. Challenges

Accurate Sensing Using Low-Cost PPG Sensor on the
Wrist: The low-cost PPG sensors in commodity wearable
devices collect data from users’ wrists at lower sampling rates
with more noise and lower resolution. This will reduce the
accuracy in user authentication.

Robust CA With Body Movements in Daily Activities: The
PPG sensors in the wrist-worn wearable device are particu-
larly susceptible to daily physical activities. Daily activities
involving different movements can generate the MAs with
various durations and degrees of impacts on PPG signals.
Especially, compared to the MAs with short durations (i.e.,
transient MAs), handling MAs with long durations (i.e., con-
tinuous MAs) is more challenging due to their continuity and
diverse impacts. Therefore, we need to explore the characteris-
tics of various MAs from the PPG measurements and develop
technologies to adaptively reduce such impacts.

Effective Feature Set for General PPG Measurements: The
PPG measurements from the wrist area are unstable and weak,
leading to fewer detectable fiducial features. Thus, we need to
exam general effective features for CA.

Persistent User Authentication Against PPG Drifts: The
typical system drifts in PPG sensors which could signifi-
cantly impact the CA performance. Our system should study
these drifts and adaptively accommodate the resulting PPG
variations during a long-time period.

IV. PPG FEATURE EXTRACTION AND USER

AUTHENTICATION

In this section, we explore the cardiac features extracted
from PPG measurements and present the details of our
adaptive user authentication method.

A. General Wrist PPG Feature Extraction

We have shown that the PPG measurements from the wrist
area have fewer fiducial features and nonfiducial features com-
pared to the PPG measurements from the fingertip. Therefore,
we explore the fiducial features that are still available in the
PPG measurements from the wrist area based on the 29 fiducial
features that have been used for user authentication [24], [25].

General Wrist PPG Fiducial Features: Based on our exper-
iments with 20 participants, we find that 60% of the PPG
measurements from the wrist area have only one obvious sys-
tolic peak in a cardiac cycle. To let our CA system generally
work for various types of PPG measurements, we select to use
five fiducial features that only require a single systolic peak in
the PPG measurements. The five fiducial features are generally
effective for the user authentication because they are always
available regardless of the source of the PPG measurements
(i.e., from the wrist area or the fingertip), and they have the
physiological relationships with human cardiac systems. We
summarize the five fiducial features and their physiological
meanings as shown in Table I. Note that the five general fidu-
cial features are always available in the PPG measurements
from the fingertip. Therefore, our CA system is also applica-
ble to the clinical PPG measurements. We provide a detailed

TABLE I
LIST OF GENERAL WRIST PPG FEATURES

evaluation of our system on both our PPG data from the wrist
area and the fingertip in Section VII.

B. Adaptive Cardiac Authentication Using Gradient
Boosting Tree

Next, we build the binary classifier using GBT for user
authentication. Comparing to other machine learning methods,
GBT can handle the mixed types of the features with differ-
ent scales, which is exactly what our general fiducial feature
set possesses. Moreover, GBT is robust against the outliers
via the robust loss functions and can eliminate the require-
ment of normalizing or whitening the feature data before
classification [26].

Specifically, given N training samples {(xi, yi)}, where xi
and yi represent the cardiac-related feature set and the corre-
sponding identity label of the user (i.e., yi = 1 or −1 represents
whether xi is from the current legitimate user), GBT seeks a
function φ(xi) = ∑M

m=1 ωmhm(xi) to iteratively select weak
learners hm(·) and their weights ωj to minimize a loss function
as follows:

L =
N∑

i=1

L(yi,φxi). (1)

We specifically adopt the GBT implementation from the
SQBlib library [27] for cardiac-related feature training. In
order to optimize the speed and accuracy of the GBT model,
we empirically choose the exponential loss L = eyiφ(xi) as the
loss function L(·) with enough shrinkage (i.e., 0.1) and the
number of iterations (i.e., M = 2000), and we take a fraction of
0.5 as the subsampling of the training data set. Once we have
determined the loss function, next we will construct a binary
gradient classifier bk(· · · ) for each user gk, k = 1, . . . , K to
complete the Training Phase. Then for the testing feature set,
each binary gradient classifier will output a score. The reason
to use binary classifier is that binary classifier has higher accu-
racy in differentiating one user from other users [28] which
exactly meets the fundamental requirement of a CA system.

In the authentication phase, our system utilizes the already
built binary classifiers for all the users in parallel to classify
incoming cardiac-related feature set x. In particular, we will
obtain different confidence scores from each binary classifier,
and choose the identity k of the binary classifier bk(x) with
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the highest score as the final classification. After the user clas-
sification, we adopt a nonoverlapped sliding window-based
approach to perform CA. In particular, we consider P continu-
ous PPG segments in a sliding window as a basic CA unit and
use the majority vote from the classification results of these
PPG segments to determine the user’s identity periodically. If
equal or more than half of the PPG segments in the window
are classified to be the same user, the system would allow
the current user to pass the user authentication. Otherwise,
the current user does not pass the user authentication. Unless
mentioned elsewhere, we set the sliding window size to four
PPG segments, which generally provides good performance as
shown in our evaluation.

Adaptive Updating: We find that people’s pulse patterns
may slightly vary during the day. Therefore, we design
our system to retrain the underlying classifier based on the
recently collected PPG measurements after each successful
user authentication. Specifically, our system regularly adds a
small amount of the user’s PPG measurements (e.g., 2 min)
to the training data to retrain a new classifier for the user in
the background. This retraining process will stop until the new
classifier meets the performance requirement (e.g., when the
CA accuracy reaches 90%), and the new classifier will take
effect until the next time retraining process starts.

V. MOTION ARTIFACTS DETECTION AND FILTERING

In this section, we present the MA detection algorithm and
mitigation methods for transient and continuous MAs.

A. Motion Artifacts Detection

After the pulse segmentation mentioned in Section VI, the
system first needs to detect whether MA is affecting the PPG
segments or not. We find that when there is no MA, the
PPG segments should contain similar pulse waveform, thus
the statistics of each PPG segment should be stable over time.
However, when the PPG segments are affected by MA, the
statistics of PPG measurements vary a lot. Therefore, we pro-
pose to examine the statistics of each PPG segment and use a
threshold-based approach to detect the existence of MA.

Particularly, we choose three types of statistics (i.e., kurto-
sis, skewness, and STD) efficiently measuring the symmetry,
tails, and dispersion of the PPG segments, respectively, which
are used to effectively detect MA in existing work [29]. For
each type of statistics, we derive its cumulative distribution
function (CDF) based on high-quality PPG segments (about
20 s) without MA. From the CDF, we determine two thresh-
olds that can include 95% of the values of particular statistics.
The statistics of the testing PPG segments will be compared to
the thresholds, respectively. If any of the three types of statis-
tics from a PPG segment is out of the range determined by the
corresponding two thresholds, the PPG segment is determined
to be affected by MA. An example of the MA detection has
been shown in our conference paper [30]. We note that the
accuracy of our MA detection method is over 95% based on
the data collected from a user’s wrist in the moving scenario
described in Section VII.

In addition, considering the impacts of transient MAs and
continuous MAs are different, we developed an MA classifi-
cation method to differentiate these two types of MAs based
on the duration of each detected MA. From our experimental
results of all 20 participants, we find that most transient body
or hand movements in our daily lives last less than 10 s, so
we define any MAs that last longer than 10 s are continuous
MAs. We examine the incoming PPG signals using a sliding
window W of 10 s. If all the signals within the window are
determined to contain MA, the system considers these MAs
are continuous MAs. Otherwise, the system considers them as
transient MAs.

B. Transient Motion Artifacts Mitigation

Once the system detects transient MAs, it needs to deter-
mine whether they are caused by far wrist or near wrist
activities. We find that the far-wrist activities (e.g., moving
the forearm to reach a cup) usually create sparse and mild
MAs to PPG measurements, while the near-wrist activities
(e.g., grabbing a cup) result in much stronger MAs for a longer
period within a sliding window. Based on this observation, we
develop a transient MA classification method, which examines
the proportion of the PPG segments affected by MAs in a
sliding window and determines whether the cause of transient
MAs is the near-wrist activities or far-wrist activities using a
threshold-based approach. Specifically, we define every car-
diac cycle (about 1 s) of PPG signal as a PPG segment. We
denote the number of PPG segments determined to be affected
and not affected by MA in the sliding window as MW and NW ,
respectively. Next, the system calculates the proportion of the
PPG segments affected by MA in the sliding window defined
as λ = (MW/NW) and compares it with a threshold θma. The
detected MAs are classified as near-wrist MAs if λ ≥ θma.
Otherwise, they are classified as far-wrist MAs. We find that
the threshold θma = 30% is general enough to provide the
high accuracy of categorizing the transient MAs among all
participants.

Transient Motion Artifacts Mitigation for Far-Wrist
Activities: When the system determines that the PPG seg-
ments are affected by the far-wrist activities, we notice that
the interference of MA is usually small and recoverable.
Therefore, we employ a special moving average filter (SMAF)
to mitigate those MA and retain them for continuous user
authentication. The basic idea is to average each recognized
MA with several pure pulse segments (i.e., the typical PPG
segments without MA) of the current testing user. Then,
the MA is able to be mitigated from the averaged results.
Specifically, we first align the pure pulse PPG segments using
the systolic peaks in order to maintain the locations of the crit-
ical fiducial points. Since the number of the samples in each
pulse segment is not equal, we then interpolate those PPG
segments to make them have the same length. After the inter-
polation, we will apply the SMAF on the pure pulse segments
and MA using the following equation:

S =
∑N

h=1
−→
Ph + −→

M
N + 1

(2)
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where the
−→
Ph represents the pure pulse segments,

−→
M is MA

that requires the mitigation, and totally N pure pulse segments
and 1 MA are averaged with the mitigated result as S. In
particular, we use four pure pulse segments for the proposed
SMAF. After the SMAF, we use the smooth function to ensure
the continuity of the filtered signal. An example of the tran-
sient MA mitigation method is illustrated in our conference
paper [30].

Transient Motion Artifacts Removal for Near-Wrist
Activities: When the system determines that the PPG segments
are affected by the near-wrist activities, it implies that the PPG
measurements are significantly distorted by the MA during the
time in the sliding window. In this case, we remove all the PPG
segments affected by MA and only perform user authentica-
tion using the rest of the PPG segments in the sliding window.
However, we find that the PPG segments affected by MA may
not be continuous, and the interval between two affected seg-
ments may be too short (e.g., 1–2 sec, including 1–3 PPG
segments) for extracting a complete pulse waveform that can
be used to perform user authentication. Hence, we remove
all the PPG segments in between the first and last segments
affected by MA and keep the unaffected PPG segments for
user authentication [30]. In addition, it should be noted that
our CA system could still authenticate the user when the hand
is stable before/after the near-wrist activities, and removing
the transient MA caused by the near-wrist activities does not
influence the user experience since user authentication can be
done before the near-wrist activities.

C. Continuous Motion Artifacts Mitigation Pipeline

The aforementioned MA removal and mitigation methods
are mainly designed to ensure the robustness of our system
when there are transient MAs. When MAs continuously occur
for a long time and are determined as continuous MAs, sim-
ply removing them will suspend our CA system for a long
time, which significantly impacts user experience. Therefore,
a continuous MA mitigation method is demanded in such sce-
narios. Existing work [31] has shown that the frequency range
of the continuous MAs is 0 to 20 Hz. Since it overlaps with
typical human heartbeat frequency (i.e., 0.6 to 2 Hz), tradi-
tional filtering technology cannot effectively extract cardiac
signals with such MAs. We design a two-phase continuous MA
mitigation pipeline as shown in Fig. 5. Particularly, the first
phase performs Nonheartbeat-frequency MA Mitigation to mit-
igate the MAs residing out of the typical heartbeat frequency
range. Then, the second phase performs Heartbeat-frequency
MA Mitigation to mitigate the remaining MAs residing inside
the typical heartbeat frequency range.

1) Nonheartbeat-Frequency MA Mitigation: At first glance,
the Fourier transform or wavelet transform can be adopted
to mitigate the MAs with nonheartbeat frequency. However,
neither of these two approaches using linear decomposi-
tions [32], [33] can perform well when processing nonlinear
and nonstationary PPG signals (with or without MAs).

We find that, different from the Fourier transform or
wavelet transform, variational mode decomposition (VMD),
and empirical mode decomposition (EMD) are designed to
decompose nonstationary and nonlinear signals by unraveling

Fig. 5. Illustration of our two-phase continuous MA mitigation approach
using VMD or CEEMDAN with FastICA.

their hidden quasi-periodicity and features. Therefore, they are
more suitable for analyzing nonlinear and nonstationary sig-
nals [34]–[36], such as PPG signals. In this work, we develop
two approaches to mitigate the nonheartbeat-frequency MAs
using VMD and EMD, respectively. The basic idea is to
decompose PPG signals into a series of periodic oscilla-
tory components with different frequencies and amplitudes.
Retaining the components with frequency residing in the typ-
ical heartbeat can mitigate the nonheartbeat-frequency MA.
We note these two methods are developed for different pur-
poses. The concurrency processing of the VMD-based method
enables faster MA mitigation on resource-constraint mobile
devices (e.g., smartwatch and IoT devices). While EMD-based
methods can achieve the competitive performance and auto-
matically determine the optimal number of components to
decompose. However, the recursive decomposition process of
the EMD-based methods leads to a much larger computa-
tional cost than VMD, which makes them more suitable for
the devices with more computing power (e.g., smartphone and
personal computer).

The VMD-based MA mitigation method decomposes the
PPG MAs in a sliding window (e.g., 12 s) into multiple intrin-
sic mode functions (IMFs) that can capture the periodically
oscillatory components with different frequencies. Since typ-
ical pure heartbeat PPG signals are periodic with a certain
frequency range (i.e., 0.6 to 2 Hz), we only retain the VMD-
decomposed IMFs corresponding to heartbeat frequency and
mitigate the signal components with nonheartbeat frequencies.
It should be noted that an insufficient number of IMFs can-
not guarantee enough decomposition to extract all heartbeat
frequency components from PPG signals. Moreover, too many
IMFs overdecompose the PPG signals to introduce noises (e.g.,
redundant components), which have shape and frequency con-
tents that are nonexistent in PPG signals. To ensure that the
VMD-based MA mitigation can accurately extract heartbeat
signals, it is important to accurately determine the optimal
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number of IMFs for PPG signals. Toward this end, we adopt
the center frequency statistical analysis (CFSA) [37] to auto-
matically determine the optimal number of IMFs. The main
idea of CFSA is to iteratively increase the number of IMFs for
decomposition until the number of IMFs that have their cen-
ter frequencies higher than the average center frequency of
all the IMFs no longer increases. The initial number of IMFs
in VMD is empirically set to 4 based on our experiments to
reduce the iterations to find the optimal number of IMFs.

The EMD-based method basically decomposes the PPG sig-
nals using a different theoretical framework. In particular,
we adopt the complete ensemble EMD with adaptive noise
(CEEMDAN) [38] to avoid the mode mixing problem in tra-
ditional EMD and provide better mode separation. Different
from VMD, CEEMDAN works as a self-adaptive filter that
can automatically determine the optimal number of IMFs for
the decomposition. Therefore, we can apply CEEMDAN to
decompose the PPG MAs in a sliding window (e.g., 12 s)
without specifying the number of IMFs. Then, we retain
the CEEMDAN-decomposed IMFs in the typical heartbeat
frequency range to mitigate the nonheartbeat-frequency MAs.
The key to having a decent performance of CEEMDAN is
properly setting its two main parameters (i.e., the added noise
on MAs and the number of ensemble trials). Particularly, the
white noise with an appropriate amplitude is required to solve
the mode mixing problem and avoid the redundant IMFs.
Moreover, a sufficient number of ensemble trials is theoret-
ically needed to remove the effect of the added noise. We find
that CEEMDAN provides the best decomposition performance
for the PPG MAs when the amplitude coefficient is 0.2 and
the number of the ensemble trials is 500.

Based on our experiments, we observe that CEEMDAN
can decompose more low-frequency components below 0.6
Hz which makes it more effective than VMD for correcting
the low-frequency MAs in daily life. We note that both con-
tinuous MA mitigation methods process PPG data in a sliding
window. We empirically determine the size of the window to
be 12 s, which covers sufficient extreme of the signals for
both methods to work properly. After decomposing the MAs
by either of the methods, we only retain the IMFs with the
frequency residing in the ranges of typical heartbeat (i.e., 0.6
to 2 Hz).

2) Heartbeat-Frequency MA Mitigation Using ICA: After
nonheartbeat-frequency MA mitigation, we need to further
remove the remaining MAs with heartbeat frequency. Given
the fact that the pure pulse signals embedded in the remaining
MAs are relatively stable and periodic, the remaining MAs
are mixed independent sources that are composed of the pure
pulse signals and the motion-related signals. Independent com-
ponent analysis (ICA) is a blind source separation technique
used to find the independent source signals even when they
have the same frequency range. Therefore, ICA can be adopted
to separate the pure pulse signal out of the remaining MAs.
In particular, FastICA [39] is used in our work since it is
computationally efficient and has faster convergence than the
conventional ICA.

A major problem of the ICA algorithm is that the relia-
bility of the estimated independent components is not known.

Specifically, the ICA algorithm generates different components
when running multiple times. One reason is the algorithm only
finds a local minimum of the objective and many local min-
ima can be equally good. The other reason is the finite sample
size inevitably induces statistical errors in the estimation. In
order to deal with this reliability issue of ICA, we propose
a pipeline to extract the stable source signals. We first adopt
principal component analysis (PCA) to whiten the input data
which is necessary for FastICA to work properly. Specifically,
we only retain the most uncorrelated variables based on an
empirical threshold on their eigenvalues. To extract the reli-
able independent components, we run FastICA multiple times
and obtain a set of components. If an independent compo-
nent is reliable, every run of the algorithm should produce the
components that are very close to the ideal components cor-
responding to the cluster centers. And, we adopt a K-means
clustering approach to extract the stable source signals (i.e.,
the recovered pulses and MAs). The details of the proposed
pipeline are as follows.

1) Data Preparation and Whitening: The remaining MAs
in a sliding window is equally divided into N segments
(e.g., 4) to generate sufficient dimensions of input data
for FastICA. The input data is then preprocessed using
PCA. Based on our experiment, we empirically keep the
PCA components whose eigenvalues sum exceeds the
threshold (i.e., 80%) of the sum of all the components’
eigenvalues.

2) FastICA With Multiple Runs: The FastICA algorithm
runs M times. In our work, we set running time M to
10 which is sufficient to get reliable components based
on our experiments. And we find the following FastICA
parameters provide the best separation performance: the
decorrelation approach is symmetric which speeds up
the algorithm using parallelism, and the nonlinearity
used is “skew” [g(u) = u2].

3) ICA Components Clustering: The k-mean clustering
approach is then adopted to cluster all the estimated
independent components from the previous step accord-
ing to the Euclidean distance among them. Particularly,
we use the centroid of each cluster as the finalized stable
components for further analysis.

For example, our proposed pipeline generates four clusters
of ICA components from the results of ten times of running
FastICA algorithm for a washing dishes activity that lasts 25
s. As shown in Fig. 6, we adopt the centroid of each cluster
as the finalized stable ICA components from which we will
find one as the recovered pure pulses.

We next find the ICA component as the recovered pure
pulses, the basic idea is to select an ICA component as similar
as possible to the pure pulses in terms of the waveform shape.
Our selection strategy is to first find the ICA component with
the smallest dynamic time warping (DTW) [40] distance to a
typical user’s static pulse signals of the same time duration. To
guarantee the robustness of the selection, its periodicity and
dominant frequency should be further considered. Based on
our experiments, the correctly selected ICA component should
also be the most periodic one which has the largest sum of
absolute autocorrelation coefficients. Moreover, its dominant

Authorized licensed use limited to: Temple University. Downloaded on September 30,2022 at 21:52:27 UTC from IEEE Xplore.  Restrictions apply. 



9550 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

Fig. 6. Cluster centroids of four ICA components (i.e., Comp1, Comp2,
Comp3, and Comp4) with applying our FastICA pipeline on the remaining
MAs (e.g., generated by washing dishes) after nonheartbeat-frequency MA
mitigation.

TABLE II
FIND ICA COMPONENT AS THE RECOVERED PURE PULSES ACCORDING
TO SIGNALS’ WAVEFORM, PERIODICITY, AND DOMINANT FREQUENCY

frequency from FFT must reside in the typical frequency range
of the human heartbeat. With meeting all those conditions, then
we will use this ICA component as the recovered pure pulses.
Otherwise, we do not adopt any ICA components from the
current sliding window.

For instance, we calculate the DTW distance, the sum
of absolute autocorrelation, and dominant frequency of four
ICA components (i.e., Comp1, Comp2, Comp3, and Comp4)
in Fig. 6, respectively. Their detailed results are shown in
Table II. We can find that Comp3 is first selected since it has
the smallest DTW distance (i.e., 24) among four components.
Since it also has the largest sum of absolute autocorrela-
tion coefficients as 12.4 with a reasonable 1.2-Hz dominant
frequency. Therefore, we select Comp3 as the recovered pure
pulses based on our selection strategy. Besides, since FastICA
generates normalized components [41], the selected ICA com-
ponent cannot retain the original amplitude. Therefore, we
scale its amplitude back according to the typical scale on
the static pure pulse period. Specifically, we first apply the
FastICA on the static pure pulse period (e.g., 1 min) and calcu-
late the scales for recovering each segment. Then, the median
scale value is adopted to scale the recovered MAs amplitude
back.

It should be noted that the sliding window length is not fixed
in our work. Since the signal length theoretically impacts the
performance of VMD, CEEMDAN, and FastICA, there exist
some constraints for the window length selection. Specifically,
a sliding window should be long enough to capture sufficient
extreme of the signals for VMD and CEEMDAN to work prop-
erly. Based on our experiment, the length of a sliding window
should be at least 10 s. Considering our basic authentication
unit (e.g., 3 s), a 12 s sliding window (i.e., 4 authentication
units) is adopted as the shortest acceptable window length in
our work. In fact, a properly longer sliding window enables a
finer-grained VMD and CEEMDAN decomposition and also
leads to better source separation in FastICA. However, too long
window length could generate “false” components to IMFs and
increase the running time significantly [42]. Therefore, there

Fig. 7. Prototype: wrist-worn PPG sensing platform.

is also a maximum length constraint. According to our exper-
iment, a sliding window of 24 s at maximum could not only
lead to an optimal mitigation performance but also with an
acceptable running time (less than 3 s) for quick authentication
response.

VI. PPG DATA PREPROCESSING AND SEGMENTATION

A. Data Preprocess

The PPG measurements from the low-cost PPG sensor in
wrist-worn wearable devices inevitably contain baseline drift
and high-frequency interference. Since the frequency of the
pulsatile component in PPG is 0.5–4 Hz, and the frequency
of MA is 0.1 Hz and above, our system first applies a band-
pass filter to reduce the effect of the baseline drift and high-
frequency noise. In particular, we implement a Butterworth
bandpass filter with the passband 0.5–6 Hz and the order as 2
to only retain the pulsatile components together with the MA
components having a similar spectrum.

B. Pulse Segmentation

Our system determines the starting and ending points of
all the PPG segments in the sliding window. Ideally, we can
find all the valley points in the sliding window and extract the
data between every two valley points as the PPG segments.
However, we find that the dicrotic notch could have the lowest
amplitude (i.e., “fake” valley) in the cardiac cycle. Particularly,
we tackle this issue based on the fact that the time dis-
tances from the systolic peak to the starting and ending points
are in the range of Ts =0.15–0.26 s and Te =0.44–0.74 s,
respectively [43]. Therefore, the accurate PPG segment can
be extracted by selecting the valleys that are within the typi-
cal time ranges Ts and Te before and after each systolic peak,
respectively. In addition, through our experiments with 20 par-
ticipants, we empirically determine the sliding window as 2-s
larger than one typical pulse waveform (e.g., 0.6–1 sec) to
ensure the effectiveness and accuracy of the PPG segmenta-
tion. We also note that our segmentation method is effective
with MA because the system finds PPG segments in the sliding
window based on the peaks and valleys that fulfill the criteria
even though the waveform may be distorted.

VII. PERFORMANCE EVALUATION

A. Experimental Methodology

Wearable Prototype: We design a wrist-worn PPG sensing
prototype as shown in Fig. 7, which refers to the layout of
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Fig. 8. Prototype using the commodity smartwatch.

PPG and motion sensors in commodity wrist-worn wearable
device (e.g., Apple Watch). Specifically, the prototype consists
of one commodity green LED PPG sensor attached to the inner
side of the wristband and a motion sensor (i.e., accelerometer)
attached to the outside of the wristband. These sensors are
connected to an Arduino UNO (REV3) board for the sensor
measurements acquisition, which is under a 300-Hz sampling
rate. The PPG measurements are transferred to a laptop (i.e.,
Dell Latitude E6430) to perform user authentication.

Smartwatch Prototype: We have also implemented our CA
system on the commodity smartwatch shown in Fig. 8 to
demonstrate the practical usability of our system. This proto-
type is composed of a smartwatch for collecting the real-time
PPG measurements, a laptop running the WebSocket server to
receive the data and perform continuous user authentication,
and a WLAN enabling the communication between the smart-
watch and the laptop via a WiFi access point. Before our CA
system begins, the smartwatch and the laptop need to con-
nect to the WLAN. Then our developed Web application as
the WebSocket client running on the smartwatch can initiate
the connection to the WebSocket server running on the lap-
top. Once the connection is built, the smartwatch will transfer
the real-time PPG measurements to the connected laptop via
WLAN. Simultaneously, the laptop will process the incom-
ing real-time PPG measurements and perform our CA system
implemented using MATLAB. In particular, we do the experi-
ment using a Samsung Gear S3 classic smartwatch with Tizen
OS 4.0 which is equipped with two PPG sensors having a sam-
pling rate of 20 Hz. The laptop is with Intel Core i7-9750H
CPU and 32 GB of RAM.

Data Collection: We recruit 20 healthy participants whose
ages are between 20 and 40 to collect PPG measurements
using our wearable prototype. Two different scenarios are
adopted to evaluate our system for various practical appli-
cation scenarios: In the static scenario, 20 participants are
asked to sit quietly for 10 min, respectively. While in the
moving scenario, we ask five participants to perform the far-
wrist activities (i.e., moving the forearms) and the near-wrist
activities (i.e., grabbing up a cup and drinking water) repeat-
edly for 2 min and sit still for 3 min. In total, we collect
around 15 000 PPG pulse segments from the wearable pro-
totype in the static-scenario and 4200 pulse segments in the
moving scenario, respectively. In addition, we also test our
system on the IEEE TBME Benchmark data set [44], which
has 8-min PPG data collected from the fingertips of 42 people
with a sampling rate of 300 Hz.

(a) (b)

Fig. 9. CA accuracy of TrueHeart using the PPG measurements from the
wrist areas and the fingertips. (a) PPG from the wrist area. (b) PPG from the
fingertip.

For the experiments involving continuous MAs, we col-
lect PPG measurements using our smartwatch prototype.
Particularly, we ask four participants to perform seven continu-
ous movements repeatedly for 2 min and hold still for 3 min.
Those movements include different forearm and whole arm
movements with various motion patterns (e.g., forearm for-
ward backwards, forearm left right, forearm half cycle, whole
arm left right, washing dishes, washing face, and brushing
teeth). In total, we collect around 5300 PPG pulse segments
in the static and 3100 pulse segments in the continuous
movement, respectively.

B. Evaluation Metrics

Our system periodically authenticate the user based on the
PPG segments in a sliding window and labels the sliding
window as the user or attacker, respectively. We define our
evaluation metrics as follows:

CA Accuracy: The number of sliding windows that are cor-
rectly labeled as the user over the total number of sliding
windows that are examined during the CA process.

Attack Detection Rate: The number of sliding windows that
are correctly labeled as the attacker over the number of sliding
windows that are associated with the attacker during the CA
process.

Attack False Detection Rate: The number of sliding win-
dows that are incorrectly identified as the attacker over the
number of sliding windows that are associated with the user
during the CA process.

Receiver Operating Characteristic (ROC) Curve: It reflects
the tradeoff between Attack Detection Rate and Attack False
Detection Rate. The smallest distance from the point on the
ROC curve to the top-left corner corresponds to the optimum
model.

In our evaluation, 20 rounds of the Monte Carlo cross-
validation are employed for the 10 min of the collected user
data, among which 5 min for training and the rest of the data
for authentication.

C. Continuous User Authentication Performance

We first evaluate the general performance of TrueHeart by
examining the CA accuracy in the static scenario. In partic-
ular, we consider each participant acts as a legitimate user
once while remaining participants act as attackers. Fig. 9(a)
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Fig. 10. ROC curves under the random attack.

Fig. 11. Performance with different lengths of the sliding window.

shows that each user achieves comparable high CA accu-
racy with an average of 90.73% CA accuracy, which indicates
that TrueHeart can successfully authenticate users with high
accuracy using the wrist-worn wearable devices. In addition,
Fig. 9(b) shows that our system can achieve even better
performance on the PPG data from the fingertip [44] with
39 out of 42 people having the CA accuracy above 96%.
This is because the PPG measurements from the fingertip are
stronger and stabler than the wrist area. These results not only
demonstrate the promising practical usability of our proposed
user authentication system on common wrist-worn wearable
devices but also indicate that it has promising usage in
clinical environments, such as telemedicine and smart-health
applications.

Moreover, to study the performance of our system when
defending against the random attack, Fig. 10 shows that the
ROC curve gets closer to the point (0, 1) when the number
of the PPG segments in a sliding window becomes larger.
Particularly, our attack detection rate reaches to over 88% with
the attack false detection rate of around 3.9% when the length
of the sliding window is 4. And our system can achieve over
90% attack detection rate and less than 4.2% attack false detec-
tion rate with six or more PPG segments in a sliding window.
Those results show that our CA system is robust against the
random attacks.

D. Impact of Various Factors

Impact of the Sliding Window Length: The length of the
sliding window corresponds to the number of continuous PPG
segments to perform the majority vote for user authentication.
Particularly, we test the different lengths of the sliding window
with 1, 2, 4, 6, and 8 continuous PPG segments (i.e., about
0.7, 1.4, 3, 4.4, and 6 s). Fig. 11 shows the CA accuracy
increases as the increment of the sliding window length and
becomes stable at about 90% with four or more PPG segments.

(a) (b)

Fig. 12. Impacts of the training size and the machine learning method. (a)
Performance with different sizes of the training data. (b) Performance with
different machine learning methods.

Therefore, we adopt the sliding window with four continuous
PPG segments in our system, which not only provides the
high CA accuracy but also has the short response time for the
authentication (i.e., around 3 s).

Impact of Training Data Size: Since the training data size
influences the ease of use in terms of the time for data col-
lection, so we particularly test 1, 2, 3, 4, 5, and 6 min’ static
PPG signals of each user for training, respectively, and use
the rest data for testing. Fig. 12(a) shows that an average CA
accuracy of 77.75% is achieved only using 1 min’s data of
each user for training. Moreover, the average CA accuracy
can increase to 90.65% and becomes stable when using 5 min
or more training data of each user. Those results prove that
our system is suitable for practical use since it can achieve
very high CA accuracy with the only limited size of training
data (e.g., 5-min per user).

Impact of Machine Learning Methods: We study the
performance of our system with different underlying machine
learning models. Specifically, we adopt the support vector
machine (SVM) and neural network (NN) using the LIBSVM
library [45] and the multilayer perceptron in Scikit-learn [46],
respectively. Fig. 12(b) shows that GBT has the best CA accu-
racy of 90% compared with SVM (scaling the data) and NN
whose CA accuracy is 75% and 80%, respectively. This result
indicates that GBT easily tuned with flexible optimization
options is more suitable for our CA system than the machine
learning methods which either are difficult to determine the
appropriate kernel (e.g., SVM) or require a large amount of
training data and expertise to tune the model (e.g., NN).

Impact of Sampling Rate: The sampling rate affects the
power consumption and computational cost in the wearable
devices. In particular, we find that the CA accuracy is as high
as 88% at the lowest sampling rate (i.e., 25 Hz) and increases
slightly with the increased sampling rate and becomes stable
with 90.7% CA accuracy since 100 Hz. Those findings imply
that our CA system is not only compatible with the commod-
ity wrist-worn wearable devices (e.g., Samsung Simband [47]
adopts 128-Hz PPG sampling rate) but also supports the
hardware with even lower PPG sampling rate.

E. CA Performance With MA Mitigation and MA Removal

We next study the performance of our MA removal method
on near-wrist activities and the MA mitigation method on
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Fig. 13. Performance of MA mitigation and removal with transient activities.

Fig. 14. Performance with mitigating seven continuous movements (i.e., M1
to M7).

far-wrist activities among five participants, respectively. As
shown in Fig. 13, while performing far-wrist activities, such
as moving forearm, our system could still achieve 72.2% CA
accuracy even without applying the MA mitigation method
and the CA accuracy increases to 89.2% after MA mitigation.
Furthermore, we can see that our system has the CA accu-
racy as 36.6% before MA removal and achieve 75.2% after
MA removal for the near-wrist activities such as grabbing up
a cup to mimic drinking water gesture. Those results show
that the far-wrist activities have a relatively slight impact on
our CA system, whereas the near-wrist activities have more
impacts due to the involvement of the tendon and muscle in the
wrist area. Overall, our system has a decent performance after
applying the MA mitigation method on the far-wrist activities
and the MA removal method on the near-wrist activities, which
implies that it’s practical when the sparse and mild movements
occur.

F. CA Performance With Continuous Motion Artifacts
Mitigation

We study the performance of our MA mitigation method on
seven continuous MAs among four participants, respectively.
As shown in Fig. 14, our system achieves an average CA
accuracy of 69% and 74% under seven continuous movements
after adopting the VMD-based and CEEMDAN-based MA
mitigation, respectively. Compared to the performance with-
out any mitigation, our system improves the CA accuracy by
around 39%. Moreover, it is observable that VMD outper-
forms CEEMDAN in forearm half cycle. The reason is that
forearm half-cycle movement generates more high-frequency
noises than other movements and VMD has better performance
than CEEMDAN in terms of the high-frequency noise miti-
gation. Overall, our system has a decent performance after

Fig. 15. Performance comparison with different lengths of the sliding
windows.

Fig. 16. Performance comparison with adaptive training.

continuous MAs mitigation, which implies that it’s practical
for daily life usage.

We also study the impacts of different lengths of the slid-
ing window on the mitigation performance. As discussed in
Section V-C, there exist the minimum and maximum win-
dow length constraints for continuous PPG MAs mitigation.
Therefore, a short window (i.e., 12 s corresponds to the mini-
mum requirement) and a long window (i.e., 24 s corresponds
to the maximum length constraint) are especially evaluated.
Fig. 15 shows that, when adopting the short window, both
VMD + FastICA and CEEMDAN + FastICA have similar
performance (i.e., 62% and 63% CA accuracy, respectively).
After using the long window, their CA accuracies reach to
69% and 74% (increase 7% and 11%, respectively). This result
demonstrates that an appropriate longer sliding window could
indeed lead to better performance.

G. Effectiveness of Adaptive Training

We evaluate our adaptive training using the data collected
by one user across three different hours in a day. Specifically,
we collect 1-h PPG data starting at 11 A.M., 1 P.M., and 4 P.M.,
respectively. In Fig. 16, Tr1 represents the training set is only
from the first hour and Tr2 represents the mixed training set
includes the data from both the first hour and 2 min’ data from
the third hour. We can see that our system trained by Tr1 can
achieve 91% CA accuracy during the first hour, and decreases
5% during the second hour and 7% during the third hour,
respectively. These results demonstrate that the user cardiac
system indeed has some fluctuations during a long-time period
that slightly impact the CA performance. Moreover, after the
adaptive retraining with Tr2, the CA accuracy will increase
back to 90% during the third hour. Those results prove that
our system is suitable for long-time user authentication with
few times of adaptively retraining which requires a very small
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amount of the new data. (e.g., routinely retrain every 3 h with
only 2 min’ new data).

VIII. DISCUSSION

Human Emotion Impact: We are aware that cardiac pat-
terns may be affected by human emotions [48] with different
degrees. Particularly, the emotions with high arousal (e.g.,
angry) may cause drastic cardiac status changes and impact
the performance of our system. it is worth noting that unex-
pected sickness could have comparable impacts. In those cases,
our system would notify the users of using the traditional
authentication approach (e.g., password) to verify their iden-
tity temporarily, then update itself using the adaptive learning
afterward.

PPG Sensor Impact: The light sources of the PPG sensor
have different impacts on the quality of the PPG measure-
ments. Specifically, three types of light sources (i.e., green,
red, and infrared) are known to be adopted by the PPG sensor
in the commodity smartwatches (e.g., Apple Watch Series 4,
5, and 6). Those lights can penetrate the human skin and tis-
sues with different depths due to their different wavelengths.
The green light is the most popular PPG light source that has
the shallowest skin penetration and is hence more resistant to
MAs. Skin tone, specifically the amount of melanin, affects
the skin’s ability to absorb green light and further increases
the variation in signal quality. Combining green light with red
and/or infrared light sources has the potential to achieve bet-
ter performance for our system. The reason is twofold: first,
red and infrared light can reach deeper tissues to capture more
user-specific physiological information. Second, they are trans-
parent to melanin and hence not appreciably affected by the
skin color, tattoos, and freckle patterns.

Energy Consumption: Our wearable prototype includes an
Arduino board (i.e., about 50 mA) and one PPG sensor (i.e.,
4 mA). In total, it is about 54-mA current consumption of
this prototype. Given the fact that the off-the-shelf smart-
watches generally have a battery capacity of 380 mAh, our
system can run up to 7 h on the wearable prototype. For our
commodity smartwatch prototype, if we offload the computa-
tion to a smartphone via Bluetooth, the power consumption
of the smartwatch [49] only involves the PPG sensor and
Bluetooth (i.e., 3.5 mA), which is as low as 7.5 mA. Given
such low power consumption, our system can run over 24 h
on a smartwatch.

IX. CONCLUSION

In this article, we develop a low-cost PPG-based con-
tinuous user authentication (CA) system, TrueHeart, using
the wrist-worn wearable devices. Specifically, we explore the
diverse PPG measurements among 20 participants and deter-
mine the representative and general fiducial feature sets that
can facilitate our CA system. We develop an effective MA
detection method based on the statistics of the PPG segments.
In addition, MA classification and the adaptive MA filtering
approaches are designed to mitigate the impacts of the tran-
sient activities and continuous activities from the daily life. To
ensure the long-term robustness of our CA system, we develop

an adaptive user authentication method using the GBT tech-
nique. We devise a wrist-worn PPG sensing prototype and a
smartwatch prototype to conduct extensive experiments with
20 participants under static and different moving scenarios.
The results show that our system can achieve a high average
CA accuracy of over 90% and a low attack false detection
rate of 4% under static scenarios in practice. Our adaptive
MA mitigation approaches can improve the CA accuracy by
around 39% under both transient and continuous daily activity
scenarios.
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[24] A. R. Kavsaoğlu, K. Polat, and M. R. Bozkurt, “A novel feature ranking
algorithm for biometric recognition with PPG signals,” Comput. Biol.
Med., vol. 49, pp. 1–14, Jun. 2014.

[25] M. Elgendi, “On the analysis of fingertip photoplethysmogram signals,”
Current Cardiol. Rev., vol. 8, no. 1, pp. 14–25, 2012.

[26] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. New York, NY, USA: Springer, 2009.

[27] C. Becker, R. Rigamonti, V. Lepetit, and P. Fua, “Supervised feature
learning for curvilinear structure segmentation,” in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent., 2013, pp. 526–533.

[28] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera,
“An overview of ensemble methods for binary classifiers in multi-class
problems: Experimental study on one-vs-one and one-vs-all schemes,”
Pattern Recognit., vol. 44, no. 8, pp. 1761–1776, 2011.

[29] L. Pu, P. J. Chacon, H.-C. Wu, and J.-W. Choi, “Novel tailoring
algorithm for abrupt motion artifact removal in photoplethysmogram
signals,” Biomed. Eng. Lett., vol. 7, no. 4, pp. 299–304, 2017.

[30] T. Zhao, Y. Wang, J. Liu, Y. Chen, J. Cheng, and J. Yu, “Trueheart:
Continuous authentication on wrist-worn wearables using PPG-based
biometrics,” in Proc. IEEE INFOCOM Conf. Comput. Commun., 2020,
pp. 30–39.

[31] E. K. Antonsson and R. W. Mann, “The frequency content of gait,” J.
Biomech., vol. 18, no. 1, pp. 39–47, 1985.

[32] S. Sadeghi, H. Behnam, and J. Tavakkoli, “Ultrasound elastography
using empirical mode decomposition analysis,” J. Med. Signals Sens.,
vol. 4, no. 1, p. 18, 2014.

[33] A. Stallone, A. Cicone, and M. Materassi, “New insights and best prac-
tices for the successful use of empirical mode decomposition, iterative
filtering and derived algorithms,” Sci. Rep., vol. 10, no. 1, pp. 1–15,
2020.

[34] M. B. Mashhadi, M. Farhadi, M. Essalat, and F. Marvasti, “Low
complexity heart rate measurement from wearable wrist-type photo-
plethysmographic sensors robust to motion artifacts,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process. (ICASSP), 2018, pp. 921–924.

[35] W. He et al., “Variational mode decomposition-based heart rate estima-
tion using wrist-type photoplethysmography during physical exercise,”
in Proc. 24th Int. Conf. Pattern Recognit. (ICPR), 2018, pp. 3766–3771.

[36] S. Hadiyoso, E. Dewi, and I. Wijayanto, “Comparison of EMD, VMD
and EEMD methods in respiration wave extraction based on PPG
waves,” J. Phys. Conf. Series, vol. 1577, no. 1, 2020, Art. no. 012040.

[37] S. Wu, F. Feng, J. Zhu, C. Wu, and G. Zhang, “A method for determin-
ing intrinsic mode function number in variational mode decomposition
and its application to bearing vibration signal processing,” Shock Vib.,
vol. 2020, May 2020, Art. no. 8304903.

[38] M. A. Colominas, G. Schlotthauer, and M. E. Torres, “Improved com-
plete ensemble EMD: A suitable tool for biomedical signal processing,”
Biomed. Signal Process. Control, vol. 14, pp. 19–29, Nov. 2014.

[39] A. Hyvarinen, “Fast and robust fixed-point algorithms for indepen-
dent component analysis,” IEEE Trans. Neural Netw., vol. 10, no. 3,
pp. 626–634, May 1999.

[40] M. Müller, “Dynamic time warping,” in Information Retrieval for Music
and Motion. Heidelberg, Germany: Springer, 2007, pp. 69–84.

[41] L. F. A. Martinez, J. R. Atencia, and J. Širokỳ. “Multilead Beat Detector
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