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Abstract

The unsupervised task of aligning two or more
distributions in a shared latent space has
many applications including fair representa-
tions, batch effect mitigation, and unsuper-
vised domain adaptation. Existing flow-based
approaches estimate multiple flows indepen-
dently, which is equivalent to learning multi-
ple full generative models. Other approaches
require adversarial learning, which can be
computationally expensive and challenging
to optimize. Thus, we aim to jointly align
multiple distributions while avoiding adver-
sarial learning. Inspired by efficient alignment
algorithms from optimal transport (OT) the-
ory for univariate distributions, we develop
a simple iterative method to build deep and
expressive flows. Our method decouples each
iteration into two subproblems: 1) form a vari-
ational approximation of a distribution diver-
gence and 2) minimize this variational approx-
imation via closed-form invertible alignment
maps based on known OT results. Our em-
pirical results give evidence that this iterative
algorithm achieves competitive distribution
alignment at low computational cost while
being able to naturally handle more than two
distributions.

1 INTRODUCTION

The task of aligning two or more distributions in a
shared latent space without any pairing information
between data points (i.e., unsupervised) has attracted
increasing interest due to its varied applications. These
include fair representations (Zemel et al., 2013), batch
effect mitigation (Haghverdi et al., 2018), unsupervised
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domain adaptation (Hu et al., 2018), and generative
models (Grover et al., 2020). For example, Zemel et al.
(2013) estimate a shared latent representation of the
class-conditional distributions that simultaneously ob-
fuscates any information about protected attributes
(e.g., race) while preserving all other information useful
for classification. For genetic data, Haghverdi et al.
(2018) attempt to mitigate batch effects (i.e., irrel-
evant shifts in the data between batches caused by
non-biological factors) by estimating a shared repre-
sentation among batches; this enables the integration
and analysis of multiple datasets collected at different
laboratories. Hu et al. (2018) perform unsupervised
domain adaptation by mapping the source and target
domains to a shared latent representation.

Prior work on this unsupervised alignment task gener-
ally falls into two categories: adversarial and flow-based
methods. Zhu et al. (2017) propose CycleGAN for do-
main translation via Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014). Specifically, they
jointly train two GANs that attempt to generate one
dataset from the other dataset and add a cycle consis-
tency loss to encourage that translating from domain
A to B and back to A will yield the original point—i.e.,
an approximate invertibility constraint. Grover et al.
(2020) propose AlignFlow that uses normalizing flows
(Rezende and Mohamed, 2015; Dinh et al., 2015) to sat-
isfy cycle consistency by construction and, in contrast
to CycleGAN, learns a shared latent representation of
the two datasets. AlignFlow combines both adversarial
learning and maximum likelihood estimation (MLE)
for training. Both CycleGAN and AlignFlow leverage
adversarial learning to achieve good results. However,
a fundamental limitation of adversarial learning is that
it can be computationally expensive and challenging to
optimize (e.g., Lucic et al., 2018; Kurach et al., 2019).
To avoid adversarial learning, AlignFlow can be set to
only use the MLE loss terms. In this case, the two flow
models are estimated independently and they use Gaus-
sian distribution as their latent representation which
does not preserve any shared structure (e.g., black
pixels in MNIST digits). Thus, without adversarial
learning, a natural consequence is that AlignFlow must
essentially estimate two full generative models rather
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Table 1: Comparison with other methods. *AlignFlow relies on adversarial learning to get good results.

CycleGAN AlignFlow LRMF SINF INB

Distribution alignment 3 3 3 7 3
No adversarial learning 7 7* 3 3 3
Iterative learning 7 7 7 3 3
Multiple distributions 7 7 7 7 3
Shared latent space 7 3 7 7 3

than merely estimating the translation map—which will
be simpler if the datasets share some structure. Hence,
their method is likely to require higher sample com-
plexity and computational cost. Another flow-based
method LRMF (Usman et al., 2020) directly learns the
transformation between two distributions via minimiz-
ing the non-adversarial log-likelihood ratio. However it
is limited to the alignment between two distributions
and does not learn a shared latent space.

Inspired by the limitation of existing methods, we aim
at the joint estimation of multiple flow models that map
to a shared representation without adversarial learning.
While in general this is hard for complex datasets, sim-
ple cases can be solved very efficiently using the tools
from optimal transport (OT) theory. Specifically, for
1D distributions, it is easy to compute the invertible
maps between each distribution and the barycenter
distribution, which naturally serves as a shared latent
space. Thus, we propose a method we call Iterative
Naïve Barycenter (INB), which instead of trying to
solve a large global problem directly, iteratively solves
simpler subproblems that first estimate a variational
divergence and then minimize this variational diver-
gence via OT barycenter maps by leveraging known
efficient solutions. We leverage the development of the
maximum K-Sliced Wasserstein distance proposed in
Sliced Iterative Normalizing Flows (SINF) (Dai and
Seljak, 2021).

As we show in the experiments, our INB method can
achieve competitive or better alignment performance
than baselines within a much shorter time. Moreover,
INB naturally works with multiple distributions in a
symmetric way which significantly reduces the compu-
tational cost and improves the alignment performance.

For clarity, we compare INB with prior methods in
Table 1 and summarize our contributions as follows:

• We first develop a symmetric Monge map problem
and a multi-distribution divergence to enable multi-
distribution alignment.We show that the symmet-
ric Monge map problem is equivalent to finding the
Monge maps to the barycenter distribution and
can be solved in closed-form for 1D distributions.

• We propose an efficient iterative algorithm for
unsupervised distribution alignment by iteratively
minimizing the multi-distribution divergence. Our
algorithm involves two steps: the first step forms a
variational approximation of the divergence around
the current iterate and the second step exactly
minimizes this variational divergence via known
OT solutions for 1D.

• To the best of our knowledge, our INB approach
is the first flow-based distribution alignment ap-
proach that can be naturally applied to align mul-
tiple distributions.

• We demonstrate the benefits of our INB approach
on synthetic and real-world datasets.

2 BACKGROUND

Given samples from M class distributions
(PX1 , PX2 , · · · , PXM ), our goal is to find invert-
ible maps T1, T2, · · · , TM such that the resulting latent
distributions are aligned in a shared latent space,
i.e., PT1(X1) = PT2(X2) = · · · = PTM (XM ). Because
the maps are invertible, this also enables translation
between any two component distributions merely by
composing one map and the inverse of the other, i.e.,
to translate from m to m0, the following map can
be used Tm!m0 = T�1

m0 � Tm. We can formalize our
alignment goal as the following optimization problem:

min
T1,··· ,TM

�(PT1(X1), PT2(X2), · · · , PTM (XM )) , (1)

where � is a multi-distribution statistical divergence
(i.e., a functional that is always non-negative and zero
if and only if all distributions are equal). To solve
this problem, we need a tractable divergence � and
a tractable method for optimizing this problem. We
first review key concepts from optimal transport (OT)
that will be needed for deriving our iterative algorithm,
particularly closed-form OT solutions to 1D problems.
Then, we will review tractable two-distribution diver-
gences, which we will extend to the M distribution case
in later sections.
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2.1 Optimal Transport Fundamentals

We will first review some standard OT definitions. The
following classical Monge map problem (Peyré and
Cuturi, 2019, Remark 2.7) can be seen as finding the
lowest transportation cost map that aligns the distribu-
tions (which is an explicit constraint in the problem).

Definition 1 (Monge problem). Given two distri-
butions (PX1 , PX2) supported on two spaces (X1,X2)
and a cost function c(·, ·), the Monge problem is de-
fined as finding the map T : X1 ! X2 that solves:
argminT EPX1

[c(x, T (x))] s.t. PT (X1) = PX2 , where
the objective is the transportation cost and the con-
straint is a distribution alignment condition (also known
as the pushforward condition).

We next review the definitions of the Kantorovich re-
laxation (Peyré and Cuturi, 2019, Remark 2.13) and
the barycenter distribution (Peyré and Cuturi, 2019,
Remark 9.1), which will be important for our develop-
ment of multi-distribution divergences. For this paper,
we will assume c(x, y) = kx� yk22 and that one of the
distributions has a density so that the barycenter is
unique (Agueh and Carlier, 2011).
Definition 2 (Kantorovich Relaxation). Given
the same variables as Def. 1, the Kan-
torovich problem is defined as: Lc(PX1 , PX2) ,
minQ2U(PX1 ,PX2 )

EQ[c(x1, x2)] , where Q is a joint
distribution over X1 and X2 such that the marginals
are equal to PX1 and PX2 respectively (denoted by
U(PX1 , PX2)).
Definition 3 (Wasserstein Barycenter). Given a set
of input distributions (PX1 , · · · , PXM ) defined on some
space X , weights w such that

P
m wm = 1, the barycen-

ter is defined as: bary(PX1 , PX2 , · · · , PXM ;w) ,
argmin PXbary

PM
m=1 wmLc(PXbary , PXm) , where Lc is

defined in Def. 2.

Finally, we review the Wasserstein-2 distance between
distributions that will be the basis for the tractable
sliced Wasserstein distance described next.
Definition 4 (Wasserstein-2 Distance). The
Wasserstein-2 distance is simply W2(PX1 , PX2) =
Lc(PX1 , PX2)

1
2 , where Lc is defined as above and

c(x, y) = kx� yk22.

2.2 Maximum K-sliced Wasserstein Distance

While in general the Wasserstein-2 distance requires
solving a complex optimization problem, in 1D, the
distance can be computed in closed-form because
the Monge map is known in closed-form. Thus,
several works (e.g., Bonneel et al., 2015; Kolouri
et al., 2016; Deshpande et al., 2018) propose to

use the sliced Wasserstein distance defined as:
SW(PX1 , PX2) , E✓[W2(P✓TX1

, P✓TX2
)] where ✓

is distributed as a uniform distribution over all
unit norm vectors. A variant called the maximum
sliced Wasserstein distance has also been proposed
max-SW(PX1 , PX2) , max✓ W2(P✓TX1

, P✓TX2
), which

is computed along the direciton with the largest
W2 distance (Kolouri et al., 2019). Recently, Dai
and Seljak (2021) proposed the maximum K-sliced
Wasserstein distance (which they prove is a true
metric between distributions) that finds the K
orthogonal directions that maximize the W2 distance
along each projection, i.e., max-K-SW(PX1 , PX2) ,
max✓1,...,✓K

PK
k=1 W2(P✓T

k X1
, P✓T

k X2
) such that

✓Tk ✓k0 = 0, 8k 6= k0 and k✓kk2 = 1.

3 MULTIPLE DISTRIBUTION
ALIGNMENT

To handle multi-distribution alignment, we first define
a symmetric Monge map problem and show that the
solution is related to the barycenter problem. This new
multi-distribution problem suggests a natural multi-
distribution extension to the maximum K-sliced Wasser-
stein distance, which will be the divergence we seek to
minimize in our iterative algorithm.

3.1 Symmetric Monge Map Formulation

The original Monge formulation is asymmetric because
the two distributions have distinct roles. While in
theory the role of the distributions does not matter be-
cause T ⇤

m0!m ⌘ (T ⇤
m!m0)�1, in practice the estimated

map T̂ will vary depending on which distribution is
the source distribution. Finally and more importantly,
the Monge problem in its original formulation only
considers two distributions but we want to consider
more than two distributions.
Definition 5 (Symmetric Monge Map (SMM)). Given
a set of continuous input distributions (PX1 , . . . , PXM )
defined on some continuous space X , a non-negative
weight vector w � 0 such that

P
m wm = 1, and cost

function c(·, ·), the symmetric Monge map problem is
defined as:

argmin
T1,T2,··· ,TM

MX

m=1

wmEPXm
[c(x, Tm(x))]

s.t. PTm(Xm) = PTm0 (Xm0 ) 8m 6= m0 .

(2)

When M=2, the original Monge problem can be re-
covered if T2 = id and w2 = 0. Thus, this problem
can be seen as a symmetric relaxation of the Monge
problem for two or more distributions. We prove that
our symmetric Monge map problem is equivalent to



Iterative Alignment Flows

finding the maps to the barycenter (proof in appendix).

Theorem 1 (SMM Solution is Monge Maps To
Barycenter). For c(x, y) = kx � yk22 where the
distributions have densities, the symmetric Monge
map solution (Def. 5) is the Monge maps between
the class distributions and the barycenter distribu-
tion (Def. 3), i.e., T ⇤

m = T ⇤
m!bary where PXbary =

bary(PX1 , PX2 , . . . , PXM ;w).

An important special case where both the barycenter
distribution and the Monge maps are known in closed-
form is 1D distributions. Thus, in combination with
this theorem, we can solve the SMM problem in closed-
form for 1D distributions in our iterative algorithm.

3.2 Multiple Distribution Divergences

Just as the Wasserstein distance can be directly derived
from the optimum value of the Monge map problem,
the optimal value of the SMM problem can provide a
natural multi-distribution divergence.
Definition 6. The multi-distribution Wasserstein di-
vergence is defined as Multi-W(PX1 , · · · , PXM ) ,
minT1,T2,··· ,TM

PM
m=1 wmEPXm

[c(x, Tm(x))] such that
PTm(Xm) = PTm0 (Xm0 ) 8m 6= m0.

Similarly, we can define the multi-distribution version
of the maximum K-sliced Wasserstein, which we will use
to develop our iterative algorithm in the next section.
Definition 7. The multi-distribution maxi-
mum K-sliced Wasserstein divergence is de-
fined as Multi-max-K-SW(PX1 , · · · , PXM ) ,
max✓1,...,✓K

PK
k=1 Multi-W2(P✓T

k X1
, · · · , P✓T

k XM
).

The proof that these are divergences (i.e., that they are
non-negative and have a value of 0 if and only if the
distributions are equal) follows easily from the solutions
to the SMM problem (see appendix for details).

4 ITERATIVE DISTRIBUTION
ALIGNMENT

As a reminder, our ultimate alignment goal is to solve
the following problem:

min
T1,··· ,TM

�(PT1(X1), PT2(X2), · · · , PTM (XM )) , (3)

where � is a multi-distribution divergence. In general
a multi-distribution divergence is challenging to even
approximate, thus we turn to the sliced Wasserstein
versions which are tractable to estimate even for empir-
ical distributions. In particular, the multi-distribution
max-K-SW can be written as a maximization prob-
lem over a variational approximation of the divergence

denoted by �̃ and parameterized by ✓ = (✓1, · · · , ✓K),
i.e.,

�(PX1 , · · · , PXM ) = max
✓

�̃(✓, PX1 , · · · , PXM ) (4)

where

�̃(✓, PX1 , · · · ) ,
KX

k=1

Multi-W2(P✓T
k X1

, · · · , P✓T
k XM

) .

Importantly, note that Multi-W2(P✓T
k X1

, · · · , P✓T
k XM

)
is tractable to compute in closed-form by sorting the
data projected onto each direction. Combining Eqn. 3
and Eqn. 4, we arrive at the following min-max opti-
mization for alignment:

min
T1,··· ,TM

max
✓

�̃(✓, PT1(X1), PT2(X2), · · · , PTM (XM )) .

(5)

While this is an adversarial problem, we will not use
explicit simultaneous adversarial optimization, which
can be challenging as discussed in the introduction.
Rather, we derive a simple alternating iterative ap-
proach to this problem which is made possible by the
tractable structure of our divergence. At a high level,
we alternate between solving the inner maximization
and the outer minimization. The maximization step
forms a variational approximation of the divergence
given the current transport maps. The minimization
step adds an invertible layer that globally minimizes
this variational divergence (i.e., where �̃ = 0). More de-
tailed discussion of the optimization of our algorithms
can be found in Appendix C.2. The INB algorithm can
be seen in Alg. 2 where for simplicity of exposition, we
assume K = d and the more general case is discussed
in Appendix G.2.

For the maximization step, we perform gradient descent
on the empirical versions of the multi-distribution max-
imum K-sliced Wasserstein divergence. This objective
can be written in closed-form as the following problem:

argmax
✓:✓T ✓=IK

MX

m=1

wm

K

KX

k=1

1

nm

nmX

i=1

|(✓T
k xm)[i] � y[i],k|

2, (6)

where xm 2 Rd⇥nm is the sample data matrix for
the m-th class, ✓ = [✓1, . . . ,✓K ], (✓T

k xm)[i] signify
the samples from the m-th class distribution projected
along the direction ✓k sorted in ascending order, y[i],k ,
PM

m=1 wm(✓T
k xm)[i] is the empirical barycenter along

direction ✓k, K  d is the number of directions, and
IK 2 RK⇥K is the identity matrix. Intuitively, this
finds the directions that reveal the largest difference
between class distributions along each 1D projection.
We adopt the optimization approach in Sliced Iterative
Normalizing Flows (SINF) that optimizes ✓ directly
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on the manifold of orthonormal matrices (also called
a Stiefel manifold) using projected gradient descent
with backtracking line search (details in Dai and Seljak
(2021)). The algorithm Multi-max-K-SW can be seen
in Alg. 3.

The minimization step can be solved exactly via the
SMM solutions for 1D distributions (i.e., Monge maps
to the barycenter, which is also known in closed-form)
by estimating each of the 1D distributions and then
solving for the maps. Specifically, the solution would
be T ⇤

m = F�1
bary � Fm , where Fm is the CDF function

of the PXm distribution and F�1
bary is the inverse CDF

of the barycenter distribution, which is known to have
the following form F�1

bary(u) =
P

m wmF�1
m (u). The

1D-Barycenter algorithm can be seen in Alg. 1. These
SMM solutions also locally minimize the transportation
costs to avoid unnecessary distortion from the class
distributions. Therefore, the shared latent distribu-
tions will be less distorted than if standard generative
normalizing flows were used for each distribution inde-
pendently (see Experiments).

Algorithm 1 1D-Barycenter
Input: Samples from the M class distributions
(z1, z2, . . . , zM ), weight vector w

Output: Estimated invertible alignment maps
(t1, t2, · · · , tM )
for m = 1, . . . ,M do

{Estimate the 1D CDF of Zm}
Fm = HistogramDensityEstimation(zm)

end for
{Estimate the inverse CDF of barycenter}
F�1

bary =
P

m wmF�1
m

8m, tm = F�1
bary � Fm

return (t1, t2, · · · , tM )

5 RELATED WORK

Iterative Methods Iterative Gaussianization is an
iterative density estimation method, that learns in-
vertible flow-based models (Chen and Gopinath, 2000;
Lin et al., 2000; Lyu and Simoncelli, 2009; Laparra
et al., 2011; Ballé et al., 2016). The key idea is to
first learn a rotation matrix via ICA (Hyvarinen, 2013)
or similar method to linearly transform the data, and
then Gaussianize each marginal independently. In-
ouye and Ravikumar (2018) extend this by iteratively
building normalizing flows from more general “shallow”
density estimation approaches. However, these prior
iterative approaches are focused on density estimation
(i.e., learning a generative model), and in particular,
learn a map between a known base distribution (e.g.
Gaussian) and the unknown data distribution.

Algorithm 2 Iterative Naïve Barycenter Algorithm
Input: Samples from the M class distributions
x1,x2, . . . ,xM , weight vector w, number of direc-
tions K, number of iterations/layers L

Output: Estimated invertible deep alignment maps
(T1, T2, . . . , TM )

T (0)
m  id, 8m = {1, . . . ,M}

for ` = {1, 2, . . . , L} do
8m, zm  Tm(xm)
{Maximization (see Appendix C for algorithm)}
✓  Multi-max-K-SW((z1, . . . , zM ),w,K)
{Minimization}
for k = {1, . . . ,K} do
8m, z0

m = ✓T
k zm {1D projection}

t1,k, . . . , tM,k = 1D-Barycenter(z0
1, . . . , z

0
M )

end for
8m, tm  [tm,1, . . . , tm,K ]
8m,Tm(x) ✓tm(✓TTm(x))

end for
return (T1, T2, · · · , TM )

Iterative approaches for aligning distributions include
Projection Pursuit Monge Map (Meng et al., 2019)
that iteratively finds interesting directions to project
the data onto, and estimates Monge maps for the 1D
projected data. The caveat, however, is that it uses
fixed interestingness functions such as variance to find
the projection directions. Kuang and Tabak (2019)
propose an alternative iterative method for learning
optimal maps and the shared representation where each
iteration requires the solution of a simpler but joint
optimal transport problem—rather than solving 1D OT
problems as in Meng et al. (2019). In practice, Kuang
and Tabak (2019) use a set of fixed interestingness func-
tions to find the needed structure. Essid et al. (2019)
extend this iterative approach by using an adversarial
objective to automatically learn these interestingness
functions. Dai and Seljak (2021) propose SINF as a
generative model. In theory, the approach could be
used to align two distributions but all the experiments
in SINF focus on generative models in which one of
the distributions is a Gaussian distribution. They di-
rectly solve the optimal transport problem between
the source and target distributions. In contrast, our
approach constructs the map through a shared dis-
tribution which preserve the shared structure; thus
distorting the original distributions less. Moreover,
thanks to the formulation of barycenter problems, we
can naturally deal with multiple distributions, which
cannot be done in SINF. For M > 2, SINF would
need to learn

�M
2

�
translation maps separately while

our model would jointly learn M maps. As we show
in the Section 6, our model achieves better alignment
performance even for M = 2 experiments.
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Adversarial Methods CycleGAN (Zhu et al., 2017)
minimizes the objective function:

argmin
G,F

dadv(PG(X1), PX2) + dadv(PF (X2), PX1)

+�
⇣
EPX1

[kF (G(x))�xk1]+EPX2
[kG(F (x))�xk1]

⌘
,

where the distance dadv approximates the distance be-
tween distributions via adversarial learning (i.e., mini-
max learning) and the cycle consistency terms (after �)
can be seen as a relaxation of an invertibility constraint.
StarGAN (Choi et al., 2018) generalize CycleGAN to
more than two domains. However, these approaches
cannot guarantee invertibility and require expensive
and challenging adversarial learning (Lucic et al., 2018;
Kurach et al., 2019).

Flow Methods AlignFlow (Grover et al., 2020) ex-
tends CycleGAN by using invertible models so that the
cycle consistency constraint is satisfied by construction:

argmin
T1,T2

dadv(PT�1
2 �T1(X1)

, PX2)+dadv(PT�1
1 �T2(X2)

, PX1)

+ �
⇣
KL(PX1 , PT�1

1 (↵) + KL(PX2 , PT�1
2 (↵)

⌘
,

(7)

where the first two distance terms (equivalent to Cy-
cleGAN) are implemented using adversarial learning,
↵ is a Gaussian prior distribution, and the KL terms
are implemented via maximum likelihood. Unlike our
formulation, AlignFlow ignores transportation costs
entirely and pushes the shared latent representation
towards the assumed prior distribution ↵ rather than
the more natural shared latent distribution. Also, for
M > 2, AlignFlow would require

�M
2

�
adversarial terms

where each term adds significant complexity to training
the model.

Wasserstein Barycenter Methods Most existing
methods compute Waaserstein Barycenter of discrete
distributions. For example, Cuturi and Doucet (2014)
propose a fast algorithm with entropic regularization.
Those methods typically scale poorly with the number
of dimensions and are not suitable for many modern
machine learning problems. More recently, several
efficient and scalable methods have been proposed to
estimate Wasserstein Barycenter over continuous spaces
(Li et al., 2020; Chen et al., 2021; Korotin et al., 2021).
Chen et al. (2021) utilize input convex neural networks
(ICNN) (Amos et al., 2017) to estimate both a generator
for barycenter distribution and the transportation map
between mariginals and barycenter. A typical difference
between our method and those models is that even
though we use the solution to 1D barycenter, our main
goal is to efficiently learn invertible flow models between
marginal distributions rather than estimate the global
barycenter.

Domain Adaptation Methods Domain Adapta-
tion has become more and more popular recently and
there have been several works that leverage the tools
from OT for it. Courty et al. (2017b) propose to find
the discrete optimal transportation map between source
and target domains with class regularization. JDOT
(Courty et al., 2017a) improves it by directly aligning
the joint distribution of the marginals and the class con-
ditional distributions. DeepJDOT (Damodaran et al.,
2018) futher improves JDOT by learning a shared space
in a Convolutional Neural Network for classification.
All these methods are based on solving discrete OT
problems and JDOT and DeepJDOT focus more on
finding a classifier for domain adaptation instead of
finding invertible alignment maps directly.

6 EXPERIMENTS

We explore our iterative alignment method both qualita-
tively and quantitatively using both 2D simulated data
and “permuted” MNIST (LeCun and Cortes, 2010)—
permuted means that our methods do not leverage the
image structure of MNIST but merely treat each image
as 784-dimensional vector.1 Additional experiments,
implementation details and results can be found in the
appendix, including experiments on FashionMNIST
(Xiao et al., 2017).

Metrics We use standard distribution distances to
compare the alignment performance across methods.
We first note that the alignment condition can equiv-
alently be written as PXm = PT�1

m �Tm0 (Xm0 ), 8m 6=

m0. Thus, for every class distribution PXm , we can
sample M � 1 “fake” distributions using our invert-
ible transformations P̂Xm0!m

= PT̂�1
m �T̂m0 (Xm0 ). We

merely average the empirical Wasserstein distance be-
tween all pairs of real samples and “fake” samples,
i.e., WD = 1

M2�M

P
m 6=m0 Ŵ (PXm , P̂Xm0!m

), where
Ŵ is the Wasserstein distance estimated using sam-
ples via the Sinkhorn algorithm (Cuturi, 2013) with
✏ = 10�4 and maximum iterations set to 100. For
higher dimensional data (e.g., MNIST), the Wasser-
stein distance between samples could be a poor esti-
mator of the true Wasserstein distance (Genevay et al.,
2019). Thus, we also compute the Frechet Inception
Distance score (FID) (Heusel et al., 2017) for a more
fair evaluation, and we similarly compute the aver-
age between every pair of real and fake samples, i.e.,
FID = 1

M2�M

P
m 6=m0

ˆFID(PXm , P̂Xm0!m
). We also

compute transportation cost to highlight that our algo-
rithm distorts the distributions less and finds a shared
latent distribution that is closer to the original dis-

1
AlignFlow and the FID we use for evaluation do use

the image structure but our iterative methods do not.
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tributions because we use the SMM solution for the
minimization subproblem, which can be seen to locally
minimize the transportation cost. We estimate the
transportation cost by an average over the test set, i.e.,
TC =

PM
m=1

wm
nm

P
x2Xm

kx � T̂m(x)k2, where Xm is
the test dataset for the m-th class and lower is better.
We compute the mean and standard deviation over 5
runs of each method. We also track approximate wall-
clock training time for MNIST (all models are trained
on a CPU except AlignFlow which is trained on a single
GTX 1080 Ti and SINF-Align which is trained on Tesla
P100). More details are in the appendix.

Baseline Methods Because prior iterative method
focuses on generative models rather than distribution
alignment, we adapt prior generative methods to pro-
duce alignment approaches. First, we adapt the iter-
ative density destructors method (DD) (Inouye and
Ravikumar, 2018) by learning independent normalizing
flows from each class distribution to a fixed uniform
distribution, which is the same for all class distribu-
tions and thus serves as a fixed shared latent space.
We also adapt SINF (Dai and Seljak, 2021) to the
alignment task (SINF-Align) where we directly find
the map between two distributions without any shared
representation. While the SINF paper mentioned that
SINF could be used to align any two distributions,
the experiments in the paper assumed that one of the
distributions was a standard normal distribution—i.e.,
only generative experiments were performed. Given
that SINF is not symmetric (a point emphasized in the
SINF paper), we train two SINFs: one from distribution
X0 to X1 and the other in the reverse direction. We
notice a significant difference of the performance of the
forward and inverse of SINF maps. Specifically, the for-
ward map performs well but the inverse map performs
poorly (detailed results given in the appendix). These
results suggest that the direction of learning is critical
and that a symmetric formulation is more stable. For
MNIST, as a non-iterative baseline, we compare to
the invertible AlignFlow (Grover et al., 2020), which
explicitly maps both distributions to an assumed prior
distribution.

Our Methods For our methods, except for INB, as a
comparison, we also report the results with the single-
layer independent (naïve) barycenter (NB) (assume
all features are independent of each other and learn
alignment maps directly without any projection) and
multi-layer random rotation followed by NB (Rand-
INB). Number of layers and other parameters are in
the appendix.

Computational complexity of INB. The complexity of
the maximization is O(J(nMK(d+log n)+K2d+K3)),
where J,M, n, d,K are the number of iterations (Jmax

in Alg. 3), classes, samples per class, dimensions, and
latent dimensions, respectively. The terms come from
projecting down to K dimensions, computing SWD
via sorting, and updating the projection matrix. The
complexity of the inner minimization is O(nMK) since
each latent dimension can be computed independently
and primarily estimates histograms, which have piece-
wise linear CDFs and inverse CDFs.

Table 2: Transportation cost (TC), sample-based
Wasserstein distance (WD, lower is better) for 2D data.
More 2D datasets in appendix.

Model WD TC
NB 0.0788 ± 0.0000 0.4013 ± 0.000
Rand-NB 0.0047 ± 0.0011 0.4903 ± 0.0205
INB 0.0025 ± 0.0005 0.4832 ± 0.0282
DD 0.0085 ± 0.0000 1.2564 ± 0.0000
SINF-Align(0)1) 0.0024 ± 0.0002 ––
SINF-Align(1)0) 0.0026 ± 0.0003 ––

2D Experiments The qualitative results in Fig. 1
illustrate that our method (INB) finds shared la-
tent space where the transportation cost is low (i.e.,
where the map distorts the original distributions less),
whereas density destructors (DD) ignores transporta-
tion costs and projects both distributions to the uni-
form distribution. The results for the 2D datasets with
M = 2 in Table 2 demonstrate that our iterative flows
perform comparable or better than the baseline meth-
ods (DD, SINF-Align) in terms of alignment, which is
measured by the empirical Wasserstein-2 distance on
test data (WD), while having significantly lower trans-
portation cost (TC) on test data. Fig. 1e shows that
INB converges much faster than Rand-NB. Additional
experiments and results for M > 2 are in appendix.

“Permuted” MNIST Qualitative samples from the
latent space and after flipping between the two digits
(Fig. 2) highlight that our methods retain shared la-
tent structure such as the black pixels, whereas the
generative baselines (DD, AlignFlow) move the shared
latent distribution to the assumed prior (uniform or
Gaussian, respectively) so that shared structure is also
removed. Quantitative results in Table 3 demonstrate
that INB has superior performance in terms of both
WD and FID. Regarding SINF, because the original
paper does not test their model on alignment task, we
attempt to use their best model to be fair. We report
the result of the best SINF-Align models where the
number of layers is chosen based on the best test WD.
Note that SINF-Align usually achieves the best WD
after a few layers and that is why the time we report is
quite short. The results demonstrate that our methods
perform well in terms of the alignment condition (mea-
sured by WD and FID where lower is better) than the
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Table 3: Transportation cost (TC), sample-based Wasserstein distance (WD, lower is better), FID (lower is
better) and time for MNIST(M = 2). For a fair comparison, the K used for INB (L = 20) is adjusted to be the
same as SINF which is 56.

Model WD FID TC Time(s)
NB 60.010 ± 0.000 229.551 ± 0.000 28.115 ± 0.000 25
INB (L = 20) 23.481 ± 0.161 43.196 ± 0.588 31.671 ± 0.056 430
INB (L = 250) 23.183 ± 0.095 37.480 ± 0.008 32.841 ± 0.097 2200
DD 39.079 ± 0.000 166.320 ± 0.000 235.164 ± 0.000 360
SINF-Align(0) 1) 50.151 ± 0.950 247.142 ± 0.972 –– 50
SINF-Align(1) 0) 42.658 ± 1.253 202.058± 1.716 –– 50
AlignFlow(� =1e-4) 56.386 158.654 392.578 220000
AlignFlow(� =1e-5) 60.452 191.983 412.531 220000

Table 4: Transportation cost (TC), sample-based Wasserstein distance (WD, lower is better), FID (lower is
better) and time for MNIST(M = 10).

Model WD FID TC Time(s)
NB 65.674 ± 0.000 190.920 ± 0.000 25.907 ± 0.000 90
INB 41.044 ± 0.076 86.264 ± 0.550 28.934 ± 0.140 5000
DD 53.587 ± 0.000 187.475 ± 0.000 227.171 ± 0.000 1700

(a) Original Data

(b) NB (c) INB (d) DD (e) WD over 30 Layers

Figure 1: The purple and red moons in Fig. 1a represent distributions PX1 and PX2 . The goal is to flip them (i.e.
find PX

0
1
= PT⇤

2!1(X2) and PX
0
2
= PT⇤

1!2(X1)). The shared representations (top row) for each method show that
our iterative methods (INB) find low transportation cost shared latent spaces whereas DD ignores transportation
cost and merely projects both distributions to the uniform distribution. The bottom row shows test samples
that were flipped to the other class distribution (ideally these “fake” samples would look like the original data).
Fig. 1e shows that INB converge faster than Rand-NB because we optimize for the directions. SIG represents
SINF-Align with SIG setup (details in the appendix).

(a) NB (b) INB (c) DD (d) AlignFlow

Figure 2: These examples demonstrate that our methods find a more natural shared latent representation that
preserves structural similarities (e.g., black pixels) between the two digits while DD and AlignFlow do not. The
rows from top to bottom are the original MNIST digits, their shared latent representation, and their projection
to the space of the other digit (i.e., flipped).
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Table 5: Multi-distribution (M = 10) results for MNIST with INB. The labels of the rows represent the class of
real samples and the labels of the columns represent the class of flipped samples e.g. the number in the row "2"
and column "4" represents the WD between the real "4" samples and the fake "4" flipped from "2" samples.

0 1 2 3 4 5 6 7 8 9
0 0.10 13.37 48.57 42.77 35.85 41.80 36.13 30.86 45.42 32.10
1 39.86 0.49 47.85 41.98 34.91 41.60 34.78 29.59 44.08 31.01
2 41.02 13.86 0.05 43.88 36.75 43.93 37.43 31.24 46.24 33.47
3 40.80 13.55 48.66 0.04 36.94 43.38 36.44 31.32 45.81 33.22
4 40.63 14.12 48.89 43.24 0.09 43.37 37.22 31.68 46.12 32.89
5 40.61 13.46 49.03 42.95 36.39 0.08 36.20 31.42 45.66 32.88
6 40.31 13.84 48.87 42.56 36.26 41.57 0.11 30.19 44.88 32.18
7 40.08 13.44 48.40 42.42 36.58 42.43 35.57 0.14 45.69 32.91
8 40.59 13.67 49.48 44.32 37.94 43.41 36.47 32.01 0.08 34.12
9 40.16 13.88 48.44 43.36 35.54 42.42 36.26 30.97 45.51 0.14

iterative baseline (DD, SINF-Align) and end-to-end
baseline AlignFlow. Also, the computational cost is
much lower for the iterative methods (< 1 hour on
CPU when M = 2), whereas AlignFlow trained for
200 epochs on a GPU took approximately 60 hours
(thus, we only estimate one model and cannot compute
standard deviations for AlignFlow).

While we use M = 2 to fairly compare to prior methods,
our method focuses on multi-distribution alignment for
M > 2. Therefore, we present quantitative results for
M = 10 in Table 4 and Table 5 (results for M = 3 in
the appendix). Because no prior methods consider the
multi-class case, we only show DD as a baseline method
which learns M independent flows to the uniform. This
multi-class situation (i.e. M > 2) is much more difficult
for AlignFlow (which did not implement M > 2) and
would naïvely require (M2

�M)/2 pairwise adversarial
loss terms. SINF does not provide any natural way to
handle the M > 2 case as well. Qualitative examples
of transforming between every digit and every other
digit (i.e., M = 10) for MNIST are shown in Fig. 3.
Notice that even for this multiclass case, almost all
transformed digits are recognizable. We observe that
the distributions are not fully aligned in the shared
space (e.g., some digit structure remains). On one
hand, this could explain why there are artifacts in
the flipped samples in some cases (e.g., "6"). On the
other hand, we hypothesize that this indicates the
smoothness of our method and explains why it has
better alignment compared to SINF-Align. We leave
further investigation to future works.

7 DISCUSSION AND CONCLUSION

We seek to iteratively align multiple distributions with-
out adversarial learning. We leverage insights from OT
theory to construct an iterative estimation algorithm
that alternates between estimation of a tractable diver-
gence via maximization and exact minimization of this
variational divergence. Unlike prior approaches, our

Figure 3: Multi-distribution (M = 10) results for
MNIST with INB. The first column shows the real
samples and the second column shows their shared la-
tent representations. The following columns show the
mappings of the real samples to the distribution of the
other digits e.g. all flipped samples in the first row are
flipped from the real 0 in the first column.

formulation does not require a fixed latent distribution
and can be symmetrically applied to any number of
distributions. Unlike prior approaches based on deep
normalizing flows, our approach is significantly faster.
Despite many advantages of our approach, however,
there are also many open challenges. For example, our
current algorithm is greedy. Though its greedy na-
ture makes it easy to implement, we cannot guarantee
that it finds the globally optimal alignment solution.
We leave exploring the non-greedy algorithm to future
work. We believe our work is a first step towards non-
adversarial distribution alignment that can open up
novel perspectives on distribution alignment.
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Supplementary Material:
Iterative Alignment Flows

A OVERVIEW

We have organized our appendix as follows:

• Appendix B includes the proofs (and key OT results needed for the proofs).
• Appendix C includes the algorithm of multi-distribution max-K-SW and the discussion of the optimization

of our algorithm.
• Appendix D describes an alternative to max-K-SW using tree-sliced Wasserstein divergence instead that

could be used within our algorithmic general framework.
• Appendix E describes our investigation on directly using SINF for alignment task.
• Appendix F describes additional experiments including additional FashionMNIST experiments and includes

quantitative result tables for these experiments (qualitative figures are included in the final appendix section).
• Appendix G provides more details on our experimental setup including dataset preparation, models, and

metric details.
• Appendix H provides both expanded figures from the main paper and new result figures for the additional

experiments.

B PROOFS

B.1 Symmetric Monge Map Solution Proofs

Proof of Theorem 1. First, let us denote PXbary , PT⇤
m(Xm) for any m since they are all equal because of the

pushforward condition (at this point we do not assume anything about PXbary). We can prove that T ⇤
m is the

optimal Monge map (which is unique for quadratic cost) from PXm to PXbary for all m, i.e., T ⇤
m = T ⇤

m!bary, via
contradiction. Suppose T ⇤

6= T ⇤
m!bary, then T ⇤ could be replaced by the optimal Monge map and the minimum

value could be reduced—which is a contradiction to the optimality of T ⇤. Given this fact and Brenier’s theorem
(Peyré and Cuturi, 2019, Theorem 2.1) on the equivalence between the Kantorovich and the Monge map problems,
we can now transform our original objective at the optimum T ⇤

m to the Kantorovich barycenter objective from
Def. 3 at its optimum:

MX

m=1

wmEPXm
[c(x, T ⇤

m(x))] (8)

=
MX

m=1

wmEQ⇤
m
[c(xm, xbary)] (9)

=
MX

m=1

wm min
Qm2U(PXm ,PXbary )

EQm [c(xm, xbary)] (10)

=
MX

m=1

wmLc(PXm , PXbary) , (11)

where the first equality is by Brenier’s theorem and Q⇤
m is the optimal Kantorovich joint distribution, the second

equality is by the definition of the Kantorovich problem, and the third equality is by the definition of Lc. Thus,
our objective can be equivalently written as optimizing over PXbary for the objective above, which is exactly the
definition of a barycenter in Def. 3. Thus, PXbary = bary(µ1, µ2, · · ·µM ;w).
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Proposition 2 (Univariate Barycenter (Peyré and Cuturi, 2019, Remark 9.6)). Given a weight vector w with
cost c(x, y) = kx � yk2, the inverse CDF of the barycenter is the weighted average inverse CDF of the class
distributions, i.e.,

8u 2 [0, 1], F�1
bary(u) =

MX

m=1

wmF�1
m (u) , (12)

where F�1
m is the inverse CDF of the m-th class distribution.

Proposition 3 (Univariate Optimal Transport Map (Peyré and Cuturi, 2019, Remark 2.30)). The optimal map
between univariate distributions PX1 and PX2 is the composition of the CDF of PX1 with the inverse CDF of
PX2 , i.e.,

T ⇤
1!2 = F�1

2 � F1 . (13)

Theorem 4 (Optimal 1D Symmetric Monge Maps). The optimal univariate symmetric Monge maps are:
T ⇤
m = F�1

bary � Fm , where Fm is the CDF function of the PXm distribution and F�1
bary is the inverse CDF of the

barycenter distribution, which is known to have the following form F�1
bary(u) =

P
m wmF�1

m (u).

Proof. From Theorem 1, we know that the solution to the symmetric Monge problem is the Monge map between
the class distribution and the barycenter distribution. From Proposition 2, we can form the univariate barycenter
distribution given the class distributions. We can then combine this result with Proposition 3 to solve for the
optimal map between the univariate class distribution and the univariate barycenter distribution.

B.2 Divergence Proofs

Proposition 5. Multi-W(PX1 , · · · , PXM ) , minT1,T2,··· ,TM

PM
m=1 wmEPXm

[c(x, Tm(x))] such that PTm(Xm) =
PTm0 (Xm0 ) 8m 6= m0 as defined in Def. 6 is a divergence.

Proof. We need to prove two properties: 1) Multi-W(PX1 , · · · , PXM ) � 0, and 2) Multi-W(PX1 , · · · , PXM ) = 0 if
and only if PXM = PXM0 , 8m 6= m0. The first property is obvious by inspection of the objective function which is
always non-negative.

If PXM = PXM0 , 8m 6= m0, then we can use the trivial solution of all maps being the identity, i.e., 8m,Tm(x) = x.
By construction, the constraint is satisfied and the cost will be 0, which is the global optimum of the minimization.

If Multi-W(PX1 , · · · , PXM ) = 0, then we know that 8x and 8m, c(x, Tm(x)) = 0 (by contradiction if one of them
was > 0 then it would violate the assumption that the sum was 0). The only function that satisfies this property
would be the identity functions for all Tm. By the constraint of the optimization, we know that PTm(Xm) =
PTm0 (Xm0 ) 8m 6= m0 and thus since these must be the identity, then we know that PXm = PXm0 , 8m 6= m0.

Proposition 6. Multi-max-K-SW(PX1 , · · · , PXM ) , max✓1,...,✓K
PK

k=1 Multi-W2(P✓T
k X1

, · · · , P✓T
k XM

) as defined
in Def. 7 is a divergence.

Proof. The non-negativity property follows directly from the fact that Multi-W2 is a divergence which is non-
negative. We now prove that Multi-max-K-SW(PX1 , · · · , PXM ) = 0 if and only if PX1 = PX2 = · · · = PXM .

If Multi-max-K-SW(PX1 , · · · , PXM ) = 0, then we can prove that 8✓ 2 {✓ 2 Rd : k✓k2 =
1},Multi-W2(P✓TX1

, · · · , P✓TXM
) = 0. (The proof for this statement is by contradiction. Suppose 9✓

such that Multi-W2(P✓TX1
, · · · , P✓TXM

) > 0. Then, we could set ✓1 = ✓ in the maximization prob-
lem and Multi-max-K-SW(PX1 , · · · , PXM ) > 0. Yet this is a contradiction to our assumption that
Multi-max-K-SW(PX1 , · · · , PXM ) = 0.) Thus, by Proposition 5, we know that 8✓ 2 {✓ 2 Rd : k✓k2 = 1}, 8m 6=
m0, P✓TXm

= P✓TXm0 . From this we can conclude that 8m 6= m0, PXm = PXm0 because two joint distributions are
equal if and only if the marginals along every direction are equal.

If PX1 = PX2 = · · · = PXM , then we know that the marginals along all directions must be equal, i.e., 8✓ 2
{✓ 2 Rd : k✓k2 = 1}, 8m 6= m0, P✓TXm

= P✓TXm0 . Thus, 8✓,Multi-W2(P✓TX1
, · · · , P✓TXM

) = 0 and the
maximal value of max✓1,··· ,✓K

PK
k=1 Multi-W2(P✓T

k X1
, · · · , P✓T

k XM
) must also be 0 for any ✓1, · · · , ✓K . Thus,

Multi-max-K-SW(PX1 , · · · , PXM ) = 0.
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C ALGORITHMS

C.1 Multi-distribution Maximum K-Sliced Wasserstein Distance

Algorithm 3 Multi-max-K-SW
Input: Samples from the M class distributions (x1,x2, . . . ,xM ), weight vector w, number of directions K, max

number of iterations Jmax

Output: Estimated projection matrix ✓
Randomly initialize ✓ 2 Rd⇥K satisfying ✓T✓ = IK , ✓ = [✓1, . . . ,✓K ]
for j = {1, 2, . . . , Jmax} do
d =

PM
m=1

wm
K

PK
k=1

1
nm

Pnm

i=1|(✓
T
k xm)[i] � y[i],k|

2

g = [� @d
@✓i,j

], u = [g,✓], v = [✓,�g]

✓ = ✓ � ⌧u(I2K + ⌧
2v

Tu)�1vT✓, learning rate ⌧ determined by backtracking line search
if ✓ converge then

Stop
end if

end for
return ✓

C.2 Discussion of INB

Expanding Eqn. 5 and simplifying to a single slice, i.e., ✓ 2 Rd

min
T1,··· ,TM

max
✓

�̃(✓, PT1(X1), PT2(X2), · · · , PTM (XM ))

= min
T1,··· ,TM

max
✓

Multi-W(P✓TT1(X1), P✓TT2(X2), · · · , P✓TTM (XM ))

= min
T1,··· ,TM

max
✓

0

BB@
min

f1,··· ,fM

MX

m=1

wmEz⇠P✓T Tm(Xm)
[c(z, fm(z)]

s.t. Pfm(✓TTm(Xm)) = Pfm0 (✓TTm0 (Xm0 )) 8m 6= m0

1

CCA (14)

At each iteration, for the maximization problem, we use Alg. 3 to find ✓. To solve the outer minimization of
Tm, we update our transformation with one layer to achieve the global minimum (given the current ✓), i.e.,
T 0
m = tm � Tm will be the optimal solution where we construct tm based on solutions to the inner optimization.

Specifically, we solve the inner 1D problems (given a fixed ✓ and Tm) denoted by f⇤
1 , · · · , f

⇤
M by estimating the

1D CDF function for each class (k in total) using the whole dataset and finding the local 1D barycenter map.

f⇤
1 , · · · , f

⇤
M = argmin

f1,··· ,fM

MX

m=1

wmEz⇠P✓T Zm
[c(z, fm(z)] (15)

s.t. Pfm(✓TZm) = Pfm0 (✓TZm0 ) 8m 6= m0

where Zm , Tm(Xm). Then, we can construct 8m, t⇤m(z) = ✓f⇤
m

�
✓Tz

�
+
�
z � ✓✓Tz

�
as discussed in Appendix G.2.

Given a fixed ✓, the updated T 0
m = t⇤m � Tm is the optimal solution to the outer minimization problem (even when

the inner minimization is unconstrained).

Proof of optimality. First, note that the new random variable projected along the slice is equal to the transformed
1D slice distribution, i.e.,

✓TT 0
m (Xm) = ✓T t⇤m � Tm (Xm)

= ✓T t⇤m (Zm)

= ✓T
�
✓f⇤

m

�
✓TZm

�
+
�
Zm � ✓✓TZm

��

= f⇤
m

�
✓TZm

�
+ ✓TZm � ✓TZm

= f⇤
m

�
✓TZm

�
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Now Pf⇤
m(✓TZm) = Pf⇤

m0 (✓
TZm0 ), 8m 6= m0 by the alignment constraint on the f⇤

m’s, and thus, combining with
above, we have that P✓TT 0

m(Xm) = P✓TT 0
m0 (Xm0 ), 8m 6= m0. Thus, the W2 distance along all slices is 0, and T 0

m is
the globally optimal solution per the property of W2.

D TREE-SLICED WASSERSTEIN DIVERGENCE

We note that our general variational algorithm could work for other variational tractable divergences such as the
tree-sliced Wasserstein (tree-SW) distance (Le et al., 2019b).Because the tree-SW can be seen as a generalization
of the SW distance, we could similarly define a max-tree-SW distance and a multi-distribution max-tree-SW
divergence. The maximization would be over the tree split structure rather than orthogonal directions as in the
multi-distribution maximum K-sliced Wasserstein divergence. Note that the optimal Monge maps for tree-SW
are known in closed form similar to the 1D case (Le et al., 2019b). Additionally, the barycenter is also known in
closed-form (Le et al., 2019a).Thus, the inner maximization problem over tree structures could use a decision tree
algorithm to approximately solve the inner maximization problem. The outer minimization could be solved by
first finding the barycenter in closed-form and then computing the optimal maps to this barycenter in closed-form.
For this last step, the tree-SW only provides the amount of mass to move between nodes but does not explicitly
define the continuous invertible function to do so. For simplicity, we can assume the distribution has support
on the unit hypercube (if it does not, then we can use CDF functions of the appropriate marginal distributions
so that it does satisfy this constraint). For each movement, we could merely define a piecewise linear function
defined over the unit interval to move mass across the split. This could be defined in a top down fashion where
at the root node, we use a piecewise linear function to move mass from the left to the right of the split and
then recursively apply this idea the nodes below. This would create a piecewise linear invertible function over
continuous space that would match the optimal tree Monge maps.

E FAILURE OF SINF FOR ALIGNMENT TASK

In Dai and Seljak (2021), they propose Sliced Iterative Normalizing Flows (SINF). SINF first projects the data into
lower dimensional space using orthogonal projection found by max-K-SWD. Then it aligns the distribution along
each direction using know solution to 1D OT problems. Though they state that this could be used to find the
transformation between any two distributions, in the paper, they fix one of the distribution to be standard normal
distribution. In specific, they propose Sliced Iterative Generator (SIG) and Gaussianizing Iterative Slicing (GIS)
and they report that the two models perform better for generative modeling and density estimation separately.

In this paper, we report the results of SINF-Align(0 ) 1) and SINF-Align(1 ) 0). When reporting WD and
FID, since SINF is an invertible model, we use the inverse of SINF for inverse transformation and then compute
the average. Since they don’t provide any result of applying their model for alignment task, we try our best to
compare fairly - we use the same K = 56 as what they set as default value for MNIST and FashionMNIST and
we don’t include any hierarchical structure. And we report the test results at the layer where SINF achieves best
test WD.

We observe that for both WD and FID, SINF performs well in the test for task in the same direction of training.
In most cases, it converges quite fast and is relatively stable. However, when we use it for inverse task, the result
is very bad. In most cases, the WD and FID would keep increasing as we add more layers. See Figure 4 and
Figure 5 for qualitative results. We want to emphasize the possible failure of directly using SINF for inverse task.
In contrast, our model is trained based on a symmetric objective which naturally avoids this problem.

F ADDITIONAL EXPERIMENTS

In this section, we include the quantitative results for all experiments in addition to those presented in the main
paper. In the following subsections, brief introductions of each experiment are provided. More experiment details
are provided in the next section.
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(a) WD: SINF(0 ) 1) (b) FID: SINF(0 ) 1)

(c) WD: SINF(1 ) 0) (d) FID: SINF(1 ) 0)

Figure 4: Results of SINF-Align for MNIST(M = 2). The results are recorded after each 5 layers. The label of
the curve represents which task it is used for.

F.1 2D Experiment for All Datasets

For the 2D datasets with M = 2, we investigate the performance of our iterative methods along with the baselines
DD and SINF-Align. For M > 2, we only compare to DD since SINF does not have a natural extension for
multiple distributions. See Table 6 and Table 7 for quantitative results. See Figure 6, Figure 17, Figure 18 and
Figure 19 for expanded figures of the latent representation and translations between distributions. In both M = 2
and M > 2 cases, INB successfully translates the distributions to look similar to the original data (i.e., the fake
distributions by translating from one class to another are similar to the original distributions).

F.2 FashionMNIST with M = 2 Class Distributions

We redo the experiment for MNIST with M = 2 in the main paper for FashionMNIST with M = 2. See Table 8
for quantitative result. See Figure 7 and Figure 8 for expanded figures of MNIST and FashionMNIST. For fairness,
we simply pick the first three samples in test set here. These examples demonstrate that our methods find a more
parsimonious shared latent representation that preserves structural similarities (e.g., black pixels) between the
two digits while DD and AlignFlow do not preserve this shared structure.

F.3 MNIST and FashionMNIST with M = 3 Class Distributions

We investigate the performance of our models together with DD for more than two class distributions. See Table 9
for quantitative result. See Figure 9 and Figure 10 for mapping performance. For fairness, we pick the first
sample in test set here. The latent representation of our models keeps more features of original samples while DD
just projects to uniform distribution.
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(a) WD: SINF-Align(0 ) 1) (b) FID: SINF-Align(0 ) 1)

(c) WD: SINF-Align(1 ) 0) (d) FID: SINF-Align(1 ) 0)

Figure 5: Results of SINF-Align for FashionMNIST(M = 2). The results are recorded after each 5 layers. The
label of the curve represents which task it is used for.

F.4 MNIST and FashionMNIST with M = 10 Class Distributions

We investigate the performance of our models together with DD for ten class distributions. See Table 10 for
quantitative result. See Table 11, Table 12, Table 13, Table 14, Table 15, Table 16 for WD table for each digit
with different models. See Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, for expanded figures
of mapping performance with different models. For fairness, we pick the first sample in test set here. We can
observe that with INB, most mappings seem good though the model struggles to translate in certain cases such
as from 6 to 8.

Table 6: Transportation cost (TC), sample-based Wasserstein distance (WD, lower is better) for 2D data. The
best methods (within one standard deviation of the top method) are bolded.

Moon Random Pattern Circles
Model WD TC WD TC WD TC
NB 0.0788 ± 0.0000 0.4013 ± 0.000 0.3173 ± 0.0000 0.9537 ± 0.0000 0.0042 ± 0.0000 0.0602 ± 0.0000
Rand-NB 0.0047 ± 0.0011 0.4903 ± 0.0205 0.0620 ± 0.0188 1.0234 ± 0.0583 0.0043 ± 0.0015 0.0830 ± 0.0065
INB 0.0025 ± 0.0005 0.4832 ± 0.0282 0.0458 ± 0.0260 1.0207 ± 0.0270 0.0033 ± 0.0005 0.0834 ± 0.0090
DD 0.0085 ± 0.0000 1.2564 ± 0.0000 0.0469 ± 0.0000 3.7005 ± 0.0000 0.0029 ± 0.0000 1.2580 ± 0.0000
SINF-Align(0)1) 0.0024 ± 0.0002 –– 0.0340 ± 0.0083 –– 0.0028 ± 0.0002 ––
SINF-Align(1)0) 0.0026 ± 0.0003 –– 0.0637 ± 0.0105 –– 0.0029 ± 0.0002 ––
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Table 7: The results for the 2D random pattern dataset with M = 4 and 2D Gaussian with M = 3 demonstrate
that our methods still perform well for M > 2 in terms of the pushforward constraint, which is measured by the
empirical Wasserstein-2 distance on test data (WD). The best methods (within one standard deviation of the top
method) are bolded.

Random Pattern (M = 4) Gaussian (M = 3)
Model WD TC WD TC
NB 0.488 ± 0.000 9.084 ± 0.000 0.692 ± 0.000 7.027 ± 0.000
Rand-NB 0.155 ± 0.023 9.652 ± 0.094 0.067 ± 0.001 7.469 ± 0.018
INB 0.153 ± 0.023 9.532 ± 0.062 0.065 ± 0.002 7.461 ± 0.006
DD 0.154 ± 0.000 9.434 ± 0.000 0.096 ± 0.000 7.851 ± 0.000

Table 8: Results for FashionMNIST with M = 2. The best methods (within one standard deviation of the top
method) are bolded.

Model WD FID TC Time(s)
NB 44.038 ± 0.000 118.285 ± 0.000 20.522 ± 0.000 40
INB (L = 20) 24.976 ± 0.092 84.802 ± 0.744 25.964 ± 0.122 430
INB (L = 250) 24.553 ± 0.129 79.829 ± 0.928 26.989 ± 0.060 2800
DD 27.913 ± 0.000 90.546 ± 0.000 181.401 ± 0.000 300
SINF-Align(0) 1) 41.111 ± 0.800 169.722 ± 1.452 –– 50
SINF-Align(1) 0) 31.897 ± 0.184 187.153 ± 0.670 –– 50

Table 9: Results for MNIST and FashionMNIST with M = 3. It shows that our method enables a natural
extension beyond the two class case without requiring a significant increase in computational complexity. The
best methods (within one standard deviation of the top method) are bolded. INB used for FashionMNIST is set
to be L = 100 and K = 10.

Dataset MNIST(M = 3) FashionMNIST(M = 3)
Model WD FID TC Time(s) WD FID TC Time(s)
NB 84.408 ± 0.000 229.778 ± 0.000 28.958 ± 0.000 25 71.341 ± 0.000 166.114 ± 0.000 28.233 ± 0.000 25
INB 40.116 ± 0.115 158.940 ± 0.695 34.062 ± 0.090 3700 41.820 ± 0.142 116.871 ± 1.615 34.374 ± 0.077 1400
DD 60.226 ± 0.000 220.308 ± 0.000 233.354 ± 0.000 320 44.975 ± 0.000 131.043 ± 0.000 171.150 ± 0.000 470

Table 10: Transportation cost (TC), sample-based Wasserstein distance (WD, lower is better), FID (lower is
better) and time for MNIST and FashionMNIST(M = 10).

Dataset MNIST(M = 10) FashionMNIST(M = 10)
Model WD FID TC Time(s) WD FID TC Time(s)
NB 65.674 ± 0.000 190.920 ± 0.000 25.907 ± 0.000 90 60.288 ± 0.000 172.690 ± 0.000 47.272 ± 0.000 90
INB 41.044 ± 0.076 86.264 ± 0.550 28.934 ± 0.140 5000 36.439 ± 0.042 122.619 ± 0.714 55.128 ± 0.043 5000
DD 53.587 ± 0.000 187.475 ± 0.000 227.171 ± 0.000 1700 40.788 ± 0.000 126.625 ± 0.000 127.099 ± 0.000 1560

Table 11: Multi-distribution (M = 10) results for MNIST with INB. The labels of the rows represent the class
of real samples and the labels of the columns represent the class of flipped samples e.g. the number in the row
"2" and column "4" represents the WD between the real "4" samples and the fake "4" samples flipped from "2"
samples.

0 1 2 3 4 5 6 7 8 9
0 0.10 13.37 48.57 42.77 35.85 41.80 36.13 30.86 45.42 32.10
1 39.86 0.49 47.85 41.98 34.91 41.60 34.78 29.59 44.08 31.01
2 41.02 13.86 0.05 43.88 36.75 43.93 37.43 31.24 46.24 33.47
3 40.80 13.55 48.66 0.04 36.94 43.38 36.44 31.32 45.81 33.22
4 40.63 14.12 48.89 43.24 0.09 43.37 37.22 31.68 46.12 32.89
5 40.61 13.46 49.03 42.95 36.39 0.08 36.20 31.42 45.66 32.88
6 40.31 13.84 48.87 42.56 36.26 41.57 0.11 30.19 44.88 32.18
7 40.08 13.44 48.40 42.42 36.58 42.43 35.57 0.14 45.69 32.91
8 40.59 13.67 49.48 44.32 37.94 43.41 36.47 32.01 0.08 34.12
9 40.16 13.88 48.44 43.36 35.54 42.42 36.26 30.97 45.51 0.14
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Table 12: Multi-distribution (M = 10) results for MNIST with NB.

0 1 2 3 4 5 6 7 8 9
0 0.05 36.62 68.93 57.06 58.73 57.39 55.07 57.05 60.75 53.41
1 84.16 0.19 79.58 69.92 61.35 76.99 69.73 58.62 71.06 62.15
2 69.26 34.74 0.03 57.43 55.72 69.63 64.54 50.98 61.80 54.20
3 66.71 34.93 66.25 0.02 60.91 56.30 62.10 56.63 60.02 56.26
4 72.76 30.54 71.53 66.01 0.03 68.37 61.77 45.46 62.11 39.27
5 62.54 35.27 73.39 51.94 58.95 0.01 59.55 55.85 57.19 52.40
6 63.69 33.64 72.76 66.62 55.87 65.76 0.06 59.08 64.91 55.18
7 78.07 32.02 72.60 68.39 52.64 71.43 69.12 0.05 66.52 45.02
8 67.04 35.10 68.20 57.73 55.24 56.15 61.91 53.14 0.03 50.75
9 71.66 33.81 71.99 65.97 42.25 65.93 65.09 41.49 60.93 0.04

Table 13: Multi-distribution (M = 10) results for MNIST with DD.

0 1 2 3 4 5 6 7 8 9
0 0.03 23.55 60.27 50.89 47.45 52.91 48.72 42.76 55.22 44.07
1 54.44 0.01 62.29 52.96 48.32 56.41 49.56 42.67 57.63 44.82
2 53.24 23.62 0.02 51.56 47.54 56.63 49.92 42.09 56.10 44.33
3 53.00 24.22 59.51 0.02 48.86 52.72 49.47 43.34 56.60 45.37
4 52.82 23.33 60.51 53.61 0.01 56.03 48.97 40.75 55.78 39.24
5 51.55 23.49 60.56 50.33 48.01 0.01 48.29 43.18 53.75 44.84
6 52.91 24.27 60.67 53.00 47.38 55.15 0.02 42.67 55.76 44.55
7 54.21 24.35 60.74 53.18 45.79 55.52 49.59 0.02 55.39 41.46
8 52.09 24.09 59.91 52.25 47.30 51.70 49.06 42.69 0.02 44.11
9 53.38 24.41 60.24 53.74 41.86 54.78 49.67 39.50 55.12 0.02

Table 14: Multi-distribution (M = 10) results for FashionMNIST with INB.

0 1 2 3 4 5 6 7 8 9
0 0.21 18.78 34.80 26.11 31.48 37.13 34.44 21.70 47.89 31.94
1 33.09 0.94 34.88 28.01 31.20 38.49 35.36 21.96 50.44 32.31
2 32.20 18.42 0.28 26.77 28.10 37.65 33.55 21.74 47.43 32.03
3 35.70 19.97 36.51 0.29 33.18 38.86 37.59 22.15 51.41 33.23
4 32.12 18.20 33.05 26.37 0.28 37.31 34.38 21.25 46.77 31.26
5 37.01 21.38 39.18 31.12 36.19 0.13 41.03 26.57 53.54 38.28
6 31.79 18.76 34.56 26.29 30.19 38.17 0.15 21.89 50.18 32.18
7 34.11 19.72 35.82 29.23 32.75 39.21 37.38 0.24 50.34 33.66
8 34.69 20.41 36.50 28.81 32.87 37.06 36.92 21.34 0.04 33.13
9 33.80 19.93 35.84 28.69 32.11 37.73 36.94 21.83 48.10 0.06

Table 15: Multi-distribution (M = 10) results for FashionMNIST with NB.

0 1 2 3 4 5 6 7 8 9
0 0.01 31.54 47.74 34.91 43.80 64.02 44.57 37.95 77.73 59.11
1 56.71 0.05 70.61 40.41 62.99 76.58 67.14 45.92 100.12 70.20
2 41.04 38.60 0.00 37.02 29.53 58.41 37.37 38.19 69.86 58.64
3 47.76 28.43 60.22 0.02 54.82 69.33 59.57 40.30 91.44 64.35
4 45.42 36.13 36.38 39.10 0.01 62.69 39.69 39.06 73.08 60.68
5 64.39 50.18 73.13 55.80 68.76 0.02 71.95 31.25 85.69 46.48
6 35.17 31.87 37.16 34.27 33.03 58.02 0.00 37.19 71.92 56.84
7 67.13 51.83 76.76 57.98 70.58 52.46 74.84 0.08 95.52 63.89
8 50.87 43.78 53.48 46.20 46.52 51.57 53.05 29.71 0.00 47.45
9 61.18 47.73 67.24 53.22 62.20 50.29 67.60 31.60 76.36 0.01
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Table 16: Multi-distribution (M = 10) results for FashionMNIST with DD.

0 1 2 3 4 5 6 7 8 9
0 2.27 22.32 34.02 31.18 34.12 46.94 38.32 25.59 58.34 39.85
1 33.26 0.55 35.24 31.82 36.16 47.57 39.30 25.58 61.59 41.87
2 32.05 21.74 2.32 30.75 32.19 45.94 37.05 24.53 56.22 40.31
3 33.77 24.07 33.27 1.06 34.72 47.59 40.46 26.30 60.18 39.87
4 33.57 22.20 31.69 31.13 1.45 45.99 35.26 24.35 55.70 39.95
5 34.94 23.12 36.14 34.61 35.80 0.01 40.96 25.04 61.08 38.95
6 32.41 22.60 32.93 31.12 32.43 46.53 1.80 24.55 57.87 39.91
7 34.12 24.21 35.72 34.49 36.91 45.84 40.66 0.15 61.25 40.71
8 33.00 22.01 33.58 31.80 34.06 46.79 37.78 24.64 0.97 40.03
9 33.95 23.10 35.69 33.70 36.26 45.88 39.43 24.41 58.87 0.29

G EXPERIMENT DETAILS

G.1 Histogram-based 1D Density Estimators for NB Method

For high flexibility yet low computational cost, we choose to use a histogram-based density estimator for our
independent component (naiv̈e) layers (NB) in our experiments. While histograms are generally efficient and
reasonable non-parametric estimators, one key drawback is that you must choose the interval for the histogram
(e.g., using the minimum and maximum of the data). This can yield odd edge conditions if the interval is not
chosen properly. Thus, to avoid this challenge, we first estimate a preprocessing transformation to squeeze the
data to the interval [0, 1] and then estimate a histogram on this fixed interval. In particular, we merely use a
Gaussian CDF (where the mean and covariance are estimated from the data) to preprocess the data. We then
estimate a histogram on the transformed data. This can be seen as an almost trivial 1D normalizing flow where
the histogram is a learned base prior distribution and the Gaussian CDF is the flow. We use the code from
deep density destructors (Inouye and Ravikumar, 2018) to implement this estimation procedure. Note that this
estimation procedure only requires estimating a 1D Gaussian and a 1D histogram—both of which have minimal
computational cost.

G.2 Details when the number of target directions is less than the dimensionality (K < d)

For the INB layer, if the number of target directions K is less than the dimensionality d, we can define a partial
independent components layer that only acts on K directions. From a theoretical viewpoint, we could adjust our
estimators as follows:

1. For estimating ✓, the other d�K directions of ✓ can be filled in with an arbitrary orthonormal subspace.
2. When estimating the independent class distributions, we could assume that the d�K directions have the

same distribution for all classes.

The first assumption allows us to preserve the full dimensionality of the data when projecting into the latent
space. The second assumption implies that the transform along the d�K directions is the identity because all
the class distributions are the same, which implies that their barycenter is equal to the class distributions, which
implies that the symmetric Monge map is merely the identity function (see Proposition 3). Thus, it can be seen
that these assumptions roughly just ignore the d�K directions.

In practice, we do not have to actually create a full orthogonal matrix ✓ or estimate the class distributions
along the other d�K directions. We can instead use truncated orthogonal matrices (i.e., where the columns are
orthogonal but it is not square) and truncated joint transformations. More formally, we can create the following
invertible but “truncated” transform to avoid unnecessary computation as is done in (Dai and Seljak, 2021):

T ⇤
m(x) = ✓t⇤m(✓Tx) + x? = ✓t⇤m(✓Tx) + (x� ✓✓Tx) , (16)

where t⇤m = [t⇤m,1, . . . , t
⇤
m,K ] and x? , x� ✓✓Tx contains the components that are perpendicular to ✓. Note that

this transformation is invertible and equivalent to the non-truncated “theoretical” version described above but
requires significantly less computation.
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G.3 Datasets

In each run of our experiments, we use the same data even for our simulated data (i.e., we use the same random
seed for generating the data for each run).

2D distributions For 2D data, we use the fixed samples for each repetition of experiment (i.e., we produce
simulated data for all runs rather than producing new simulated data for each run).

• M = 2: Datasets of Moon, Random Pattern, Circles are generated by make_moons, make_classification
and make_circles in sklearn.datasets respectively. The original number of training samples is 2000 and
the original number of test samples is 1000.

• M > 2: Dataset of Random Pattern (M = 4) is generated by make_classification in sklearn.datasets.
The original number of training samples is 2666 and the original number of test samples is 1334. Dataset of
Gaussian (M = 3) is generated by MultivariateNormal in torch.distributions.multivariate_normal
with different means and covariances. The original number of training samples is 4000 and the original
number of test samples is 2000.

MNIST and FashionMNIST We first take the full MNIST dataset (70k samples) and split into training and
testing split. The dimensionality of MNIST and FashionMNIST datasets is 784. To ensure all classes have the
same number of samples in the training and test split, we take the minimum number of samples over all classes
and truncate the samples of all digits to that number. The numbers vary slightly depending on the number of
class distributions M and datasets but are approximately 4500 samples per digit for training and 2300 samples
per digit for testing (Experiment for MNIST and FashionMNIST with M = 10 has approximately 1800 samples
per digit for testing).

For our models including DD, we preprocess the data by dequantizing the original data with uniform distribution
and dividing by 256 to create a continuous distribution over the unit hypercube. For AlignFlow, the data is
further normalized to the range [�1, 1] to serve as the input to the Real-NVP and the GAN discriminator as in
the original AlignFlow paper.

See below for the exact classes we use for our experiments.

• MNIST with M = 2: We use digit 0 and 1.
• FashionMNIST with M = 2: We use T-shirt and trouser.
• MNIST with M = 3: We use digit 0, 1 and 9.
• FashionMNIST with M = 3: We use T-shirt, trouser and pullover.
• MNIST with M = 10: We use digit 0-9.

G.4 Models for 2D Experiments

Two class distributions (M = 2)

• Number of layers: All iterative models (including INB, NB-INB, Rand-NB, NB-Rand-NB, DD, SINF-Align)
use 15 layers.

• Number of dimensions for orthogonal transformation: We apply orthogonal transformation in the full space
with dimension 2, i.e., K = d = 2.

• INB: We iteratively fit NB after orthogonal transformation based on max sliced Wasserstein distance. The
maximum number of iterations for max-K-SW Jmax is set to be 200 for all experiments.

• Rand-NB: We iteratively fit NB after random orthogonal transformation found by QR decomposition of a
matrix generated by torch.randn.

• NB-INB and NB-Rand-NB: We first perform a full-dimensional NB layer and then follow this by 14 iterations
of INB/Rand-NB.

• DD: For the univariate histogram density estimator, we use 40 bins and set ↵ = 1, which corresponds to the
pseudo-counts added to each bin.

• SINF-Align: We use the SIG code from original github repo for the SINF paper (Dai and Seljak, 2021).

More than two class distributions (M > 2)

• Basically the setup is very similar to the M = 2 case. The differences are listed as below.
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• Number of layers: All iterative models (including INB, NB-INB, Rand-NB, NB-Rand-NB, DD) use 30 layers.
• Number of dimensions for orthogonal transformation: We apply orthogonal transformation in the space with

dimension 2.
• DD: It is basically the same as the M = 2 case but with a different initial destructor. Additionally, we add a

normal distribution CDF and inverse CDF as pre and post processing transformations.

G.5 Models for MNIST and FashionMNIST

Two class distributions (M = 2)

• Number of dimensions for INB: We use orthogonal transformation with K = 30 directions which is much
smaller than the ambient dimensions of d = 784 similar to the the SINF paper (Dai and Seljak, 2021).

• Number of layers: We use 250 layers for INB and 10 layers for DD. In this way, the product of the
number of layers and the number of dimensions while fitting the NB/DD are approximately the same i.e.
250⇥ 30 ⇡ 10⇥ 784.

• INB: We add a normal distribution inverse CDF and CDF at the start and the end of the entire INB model
as pre and post processing transformations to project the unit data into the real space for transformation.

• DD: The setup of DD is basically the same as what we use for 2D experiments with M > 2 except that we
remove the pre and post processing transformations with the normal distribution CDF and inverse CDF
since the data is already on the unit hypercube.

• Alignflow: The AlignFlow implementation is done through the direct clone from the Github repository with
some modifications on the code and parameters setup. We first follow the AlignFlow paper to have these
general parameters getting set up: the batch size is 16, the learning rate is set to a fixed 2e-04, maximum
gradient norm is 10. We further set the data_constraint value inside RealNVP model to be 0.999998.
We train 200 epochs for choices of the lambda value 1e-05 and 1e-04. For the Real-NVP model, the model
is a four scale setup. The first three scales contain three checkerboard coupling layers followed by three
channelwise coupling layers. Then the data is squeezed and split so that half the data goes to the next scale.
For the final scale, we only perform the checkerboard coupling layer four times. The squeeze operation is
simply by turning each subvolume 4⇥ 4⇥ 1 into the subvolume 1⇥ 1⇥ 4. And the splitting operation tries
to split the last dimension into two parts. Also within each coupling layer, we parameterize the scale and
translate factors by using the ResNet structure with number of blocks equals 4. And the number of channels
for the ResNet is set to 32 and gets doubled every time when we switch the coupling layer from checkerboard
layer to channelwise layer. For the GAN setup, the discriminator is set to have 5 convolutional layers with
kernel size 4 and stride 1. The number of channels is doubled each time when passing to the next layer with
the initial value 32 for the generator and 64 for the discriminator.

More than two class distributions (M = 3)

• INB: The INB used for FashionMNSIT is set to be L = 100 and K = 10.
• The setup of other models is exactly the same as the M = 2 case.

More than two class distributions (M = 10)

• Number of dimensions for INB: We use orthogonal transformation with K = 10 to transform the original
distribution with dimension d = 784.

• Number of layers: We use 100 layers for INB since the working dimension is only K = 10 for each layer
while for DD we only use 10 layers because the working dimension is d = 784. Thus, if we compare the total
number of dimension-wise transformations INB has 100 ⇥ 10 = 1000 transformations while DD can have
784⇥ 10 = 7840 transformations. Nevertheless, INB still performs better in general based on our quantitative
and qualitative results in other sections.

G.6 Metrics for 2D Experiments

• Transportation cost - We find the averaged squared distance for each class separately and use uniform weight
to take the average over all class distributions, i.e.,

1

M

X

m

1

|Xm|

X

x2Xm

kx� T̂m(x)k22 , (17)
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where |Xm| is the number of samples in the test set for the m-th class distribution and T̂m are the estimated
maps.

• Wasserstein distance - For the test samples, we form “fake” samples for each class distribution by using the
estimated maps, i.e.,

eXm0!m = T̂�1
m (T̂m0(Xm0)), 8m0

6= m, (18)

where T̂m are the estimated maps. We then use the Sinkhorn algorithm (with ✏ = 10�4 and maximum
iterations set to 100) to estimate the WD between the real and fake samples over all possible real-fake pairs,
i.e.,
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M2 �M

MX

m=1

X

m0 6=m

SinkhornWD(Xm, eXm0!m) . (19)

• Repetitions - We repeat the entire map estimation process and metric evaluation 5 times to average over
random effects and calculate standard deviations for each method (except AlignFlow).

G.7 Metrics for MNIST and FashionMNIST

Transportation Cost The setup for transportation cost is the same as 2D experiments except for the experiment
with AlignFlow since the scale of the input and output are different in AlignFlow. Specifically, iterative methods
such as NB, INB, and DD, have images and latent spaces to be in the range [0, 1] for each dimension. However,
in AlignFlow, images are normalized into [�1, 1], and the latent space is a normal distribution. Therefore, for
the purpose of comparison with all the iterative methods, we need some modifications on the transportation
cost for the AlignFlow. We can rescale the input domain from [�1, 1] to [�0.5, 0.5] simply by dividing the input
by 2, which gives a unit domain as for the iterative methods. We can do the same for the latent space which
makes the Gaussian prior to have a standard deviation 0.5 instead of 1. By doing these pre and postprocessing
steps, we can get approximately the same scale in both image space and latent space as the unit scale for the
iterative methods. The transportation cost is then c( 12x,

1
2z) = k

1
2 (x� z)k2 = 1

4c(x, z). Therefore, we manually
divide the transportation cost computed in the unscaled space by a factor of 4 for the AlignFlow paper for the
purpose of fair comparison. Note that this added scaling favors the baseline method AlignFlow—without it, the
AlignFlow transportation cost would be worse. Additionally, because AlignFlow is so computationally expensive,
we do not repeat the estimation process five times and thus cannot compute standard deviation for AlignFlow
transportation costs.

Wasserstein Distance The setup of Wasserstein Distance is basically the same as that in 2D experiments
except that we partition the data. In all experiments, the partition size is set to be 500. The final WD is computed
as the weighted average of that of all partitions.

H ADDITIONAL AND EXPANDED FIGURES

This section includes the qualitative results for additional experiments and expanded figures from the main paper.
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(a) Original Data

(b) NB (c) INB (d) DD

Figure 6: 2D Random Pattern Data (M = 4). The top row is the latent distribution found by class 1 data. The
bottom row is the corresponding flipped distribution from it.

(a) NB (b) INB

(c) DD (d) AlignFlow

Figure 7: Expanded figure of MNIST (M = 2). The first row represents the original samples. The second row
represents the latent representation. The third row represents the flipped samples.
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(a) NB (b) INB

(c) DD (d) AlignFlow

Figure 8: Expanded figure of FashionMNIST (M = 2). The first row represents the original samples. The second
row represents the latent representation. The third row represents the flipped samples.
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(a) NB

(b) INB

(c) DD

Figure 9: Samples of MNIST (M = 3). The first column shows the real samples and the second column shows their
shared latent representations. The following columns show the mappings of the real samples to the distribution
of the other digits e.g. all flipped samples in the first row are flipped from the real 0 in the first column.
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(a) NB

(b) INB

(c) DD

Figure 10: Samples of FashionMNIST (M = 3).
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Figure 11: Multi-distribution (M = 10) results for MNIST with INB. The first column shows the real samples
and the second column shows their shared latent representations. The following columns show the mappings of
the real samples to the distribution of the other digits e.g. all flipped samples in the first row are flipped from the
real 0 in the first column.
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Figure 12: Multi-distribution (M = 10) results for MNIST with NB.
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Figure 13: Multi-distribution (M = 10) results for MNIST with DD.
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Figure 14: Multi-distribution (M = 10) results for FashionMNIST with INB.
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Figure 15: Multi-distribution (M = 10) results for FashionMNIST with NB.
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Figure 16: Multi-distribution (M = 10) results for FashionMNIST with DD.
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Figure 17: Expanded figure of 2D Data (M = 2). In each sub figure, the first row represents the original data.
The second row represents the latent distribution. The third row represents the flipped distribution. The columns
from left to right represent the model: NB, INB, NB-INB, Rand-NB, NB-Rand-NB, DD.
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Figure 18: Expanded figure of 2D Random Pattern (M = 4). The columns from left to right represent the model:
NB, INB, NB-INB, Rand-NB, NB-Rand-NB, DD. The top image is the original distribution. Each pair of rows
represents the translation of samples from one class distribution to all other class distributions. We can translate
every class distribution to every other class distribution since all functions are invertible. The pairs of rows
are the results of translating from different source distributions, i.e., class 1 (purple), class 2 (turqoise), class 3
(yellow), and class 4 (red) distributions respectively. The top of each pair is the shared latent representation
(the same across all rows) whereas the bottom row shows the generated data. Note that if the source and target
distribution are the same, e.g., from class 1 to class 1, the output distribution will be exactly as in the original
since our transformations are invertible.
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Figure 19: Expanded figure of 2D Gaussian (M = 3). The columns from left to right represent the model: NB,
INB, NB-INB, Rand-NB, NB-Rand-NB, DD. The top image is the original distribution. See caption of Fig. 18
for explanation of each pair of rows.
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