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Abstract. Consider an analytic Hamiltonian system near its analytic invariant torus 7o
carrying zero frequency. We assume that the Birkhoff normal form of the Hamiltonian at
To is convergent and has a particular form: it is an analytic function of its non-degenerate
quadratic part. We prove that in this case there is an analytic canonical transformation—not
just a formal power series—bringing the Hamiltonian into its Birkhoff normal
form.
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1. Introduction

The goal of this paper is to study the convergence of the transformations of an analytic
Hamiltonian system in a neighborhood of an invariant torus to the Birkhoff normal form.
Here we assume that the frequency vector at the invariant torus is very resonant and, hence,
already at the formal level, the existence of the Birkhoff normal form has obstructions.
The main result, Theorem 1.1 below, will show that if the obstructions for the formal
equivalence between the system and its Birkhoff normal form vanish and the normal
form is convergent and has a particular form, then the system is analytically equivalent
to its normal form. Hence, this result can be considered as a part of the rigidity program:
identifying obstructions for a weak form of equivalence whose vanishing implies a stronger
form of equivalence.
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2 R. de la Llave and M. Saprykina

1.1. Classical theory of normal forms: existence and uniqueness. Consider an analytic
function

H(I,0) = (o, I) + O*(1), (1.1)

where 6§ € T9 = R4 /Zd, VS (Rd ,0), (-, -) denotes the usual scalar product in RY,
and Ao € R is a constant vector called the frequency vector. The Hamiltonian system
associated to it is [ = 0gH(,0), 0= —drH(I,0). Note that we are assuming the
standard symplectic form. In particular, the set 7 := {0} x T¢ is an invariant torus of this
system. We say that H (I, 0) has a Birkhoff normal form (BNF) N (I) in a neighborhood
of 7o if N(I) is a formal power series and there exists a formal symplectic transformation
W (I, 0), tangent to the identity,

W(I,0) = (I +O*I),0 + O)),
such that
Ho®(I,0)=N)

in the sense of formal power series. Any canonical coordinate change ® (7, 0) as above
is called a normalizing transformation. The following fundamental result is called the
Birkhoff normal form [MHO, SM71]. For H(I, 0) as above, assume that Ag satisfies a
Diophantine condition: there exist constants (C, t) such that for all k € Z4 \ {0}, we have

|(Xo, k)| = Clk|™". (1.2)

Then H (I, 0) has a (formal) Birkhoff normal form. Moreover, if a normal form exists
and A is rationally independent, then the Birkhoff normal form is unique (up to trivial
changes relabelling the actions). Note that the normalizing transformations are not unique,
since composing ®(/, #) with any transformation that preserves I gives a normalizing
transformation.

The Birkhoff normal form is an important tool in the study of Hamiltonian systems.
The assumption of existence and non-degeneracy of the normal form has strong dynamical
consequences (see, e.g., [EFK15, Theorem C]). The importance of the BNF becomes even
stronger if the normal form is convergent and even more so if there exists an analytic
normalizing transformation.

The standard way of constructing a BNF, which we will review in more detail later,
is to proceed iteratively, devising transformations that normalize H ([, 6) up to the
coefficients of order I”. The normalization step involves solving differential equations
with analytic conditions. The Diophantine conditions (1.2) can be somewhat weakened to
subexponential growth (limy_, o, (1/N) log SUP|k <N [{Xo, k)|’l =0).

If A is resonant, one cannot guarantee the existence of the Birkhoff normal form even at
the level of formal power series, since there may be some terms in the formal power series
of H that cannot be eliminated by a canonical transformation. On the other hand, there are,
of course, systems (e.g. the BNF itself, or changes of variables from it) for which one can
construct a BNF even in the resonant case. Then one speaks of the Birkhoff-Gustavson
normal form [Gu66].
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Convergence of the Birkhoff normal form 3

Analogous definitions and statements hold true for symplectic maps in a neighborhood
of a fixed point. Even if the formal elimination procedures are very similar, the analysis
is very different. Handy references for the classical theory of Birkhoff normal forms are
[EFK13, EFK15, MHO, Mu, SM71].

1.2. Generic divergence both of the Birkhoff normal form and the normalizing transfor-
mation. The BNF and the normalizing transformations are constructed as formal power
series. The following natural questions are of great importance: the first one is whether
the BNF converges for Hamiltonians in a certain class. The second is whether there is a
convergent normalizing transformation.

Concerning the first question, Perez-Marco [PM] proved the following dichotomy: for
any given non-resonant quadratic part, either the BNF is generically divergent or it always
converges. The original proof was done in the setting of Hamiltonian systems having a
non-resonant elliptic fixed point. The extension of this result to the case of the torus, which
is not completely straightforward, has been worked out by Krikorian; see Theorem 1.1 in
[Kri].

Up to very recently it was unclear which of the possibilities is actually realized. Large
progress has been made by Krikorian [Kri], who proved that there exists a real analytic
symplectic diffeomorphism f of a two-dimensional annulus such that f(T x {0}) =
(T x {0}), f(@,0) = (0 + wp,0) with wy Diophantine and having a non-degenerate
divergent Birkhoff normal form. An analogous result in a neighborhood of an elliptic
equilibrium was recently obtained by Fayad [F]. Combined with the aforementioned result
of Perez-Marco, this implies that the Birkhoff normal form of an analytic Hamiltonian is
‘in general’ divergent.

Concerning the normalizing transformations, Poincaré proved that they are divergent
for a generic Hamiltonian. Siegel proved the same statement in a neighborhood of an
elliptic fixed point (in fact, for a larger class of Hamiltonians than just generic [Si54]).
This is implied by showing that the orbit structure of the map in any neighborhood is very
different from that of the Birkhoff normal form (which is integrable). Analogous results
for symplectic maps near an elliptic fixed point appear in [Ri159]. Very different arguments
showing divergence of normalizing transformations for generic systems appear in [Ze73]
and for some concrete polynomial mappings in [Mo60].

1.3. Convergence of the transformations under the Diophantine conditions for some
particularly simple BNF. There are classes of Hamiltonians for which we can guarantee
the convergence of the normalizing transformation. The following influential rigidity result
was proved independently by Bruno [Br71] and Riissmann [Rii67]. Note that the main
assumption is that the (in principle only formal) BNF is of a particular kind.

Consider an analytic Hamiltonian H (I, 8) whose frequency A( satisfies a Diophantine
condition (1.2). Assume moreover that the Birkhoff normal form N(I) of H(I,6) is a
formal function B of a single variable Ag := (A, I), thatis,

N(I) = B(Ao(D)).

Then there exists an analytic normalizing transformation and the BNF is, in fact, analytic.
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4 R. de la Llave and M. Saprykina

We remark that Bruno proved the above result under a weaker condition on Aq than (1.2).
For analogous statements in the case of invariant tori, see [Br89]. Other modifications
can be found in [Rii02, Rii04]. This result has been recently generalized to a much more
general context by Eliasson, Fayad and Krikorian [EFK13, EFK15]. We stress that in all
these works mentioned above, Aq is assumed to be non-zero and the crucial assumption is
that A¢ satisfies a Diophantine-type condition and that the BNF is of a very simple form.

1.4. ‘Sometimes’ convergence of the BNF implies convergence of a normalizing transfor-
mation. Our main result is close in spirit to the above works, but it does not rely on a
Diophantine condition. In fact, we consider a special class of diffeomorphisms such that
the frequency A is zero. Thus, the BNF is degenerate in the previous sense. But within this
class of Hamiltonians we just use a standard non-degeneracy assumption on the quadratic
part. Namely, we prove the following.

THEOREM 1.1. Assume the following.
(A1) H(U,0) has a formal Birkhoff normal form N (I) that starts with quadratic terms

in I, i.e. there exists a formal symplectic change of variables WV (I, 0), tangent to
the identity, that is, V(I,0) = (I + O, ¢ + O(I)), such that

HoW(l,0)=N() = No(I) + O>(I)

in the sense of power series.
(A2)  No(I) = IVQI (for some symmetric 2) is non-degenerate: det Q # 0.
(A3) N(I) = B(No(I)) = No+ 352, b; (No(I))?, where B is an analytic function.

Then there exists an invertible analytic symplectic transformation
O(I,0) = (I + O*I). ¢ + OI))
such that

Hod(,0) =N(U). (1.3)

Note that we start from a resonant torus, so that the existence of a BNF of the form
we assume requires vanishing of (formal) obstructions. Hence, our main result can be
reformulated as saying that the formal assumptions imply convergence of the normalizing
transformation.

Similar rigidity statements have appeared in other contexts. In [P092, Ch. 5], Poincaré
studied the formal power series of canonical transformations that send a family of
Hamiltonian systems into a family of integrable systems (in the sense of power series).
In [P092], it was shown that these formal power series do not exist unless there are
some conditions (which are not met in the three-body problem for arbitrary masses).
The non-existence of formal power series a fortiori implies the non-existence of analytic
families of analytic transformations integrating the three-body problem.

The first author [LI] proved a converse to the result in [P092]: if the system satisfies
a very specific and generic non-degeneracy condition, then existence of a formal power
series that integrates the family of transformations in the sense of power series implies
existence of a convergent one.
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Assumption A3 is there for technical purposes; see §3.3. Note that it is trivial ford = 1.
This assumption reminds us of that of Riissmann in [Rii02, Rii04, Rii67].

The assumption that the Birkhoff normal form is a function of Ny has been discussed
in [Ga] under the name of relative integrability. Two Hamiltonian dynamical systems are
relatively integrable when one of them can be obtained from the other by a symplectic
change of coordinates and a reparameterization of the time that only depends on the total
energy. That is, the orbit structures of the two systems in an energy surface are equivalent
up to a change of scale of time. The paper [Ga] includes several arguments for why
the notion of relative integrability is natural when discussing formal equivalence. In the
present paper, however, the focus lies on the notion of equivalence under a symplectic
change of variables. We show that, for a certain class of systems, equivalence in the sense
of formal power series implies equivalence in the sense of analytic canonical changes
of variables. Hence, our main result can be understood as a rigidity result. The class of
systems for which this rigidity result holds can be succinctly described as the set of systems
that are relatively integrable with respect to the main term.

In the context of formal equivalence implying analytically convergent equivalence, it is
natural to formulate the following conjecture.

Conjecture 1.2. Assume that an analytic Hamiltonian H (/, 6) as in (1.1) has a convergent
BNF that satisfies the non-degeneracy assumption that the frequency map is a local
diffeomorphism. Then there is a convergent normalizing transformation.

Note that the problems studied in [Br71, Rii67] do not satisfy the hypothesis of the
conjecture, even though they satisfy the conclusion.

In the other direction, one can construct examples [S] of analytic maps near a hyperbolic
fixed point such that the Birkhoff normal form is quadratic (in the above notation, N = Ag)
with a non-resonant set of eigenvalues, and any normalizing transformation to the normal
form diverges. In these examples, the eigenvalues form carefully chosen Liouville vectors.
That is, the paper [S] shows that, depending on the Diophantine conditions, quadratic
normal forms may be rigid or not. The models in [S] do not satisfy the hypothesis of the
conjecture above.

1.5. Overview of the proof. The standard method of obtaining the Birkhoff normal form
is an iterative procedure in which we construct the transformations order by order: at the
nth step of the procedure one computes the nth-order terms in the Taylor expansions,
assuming that all the terms of lower orders are computed. It would appear natural to follow
this scheme and try to estimate the transformations at each step of the recursive procedure.
Unfortunately, this seems technically unfeasible. One of the main complications in any
possible proof of convergence of the transformations is that even if the BNF is unique,
the formal transformations @y are very far from unique (since the BNF depends only on
the actions, the @ can be composed with any canonical transformation which moves the
angles but preserves the actions). So, an essential ingredient of any proof of convergence
should be a specification of how to choose the normalizing transformations.

In this paper we use a quadratically convergent method in which we double the number
of known coefficients at each step. Roughly—see more details in the next paragraphs—we
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6 R. de la Llave and M. Saprykina

will show that if the formal obstructions vanish we can choose a sequence of canonical
transformations that proceed to converge quadratically: doubling the order of the BNF
at every step of the construction. More importantly, there is a specific choice of the
transformation that satisfies very explicit bounds. The bounds on the new transformation
in terms of the remainder turn out to involve a loss of derivatives. Therefore, we need
to implement a Nash—Moser scheme to estimate the important objects in a sequence of
domains which decrease slowly.

Here is a short overview of the proof; the necessary notation is introduced in the next
section. At the nth step of the iterative procedure we will start with a Hamiltonian of the
form

Hy(I,60) = Ny(I) + R, (1, 6),

where N, (I) is a polynomial in I of degree m,, = 2" 4+ 1 and the remainder term ié;, is
small in the following sense: for a certain domain-dependent norm, introduced in §2.1.1,
for a certain small §, (we assume that §,, — 0 with n — o0) and k¥ > 0, the remainder
term satisfies | R, | onaon = O+

At this step we construct a symplectic change of coordinates ®,, such that

H,o®,(1,0) = Nn—H(I) + Rn+l(1, 0),

where N, has degree m;+; = 2m, — 1 and |1€,:4__/1|p”+1,p”+1 <8 =275

We construct ®,, as a time-one map of the flow of a Hamiltonian vector field F,,. The
main ingredient consists in constructing and estimating the norm of F,, (and thus ®,),
which is found as a solution of a certain homological equation (see (3.1) and in a simplified
form (4.1)). In general, this equation may not have even a formal solution unless some
constraints are met. However, the assumption of Theorem 1.1 implies that this equation
does have a formal solution. The key observation in this paper is the following: if this
homological equation has a formal solution, then it also has an analytic solution with
tame estimates for it (in the sense of Nash—Moser theory). This statement is the content of
Lemma 4.1. We note that the tame estimates use an argument different from the matching
of powers.

The procedure can be repeated, because the main assumption used to show the existence
of solutions of the Newton equation is that there is a formal solution to all orders. This
assumption is clearly preserved if we make any analytic change of variables. Once we
know that the Newton procedure can be repeated infinitely often, the convergence is more
or less standard.

2. Notation and a step of induction
2.1. Notation.

2.1.1. Norms and majorants. Let T¢ = R?/Z? be a d-dimensional torus and, for o >
0, consider its complex extension ']I‘g = (R? + (=0, 0)/=1)/Z%. Let ]D)z ={leC?:
|I| < p} beacomplex disk and define the ‘d-dimensional annulus’

. d d
Apo i=Df x Tg.
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Convergence of the Birkhoff normal form 7

Let O(A, ) be the set of functions holomorphic in A, that are real symmetric, that

is, such that f (1,0) = f(, 0) (where the bar stands for the complex conjugate). We use
supremum norms over A, , denoted by || f || p,o. In the same way, we define the set O(D,)
with the corresponding norm || f|, being the sup-norms over the disk Di'

For a function f € O(A, ), consider its Taylor—Fourier representation in the powers
of I: f(1,0) =3 ;ent D pezd fixe¥ &0 [, Consider a majorant for f of the form

Fi =" > fjultie? e,

jeNd kezd
We denote by | f], . the norm of the corresponding majorant f(l ):

| flpo = 1fllpo-

Clearly, || fllp,o < |flp,c- Analogous notation | f|, corresponds to the norm | f||, above.
In what follows we will mostly have o = p.

2.1.2. Important constants for the iterative procedure.
e Let po = min{l, p}.
e The order of polynomials involved in the nth step of the iterative procedure is

m, =2"+ 1.

e The norm of the rest term R, at the nth step will be estimated as |R, | on < 0. Let

Kk=d+6,
h =2 K+
8o = pob2 ™ = pg2 =t
St = 2716,
e Finally, let
i = (26> "

and
Pn+1 = (on — 38,)qn.

2.1.3. Polynomials. In the iterative procedure we will work with polynomials in 7 whose
coefficients depend on 6.
o Let

No(I) = I"QI, 2.1

where €2 is a symmetric non-degenerate matrix: det €2 # 0.
e Anexpression M = f(0)I* (where k is a multi-index) is called a monomial.
e We will say that a monomial My ; = I ke2mill0) is resonant if it satisfies {Ng, M} = 0.
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8 R. de la Llave and M. Saprykina

RUI(1,6) stands for a homogeneous polynomial in / of degree j with coefficients
depending on 6:

RUNI,0) = > rne(@)1*.
lkl=Jj
e We also use the notation R to denote the range of degrees in /:

n 0
RImAl(1 gy = Z RUNI,0), RE™(1,0) = Z RY(1, 9).

j=m j=m
Let m,, be as above. The following functions will be of special importance.
e The normal form N (/) is assumed to have the form

o0
N(I) = B(No(1)) = No(I) + »_ bj(No(I))/. 22)
=2
Denote
Ny = N1 = (B(Ng)!>"; (2.3)
in particular, since mg = 2, No = N(gz’m"] = N(Ez] is quadratic.
e The rest term at the nth inductive step is R, (1, 0):
E}; — Ifé;,[>m"]. (24)

e We will also need polynomials in / with 6-dependent coefficients: R, (I,0) and
F, (1, 0) of the following degrees:

R, = R,[,m”H’m”“], F, = F,Em”’m”“il]. (2.5)
2.2. Base of induction: an equivalent problem.
LEMMA 2.1. Suppose that
H(I,0) = No(I) + Ro(1. 0) € O(h o),

where |E)| o0 = 8, and there exists a formal (respectively, analytic) symplectic transfor-
mation

W(I,0) = (¢, 0), ¥(I,0)) = +O*I), 0+ O())
such that
HoW(I,0)=N{) = No(I) + Z bj(N()(I))j.
j=2

Then, for any a > 0, there exist a Hamiltonian H (1,0) and a formal (respectively,
analytic) symplectic transformation V(I,0) = (I + (92(1), 0 + O(I)) such that

HoW(1,0) = No(I) + Ro(I, 0) € O(A(1/a)p0)»

where |1/i’\0|(1/a)p,(, < asé, and

N(I) = No(I) + Y _ bja® =V (No(D))/.
j=2
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Convergence of the Birkhoff normal form 9

Proof. Define H(I,0) = (1/a®)H (al,6) and W(I,0) = ((1/a)¢(al, ), ¥(al, 0)). It
can be verified directly that U is symplectic and tangent to the identity. Moreover,

o - 1 as . .
HoW(l,0) = —H(g(al,0),y/(al,0) = No(1) + Y _ bja> "V No). O
Jj=2

2.3. Induction step. While the base of induction is given by formula (2.12), the step of
the iterative procedure is provided by the following proposition.

PROPOSITION 2.2. For a fixed n > 0O, let m,, p,, and 8, be as in §2.1.2 above. Suppose
that H, (1, 0) is formally conjugated to the BNF of the form (2.2):

00
N(I) = No(I) + Y bj(No(I))!
j=2
and the normal form satisfies
INUmt il i =0, my (2.6)
denoting g2;(I) = jb; (No(I))j_l, we assume that
|gj|pn§%, j=1,...,my. 2.7)
Suppose that
Hy(1,0) = Nu(I) + Ry(1,0),
where Ny (I) = (B(No(1)))2"! and R, = R,"™ sarisfies
| Rl .0 < 8-
Then there exists a symplectic change of coordinates ®, : (I',0") — (I, 9),
®,(I',0") = U, 0", VT, 0,

Mp+1— 1]

given by a Hamiltonian F,, = F,Em"’ such that
Hypi1(I',0') i= Hy 0 ®u(I',0") = Nps1 (I') + Rup1 (I, 0)), 2.8)
where Ny (I') = N2l (1), Roy (1,07 = Roma 17 07, and
Rutt o ioonss < 0541 (2.9)

Moreover, ®,,(1',0") = (U™ (I’,0"), V(' 0") satisfies

d
S NUPU 0 = I, 35,0030,
j=1

IV 0) = 011, —38,p-38, < O (2.10)
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and the inverse map, <I>;1(I, 0) :== (UM, 0), V(UL 0)), satisfies

d
Do NUSTUL0) = 1,380 35,
j=1

IV, 0) = 011,358,003, < On. @.11)

The proof of this proposition constitutes the main technical tool of this paper. It implies
Theorem 1.1 in a standard way. See, e.g., [Rii67, pp. 61-63]. For convenience, we give a
proof below.

2.4. Proof of Theorem 1.1. Lemma 2.1 permits us to assume without loss of generality
that for the given Hamiltonian Hy(/, 0) := H(I,0) = No(I) + Ro(I, 9),
1R0lpg.p0 < B5- (2.12)

Since the function B is analytic, the same lemma permits us to assume that (2.6) and (2.7)
hold for each n.

The step of induction is provided by Proposition 2.2. Since H, is formally reducible to
the normal form N, the same can be said about H,, 4.

Repetition of this process leads to a sequence of transformations

T, =PgoPio---0d,_1.
Let us show that 7, converges to the desired coordinate change ® = T, analytic in the

polydisk A, o... Where pob < pso < po. Indeed, with the notation of §2.1.2,

o0
3% 8 <3280 <3-2p0b2 > < pob.
k=0

Then, for any n, we have

n n 00 00
Pn+1 = qu(pn — 38) = po l_[ q;j— 32 dn = po l_[ q;— 32 n
j=0 j=0 j=0 j=0

> po2b — 3 - 280 > bpy.

It is left to prove that 7,, converges to an analytic function T, satisfying (1.3). Denote the
variables involved in the nth step of the induction by w,—; = (I, 0) and w, = (I’,8"),
where

Wy = CD,?,l]wnfl-
In this notation,
wg=PgoPjo---0d,_jw, =T,w,.
Now, for w, = (I’, 8"), we have

HoT,(I',0") = N,(I') + R,(I', 0)).
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Since (®,(1',0") — (I’,0")) starts with the terms of degree 2" in I’, for each j the
expansion of (7,(1",0") — T,4;(I’,0")) starts with the terms of degree 2" in I’. This
implies that the sequence of maps 7;, formally converges, when n — o0, to a formal map
To such that (1.3) holds:

HoTx(I',0)=NU).
We still need to show that T is analytic. It is more convenient to prove that the maps
~1. -1 -1 ~1
T, =@, j0---0® o,

converge to an analytic map Togl.
By Proposition 2.2, the map

Wp+1 = qD;lwn
is analytic in A p/2,po5/2 and, for all n, we have
|, wy, — Wil pob/2,000/2 < Ons
since p, — 38 > pp41 > pob for all n. Therefore, the map 7, ! such that
w, = Tn_lwo

is analytic in A p/4,po5/4 and, for such wg, we have

n—1 00
1T, wol < Y17 (w)j) —wjl + lwol <)Y 8 + pob/4 < pob/2.
j=0 j=0
The estimate
n+m—1
T, (wo) = T, (wo)| < > T (w)) —w))
n+m (WO n 0)1pob/4,p0b/4 = jo W Wj)lpob/4.p0b/4
Jj=n

o0
<) 5;=2"4
j=n

implies the convergence of the sequence of maps T[l to an analytic map Togl in
A pob/4,pob/4- Since the formal inverse of Togl is the series T, the latter also defines an
analytic function, providing the desired coordinate change. We set ® = T, in the notation
of Theorem 1.1. O

3. Formal analysis
Here we start the proof of Proposition 2.2 by the formal analysis of the iterative
procedure.

3.1. [Iterative procedure. Given H, as in Proposition 2.2, we will construct &, as the
time-one map of the flow of a Hamiltonian F;,, thatis, &, = X 11, , where X } is the flow
defined by

I =Fy,0), 6=—F/,0).
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12 R. de la Llave and M. Saprykina

In this case, ®,, is automatically symplectic.

Notice that the normalizing transformation ®,,, as well as the corresponding generating
function F,,, is not unique (one can compose with rotations in the angles which preserve the
actions, for example). Clearly, the transformation that converges has to be very carefully
chosen.

In the following Lemma 3.1, we show that if a (formal) normalizing transformation
exists, then there exists (another) normalizing transformation of a special kind. Namely,
such that the corresponding generating function is a polynomial (in the sense of §2.1.3),
F, = F,Em" Ml _1], and free from resonant monomials (see notation in §2.1.3).

The idea of the proof is that we can always move the formal normalizing transformation
by composing with some transformations that do not change the normal form. Therefore,
we can ensure that the normalizing transformations belong to a space which is transversal
to the space spanned by resonant monomials. Note that in the proof of Lemma 3.1, we use
crucially the fact that the normal form is a function of Ny so that the resonant terms are
the same at all orders.

There are some analogies between Lemma 3.1 and Proposition 2.6 in [LI], but that result
is significantly less delicate since there is an extra parameter that controls the smallness.
In our case, the variable I controls both the smallness and the distance to the origin at the
same time.

Let {-, -} denote the standard Poisson bracket. Recall that for a differentiable function
G, we have

d t '
EGOX ={G, F}o Xp.

LEMMA 3.1. Suppose that for H(I, 0), there exist Ny (I) = No + B(Ny) with B(X) =
Yy biXI, R(I,0) = R>2"(1,0), and G(I,0) = O*(I) such that W := X; satisfies

HoW(,0) = Ny,(I)+ R(I,0).

(1) Then there exists é(l , 0), which is free from resonant monomials of order < 2m,
such that V := XIG normalizes H to the same normal form, that is, for some

R(I,0) = (R)>2"(1, 0), we have
HoW(I,0) = Nyy(I) + R(1, 0).

(2) I, an addition to the previous assumption, we have that the original H (I, 0) has the
form

H(I,0) = Nu(I) + RZ"™(1,6),
_ arl2,..m] . . _ rlm,2m-2] . .
where Ny = Ny, , then there exists a polynomial F = F , which is free
from resonant monomials, such that ® := X IF normalizes H to the same normal

~[>2m]

form, that is, for some I;(I, 0) =R (1, 60), we have

Ho®(I,0) = Noy(I) + 1?(1, 0).
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Convergence of the Birkhoff normal form 13

Proof. (1) All the calculations below are made in the sense of formal Taylor—Fourier
expressions. Suppose that K (I, 0) is such that {Ng, K} = 0. Notice that in this case
{Nom, K} = B (No){Np, K} = 0.Use K (I, ) as a Hamiltonian to define k(I, 9) := X}(
Then, by the Taylor formula, we have

HoWok=(Ny,+R)ok= (N2m+R)OXtK|I:1 = Nom + R + {(Nom + R), K}
+ 3 ({(Nam + R), K}, K} +- - - = Now + Ry,

where R (1,6) = R{”>"\(1, 6).

It is a classical fact that the composition W o k in the sense of formal power series is the
time-one map of another Hamiltonian given by the Campbell-Baker—Dynkin formula (see
[Dragt, Appendix C] and [LIMM, Appendix]); here we denote it by the CBD formula.
Note that in these references the usual notation for the Hamiltonian vector field defined by
G is L, and exp(L¢) stands for its time-one map. In the present paper the same map is
denoted by X é; Now suppose that ¥ = X é; and k = X }( The CBD formula implies that
the composition of these maps satisfies

\il::\llok:Xé where

- 1 1 1

G=G+K+-{G, K —1{G,{G,K}} - —{K,{K,G
+ +2{ }+ 12{ { 1} 12{ { 1+

The last sum is to be understood in the sense of formal power series in /.

To prove Lemma 3.1, we use the CBD formula and choose K recursively (order by order
in I) so that G has no resonant terms up to order 2m. At each step of the recursion we
choose (—K (I, 0)) to be equal to the lowest order resonant term of G and set G to be
the new G. As we saw above, the map U=UoK , used as a normalization map, brings
H to the same normal form as W did. But its generating Hamiltonian G has no lower
order resonant monomials. Iterating this procedure, we get a normalization with the desired
property.

(2) Since we can normalize H = N, + R!>"! to N,,, with the help of the generating
function G = (92(1 ), then, by (1), we can also achieve the normalization using the
transformation W generated by a resonance-free Hamiltonian G. Note that G = O%(I).

By the Taylor formula for power series, we have

HoW = (N, + R o ¥ = (N,, + RP™) o Xli=t = N + R>m
+ {(N + RZ"™), G} + J{(Nyw + RZ™), G}, G} + - - = Ny + R1.

Since G is resonance-free, any monomial P in G gives a non-zero impact { No, P} to the
sum above, whose order in [ is strictly larger than the order of P. By comparing the orders
of the coefficients in I, we see that the lowest possible order of a monomial in { Ny, G} is
the same as that in R™>”"! and hence G = G'=!. Finally, notice that the reduced generating
function F := G272 produces the same normal form. O

The following lemma introduces the notation used in the proof of the main theorem
(Theorem 1.1). Here we use the results of Lemma 3.1 to relate the conjugating function to
the solutions of the homological equation (3.1) below.
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14 R. de la Llave and M. Saprykina

LEMMA 3.2. Adopt the notation for the degrees of polynomials from §2.1.3 (in particular,
N, = Nml g5 in 2.3, and R, = R,[,m”H’m"“]). Let B(X) = 2311 ijj. Suppose that
H,, has the form

H, = N, + En =Ny + Ry + E;l[>m”+]],

where Ny, (I) = Ny + B(No)4m1,
Suppose that there exists G(I,0) = OX(I) such that ¥ := X}; satisfies
HoW(l,0) = Nyp1(I) + R(L,0).
Then there exists a polynomial (in I) F, = F,Em”’m”“fl]
the time-one map ®, .= X Ilpn satisfies

with the following properties:

Hyy:= Hyo @y = Nyy1 + Ry,

F, satisfies

(N, F it bmal L R4 N, — Nyyy =0, 3.1)
and
Rt = Ay + By + Cp,
where

1
An = Rn[>m”+]] o ®,, By = / {(1 - t){Nn, Fn} + Ry, Fn} o tindta (32)
0

Cp = ({Ny, F,pHlzmn+1l, (3.3)

Notice that the expressions for A,, B,, C, start with terms of order m, 1 + 1 and,
_ N[ n ]
hence, R,+1 = Ry+1 it , as needed.
Proof. Let m = m, = 2" + 1. Then m, 41 = 2m — 1. With the notation for the degrees
of polynomlals from §2.1.3, Lemma 3.1 implies that there exists a polynomlal F, =
plmnmnt =1 Gich that @, 1= XF satisfies Hy, o ®, = N1 + Rn+1 By the Taylor
formula, we have

Hyo®, =(N,+ R, + E:z[>m”+l]) o XrF” lr=1 = Np + {Ny, Fy} + Ry

1
+/ {(1 = ){Np, Fu} + Ry, Fy}o X;?” dt + Rn[>mn+l] od,
0

= Np+1 + Rn+l- (34)
Notice that by extracting all the terms of orders m,, + 1, ..., m,4+ from the equation
above, one gets the cohomological equation (3.1). U

3.2. Homological equation order by order. Here we rewrite equation (3.1) as a
(finite) set of equations for each degree of I. Equations corresponding to degrees
my +1,...,mypy1 will formally determine F;, (they are written out explicitly in (3.5)).
The rest of the equations define C,, (which is a part of the new remainder term). Equating
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Convergence of the Birkhoff normal form 15

coefficients with the same homogeneous degree in / in both sides of (3.4), we obtain for
the degrees from m, + 1 to m, 4 the following recursive formula (we write m instead of
my, for typographic reasons):
{No, F[m+l]} + {NB], F[m]} + RIm+21 — N[m+2]’
{N()a F[m+2]} + {N[4], F[m]} + {N[3], F[m+1]} + R[m+3] — N[m+3],
3.5

m—3
{No, F[2m—2]} + Z{N[m—j]’ F[m+j]} + R2m—11 _ p[2m—11
j=0
Recall that 2m,, — 1 = m,41; see §2.1.2. From the formal solvability we know that each
of these equations has a formal solution F,Emﬂ ]. Of course, such a solution is not unique.
We will make the solution unique by prescribing the condition

/ F"(1,0) = 0,
Td

As we will see, this normalization will allow us to get the estimates needed for the proof
of the convergence. The sum of the terms of orders m,+1 + 1, ..., myy1 + m, — 2 (that
is, 2my,, . .., 3m, — 3) that appear in equation (4.1) is denoted by C,. In the notation
m = m,, we have C, = CL2™3" 3] The terms of the uniform degree satisfy

C1[12m] = {Np3, F[2m72]} + {Npy. F[Z"FSJ} + oo (N F[m'H]},
C’[12m+1] = {Npy, F[2m_2]} + {Np3) F[Zm_3]} + o+ (Npm)s F[m+2]},

(3.6)
cBm=31 _ {Nim F[2m72]}
n ’ *
This can be written more compactly as
m—2 m _
Cp= Y {(FEm=1=H_ ¥~ NI+l (3.7)
k=1 j=k+2

This should be viewed as a definition of the remainder term C,,.

3.3. An important simplification. In the case when the normal form is an analytic
function of No(I) as in (2.2), we have an important simplification. Denote

&2;(I) = jbj(NO(I))j_l and g2j+1(1) =0. (3.8)
Then, for j € N, we have

{NBIFY = {b;(No), F} = jb;(No) = {No, F} = g2;(I){No, F},

. 3.9
{N[ZJ-H]’ F} = g2j+1(I){No, F} = 0. ¢

We formulate this as a lemma.

Downloaded from https://www.cambridge.org/core. 02 Aug 2021 at 12:00:34, subject to the Cambridge Core terms of use.



16 R. de la Llave and M. Saprykina

LEMMA 3.3. Ifthe normal form is an analytic function of No(I) as in (2.2), then equation
(3.5) is equivalent to

{No, F[m]} + R+ — N[m+1],
{No, F[m+l]} + g3(I){Ny, F[m]} + R[m+2] — N[m+2],
{No, F[ln+2]} + g4(1){N0, F[m]} + g3(I){N0, F[m+1]} + R[m+3] _ N[m+3],

(3.10)
m—3
(No, FE" =2y 43 g j (D){No, F" /1)y 4 RE=1 = N2,
j=0
and
m—2 m
Ci=), ({F“’"—l—"], Not- ) g,-). (3.11)
k=1 j=k+2

3.4. Homological equations in majorants. Here we study a simple recursive formula
and estimate its terms. Later it will provide an important estimate of [{No, F/}|,, ,,. Here
is the idea: suppose that in the lemma above for some € > 0, for all j =0,...,m, we

have
Pj — |R[m+j]|p”,p” + |N[m+j]|p”,pn <e, |gj|p,1 < 1/4!_

Define S; by the relations (3.12) below. Then, by Lemma 3.3, for all j =0, ..., m, we
have

|{N0a Fj}|p”,p,, < Sj
LEMMA 3.4. Given € > 0, suppose that forall j =1, ..., m — 1, the numbers P; satisfy

0<Pj§6.

Let S be defined recursively by the equations

S1 = Py,
S» =P+ 351,
1 1
S3=P3+152+4—251,
1 1 1
— Pyt - _ - (3.12)
Sa=Pit 85+ 55+ 55,

m—1

Sm-1= Pn_1+ Z; HSm—l—j'
j:

Then, for each j, we have

§S;i<2, j=1...,m—1
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Convergence of the Birkhoff normal form 17

Proof. By the formula for S/ above,
S; < Pj+1Sj—1+ XSj1— Pi_1) = Pj+218,.1 < Py +S;_1/2.

This implies that

j—1
S; < ZZkij<eZZk m
k=0 k=0
4. Formal solution provides analytic one with estimates
In this section we study a homological equation (4.1) below with an analytic right-hand
side Q(I, 0). Assuming that it has a formal solution, we will find an analytic one and
estimate it in terms of the right-hand side. Similar procedures appear in [Ll].

LEMMA 4.1. Let No(I) = IYQI, where Q is a symmetric matrix with det Q # 0, and let
0, 0) be analytic in an annulus A, , for some p, o > 0. Suppose that the following
equation has a formal solution F (I, 0):

{No, F} = Q. (4.1)

Then equation (4.1) has an analytic solution F(1,0), defined in A, ,, and, for any 0 <
8§ <p, 0<y <o, wehave

|F|p 80—y <c(d, Q) d|Q|paa

where c(d, 2) is a constant only depending on d and 2.
Moreover, if Q(1,0) is a homogeneous polynomial in I with coefficients depending on
0, then so is F(I, 0).

Proof. Expanding F formally into a Fourier series: F = ) ; 7a Fi (D)X i) e get
d .
{No, F} = Z ng (NO)Ij =2mi Z (k, 291)Fk(])62m(k,6)‘
j=1 kezd

Recall that  is symmetric, so (k, 1) = (Qk, I). Expressing Q = D .ya Qk(l)eh”k’e),
we can rewrite equation (4.1) as a series of equations indexed by k:

Ox(I) = 47i (U, 1) Fr(I). 4.2)

If (k, QI) # 0, we can express Fy = Qx(I)/(4mi(QU, I)).
Since we have assumed existence of a formal solution of the homological equation (4.1)
(and, hence, a solution of (4.2) for each k), we have

(Qk, 1) =0= Or(I) =0.

Hence, for (Q2k, I) = 0, the equation is satisfied for any value of fk(l ). We define E at
these points by continuity. A way to do it is the following. Differentiate equation (4.2) in
the direction of Qk:

(Qk, VOR(D) = 4mi (|1 F (1) + (R, 1)(Qk, VE(I))),
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18 R. de la Llave and M. Saprykina

where, for a vector v € R?, we denote |v|? = Zd 1 v . For (Q%k, I) = 0, define Fk(I)
(Qk, V Q k(D)) /(4mi |k |2). Summing up, we have deﬁned a continuous function F; k(I ) by

(Qk, 7' Ox(D), (K, T) #0,
F () =

dri (Qk, VOr(I)), (Qk,I)=0

|S2k|?

Moreover, since I?k(l ) is analytic in D, \ {(£2k, I) = 0} and bounded in D, it is analytic
in D,. Notice that if in equation (4.2) @k(l ) is a homogeneous polynomial in /, then so is
fk ().

Now let us estimate the norm of the solution. Fix 0 < § < p/2, 0 < ¥ < o. For each
fixed k € Z?, we will estimate the corresponding Fr(I) in two steps: first © §/2-close’ to
the resonant plane (2k, I) and then in the rest of D,_5.

For the first step, let I15 = {(2k, I) =0} ND,_s be the part of the resonant plane
falling into D, _s. Notice that the orthogonal complement to this plane is formed by the
vectors e’ 9Qk, a0 > 0, ¢ € [0, 1). Let

A=11= a—Qk i
|2k |

a<8/2, ¢ €0, 1)}

be the complex disk of radius §/2 centered at zero and orthogonal to I1s. Note that the
restrictions of @k(l ) and 1"7\;{(1 ) to this disk are analytic. Consider the §/2-neighborhood
Os of Tls: Os = U[oel‘la (Iop + A). Then O5 C D,_s.

For each fixed I € Osg, there exists Iy € I1s such that I € Iy + A. We can estimate
|Fk(1 )| by the maximum modulus principle on the disk /o + A. Namely, for / lying on the
boundary of this disk, we have |(Qk, I)| = [(Qk, Ip) + (2, 5/ (2|2k]))| = |2k|5/2.
Hence, for such 7, we have

210k, _ 10kl
8|QU| 8|
As the second step in this estimate, consider I € D,_5 \ Os. Here [(Q2k, I)| > |Q2k|5/2, so

|I?k(l )| satisfies the same estimate as above.
By Cauchy estimates, we have

|Fi(D)| < s

Y —|k
10klp < 1Qlpoe ko,

Since det 2 # 0, there exists a constant c(£2) such that |2k| > |k|/c(S2) for all k. Then

Padld

F Q .

| k|p § =< 5|Qk||Qk|p <c( ) 51k| |Q|p,a
Finally, for small § and y, we have
3 - c() e~V Ikl
|F|p—8,o—y < Z e y)‘k‘|Fk|p—8 = T Z K| [Olp,o
keZd\{0} kez4\{0}
c(d Q)
Q.0
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Convergence of the Birkhoff normal form 19

where c(d, 2) is a constant only depending on d and 2. The estimates above are very
wasteful, but they are enough for our purposes. O

5. Proof of Proposition 2.2

Here we summarize the preparatory work to complete the proof of Proposition 2.2. Let us
return to the original problem. For a fixed n, let the necessary constants be as in §2.1.2,
|E;,|pn <éy,andlet g2;(I) = j b; (N()(I))j_1 as in (3.8).

— Yp>
5.1, Estimate of |{No, Fu}lp,.p, and |Cylp,.p,- Forj=1,...,m, — 1, denote
P = |N[m”+j]|p0 + |R[mn+j]|pn-
By the choice of pg, see §2.1.2, forall j =1,...,m, — 1, we have

lgj(Dlpy <477, |NImH 0 < 8E.

Since, for j = 1,...,m, — 1, we have |R[’”"+j]|pn < |R7,|p,, < &, for these values of j,
we get
P; < 252.
Let S; be defined by (3.12). By Lemma 3.4, for j =1,...,m — 1, we have §; < 2e.
Equations (3.10) imply that for j =1, ..., m — 1, we have
{No, Fy" Y, 00 < 8 < 26 = 455, 5.1)
By linearity,

m,—1
n 71 p—
(N0, EuYlpypy < O N0y EX™" 7 o) < 4my 86 < 48571
j=1
The latter estimate follows from the definition of m, and §,; see §2.1.2.
Moreover, by (3.11),

k=1 j=k+ k=1 j=k+
1 m—2
=3 4=kthg < e =6
k=1

Hence,

ICnlp, <38 (5.2)

5.2. Estimates for F,,. Consider equation (5.1). Lemma 4.1 with p =0 = p,, § = y =
8y, and |Q|p,o < 44, implies that

[m+j—1] —d—1
|F;1 |)0n*8n,)0n*8n = 4C(d’ Q)Sll; :
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20 R. de la Llave and M. Saprykina

. [my mp+j—1] _
Since F, = F;"""" ™71 where m, < §,!, we get

my—1
[m+j—1] k—d—1 k—d—3 3
|F"|pn_5n,pn_5n = Z |Fn |pn_8n,/~7n_8n = mpy 4C(d, Q)Sl‘l = 811 = 6}’!'
j=1
(5.3)

The latter estimate follows from the definition of «; see §2.1.2.
5.3. Estimates for ®,. Here we prove that with F;, as above, estimates (2.10) and (2.11)

hold true. Indeed, the coordinate change ®, = X },” is the time-one map of the flow X }”
defined by the equations

[ =09F,(1,0), 6=—0;F,,0).
By (5.3) and Cauchy estimates, we get
101 Filp,—28,.00—50 < Ss 100 Fnl o —5,.0,~25, < 83- (5.4)
Then, for any ¢t < 1,
X% (1,0) — (I, 0)|p,—38,,00—38, < 1 8 1 Fulpy—28,.00—28, < 67
X Ay, =38, 038, > Ap,—28, 0,26, (5.5)

In particular, since @, = X Ian’ we get the desired formulas (2.10) and (2.11).

5.4. Estimate of the new remainder IT?;,\J:

LEMMA 5.1. For F, constructed above, the estimate (2.9) holds:
Rt 11y 350,00 38, < 485

Proof. By Lemma 3.2,

Rn+1 =A,+ B, +Cy,

where A,, By, and C,, are defined by (3.2) and (3.3).
Estimate of A,,: Using (5.5), we get

~ [>mpi1] ~
|R” " ° q)” |pn_35n,pn_38n = |Rn |pn_2)0nypn_25n = 85 N
Estimate of C,,: We showed in §5.1 that

K
|Cn |pn,pn = (Sn .

Estimate of By: By (5.4), 181 Fulp,—25,.pn—s, < 2 and |3g Fyp,—s, pu—2s, < 82. By
(2.9),

|Rn|pn,pn = |Rn|pn,)0n = 5:;

This implies, using Cauchy estimates, that

|{R”’ Fn} |Pn*28n,pn*28n = al’i
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Notice that, by formulas (3.1) and (3.3), we have {N,, F,} = R, + N, — N1 + C,,.
By (2.6),

mn
”+ j +1
[N, — Nn—1|po,po = Z N[m /] < mn5:§ =< 55
j=1

and therefore
|{Nn’ Fn}|,0n,,0” = |Rn|pny,0n + |Nn - anl |plhpn + |Cn|)0n’pn 5 38)’;‘

Combining the above estimates, we get
|{{Nn, Fn}’ F)1}|p,,728n,p,1728n = 8;;’
. r . .
Since, by (5.5), for any # < 1 we have X% : A, 35, 5,35, > Ap,—25,,9,—25,, We obtain

[{{Nn, Fu} + Ry, Fy}o X;“” | pn—=38,,0n— 38,
=< |{{Nna Fn} + Ry, Fn}|pn—28,l,p,,—28 = 285 O

Here we get the desired estimate for the remainder term. We have proved above that

—~— «
|Rn+1 |pn_35nspn_35n < 4811 .

[>mp 1

Recall that E;:] = I/QZL/l ]. By Lemma 5.2 proved below, this implies the desired

estimate

— ©
|R”+1 |Pn+1yﬂn+l < 6n+l ‘

This finishes the proof of Proposition 2.2 and hence Theorem 1.1 (as explained in the intro-
duction). |

LEMMA 5.2. Suppose that the constants k, b, §,, qn, pn are defined in §2.1.2, an analytic
function G(I, 0) satisfies G = G>"w+11 and

K
|G|Pn*38n,ﬂn*35n < 4811 .
Then
K
|G|;0,1+1,,0n+1 < 8n+1‘

Proof. By the definition of k in §2.1.2, we have g™ = ¢2""'+2 < g2 =2p =
27=2_ Also, recall that 8,1 = 2~15,,.
Since G starts with terms of degree m,+1 = 2+l 4 2 we have

2142 ok —Kk—=2 g5K K
|G|qn (pn_35n)sqn (911—35;1) < qn 48}1 5 2 4871 5 6ﬂ+l' D
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