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Abstract

‘When the planar circular restricted 3-body problem (RTBP) is periodically perturbed, families
of unstable periodic orbits break up into whiskered tori, with most tori persisting into the
perturbed system. In this study, we (1) develop a quasi-Newton method which simultaneously
solves for the tori and their center, stable, and unstable directions; (2) implement continuation
by both perturbation and rotation numbers; (3) compute Fourier-Taylor parameterizations of
the stable and unstable manifolds; (4) regularize the equations of motion; and (5) globalize
these manifolds. Our methodology improves on efficiency and accuracy compared to prior
studies and applies to a variety of periodic perturbations. We demonstrate the tools near
resonances in the planar elliptic RTBP.

Keywords Whiskered tori - Invariant manifolds - Parameterization method - Three-body
problem - Resonance

1 Introduction

Numerous studies have been carried out in recent years where quasi-periodic orbits of various
restricted 3 or 4-body models have been computed and used for applications to space mission
design. For instance, Farrés etal. (2017) studied periodic and quasi-periodic orbits in the phase
space of the Augmented Hill 3-Body problem near the L and L, libration points. Olikara
(2016) applied collocation methods to the computation of invariant tori near L; and L, in
both spatial circular restricted 3-body problem (CRTBP) and periodically perturbed planar
CRTBP models. And looking further in the past, the book series of Gomez et al. (2001)
presented many other computational methods and applications for quasi-periodic orbits near
libration points. However, all of these studies, as well as almost all other prior research,
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use methods of computing tori which require solving large-dimensional linear systems of
equations at each step of the differential correction. Furthermore, while the quasi-periodic
orbits are computed successfully using those methods, stability information including stable
and unstable directions must be computed separately. Also, in most prior work, these linear
stable/unstable directions are directly used as approximate local stable/unstable manifolds
for the tori, neglecting higher-order terms and thus losing accuracy.

Another characteristic of the vast majority of prior research, including the previously
mentioned studies, is that the analysis focuses on tori associated with the libration points,
such as Lissajous or quasi-halo orbits. Bosanac (2018) did compute invariant tori near stable
resonant periodic orbits in the planar circular restricted 3-body problem (PCRTBP), but the
tori computed are stable, without stable or unstable manifolds. Unstable resonant periodic
orbits and their stable and unstable manifolds are known to be important mechanisms of
dynamical transport in the interior and exterior realms of the CRTBP (Koon et al. 2011), and
these orbits have seen significant interest and use as a tool for trajectory design in multi-body
systems. For example, out of the nine Titan-to-Titan encounters made by Cassini between July
2013 and June 2014, eight of the nine resulting transfers involved resonances (Vaquero et al.
2014). More recently, the baseline mission design for the Europa Lander mission concept
made profitable use of these mechanisms for the final approach to the surface of Europa
(Anderson et al. 2019). For further examples and more background on resonant orbits, see
Anderson et al. (2016).

In this study, we develop efficient algorithms which enable simultaneous computation of
not only unstable invariant tori, but also of their center, stable, and unstable directions (also
known as bundles) in periodically perturbed PCRTBP models. Solving for bundles alongside
the tori actually allows us to avoid solving large linear systems, thus improving the algorithmic
efficiency of our method compared to tori-only methods used in previous investigations. We
apply our tools to the computation of unstable tori and bundles near PCRTBP resonances,
using the Jupiter-Europa planar elliptic RTBP as the dynamical model for demonstration
and a solution tolerance of 10~7. Next, we use the results of the preceding step to start a
recursive parameterization method (Cabré et al. 2005; Huguet et al. 2012; Haro et al. 2016)
for the computation of high-order Fourier—Taylor approximations of the stable and unstable
manifolds of the tori. We demonstrate improvements in manifold accuracy as compared
with the linear manifold approximations used in other studies; these parameterizations can
also be differentiated, which is useful for computing intersections of manifolds. Finally, we
develop a Levi-Civita regularization for the equations of motion, which is used to globalize
the parameterized manifolds even when they pass through singularities of the equations of
motion.

We have included several proofs throughout this paper to justify our methods and motivate
possible adaptations; these may be skipped without detriment by readers primarily interested
in details of the algorithm implementation.

2 Models and background
2.1 Planar circular restricted 3-body problem
In this study, we consider periodic perturbations of the PCRTBP. The PCRTBP describes the

motion of an infinitesimally small particle (thought of as a spacecraft) under the gravitational
influence of two large bodies of masses m| and m,, collectively referred to as the primaries.
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In this model, m and m, revolve about their barycenter in a circular Keplerian orbit. Units
are also normalized so that the distance between the two primaries becomes 1, their period of
revolution becomes 27, and G(m| +m3) becomes 1. We define a mass ratio u = I"_Enz and
use a synodic, rotating non-inertial Cartesian coordinate system centered at the primaries’
barycenter such thatm and m, are always on the x-axis. In the planar CRTBP, we also assume
that the spacecraft moves in the same plane as the primaries. In this case, the equations of

motion are Hamiltonian with form (Celletti 2010)

. O0Hy ., 0Hp . 0Hy . 0H 0
X = = — = - = —_-—
APy Y opy bx ax Py ay
2 2
Py + Dy l—pn
Ho(x.y. px. py) = % + pxy — PyX — -, 2)
r n

where r; = /(x + )2+ y? is the distance from the spacecraft to m; and r, =
V(x — 1+ )2 + y2 is the distance to m5.

There are two important properties of Egs. (1)—(2) to note. First of all, the Hamiltonian
in Eq. (2) is autonomous and is hence an integral of motion. Hence, trajectories in the
PCRTBP are restricted to 3-dimensional energy submanifolds of the state space satisfying
H(x,y, px, py) = constant. The second property is that the equations of motion have a
time-reversal symmetry. Namely, if (x(¢), y(¢), t) is a solution of Egs. (1)—~(2) for t > 0, then
(x(—t), —y(—t), t) is a solution for r < 0.

2.2 Periodic perturbations of the PCRTBP

The PCRTBP model exhibits many of the important dynamical phenomena present in multi-
body celestial systems. However, there are many effects which are not included in the
PCRTBP; many of these other influences on the spacecraft motion act in an approximately
time-periodic manner, while preserving the Hamiltonian nature of the system. Here we will
study dynamical models where one such periodic forcing effect is considered in addition to the
PCRTBP. The equations of motion in this case are given by Eq. (3) along with time-periodic
Hamiltonian (4)

. O0H, . O0H, . 0H, 0H, .

i=—" y=—" pi=——> py=——— 6,=9, 3)
opx opy 0x ay

He(x,y, px, Py, 0p) = Ho(x, y, px, py) + Hi(X, Y, px, Py, Op; €), “)

where 6, € T is an angle, Hy is the PCRTBP Hamiltonian given by Eq. (2), H) is the
perturbation by the time-periodic effect and satisfies H| (x, y, px, py,6,:0) =0,and e > 0
and £2,, are the perturbation parameter and perturbation frequency, respectively. ¢ signifies
the strength of the perturbation, ¢ = 0 being the unperturbed PCRTBP, and £2), is a known
constant frequency. The perturbation from H; is 271 /$2), periodic, with 6, being the phase
of the perturbation. Note that the Hamiltonian function will no longer be constant along
trajectories.

There are many different Hamiltonian periodically perturbed PCRTBP models of interest
for applications. A common perturbation added to the PCRTBP is that of a third large body
revolving in a circle (or approximate circle) around mi; or m. Examples of these restricted 4-
body models include the bicircular problem (Simd et al. 1995), the coherent quasi-bicircular
problem (Andreu 1998), and the Hill restricted 4-body problem (Scheeres 1998). Another
common periodically perturbed PCRTBP model is the planar elliptic RTBP (PERTBP).
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2.3 Planar elliptic restricted 3-body problem

The tools we develop in this paper are applicable to a wide variety of Hamiltonian periodic
perturbations as discussed in the previous section. However, in this study, we use the PERTBP
for numerical demonstration of their usage. The PERTBP has the same assumptions as the
PCRTBP, except that one allows m; and m» to move around their barycenter in an elliptical
Keplerian orbit of eccentricity ¢ > 0. The length unit is normalized such that the semi-major
axis of the m-my orbit is 1. As the period of the primaries’ orbit is 2;r, we have that the
perturbation frequency §2, = 1, so we can consider 6, = t modulo 2.

The PERTBP model we use is essentially the same as that used by Hiday-Johnston and
Howell (1994), except for a transformation from position—velocity to position—-momentum
coordinates and a restriction to the xy-plane. The coordinate system is again such that m
and m, are always on the x-axis with the origin at their barycenter. However, the distance
between them is now time periodic, with periapse at t = 0; this is different from the pulsating
coordinates used by Szebehely (1967). The equations of motion are Eq. (3) with time-periodic
Hamiltonian

2 2
Dy + Py l—p
He(x,y, px, py, 1) = % +n(t)(pxy — pyx) — -, (5)
ri r
V1—g?

where we have n(t) = =\ 5mpe 11 = Vx4 pn(l—ecos E(r)))>+ y2 and r; =

V& — (1 — u)(1 —ecos E(r)))* + y2. E(t) is the 27 -periodic eccentric anomaly of the
elliptical m-my orbit and can be computed by solving the standard Kepler’s equation
M = E — esin E (Bate et al. 1971). n(t) is the time derivative of the m-m, true anomaly.
From Egs. (3) and (5), we have p, =X —n(t)y and py = y +n(t)x.

2.4 Resonant periodic orbits

Mean motion resonances are PCRTBP periodic orbits which, by definition, persist from
elliptical orbits of the Kepler problem and hence are not in the center manifold of any of
the libration points. Their main characteristic is that their orbital periods are nearly rational
multiples of 27, the period of m-m, motion (the periods become exact rational multiples
of 27t as u© — 0). A family of resonant periodic orbits is characterized by a ratio m : n,
m,n € Z7T. This notation means that in an inertial reference frame, the spacecraft makes
approximately m revolutions about m in the time that m| and m revolve n times around
their barycenter.

For a given resonance m : n in the PCRTBP with i > 0, there typically exist one stable
and one unstable resonant periodic orbit inside the submanifold Hy(x, y, px, py) = E, for
each fixed value of E in some interval of energy values [ Enin, Emax] (Kumar et al. 2021a).
This gives us continuous families of stable and unstable resonant periodic orbits; the periods
of the orbits within a given family vary with E. The unstable resonant periodic orbits have
monodromy (Floquet) matrix eigenvalues 1, 1, A, and A, = A;l, where |A;| < 1. Thus, there
are 2D stable and unstable manifolds attached to the unstable resonant periodic orbits. These
manifolds serve as low-energy pathways to and from these periodic orbits. Furthermore, the
manifolds of different resonances at the same energy level can intersect in the PCRTBP,
giving heteroclinic connections which allow for propellant-free resonance transitions. For
more details see Kumar et al. (2021a).
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3 Normally hyperbolic invariant manifolds and existence of tori

As discussed in Sect. 2.4, for each value of E in some interval of energy values [ Epin, Emax],
there exists one unstable m : n resonant periodic orbit in the PCRTBP. Each of these periodic
orbits is diffeomorphic to a circle T. Now, consider the union of all the unstable m : n resonant
periodic orbits for all values of E € [Enin, Emax]. The resulting set is a 2D manifold =
diffeomorphic to T x [0, 1] in the 4D PCRTBP phase space. Furthermore, at each point of
&, there are stable and unstable directions transverse to the manifold, which come from the
stable and unstable eigenvectors of the periodic orbits which make up this manifold. Since
the phase space is 4D and Z is 2D, at any point of =, the stable and unstable directions
together with the 2D manifold tangent space span the entire phase space. This means that
Z is a normally hyperbolic invariant manifold (NHIM) of the PCRTBP flow; in fact, any
family of unstable PCRTBP periodic orbits forms such a NHIM. For a rigorous definition of
NHIMs for flows, see Fenichel (1971).

NHIMs are important because they persist under sufficiently small perturbations of the
equations of motion (Fenichel 1971); as our numerical results later in this paper will demon-
strate, the perturbations we study are indeed “sufficiently small." However, to apply this
NHIM persistence result to our case of time-periodic perturbations, the original and per-
turbed systems must be defined on the same phase space. Hence, we take the PCRTBP from
its original 4D phase space (x, y, px, py) to the 5D extended phase space (x, y, px, py, 0p),
0, € T. We define é,, = §2,, for the unperturbed PCRTBP in extended phase space, while
X, Y, px,» and py still follow Eqs. (1) and (2). Hence, periodic orbits of period T from the
original 4D PCRTBP phase space become 2D quasi-periodic orbits in the PCRTBP defined
on the extended phase space, with one of the frequencies being £2; = 27/T; and the other
being €2, unless £21/£2), is rational. The NHIM Z' from the original phase space becomes
the NHIM & = & x T in the extended phase space due to the extra angle. Hence, & is
diffeomorphic to T2 x [0, 1].

Now, since the PCRTBP and its NHIM have been transferred to the same extended phase
space as the periodically perturbed models, we can conclude that for ¢ > 0 sufficiently small,
= will persist as a NHIM Z, of the perturbed equations of motion (3) and (4). =, will be
diffeomorphic to Z and hence also to T2 x [0, 1]. Furthermore, note that = in the extended
phase space PCRTBP is foliated by 2D invariant tori, since = was foliated by periodic orbits.
From KAM theory (Capifiski et al. 2016), we can expect that inside =, the invariant tori from
Z with sufficiently non-resonant frequencies 21 and £2 p will also persist after perturbation
with only small gaps between them. Hence, we will focus this study on these 2D tori in the
periodically perturbed PCRTBP models.

3.1 Stroboscopic maps, NHIMs, and invariant circles

Any 2D invariant torus in the periodically perturbed PCRTBP extended phase space can be
parameterized as the image of a function of two angles K> : T? — R* x T. A quasi-periodic
trajectory x(¢) lying on this torus can be expressed as

X(t):K2(9,0p) 0:90+~Qlt7 9p:9p,0+9pt, (6)

where 6y and 6, ¢ are determined from the initial conditionx(0), and £21 = 27 /Ty, where T} is
the period of the PCRTBP periodic orbit associated with the torus. 6, is the same perturbation
phase angle defined in Sect. 2.2, so one of the two torus frequencies will be £2,,. We can then
define the stroboscopic map F, : R* x T — R* x T as the time-27/ 2 » mapping of extended
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phase space points by the equations of motion (3) and (4) with perturbation parameter ¢. We
find that

Fe(K>7(6,0p)) = K2(0 +w,0)), where o =2m$21/$2), (7)

since the angle 6, advances by 27 in the time 27/§2), and is therefore invariant under
F;. Hence, we can fix 6, (for our PERTBP test case we choose 6, = 0) and then define
K (0) = K2(0, 6p). Then, Eq. (7) becomes

F:(K(@#)) = K0 + w). ®)

By ignoring the last fixed 6,, component of the extended phase space and a slight abuse of
notation, we can consider F; : R* > R*and K : T — R*.

Equation (8) implies that K parameterizes an invariant 1D torus of the map F. It is
significantly more computationally efficient to compute 1D invariant tori (invariant circles)
K of the map F; in 4D phase space than 2D tori K, of the flow in the 5D extended phase
space. The reason for this is that the reduction in the dimension of the torus helps mitigate the
curse of dimensionality (see remark 1). Hence, from this point onwards, we will consider the
map F; and its invariant circles and manifolds, rather than invariant objects of the continuous
time flow. Similar approaches are also used by Zhang and de la Llave (2018) and Haro and
Mondelo (2021). Note that the computation of F is just the integration of an ODE.

As a final note, the stroboscopic map allows us to use the theory of NHIMs of maps
(Fenichel 1971; Hirsch et al. 1977) to understand the presence of invariant circles in peri-
odically perturbed PCRTBP models. In particular, note that unstable periodic orbits of the
unperturbed PCRTBP are also unstable invariant circles of the map F—o. Hence, the PCRTBP
flow NHIM Z defined at the beginning of Sect. 3 is also a NHIM of the map Fy—. Just as
in the case of flows, the theory shows that NHIMs of maps persist under sufficiently small
perturbations of the map. Hence, for sufficiently small ¢ > 0, & will persist as a NHIM &,
of F,, with &, diffeomorphic to Z and hence also to T x [0, 1]. Furthermore, since Z is
foliated by invariant circles whose rotation numbers satisfy a twist condition, KAM theory
(Capinski et al. 2016) tells us that that the invariant circles with sufficiently irrational rotation
number w persist inside = for ¢ > 0.

Remark 1 The evaluation of F, can be computationally expensive. Hence, one may wonder
if the dimension reduction actually helps the computation efficiency or not. However, the
problems of propagating in time and computing the tori are numerically very different;
while numerical integration remains very feasible for all the values of &, tori can break
down for larger values of the parameter. Hence, the flow torus parameterization K, has very
anisotropic regularity and behavior. It remains extremely smooth in the flow direction, but
in the transversal direction, it may lose differentiability. Using algorithms that recognize this
effect is advantageous.

Also, the problem of integrating ODE’s has been extensively studied over many years
and there are many efficient algorithms that can be tried, including adaptive algorithms that
use smaller step sizes on small spots where the equation is stiff. However, computing the
2D torus parameterization K, requires a uniform grid discretizing T2, which would result
in unnecessarily large numbers of discretization points throughout the trajectory. For our
algorithm, the operation count is close to linear in the number of grid points, so the cost
of adding one more dimension would be significant. Finally, also note that numerically
integrating a grid of points is very readily parallelizable by assigning each trajectory to a
thread.
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4 A parameterization method for computing invariant tori and bundles

In this section, we develop and implement a parameterization method for the simultaneous
computation of unstable invariant tori as well as their center, stable, and unstable directions,
also known as bundles, for stroboscopic maps of periodically perturbed PCRTBP models. The
method works both for tori with cylindrical stable/unstable bundles as well as for those whose
bundles are Mobius strips (see Sect. 4.9). We present the analytical details and derivation
of the method, as well as the considerations required for its discretization and numerical
implementation in a computer program. Our method is broadly inspired by those of Haro
et al. (2016), except for the additional presence of a center bundle which is not considered
by them and requires extra calculations. A different but conceptually related method can also
be found in the work of Fontich et al. (2009).

4.1 The parameterization method for invariant manifolds

The parameterization method is a general technique for the computation of many kinds of
invariant objects in dynamical systems, including tori and stable and unstable manifolds.
Haro et al. (2016) describe several applications. The idea is that given a map F : RY — RY,
if we know that there is an F-invariant object diffeomorphic to some model manifold M,
then we can solve for a function W : M — R and a diffeomorphism f : M — M such
that the invariance equation

F(W(s)) = W(f(s) 9

holds for all s € M. W is referred to as the parameterization of the invariant manifold and
[ as the internal dynamics on M. Equation (9) means that F maps the image W (M) into
itself, so that W (M) is the invariant object in the full space R,

4.2 Equations for parameterization method for invariant tori and bundles

For notational convenience, denote the stroboscopic map F, from Sect. 3.1 as F from now
on. Assume we are computing an ¢ > 0 invariant circle corresponding to a PCRTBP periodic
orbit of known period 77; this fixes the rotation number @ = 27 §2 /52, since £2| = 2n/T.
As given in Eq. (8), we wish to find a parameterization K : T — R* of the F-invariant circle
satisfying the torus invariance equation

F(K®)) =K(6 +w). (10)

Equation (10) is equivalent to the framework of Sect. 4.1 with M = T and f(s) = 5 + w.
In addition, for our quasi-Newton method, we will add another equation to be solved for
matrix-valued periodic functions P(0), A(9) : T — R*** such that

DF(K(#))P(0) = PO + »)A®0) (11)

Furthermore, we mandate that A(6) has the form

1 T® 0 0
0 1 0

A0 =5 o @) 0 (12)
0 0 ()
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for some functions 7 (6), A;(0), A,(0) : T — R to be solved for. The form of Eq. (12) is
motivated by geometric considerations that we detail in Sect. 4.3.

As will be explained at the end of Sect. 4.5, solving simultaneously for K, P, and A is
actually more efficient than solving for K alone; the quasi-Newton method we will present
for solving Eqs. (10)—(11) uses the near-diagonal form of A to decouple the linear system of
equations we get in each differential correction step. The method will require only algebraic
operations, phase shifts, and the solving of 1D equations for scalar-valued functions.

4.3 Understanding the P and A matrices

In addition to their numerical utility, P and A have a geometric significance which will be
useful when computing stable and unstable manifolds later on. Since K is contained in the
2D normally hyperbolic invariant manifold Z, defined at the end of Sect. 3.1, we know that
there are tangent, center, stable, and unstable directions to the torus at each point K (6). The
columns of P will be these four vector bundles, with A;(6) and 1, (6) set to the stable and
unstable multipliers for the corresponding bundles. To see why, consider Eq. (11) column by
column.

Let v;(0), v.(0), vs(0), and v, (0) denote the first, second, third, and fourth columns of
P(0), respectively. Then, Eqs. (11) and (12) are equivalent to

DFE(K(0)v:(0) = V(6 + ) (13)
DF(K(#)ve(#) = T(O)DK (6 + w) + Ve (6 + ) (14)
DF(K(©)Vvs(6) = A (0)Vs (0 + ) (15)
DF(K(0)Vu(0) = 2u(0)Vu (0 + w). (16)

First of all, note that Eqs. (15)—(16) are the definition of stable and unstable bundles v, (6) and
v, (0) and multipliers A;(@) and A, (0) for the torus K. Hence, the third and fourth columns
of P satisfy Eq. (11) if and only if they are torus stable and unstable bundles, respectively.
Also, differentiating Eq. (10) gives

DF(K(#))DK(®) = DK(6 + ), (17)

which shows that v;(6) = DK (0) solves Eq. (13). As a result, the first column of P can be
set as the torus tangent bundle DK (6); in fact, if Eq. (11) has a solution, it is easy to show
that column 1 of P must be « DK (6) for some « € R.

Finally, since F' is a Hamiltonian flow map and hence is symplectic, given K (6), v4(6),
and v, (0), we can find v.(0) solving Eq. (14) for some function 7 : T — R; we postpone
the description and proof of how to compute such a v.(0) to Sect. 4.9 where the method
will be used. Any such v.(#) is known as a symplectic conjugate to DK (f), and is a center
direction to the torus K (de la Llave et al. 2005). Hence, column 2 of P satisfies Eq. (11) if
and only if it is a symplectic conjugate center bundle. We should note that Eq. (11) is actually
underdetermined; symplectic conjugates are not unique, and we can change the scales of the
stable and unstable bundles at each 6; we will take advantage of this in Sect. 4.8 to make A
constant.
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4.4 Summary of steps for quasi Newton-method for tori and bundles

‘We will now develop our quasi-Newton method for solving Eqgs. (10) and (11). Before pre-
senting the details of the method, we give a brief overview. Assume we have an approximate
solution (K, P, A) for Egs. (10)—(11). Then, we will

1. Compute E(9) = F(K(0))— K (0 +w), Erea(8) = P~ (0 +w)DF(K(0))P(H)— A(0)
2. Solve =P~ (0 + w)E(0) = A(0)E() — £(0 +w) for & : T — R* using Egs. (23)—(26)
and set K(0) equal to K(0) + P(0)&(0) (details given in Sect. 4.5).

Set column 1 of P(6) to DK (0). Recompute D F (K (6)) and Ereq(0).

4. Solve —Erq(9) = AB)Q(O) — QO + w)A(B) — AA®) for Q : T — R¥* and
AA using Egs. (38)—(49). Set P(0) equal to P(0) + P(0)Q(0) and A(F) equal to
A(0) + AA(H) (details given in Sect. 4.6).

5. Return to step 1 and repeat correction until E and Ey.q are within tolerance.

bt

4.5 Quasi-Newton step for correcting K

We seek to solve Eqgs. (10) and (11) for K, P, and A. All the entries of A are fixed as 0 or 1
as shown in Eq. (12) except for 7(9), As;(0), and A, (0). We will now derive an iterative step
that, given an approximate solution (K, P, A) of Egs. (10) and (11), produces a much more
accurate one. Define the errors

E@©) = F(K(0)) — K6 + o) (18)
Erwed(®) = P10 + w)DF(K ()P () — A®H). (19)

‘We then need to find corrections AK, AP, and AA to cancel E and E.q. We start with AK;
write AK (0) = P(9)£(9). We will solve for & : T — R* satisfying

n0) L —P~10 + w)E®) = AO)EO) — £ + w). (20)

Claim For w sufficiently irrational and E and Eq sufficiently small, if & solves Eq. (20),
then adding AK = P& to K reduces the error E quadratically.

Remark 2 We use the phrase “sufficiently irrational" when describing conditions on w that
ensure the validity of our quasi-Newton method. For those aware of KAM theory, what we
mean by this is that @ is Diophantine, as most numbers are (De la Llave 2001). This condition
is useful due to the classic small-divisors problem when solving cohomological equations
(see Eq. (30)).

Proof Substitute K (0) + AK () into the RHS of Eq. (18). Assuming that AK is small
enough (true for E sufficiently small and w sufficiently irrational), we can expand Eq. (18)
in Taylor series to get
Enew(0) = F(K(0) + AK(0)) — [K(0 + @) + AK(6 + w)]
= F(K(0)) + DF(K(0))AK (8) + O(AK (6)*) — [K (0 + w) + AK (0 + w)]

— E(0) + DF(K(0))AK(0) — AK (6 + w) + O(AK ()%
2D
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AK = P&, and Eq. (19) implies DF (K (0))P(0) = P(6 + w) [A(0) 4+ Ereq(6)]. Thus,
Enew(8) = E(®) + DF(K(0))P(0)£(6) — P (8 + w)E(0 + ) + OE©)?)
= E@0)+ PO + o) [AO)E®) + Era(®)E®O) — EO + )]+ OE®))  (22)
= P(0 + 0)Era(0)E(9) + O(E(0)?).

where the last line follows from Eq. (20). For w sufficiently irrational, § will be similar in
magnitude to E, so Erq(0)&(0) will be quadratically small, comparable to Eq(6)E ().
Hence, as long as E (and hence & and AK) are small enough that the Taylor expansion in
Eq. (21) is valid, and the O(& 2 terms of the Taylor expansion are small, the new error Epey,
will be quadratically smaller than E. O

To solve Eq. 20), let £(0) = [&1 & & &] andn@® =[m m s na] . As
A is nearly diagonal, we can write Eq. (20) component-wise as

n©) — T(0)50) = £1(0) — 510 + ) (23)
m2(0) = §(0) — §2(6 + ) (24)
n3(0) = As(0)83(6) — §3(0 + w) (25)
14(60) = 2 (0)§4(0) — §4(6 + w). (26)

4.5.1 Fixed-point iteration: solving for ¢3 and &4

To solve for &3 and &4, rewrite Eqs. (25) and (26) in the form

£3(0) = 1,0 — )& (0 — w) — 13(0 — ) E [AE)]O) @7
£4(0) = 1, (0) [14(0) + &40 + )] £ [B(E4)1(6) (28)
We define A as a map from functions to functions, which sends any f(0) : T — R to the
new function [A(f)](0) = A;(0 —w) f (0 —w) — n3(60 — w); B is defined similarly using Eq.
(28). To find &3 and &4, let &3 0 = &4,0 = O and iterate &3 41 = A(§3,,) and &4 41 = B(£4.0)

repeatedly, starting at n = 0. The iterations will converge to the desired solutions &3 and &4
of Egs. (27) and (28). We now explain why.

Lemma1 A, B are contraction maps; hence, the iterations &3 ,11 = A(& ), E4nt1 =
B(&4.) uniformly converge exponentially fast as n — oo to the solutions &3 and &,.

Proof Note that [A;(6)] < 1 and |A,j1(c9)| < 1forall® € T.Let fi, f» : T — R be two
continuous functions, and define C = maxget |As(0)] < 1. We have that

max ITACSDIE) = TAUDNOI
= max 1250 — @) f1(6 — w) — A5 (0 — w) f2(6 — W) (29)
= Cmax || fi(0 —w) — /20 — )|l = Cmax || f1(6) — f2(O)Il.
0eT 0eT

As C < 1, A is a contraction map under the uniform norm; the same can be shown for B very
similarly. The contraction mapping theorem (Chicone 2006) tells us that every such map has
a unique fixed point; furthermore, the fixed point can be found by iterating any value in the
domain of the map forwards until convergence. The solutions of Egs. (27) and (28) are by

definition the fixed points of contraction maps A and B. Hence, the iterations converge to &3
and &4. O
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Remark 3 If A and A, are constant, Fourier methods (see Sect. 4.5.2) can also be used to
solve Eqs. (25)—(26). This is useful if A;, A, & 1. When using the quasi-Newton method for
continuation, one can ensure constant Ay, A, throughout the correction by applying the pro-
cedure of Sect. 4.8 to the solution K, P, A used for continuation initialization, and following
the instructions in Remark 5 when correcting P, A during each quasi-Newton step. We did
not ensure constant Ay, A, in our algorithm implementation and used fixed-point iteration
instead.

4.5.2 Cohomological equations: solving for &7 and &,

We next solve Eq. (24) for &, which is then used in the LHS of Eq. (23) to solve for &;. In
both cases, we must solve cohomological equations of form

b®) =a®) —a® + w), (30)

where b is known and a is not. This can easily be solved by Fourier series; let a (k) and I;(k)
be the kth Fourier coefficients of @ and b. Then, Eq. (30) becomes

Z}S(k)efk@ = Z&(k)ejke - Z&(k)d"“’“‘” = Z&(k)(l — elke) k0 (31)

keZ keZ keZ keZ

where j = /—1. Then, setting a(k) = l;(k)(l — e/%)~1 allows us to compute a(0) except
for a(0); the formal series for a thus defined will converge on T for w sufficiently irrational
(Rissmann 1975). Observe that a necessary condition for the existence of a solution is
13(0) = 0; in the k = 0 case, a(0) cancels out on the right hand side of Eq. (30) and can hence
take any value, making the solution a non-unique. a(0) and 13(0) are simply the averages of
aandbonT.
We first solve Eq. (24) for “;‘2 (k), k # 0, using the Fourier series method To set 52 0),

first find the average o of n; — T x [y — 52(0)] Then, choose &2 0)=«a/ T(O) this makes
the LHS of Eq. (23) have zero average when solving for &, since

2 2w R R 2
|-t = [Tn-1[a-80]do-bo [ Tas
0 0 0

=a—E(0)T©0) =0.

(32)

With &; fully solved, we then solve Eq. (23) for é 1(k), k # 0 and arbitrarily choose é 1(0) =0.
Finally, with all four components of & solved, we set K(0) equal to K(0) + P(6)&(H),
concluding the K correction part of the quasi-Newton step.

In practice, when solving Eq. (24) for &, we find that the average of 1,(6), the left-hand
side of Eq. (24), is not exactly zero; we ignore this nonzero average and solve for the éz (k)
anyways as described earlier. 72(0) decreases to zero with each quasi-Newton step as the
method converges, so we are able to solve Eq. (24) more and more exactly; this is a result
of the vanishing lemma of Fontich et al. (2009), which is applicable since F is an exact
symplectic map due to being the fixed-time map of a Hamiltonian system on R* (Golé 2001).
Also, for those familiar with the parameterization method for invariant tori, note that the
choice of é 1(0) = 0 takes care of the translation non-uniqueness of solutions of Eq. (10)
without requiring extra constraint equations.

Remark 4 There are methods of numerically solving for AK without using P or A, including
single-shooting (Farrés et al. 2017) and collocation (Olikara 2016). These methods effectively
discretize 6 on a grid of N points and solve a linearized version of Eq. (21) directly for AK at
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those 6 values. This requires solving at least a4 N dimensional linear system at each correction
step. Gaussian elimination applied to this will hence have a computational complexity of
O(N?) and require O(N?) storage. However, by using P and the nearly diagonal A, we
decouple the equations and avoid this large dimensional system. The complexity of our
quasi-Newton method is O (N log N) (as some steps use FFT), with O (N) required storage.
Furthermore, our method gives not just K, but also the bundle and Floquet matrices P and A.
The most expensive step in our method is the computation (using numerical integration) of F
and DF on the grid of N different values of 6, which is easy to parallelize on the computer.

4.6 Quasi-Newton step for correcting P and A

Using the newly computed K (@), we set the first column of P(0) to DK (), and then
recompute DF (K (0)) and Ei.q(0) using Eq. (19). Finding AP(#) and AA(O) to cancel
E¢q then follows similar methodology as AK. Let AP(0) = P(0)Q(0); we will solve for
Q and AA : T — R¥* satisfying

— Ered(0) = A(0)Q(0) — Q6 + @) A(6) — AA(D). (33)

Claim For w sufficiently irrational and Eyeq sufficiently small, if Q and A A solve Eq. (33),
then adding AP = PQ to P and AA to A reduces Eq quadratically.

Proof Substitute P + P Q and A + A A into Eq. (11) to define

£(0) = DF(K(0))[P(©) + P(0)Q(0)]

34
—[PO+ )+ PO+ 00O +w)[AB) + AA®)]. 4)

Using Erea(8) = P~1(6 + w)DF (K (8))P(8) — A(0), we then find that

PO+ ) ') = Erea(®) + PO + ) 'DF(K(6))P(6)0(0)
— Q00 +w)[AO)+ AABO)] — AA6)
= Ered(8) + [A0) + Erea(9)10(6) 35)
— 00+ w)[A@)+ AA0O)] — AAD)
= Erea(0)Q(0) — Q(0 + w) AA®),

where the last line follows due to Eq. (33). Evaluating Eq. (19) with P + PQ and A + AA
in place of P and A and denoting the result as Eyeq new, We have

Eredonew(8) = [P(6 + @) + P(6 + 0) Q6 + )]~ £(6)
=+ Q00 +w] 'PO+w)'E0) (36)
=1+ Q0 + o) [Era(®)Q0) — Q6 + ) AA®)].

Now, for w sufficiently irrational, Q and A A will be similar in magnitude to Erq. Hence, if
Eeq is small, then Ereq new Will be quadratically smaller like Erzed. O
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Since A is nearly diagonal, the equations for different entries of Q and AA following
from Eq. (33) are almost completely decoupled from each other. Write

[Err(0) Erc®) Ers®) Ery®)
Era(8) = EcL(0) Ecc(®) Ecs®) Ecu(®)
e Esp(0) Esc(®) Ess() Esy(©®)

| Eur(0) Eyc®) Eys®) Eyy(0)

[0 Qrc) Qrs®) QLU(G)—|

10 Qcc®) Qcs®) Qcu®)

QO=10 05c®) 0ss0) Osv®) 6D

10 Quc®) Qus®) Quu®)

[0 AT(®6) 0 0

0 0 0 0
44O =145 AXs (6) 0

0 0 0 Axn(0)

As the first column of P (0) is fixed to be DK (0), we fix the first column of Q(6) to be zero
so that the first column of AP is zero as well. We can then write columns 2-4 of Eq. (33)
entry by entry to get 12 scalar equations

—ELc®) —T(@)0Qcc®) = QLc(®) — QLc (@ + w) — AT(0) (38)
—Ers(®) —T()Qcs(®) = QrsO) — As(0)QLs (0 + ) (39)
—ELy@)—T©O)Qcu®) = QLu©) — 2u(0)QLu (0 + w) (40)
—Ecc(®) = Qcc(0) — Qcc (@ + w) (41)

—Ecs(0) = Qcs(0) —2s(0)Qcs(0 + w) (42)

—Ecy®) = Qcu (@) — 1,(0)Qcu(® + w) (43)

—Esc(0) = A5(0)Qsc(0) — Qsc (0 + w) (44)

—Es5(6) = A5(0) Q55(0) — A5(0) Q55(0 + @) — A (0) (45)

—Esu(®) = A:(0)Qsu (@) — 2 (0) Qsu (0 + ) (46)

—Eyc®) = 2, 0)Quc@) — Quc(® + w) 47

—Eys(®) = 1,(0)Qus(®) — A5(0) Qus(0 + ) (48)

—Eyy(0) = 2, (0)Quu ) — 2 (0) Quu (0 + w) — Ak, (0). (49)

First, we solve Egs. (42), (43), (44), (46), (47), and (48), followed by Egs. (39) and (40)
(after back substitution), using the exact same method that was used to solve Egs. (25) and
(26); rearrange each equation so that its solution is the fixed point of an appropriately defined
contraction map, which is then iterated to convergence. Such maps always multiply their
input by either A; or A, !, or both. Equation (41) is solved using the Fourier method of
Sect. 4.5.2; we arbitrarily choose QCC(O) = 0. We ignore the nonzero average of Ecc,
which goes to zero with each quasi-Newton step without affecting method convergence due
to F being symplectic (see Appendix A for the proof of this result). Finally, the solutions to
Eqgs. (38), (45), and (49) are non-unique; we choose Orc = Qss = Quu = 0, so that we
have AT(0) = Erc(0) + T(6)Qcc(9), Ars(¥) = Egs(6), and A, (0) = Eyy (0).

Once Q and AA are known, we set P(0) equal to P(0) + P(0)Q(0), A(F) equal to
A(0) + AA(O) and then recompute E () and Ereq(0) using Egs. (18) and (19). Finally, we
go back to the quasi-Newton step for correcting the torus parameterization K (9) and repeat
the entire method until £ and E.q are within tolerance.
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Remark 5 If T, Ag, and A, are constant, we can choose the non-unique solutions of Egs. (38),
(45), and (49) such that they remain constant. In particular, choose AT, Ay, and AA,, as the
(constant) averages of Er ¢, Ess and Eyy, respectively, and solve for Qrc, QOss, and Quu
using Fourier methods. Our experience was that this choice of solution negatively affected
the numerical stability of our method, however; thus, we did not keep 7', Ay, and A, constant
in our implementation.

4.7 A remark on convergence

The focus of this paper is to specify the algorithms, provide details of implementation, and
give practical results of the implementation in physical problems. Nevertheless, we wish to
mention that there are results which rigorously prove that our algorithm converges when
given initial K, P, A with small enough error (depending on some condition numbers). Due
to the practical focus of this paper, we will not go into detail, but we want to give a flavor of
the argument. For readers interested primarily in applications, this section can be skipped.

The convergence is due to the so-called Kolmogorov—Arnold—Moser (KAM) theory, which
is a very far reaching generalization of the Newton method. In particular, we take advantage of
the recent developments in a-posteriori versions of KAM theory (Fontich et al. 2009), which
does not require an integrable system, only approximate solutions of functional equations.
We present some salient features. For any analytic function of an angle u : T — C”", define
lullp = sup;m < o |u(z)|. It is possible to show (Riissmann 1975) that the solutions of (30)
satisfy |lall ,—5 < C16~7||b|l, for some C, T > 0. That is, if the right-hand side is analytic
in a certain complex domain, the solution is analytic in a slightly smaller complex domain,
and we have estimates of the size in terms of the domain lost; note that both domains contain
all real angles from O to 2, which is what we are actually interested in. The well-known
Cauchy estimates (Ahlfors 1979) for derivatives of a function in a slightly smaller domain
have the same form.

The formal procedure we have given indeed reduces E and Ereq, to something quadrat-
ically smaller, but, performing the estimates with care, only in a slightly smaller complex
domain. Denoting the invariance error and the reducibility errors after one quasi-Newton step
by Enew and Ered new, We have that

0 2
Il Enewllp—s + Il Exed.newll p—5 < C28 "2 (I Ellp + Il Eveall ) (50)

for some C; > 0. There are standard arguments in KAM theory (“hard implicit function
theorems”, see De la Llave (2001)) which show that, given an algorithm satisfying Eq. (50)
and a sufficiently small initial error, the algorithm step can be iterated infinitely many times
to convergence in a domain slightly smaller than the original. These estimates also show that
the final answer is close to the initial approximation of K, P, A if the initial error is small
enough.

4.8 Modifying P for constant A

Let K, P, and A be a solution to Egs. (10)—(11). For purposes of numerical stability as well
as stable/unstable manifold computation (see Sect. 5), it can be useful to modify columns
2,3, and 4 of P in such a way that A = P~'(8 + w)DF (K (#))P(0) becomes a constant
matrix of the form in Eq. (12), i.e., T (@), As(8), and A, (8) become constant. This can also
enable the usage of Fourier methods instead of fixed point iteration during the quasi-Newton
method (see Remarks 3 and 5).
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For columns 3 and 4 of P, the stable and unstable bundles v,(€) and v, ), Eespectively,
just a simple rescaling is needed to make A;(6) and A, (@) constant. Let A, A, € R and
ag, a, . T — R be the solutions to

log(A5(0)) — log(hs) = log(as(6 + w)) — log(ay(6)) (S1)
log(A4(0)) — log(A,) = log(ay (6 + w)) — log(a,(9)). (52)

We choose Ay = exp [ﬁ f02 " log(rs (8)) dé’] so the LHS of Eq. (51) has zero average. Letting

u(0) = log(as(0)), Eq. (51) becomes a cohomological equation of form Eq. (30) which can
be solved for u by the Fourier series method; we choose i2(0) = 0. This gives as(0) = " OF
We can solve Eq. (52) for a, (0) in the exact same manner. Finally, one can replace columns
3 and 4 of P by as(0)vs(9) and a, (8)v,(6) and replace A;(0) and 1, (f) in A by Xs and A,.
‘We prove that this works now.

Lemma 2 If vy (0) and v,(0) satisfy Egs. (15)—(16), and ay(0) and a, () satisfy Egs. (51)—
(52), then Vs,new(g) = a;(0)vs(0) and Vu,new 0) = a,(0)v,(0) satisfy
DF(K(0))Vs new(0) = )_\svs.new(g + ) (53)
DF(K(G))Vu,new ®) = )_\uvu,new(g + w). (54)

Proof We prove the result for Vs ,e.; the case of v, ;. can be proved in the exact same
manner. Since v, (@) satisfies Eq. (15), we have

DF(K(6))Vs.new(0) = DF(K(0))as(0)vs(0) = as(0)15(0)vs (0 + w)

_ _ (55)
= a3(0 + @)A Vs (0 + 0) = AV pew (0 + 0),

where a; (0)As (0) = a;(0 + w)A, follows from exponentiating Eq. (51). O

We can also modify the second column of P, the symplectic conjugate center direction
v.(0), to make T (0) constant. This is possible because as mentioned in Sect. 4.3, the sym-
plectic conjugate is not unique; given v.(6) satisfying Eq. (14), and any a : T — R, the
function v, () + a(9) DK (9) also solves Eq. (14) except with a change in 7 (8) (which was
anyways arbitrary). Hence, we choose a(6) which kills all variation of 7' (8) about its average
f"(O). The equation for this is:

—(T(©) = T(0)) =a(®) —al® + ), (56)

which can be solved using the Fourier series method given for Eq. (30). Then, one simply
adds a(9) DK (0) to column 2 of P and replaces 7 (6) with T (0) in A. Note that the LHS of
Eq. (56) has average zero, so a solution a(8) can be found.

Lemma3 If v.(0) and a(0) satisfy Egs. (14) and (56), respectively, then the function
Venew(0) = Ve (0) +a(@)DK () is also a symplectic conjugate and satisfies

DF(K(©)Venew(®) = T(0)DK (6 + ») + Venew (O + ). (57)
Proof Since v.(0) satisfies Eq. (14) and DK (@) satisfies Eq. (17), we have
DF(K(0)Venew(@) = DF(K(0)) [ve(0) +a(0)DK(6)]
=[T©O)+a@)] DK@ + ®) + v.(0 + w)

A (58)
- [T(O) +a+ a))] DK (0 + @) +ve(0 + o)
= T(O)DK (6 + ) + Veew(® + ),
where the relation T(0) + a(f) = f"(O) + a(6 + w) follows from Eq. (56). O
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4.9 Initialization for continuation by &

To compute invariant circles and bundles of stroboscopic maps in periodically perturbed
PCRTBP models with some desired perturbation parameter ¢y > 0, we start from periodic
orbits and their bundles in the unperturbed PCRTBP (¢ = 0) and continue by ¢ until the torus
and bundles for ¢ = & are found. Our quasi-Newton method-based continuation follows
the standard procedure; choose a number of continuation steps n, take an invariant circle and
bundles from the ¢ = 0 system, and use them as an initial guess for the quasi-Newton method
to solve for the circle and bundles in the ¢ = &7 /n system. Similarly, fori =0, ...,n — 1,
use the solution from the & ¢i /n system as an initial guess for the solution in the £ ¢ (i + 1)/n
system. Once i = n — 1, we have the torus and bundles for e = £ 7. We need to find the e = 0
solution to initialize the continuation, however.

To get K(0), P(0), and A(0) solving Eqs. (10) and (11) for the ¢ = O PCRTBP case, one
needs to first choose a periodic orbit which is to be continued (recall that PCRTBP periodic
orbits are also invariant circles of the stroboscopic map F = F._, unless the orbit period is
resonant with 277/£2,,). From this periodic orbit, we get its period 77 and hence the rotation
number w = 471'2/ (T182)), as well as a point xq lying on the orbit. Let ¢ (x, t) denote the
time-f map of the point X € R* by the PCRTBP equations of motion. Then, we can take
K(©) = ¢(x0, T1 %) if the periodic orbit monodromy matrix stable and unstable eigenvalues
are positive. If they are negative, though, the “double covering" trick of Haro and de la Llave
(2007) needs be used so that P (6) can be continuously defined (as the stable/unstable bundles
are Mobius strips in this case). For this, set K (0) = ¢ (Xq, 271 %) and w = 27T2/(T1 £2p) so
that K sweeps over the periodic orbit twice as 6 goes from 0 to 2. In either case, it is easy
to verify that K (0) satisfies Eq. (10).

Next, set the first column of P(#) to be DK (0), and set the third and fourth columns of
P(0) as the stable and unstable unit eigenvectors of the periodic orbit monodromy matrix at
the point K (0). Denote these stable and unstable eigenvectors as v4(0) and v, (0), respec-
tively. One needs to make sure that the directions of v4(0) and v, (@) at each point K (6) are
chosen such that they are continuously oriented functions of €; this is always possible if K
is defined as previously described. Finally, finding the second column of P requires some
extra calculations.

As mentioned in Sect. 4.3, the second column of P represents the symplectic conjugate
direction to DK (6) and is part of the center bundle. The first step in its computation is to
compute Ag(0) and A, (0) : T — R such that

DF(K(©))vs(6) = As(0)Vs (6 + ) (59)
DF(K(0)vu(0) = 2u(0)vu (6 + w), (60)

which can be done since D F (K (6)) maps the stable and unstable bundles into themselves.
Next, find functions A(@), B(0), C(0), and D(0) : T — R such that

JIDK #9) JTI'DK (0 + w)
— — AB)DK(® Bl)———————
DK@~ AOPKET O+ BOTE T 6

+ CO)Vs(0 + @) + DOV (0 + w),

DF(K(9))

where J = 022 22 is the 4 x 4 matrix of the symplectic form in the usual Euclidean
—Ix2 022

metric on R*. All the quantities in (61) are known except for A, B, C, and D. We can therefore
consider Eq. (61) as a system of linear equations for A, B, C, and D which can be solved.
One will find that B(6) = 1; this occurs as a result of symplectic geometric considerations
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(see Eq. (70)). After this, we solve for functions fi(0), f2(8) : T — R such that

CO) = f1(0 + ) —250) /1(0) (62)
D) = f2(0 + ) = 1. (0) f2(0), (63)

which can be done using the same contraction map iteration method used to solve Egs. (25)
and (26) in Sect. 4.5.1. Finally, we can express the second column of P (6), the symplectic
conjugate direction v.(6), as

J DK ()

c 0) =
V@ =DK1

+ f1O)vs () + f2(0)vu (). (64)

With P (#) known, to find A one can simply use A(8) = P~'(6 + w)DF (K (0)) P(0), after
which we can start the continuation. As long as the previous steps were followed correctly,
A will be of the form given in Eq. (12). To see this, recall the discussion in Sect. 4.3, and
note that the first, third, and fourth columns of P satisfy Eqgs. (13), (15), and (16). Hence, we
just need to show that the second column of P satisfies Eq. (14). We prove this now.

Lemma4 Forsome T : T — R, the function v.(0) defined in Eq. (64) satisfies
DF(K(0))v.(0) =TO)DK (O + w) + v.(6 + w). (65)

Proof Applying Eq. (64) and then Egs. (59), (60), and (61), we have

DF(K(0))ve(0) = DF(K(0)) (JlDK(e) + f10)Vs(0) + f2(0)V. (0)>
T DK@ 2

B J™'DK (0 + )

= A(B)DK (O + o) + B(@)m
+(CO) + A5(0) f1(0)) Vs (0 + ) + (D(O) + 1, (0) f2(0)) v (6 + w).
(66)

Recalling Egs. (62) and (63), we thus have that
B J7'DK (0 + )

DF(K(#))ve(9) = A(@)DK (6 + w) + B(G)m -

+ f10 + o)V (0 + w) + (0 + w)v, (6 + w).

Flow maps of Hamiltonian systems are symplectic (Thirring 1992). Hence, F satisfies
21, v2) = Q(DF(K(®))vi, DF(K(0))v) for all vi, vo € R*, where £ is the bilin-
ear symplectic form defined on Euclidean R* as £2 (v, v3) = VIT Jvy. It is easy to see that
Q(vi,vy) = 0 for any v; € R* Furthermore, defining L = maxger |A;(9)] < 1 and
recalling equations (17) and (59), we have that

max [$2(DK(©), vs(0))] = max |2 (DF (K (0)) DK (©), DF (K (9))v:(©))]
= max |2 (DK (0 + w), s (0)vs(0 + w))]
= max [1;(0)] 12 (DK (6 + ). Vs (0 + w))| (68)
= Lmax|2 (DK (O + @), V50 + )]

= Lmax |2 (DK (9), vs(9))],
oeT
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which implies that maxger |2 (DK (0), vs(0))] = 0 since 0 < L < 1. Thus, forall § € T,
2 (DK (0),vs(0)) = 0. We can also show that 2 (DK (), v,(#)) = 0 in a very similar
manner to Eq. (68). Hence, using Eq. (64) for v, we find

2(DK(©0),v.(0)) = 2 <DK(6) w + f1(0)vs(0) + f2(O)v (9))
eI CIpk@ 2

J"DK(G))

=Q2(DK@®), —— 69

( @ eI ©

—1 T

_ DK(G)TJJ DK(HZ) _ DK®) DKZ(H) _
IDK @) IDK@®)]

Since F is a symplectic map, using Eq. (67) we have that

1 =2(DK(0),v:(0))
=2 (DF(K(9))DK(0), DF(K(6))vc(9))
J'DK (O + w)
IDK 6 + o)|?
+16 + 0)Vs (0 + ) + f2(0 + )y (6 + ) (70)
JIDK® + w)
IDK (6 + o)|? )
J~'DK (6 + w)
IDK 6 + w)|?
proving that B(#) = 1. Therefore, substituting this into Eq. (67) gives

-2 <DK(9 +w), A@)DK (0 + ») + B(®)

=0 <DK(9 + w), B(8)

= B@O)DK® +w)J = B(@H)

J'DK® + w)
IDK (6 + w)|? (71)
+ f1(0 + 0)V5 (0 + ©) + f2(0 + 0)V, (0 + w).

DF(K(@#))v.(0) = A@)DK (6 + w) +

Finally, we see from Eq. (64) that the last 3 terms on the RHS of Eq. (71) are precisely
v (0 + w). Letting T (6) = A(@), we hence conclude that

DF(K®)ve(0) = T(O)DK O + w) + V(0 + w), (72)

which is what we sought to prove. O

4.10 Computing families of tori: continuation by ®

The continuation by ¢ described in Sect. 4.9 is carried out with @ fixed. However, in the
PCRTBP, periodic orbits occur in one-parameter families, with varying rotation numbers o
under Fy—o. The same is true of invariant circles of F; for e = £y > 0 as well. To compute
the family of F; ;-invariant tori corresponding to a PCRTBP periodic orbit family, one option
is to continue several different periodic orbits from that family (corresponding to different
values) by ¢. However, this is inefficient, as the tori and bundles computed for ¢ < &7 are
not of interest. Instead, it is better to first compute just one invariant circle of F; ,, along with
its bundles, at some rotation number w = wp using continuation by ¢. After this, one can
continue the wy circle/bundles by w, with & = ¢ ¢ fixed. The continuation by w is quite similar
to the continuation by ¢; given a known exact solution to Egs. (10) and (11) for v = wj,
i € Z, one uses this to form an initial guess for the quasi-Newton method to compute the
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torus/bundles for w = w;+1 = w; + Aw;. This recursively gives us tori for a range of @
values. The Aw; are called the continuation step sizes.

One can use the torus and bundles for = w; directly as an initial guess for w = w; + Aw;.
However, it is extremely easy to use K, P, and A from w; to compute a better initial guess
for the w; + Aw; torus, which aids in quasi-Newton method convergence. Assume that A
has constant 7(6) = T (apply the procedure from Sect. 4.8 to P and A if necessary). Then,
using v.(#) to denote column 2 of P, the initial guess for the w; + Aw; torus parameterization
should be Kpew(0) = K(0) + (Aw; /T)v.(0). We justify this now.

Claim If K, P, and A (with A constant) solve Egs. (10)—(11) for = w;, then Kpew(0) =
K@) + (Aw;/T)v.(0) solves Eq. (10) for o = w; + Aw; up to O(Aa)iz).

Proof For notational convenience, write w and Aw in place of w; and Aw;, respectively.
Then, evaluating F'(Kpew(6)) — Kpew (8 + @ + Aw), we find this equals

Aw Aw
F<K(9) + TVC(9)> — [K(G + w4+ Aw) + TVC(H + w4+ Aw)]

Aw 2
= F(K(©))+ DF(K(G))7VC(9) + O(Aw?)

(73)
A
- [K(G + )+ AwDK (6 + ) + 7“)%(9 To)+ O(sz)]
A
— 22 IDF(K©O)Ve(0) = T DK + ) — vo(6 + 0)] + O(A?) = O(Aw?),
where the last equality follows from Eq. (14). O

Remark 6 Using the Poincaré-Lindstedt method, it is possible to get higher order expan-
sions in Aw; for Kyey than the linear approximation K (0) + (Aw;/T)v.(0). This requires
significant extra computations which we decided not to carry out.

There is one more difference between continuation by w and continuation by ¢. The
continuation by & uses a fixed step size ¢ ¢ /n. However, for continuation by w, the step size
Aw; must be varied due to quasi-Newton method divergence for insufficiently irrational w.
At such w values, the PCRTBP invariant circle breaks down after the perturbation ¢ = ¢,
leading to a gap between tori at smaller and larger rotation numbers. Our continuation needs
to “jump" over this gap. Suppose we have a torus and bundles for @ = w;, and let ¢; denote
the largest of Aw;_1, Aw;—_3, ..., Aw;_s. It is natural to try Aw; = ¢;. If the quasi-Newton
method diverges for @ = w; + ¢;, however, then instead one can try Aw; = ¢; /2; if this still
does not work, try Aw; = ¢;/ 22 and so on until we find a Aw; that works. Once we have
the circle/bundles for w; 1| = w; + Aw;, we repeat the process.

In this procedure, it is possible for Aw; to be larger than Aw;, which is what allows
us to “jump" over gaps in the tori. For example, suppose that Aw;_| through Aw;_s are all

equal to ¢ = HT‘E x 107*, 50 ¢; = ¢. Then, it can happen that the quasi-Newton method
diverges for = w; + ¢, but converges for v = w; +¢ /2 = w;+1, 50 Aw; = ¢ /2. However,
@i+1 will still equal ¢, so we try Aw;+1 = ¢. If the quasi-Newton method converges for
w = wj+1 + ¢ = w; + 3¢ /2, then we will have crossed the torus gap encountered earlier at
= w; + ¢. This is schematically illustrated in Fig. 1; we draw the tori on a projection of
the 2D cylindrical NHIM &, defined in Sect. 3.1 (we let (0, I) be coordinates on &).
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Fig.1 Schematic of crossing Gap

gaps during o continuation
(consider the ® = 0 and 6 = 27 v
lines to be glued together to form

a cylinder)
y («/\/ 'X>

4.11 Discretization and implementation

When implementing the previously described methods on a computer, it is necessary to
discretize all the functions used as well as the operations on them. We represent K, P, A,
and other functions of  as arrays of their values on a discrete grid of N evenly spaced 6 values
6; =2mi/N,i =0,..., N — 1. Many operations on functions can be carried out element-
wise on these arrays; such operations include basic scalar arithmetic, matrix multiplication,
and matrix inversion. For instance, given arrays of values P (6;) and &£(6;), we can calculate
anew array of N values AK (6;) = P(6;)£(6;) (note that the AK array will actually contain
4N floating point numbers, since each AK (6;) € RY).

Other operations are more efficiently carried out using Fourier coefficients. For instance,
given an array of function values a(6;) for some a : T — R, we can use

N-1 N-1

a®) = % > ate™ - al; + w) = % > latkyel 1e/ (74)
k=0 k=0
1 N-—1 ) 1 N-—1 )
al) = - > ake™ - Da(;) = ¥ > Lika(k)lel* (75)
k=0 k=0

to translate or differentiate a. We use the fast Fourier transform (FFT) to get N Fourier
coefficients a(k), multiply each a(k) by e/% (translation) or Jjk (differentiation), and then
take the inverse FFT to get an array of values a(6; + w) or Da(6;). Solving cohomological
equations like (30) also requires working with Fourier coefficients as described in Sect. 4.5.

A few numerical problems were experienced due to the discretization of continuous func-
tions on the computer. Let Trans,(a(6;)) represent the array of a(6; + w) values found
by applying the algorithm of Eq. (74) to the array of a(6;) values. The first problem was
that Trans,,(F (6;)G(6;)) # Trans,(F(6;)) x Trans,(G(6;)); multiplying two arrays and
then translating the result give a different result than first translating the two arrays and
then multiplying the results. Also, F(6;) # Trans_,,(Transt,(F(6;))) when N is even and
real-to-complex FFT is used (for real data). These issues can prevent quasi-Newton method
convergence.

Both inequalities are most pronounced when the high-frequency discrete Fourier trans-
form coefficients of F or G are large in magnitude. It is not expected that the tori or bundles
we compute should have significant high-frequency oscillations as a function of 8. Hence, a
solution to these two problems was to run K (6;) and P(6;) through a lowpass filter during
the first two or three quasi-Newton steps, as well as when the quasi-Newton method would
start diverging; note that this is somewhat reminiscent of Arnold’s use of truncated Fourier
series with successively increasing cutoff frequencies in his proof of the KAM theory (De la
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Llave 2001). We also found that modifying P between continuation steps to make A con-
stant, as described in Sect. 4.8, greatly mitigates these numerical issues as well. Finally, if
the high-frequency Fourier coefficients keep becoming large after each quasi-Newton step
despite filtering and constant A, we increase the number of Fourier modes used (equivalent
to increasing N).

One phenomenon we noticed during the implementation of our quasi-Newton method-
based continuation was that generally, the torus parameterization K (6) converges to within
a given error tolerance before the bundle and Floquet matrices P(0) and A(6). We can use
this to further improve the numerical stability of our quasi-Newton method, by using the
converged K (@) to directly compute the full P and A matrices. To do this, as mentioned
earlier, the first column of P is simply DK (¢). The third and fourth columns of P (the stable
and unstable bundles v and v, ) can be found using the “power method," as is described
by Haro and de la Llave (2006). For this, first set v, 0(6) and v, ¢(0) equal to the unit-
length normalized third and fourth columns of P(6) (the unconverged, approximate stable
and unstable bundles). This is then followed by the iteration

DF(K(6))™'v5,i(6 + w)
IDF(K(©) 'vs,i (0 + o)l
DF(K (0 — 0))vy,i(0 — w)
IDF(K (O — w)Vu,i (0@ — o)’

(76)

Vs,ir1(0) =

Vu,i+1(0) = (71
which should converge after a few iterations (in practice, we also run each vy ;(9), v, ; (0)
through a lowpass filter after its computation). Once the iterations have converged, we use
the methods of Sect. 4.8 to rescale vs and v, to ensure constant A; and X,. Finally, we can
use the exact same method presented in Sect. 4.9 to compute the second column of P from
the known DK, v, and v, (see Egs. (61)—(64)); the method of Sect. 4.8 is then applied to
make T constant. This gives us the final P and A matrices which in our experience not only
usually satisfy Eq. (11) to within tolerance (sometimes one last quasi-Newton correction step
is required), but also have smaller high-order Fourier coefficients than the earlier approximate
P and A; this further improves our method’s numerical stability.

4.12 Numerical results in the PERTBP

We implemented and successfully applied the methods described in the previous sections
to the computation of invariant circles and their bundles for the Jupiter-Europa PERTBP
stroboscopic map. We used a tolerance of 10~ in Egs. (10)—(11). The circles and bundles
were found by first continuing Jupiter-Europa PCRTBP unstable resonant periodic orbits by
eccentricity ¢ to € = 0.0094 (the real value) for fixed w, and then continuing the circles and
bundles by w while fixing ¢ = 0.0094.

Both 3:4 and 5:6 resonant tori were computed. Figure 2 shows the continuation by eccen-
tricity of a 5:6 resonant periodic orbit from the PCRTBP to an invariant circle of the PERTBP
stroboscopic map; for this, we used N = 2048 discretization ; values. The plot on the right
zooms into the region near Europa; the leftmost curve there corresponds to ¢ = 0.0094,
which is to be expected as Europa’s periapsis moves leftwards as ¢ increases. Figure 3 shows
the continuation of a 3:4 resonant torus in the physical ¢ = 0.0094 Jupiter-Europa PERTBP
by w, which yields a family of resonant tori in the system for w € [1.536217, 1.567314]; N
ranged from 1024 to 32768, with larger N required for tori passing close to the singularity in
the equations of motion at Europa. Figure 4 shows a family of Jupiter-Europa PERTBP 5:6
resonant tori, also generated using continuation by w. This family, like the PCRTBP 5:6 res-
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5:6 Unstable Resonant Torus w = 1.03001

5:6 Unstable Resonant Torus w = 1.03001
(Jupiter-Europa system, from e = 0 to 0.0094)

(Jupiter-Europa system, continued from e = 0 to 0.0094)
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Fig.2 Continuation of 5:6 Jupiter-Europa PERTBP resonant torus from ¢ = 0 to 0.0094

3:4 Unstable Resonant Tori Family

3:4 Unstable Resonant Tori Family
(Jupiter-Europa system e = 0.0094)

(Jupiter-Europa system e = 0.0094)
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Fig.3 Continuation of & = 0.0094 Jupiter-Europa PERTBP 3:4 resonant tori by w (Europa surface shown as
red circle)

onant orbit family, does not have monotonically increasing or decreasing rotation numbers;
o starts at 1.035166 for the leftmost torus in the zoomed-in plot, decreases to 1.027137, and
then increases to 1.040911 for the rightmost torus. Thus, we first continued two different
PCRTBP 5:6 resonant orbits by ¢ to get two PERTBP tori, one in each of the two sections of
tori with monotone w. These two tori were then continued by w to sweep out the tori in their
corresponding sections. For this case, N ranged from 1024 to 4096.

After computing tori in the physical Jupiter-Europa PERTBP with ¢ = 0.0094, we also
tested our quasi-Newton method to see if it would work for larger . Figure 5 shows selected
tori from the continuation of a 3:4 resonant periodic orbit from the PCRTBP to an invariant
circle of the PERTBP with Jupiter-Europa mass ratio p, but & = 0.206. This eccentricity is
larger than that of the Sun-Mercury system, which has one of the most eccentric two-body
orbits of any pair of large solar system bodies. We used N = 1024 and a continuation step
size of Ae = 0.0005 (the quasi-Newton method failed to converge for larger step sizes);
every 20th torus is shown in the figure. As can be seen, our method was robust even for
large values of the perturbation . On a 2017-era quad-core i7 laptop CPU, our Julia program
took only about 230 seconds for the entire continuation to & = (0.206, and less than 10 s for
continuation to the physical value ¢ = 0.0094.
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5:6 Unstable Resonant Tori Family 5:6 Unstable Resonant Tori Family
(Jupiter-Europa system e = 0.0094) (Jupiter-Europa system e = 0.0094)
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Fig.4 Continuation of £ = 0.0094 Jupiter-Europa PERTBP 5:6 resonant tori by w (Europa surface shown as
red circle)

3:4 Unstable Resonant Torus w = 1.55962 3:4 Unstable Resonant Torus w = 1.55962
(Jupiter-Europa masses, continued from e = 0 to 0.206) (Jupiter-Europa masses, continued from e = 0 to 0.206)
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Fig.5 Selected tori from 3:4 Jupiter-Europa PERTBP continuation from ¢ = 0 to 0.206

5 Parameterization method for stable and unstable manifolds

With the invariant circles and their stable and unstable bundles computed, we next turn our
attention to accurate computation of torus stable and unstable manifolds. Many studies using
manifolds, such as Olikara (2016), use linear approximations of invariant manifolds found
by adding small vectors in the stable or unstable directions to the points of the torus and
then integrating backwards or forwards. However, we compute high-order Fourier—Taylor
polynomials which approximate the manifolds very accurately in some domain of validity.
The algorithm used here bears many similarities with the method used in previous work
(Kumar et al. 2021a) for computation of 1D manifolds of period maps for periodic orbits in
the PCRTBP. A different version of this algorithm was also used by Zhang and de la Llave
(2018) in a lower-dimensional setting.

Since our F-invariant circles are 1D and have one stable and one unstable direction at
each point, the circles’ stable and unstable manifolds will be 2D and diffeomorphic to either
an infinite cylinder or a Mobius strip. A cylinder can be continuously parameterized using
an angle 6 and a real number s; this actually is also possible for a M&bius strip, as long as
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the parameterization is non-injective and wraps around the strip twice as 8 goes from 0 to
27 (the “double covering" trick we used in Sect. 4.9). In the framework of Sect. 4.1, we have
M =T x Rand f(0,s) = (6 + w, As), where A is the stable A; or unstable X, entry of
A, depending on which manifold we are trying to compute. Without loss of generality, we
assume that A and X, are constant (see Sect. 4.8). With this, the equation to solve for the
parameterization W : T x R — R* of the stable or unstable manifold is

F(W@,s) —WO+w,rs) =0, (O,s)eTxR (78)

5.1 Order-by-order method to find W

We express W as a Fourier—Taylor series of form

W(O.5) = K@)+ We(®)s", (79)
k>1

where s = 0 corresponds to the invariant circle K (6) whose manifold we are trying to
compute. The s0 term of W is K (9), and the linear term W, (6) is the stable v, (6) or unstable
v, () bundle known from the third or fourth column of P. Hence, we need to solve for the
higher-order “coefficients" Wi (6) : T — R4, k> 2.

Denote Wi (6, s) = K (8) + Y52} W;(6)s/. Assume we have solved for all W; (6) for
J < k,sothat F(Wx(6,s)) — W (6 + w, As) has only sk and higher-order terms. Then,
starting with k = 2, the recursive method to solve for Wy (0) is:

1. Find Ex(0) = [F(W<x(0, 5)) — W< (6 + @, A5)], where [-]; denotes the s¥ coefficient
of the term inside brackets. We show how to do this in Sect. 5.2.

2. Find W; () such that W_; (0, s) + Wi (0)s* cancels Eg(0)s¥ in Eq. (78), thus satisfying
Eq. (78) up to order sk The equation to solve for Wy (0) is

DF (K (0)Wi(6) — M Wi (6 + w) = —Ex (6) (80)
To solve this, let W o = 0 and iterate the following sequence to convergence:

MWDF(K@®)™'Wii(0 +w) — DF(K(0))" Ex(0) if A < 1

Wii1(6) = {A"‘DF(K(Q — 0)Wii(0 — ) + A FE (0 —w) if[A] > 1

81

(Fourier methods are an alternate method of solving Eq. (80); see Remark 7)
3. Set Wop41(0,5) = Wi (6, s) + Wi (0)s* and return to step 1.

The recursion is stopped when we are satisfied with the degree k of W. We now prove that
the equations and method described in Step 2 to find Wy are valid.

Claim If Wy solves Eq. (80), then for j < k (using the [-1x notation defined earlier),
[FOV40.5) + We(©)s) = (Woi6 + 0, 25) + Wi @ + )G )| =0, (82)

J
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Proof Recall that F(W_; (6, 5)) — Wi (8 + w, As) = Ex(0)s* + O(s**1). Expanding Eq.
(82) in Taylor series and keeping only s¥ and lower order terms gives

[FW_(0, 5) + DF (W16, ) Wi @)s

— (Wak(® + 0,09 + Wi (@ + )G9 )|
J

= [E(0)s" + DF(W_,(8, ) Wi (0)s* — 2 Wi(6 + w)s*1;

o if j <k,

" | Ex(®) + DF(K©)Wi () — AW (0 +w) =0 if j =k,

(83)

where the j = k case of the last line follows from the preceding line by dividing s¥ out from
the quantity inside [.];, and then taking s — 0. O

Claim The sequence {Wy ;}ien defined by Wyo = 0 and Eq. (81) converges to Wy.

MDF(K ()™ "Wy i(0 +w) — DF(K(0)" Ex(0) if |A] < 1

A KDF(K(6 — 0)Wii(0 — 0) + A FEp® — ) if|A] > 1 84

Wiiv1(0) = {

Proof Let P, A be the bundle and Floquet matrices for K (9). We assume that A is constant
(as the procedure from Sect. 4.8 gives). Then, it is easy to show that

Wis0) — —PO) YoM ATITPTHO + (f + D) Eg(® + jo)] if 1] < 1
LT Py Yo ATRUHEDAIPYO — jw)Ex® — (j + D)l if [A] > 1

(85)

solves Eq. (81) with Wy ¢ = 0; simply substitute Eq. (85) for Wy ; in Eq. (81) and use
DF(K(® — )P0 —w) = P(®)Aand DF(K®))~" = P(O)A~' P~ (6 + w) to simplify
the RHS of the resulting equation.

Now, we will show that Wy (6) = lim;_, oo Wy ;(6). First of all, note that

A —jMTo 0 T 000

P 0 A 0 o0 i 0o A7 0 0
MA = s Al A = u o 86
: 0o 0 1 o0 : o o o] &

0 0 0/ L 0 0 0 1

for all j € N, where A is of the form given in Eq. (12) and has constant 7', Ag, and A, as
assumed earlier. Since |As| < 1 and |A,| > 1, A A=/ and A, A/ are hence bounded for all
j € N. Now, define I';(8) = A~'P~1(0 + w)Ex(0) and I,(0) = A * P O)Er(6 — w);
also, recall that |A| < 1 means A = A; and |A| > 1 means A = X,. We can use all this to
rewrite Eq. (85) as

—P@O) Yy VM ATT RO + jo)] if 1A < 1

0 o e (87)
PO)Y a0 AT L0 — jo)] i |4 > 1

Wii(0) = [
In both |A| < 1 and |A| > 1 cases of Eq. (87), the quantities in square brackets are bounded
foralld € Tand j € N. Ask > 2, )L’S"*l < land k;(k_l) < 1; hence, if i — o0, the sum in
Eq. (87) is absolutely uniformly convergent. Hence L(6) = lim;_, oo Wy ;(0) exists. Letting
i — oo on both sides of Eq. (81) gives

MWDF(K@©)™'LO +w)— DF(K®)" Ex ) if |A] <1

L®) = { W EDF(K(® — @)L — w) + A FE (0 — w) if 2] > 1 ®
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which for both [A] < 1 and |A| > 1 is equivalent to Eq. (80) with W = L. O

Remark7 Given P and A satisfying Eq. (11), substituting Wy = P Vj into Eq. (80) and
rearranging gives AV (0) — AV (0 + w) = —P (0 + )~ ' Ex(6), which can be solved for
Vi component by component using the Fourier methods from Sect. 4.5.2. We used the itera-
tion method of Eq. (81) instead, to avoid any possible multiplication—translation numerical
discretization issues (see Sect. 4.11).

5.2 Computing E, (0): automatic differentiation and jet transport

In step 1 of the order-by-order method to find W, we compute the s* coefficient
Er(©) = [F(W<k (0, 5)) = Wak (0 + @, 1)k (89)

In Eq. (89), the s term of Wi (6 + w, As) is 0, since W, (8, s) is a Fourier—Taylor series
up to order s¥=! and A is constant. However, computing the Fourier—Taylor expansion of
F(W_x(8, s)) is more complicated, as F is a nonlinear stroboscopic map defined by inte-
grating points for a fixed time 277 /§2,, by the equations of motion (3) and (4). We will need
the tools of automatic differentiation (Haro et al. 2016) and jet transport (Pérez-Palau et al.
2015) for this. Note that some researchers (Rasotto et al. 2016; Berz and Makino 1998) use
the term differential algebra to refer to what we call automatic differentiation.

Automatic differentiation is an efficient and recursive technique for evaluating operations
on Taylor series. For instance, let f(s) and g(s), s € R, be two series; we can use their known
coefficients to compute d(s) = f(s)/g(s) as a Taylor series as well. Let subscript j denote
the s/ coefficient of a series; since f(s) = d(s)g(s), we find that f; = le=0 digi—j =

(Zﬂ-; L digi (s)> + d; go, which implies that

i—1
1
di=—\fi-) digi-j|- (90)
80 =

Starting with dy = fo/g0, Eq. (90) allows us to recursively compute d;, i > 1. Similar
formulas also exist for recursively evaluating many other functions and operations on Taylor
series, including f(s)%, « € R; see Haro et al. (2016) for more examples. Most importantly,
in all automatic differentiation formulas, the output series s* coefficient is a function of only
the s’ and lower order coefficients of the input series. Hence, we can use truncated Taylor
series with these algorithms when implementing them in computer programs.

Recall from Sect. 4.11 that on the computer, we represent all functions of 6, including
the W;(6), as arrays of function values on an evenly spaced grid of 6 values 6§; = 27i/N,
i =0,..., N—1.Note thatfor fixed 6;, W_(6;, s) is a Taylor series (not Fourier—Taylor) with
coefficients W;(6;) € R4, Using automatic differentiation, we can substitute Taylor series
such as W, (6;, s) for (x, y, px, py) in the equations of motion (3), which gives us series
in s for (x, y, px, py)- In terms of computer programming, this means that after overloading
the required operators (usually arithmetic and power) to accept Taylor series arguments, we
can use numerical integration routines with the series as well.

To be more clear, consider a Taylor series-valued function of time V(s,t) =
Yo Vist R? — R* where V;(t) are its time-varying Taylor coefficients. Write
Vi(s, 1), Vy(s,1), Vp, (s, 1), and Vp, (s, 1) for the x, y, px, and p, components of V (s, 1);
similarly write V; (1), V; y(t), V; p.(t), and V; , (¢) for the components of V;(¢). Substi-
tuting V in Eq. (3) yields a system of differential equations
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d > . . 0H,

AGODE Z(:)vj,x(z)sf = apj (Vx(s,t), Vy (s, 1), Vp, (s, 1), v,,y(s,z),ep) 1)
p

d >, . - 9H,

SV = D Vi 087 = S (Vals, 10, Vo510, Vi (5.1). Vi (5.1).6,) - (92)
j=0 Py

o0
d . ,_ oH,
Vs ) = YV 08 = = (Vx(s,t), Vy(s. 1), Vp, (5. 1), vp_‘,(s,t),e,,)

i=0 *
(93)
d > . dH,
TV (s.0) = D0V, (08T = =S (Va5 1), Vo (5. 1). Vi (5.0, Vi, (5.1). )
t = dy
(94)
6, = 2, (95)

H; and its partials are algebraic functions that are suitable for use with automatic differenti-
ation techniques; see, for instance, the PERTBP Hamiltonian Eq. (5). Hence, if the V; , (7),
Viy@®), Vi p. (@), Vjp, (), and 0 are known for j € N and some 7 € R, automatic differen-
tiation allows us to simplify the RHS of each of Eqgs. (91)—(94) to a series in s. Then, for each
of Egs. (91)~(94) and j € N, the s/ coefficient V; (1), V; (1), Vj.p, (t), 01 V; . (t) from the
LHS must be equal to the s/ coefficient of the RHS. In other words, Vj, x (1), Vj,y (1), Vj, pe (D)5
and Vj,p‘_(t), Jj € N, are functions of 8, V; ,(t), V; y(t), V; p. (), and V; ,, (), j € N.
This is effectively a system of differential equations for the time-varying Taylor coefficients
of V (s, t). Solving Egs. (91)=(95) with initial condition V (s, 0) = W, (6;, s) and initial 6,
equal to the value fixed in Sect. 3.1, we can compute F(W_(6;,s5)) = V (s, 2m/82p).

In summary, we consider the Taylor coefficients of W_g(6;, s) as initial state variables
to be numerically integrated coefficient by coefficient; propagating by time 27 /£2,,, we get
the Taylor coefficients of F(W_(6;, s)). Doing this for eachi = 0, ..., N — 1 is enough
to represent the Fourier-Taylor coefficients of (W, (6, s)) on the computer, up to order k;
the s¥ coefficient of this gives us E(0). This approach for numerical integration of Taylor
series is called jet transport; see Pérez-Palau et al. (2015) for more details. Truncated Taylor
series can be used with jet transport, since the automatic differentiation techniques used to
evaluate time derivatives work with truncated series. Note that for an n-dimensional state
(n = 4 in our case) and degree-d truncated series, there are n(d + 1) coefficients, which is
the required dimension for the numerical integration.

5.3 Notes about numerical computation of manifolds

We implemented the parameterization method, automatic differentiation, and jet transport
of Sects. 5.1 and 5.2 in a C program for computation of stable and unstable manifolds. For
numerical integration, including jet transport, we used the Runge—Kutta Prince-Dormand
(8,9) integrator from the GSL library (Galassi et al. 2009); integrations were parallelized
using OpenMP with one thread for each 6; value. We tested our tools by computing manifolds
of some of the 3:4 and 5:6 Jupiter-Europa PERTBP tori shown in Figs. 2 and 3, with N ranging
from 1024 to 2048. On a quad-core Intel i7 laptop CPU, the program took less than 10 seconds
for the computation of s3-order parameterizations.
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Note that in each step of order k, when F(W_x(6;, 5)) — W (6; + w, Ls) is computed in
order to find E(6;), the s/ coefficients for J < k should be zero (to compute the W_4 (6; +
w, As) coefficients, use the translation algorithm from Sect. 4.11 on the arrays of W;(6;)
values, and then multiply W;(6; + w) by A7). This behavior was indeed observed when
running the program, serving as a check on the accuracy of the computation. The final
sd-degree truncated series W<4(0,s) = K(0) + Z?:l W; (0)s satisfies F(W<q(;,s)) —
W<q(6; + w, As) = 0 up to terms of order s4 foreachi =0,...,N — 1.

In the Wi () step, we truncate all series at s for the automatic differentiation and jet
transport steps; this optimizes computational time and storage requirements. Also, note that
given W (0, s) solving Eq. (78), W(0, as) is also a solution for any « € R. Sometimes, the jet
transport integration may struggle to converge as a result of fast-growing coefficients W; (6)
of W(8, s); in this case, scaling W (@, s) to W (6, as) with @ < 1 can help. To do this, simply
multiply Wi (0) by « and then restart the order-by-order parameterization method algorithm.

As a final remark, note that in certain systems, such as the PERTBP with 6, = O att =0,
the equations of motion have the same time-reversal symmetry as the PCRTBP. In this case,
knowledge of the stable manifold W*(6, s) gives us the unstable manifold W* (8, s) simply
by setting W“(0,s) = MW*(2r — 6,s) where M is the diagonal matrix with diagonal
entries 1, —1, —1, and 1. By doing this, we save half the computation time as compared to
computing both W$ and W*.

5.4 Fundamental domains of parameterizations

The d degree Fourier-Taylor parameterization W<, (0, s) of the manifolds of K (6) will be
more accurate than linear approximation by the stable or unstable direction at each point
K (0). However, due to series truncation error, W<,4(6, s) is not exact. Furthermore, even
the exact infinite series W (@, s) satisfying Eq. (78) would only be valid for s within some
radius of convergence. Thus, we must determine the values of s € R for which W-,4(0, s)
accurately represents the invariant manifold.

Fix an error tolerance, say E;p = 1073 or 10~°. We now find what Haro et al. (2016) call
the fundamental domain of W<,4(8, s); this is the largest set T x (—D, D) such that for all
(@,s5) € T x (—D, D), the error in invariance Eq. (78) is less than E;,;. That is, we seek the
largest D € R such that for all s satisfying |s| < D,

max |F(W=4(8,5)) — W=q(6 + @, 15)|| < Eqor. (96)

In practice, since we know K (9) and W;(0), j =1, ...,d,atthevalues6;,i =0,..., N—1,
we search for the largest D € R™ such that for all s with |s| < D,

_max [|F(W<a(0;, ) = Wza i + @, 25)| < Egol. 97

The simplest way of finding D is to first use bisection to find the largest D; such that
|F(W=a(6:,5)) — Wzq(6; +w,1s5)| < Eyo for all s € (—D;, D;). After doing this for
i=0,...,N — 1, D will be the minimum of all the D;.

‘We computed the fundamental domains of validity for 5 different 3:4 and 5:6 PERTBP
resonant torus manifold parameterizations. We found that the domains for d = 5 were 50-
200 times larger than those for d = 1. For linear parameterizations (d = 1), the domain
size D of all test cases was on the order of 10~* at best, generally 10~>. However, for
the degree-5 parameterizations W;<5(60, s), D was on the order of 1073 or 0.01. Higher
degree parameterizations may improve even further. Note that a larger fundamental domain

@ Springer



Rapid and accurate methods for computing whiskered tori and... Page290f38 3

means that less numerical integration is required for manifold globalization, reducing the
computation time.

6 Globalization, regularization, and visualization

At this point, we have accurate local representations of stable and unstable manifolds of
our stroboscopic map invariant circles. Given a manifold’s Fourier—Taylor parameterization
W, (0, s) and its fundamental domain D = T x (=D, D), the image W, (D) gives us a piece
of the manifold in the map phase space R*. However, this subset of the manifold will be close
to its base invariant circle K (6); generally, it is motions on the manifold further away from
the torus that are of interest for applications. Hence, we need to extend our Fourier—Taylor
parameterization W, : D — R* to a function W : T x R — R* parameterizing the entire
manifold, with W = W, on D. This is referred to as globalization.

Recall from Eq. (78) that W must satisfy F(W (@, s)) = W(0 + w, As). Applying this
repeatedly, we have that F KW, s)) = WO + ko, AKs), where the superscript k € Z*
refers to function composition. We can rewrite this as

W, s) = FK(W (O — ko, 17*s)) (98)
W@, s) = FX(W® + ko, \rs)). (99)

Equation (98)—(99) allows us to define W (6, s) for all (8,s) € T x R. If W is an unstable
manifold with || > 1, choose k > 0 such that |[A¥s| < D and use W), to evaluate Eq. (98);
if W is a stable manifold with |A| < 1, take k > O such that [A*s| < D and evaluate Eq. (99).
The map F K (or F%)is justa time 27wk /$2), (or —2mk/$2),) numerical integration. W (0, s)
thus defined satisfies F(W (0, s)) = W( + w, As) for all (6,s) € T x R, so the image
W(T x R) is F-invariant. Hence, Eqs. (98)—(99) give us a global representation of the entire
stable or unstable manifold. Note that W can be differentiated easily with respect to 6 and
s to get the tangent vectors to the manifold, as D F* is a state transition matrix and DW,
only requires polynomial or Fourier series differentiation. This can be useful for differential
correction of approximate heteroclinic connections; see Kumar et al. (2021b) for details.

6.1 Mesh representations of globalized manifolds

For visualization, we often want to calculate a mesh of many points on the manifold, rather
than just a few W(#, s) values. To do this, we first take an evenly spaced grid of L s-
values {s;} from —D to D, in addition to our grid of N # values 6;, and then directly
evaluate the Fourier—Taylor parameterization to compute W (6;, s;) foreachi =0, ..., N—1,
j = 1,..., L. Next, we repeatedly apply F or F~! to the W(;, s ;) to get the points
W6 + kw, Aks;) = FK(W(H;,5)) if |h| > Lor W(6; — kw, 2 7Ks;) = F7X(W(8;, s))) if
M < 1,fork =0,1,2,... up to some kpmax € Z7. The numerical integrations required in
this step may require use of regularized equations of motion, which we discuss in Sect. 6.2.
Finally, we use the translation algorithm given in Eq. (74) to find the points W (6;, AXs ) if
A > 1 or W(6;, )ﬁ"‘sj-) if |A] < 1; we need all points to be at the same set of N 6; values
when trying to create a manifold mesh that can be plotted.

By following this procedure, we get a discretized, plottable representation of the manifold
subset {W (0, s) : (0,5) € T x[—M, M]}, where M = Afmx D if 4| > 1and M = A Fmax D
if [A| < 1. Note that the numerical integrations can be parallelized across 6; values, which we
took advantage of. A 3D projection of an example globalized stable manifold mesh (denoted
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Fig.6 (x,y, px) projection of Jupiter-Europa PERTBP 3:4 W* for w = 1.559620297

W9) of a 3:4 Jupiter-Europa PERTBP invariant circle is given in Fig. 6, with N = 1024,
L = 101, kpax = 6.

6.2 The need for regularization: an extension of Levi-Civita to the PERTBP

In the equations of motion for the PERTBP and other periodically perturbed PCRTBP models,
the positions of the two large masses m| and m, are singularities. However, when numerically
integrating points forwards or backwards during the manifold mesh computation described in
Sect. 6.1, itis possible for some points’ trajectories to pass extremely close to the singularity at
m2. Moreover, this can indicate that the manifold being computed actually passes through the
my singularity. Such behavior was observed, for example, during computation of manifold
meshes for 5:6 Jupiter-Europa PERTBP tori. These close approaches to m, can result in
numerical issues, including lack of integrator convergence.

In the PCRTBP, the Levi-Civita regularization is very commonly used to compute tra-
jectories which pass near or through a singularity; see Celletti (2010) for full details. First,
a canonical coordinate transformation is applied to the PCRTBP Hamiltonian Hy from Eq.
(2). This is followed by the addition of a pair of action-angle variables to the transformed
Hamiltonian; the new action’s value is set to —Hp, which has a constant value along the
trajectory. This finally allows a time-rescaling to be used which cancels the singularity. This
method, however, relies on the fact that Hy is constant along PCRTBP trajectories. For our
periodically perturbed models, this is not the case. Hence, some modification is required.

For the PERTBP, the singularity corresponding to m is the time-varying point (x, y) =
(1 — w)(1 — ecos E(t)),0). We now present the derivation of the modified Levi-Civita
regularization of m, for the PERTBP; we expect very similar methods to apply for other
periodically perturbed PCRTBP models as well. Readers primarily interested in using the
final regularized equations for numerical integration should skip to Sect. 6.2.1. The following
is heavily inspired by Celletti (2010).
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First, take the PERTBP Hamiltonian H; from Eq. (5) and add a momentum variable p;
conjugated to t. The Hamiltonian and equations of motion become

2 2

He(py. pys Prox. Y. 1) = pr + @ +n(t)(pyy — pyx) — Lo _n
r r
(100)
. 9H, . 09H, . 0H, . oH, . oH, . 9H,
Tame YT op, T T T PP Ty T T
(101)

where r; = \/(x +p(l+ )((t)))2 +y2, = \/(x — 1=+ )((t)))2 +y2, and
x(t) = —ecos E(t). Note that adding p; does not change the values of X, y, py, py, and
{ =08H,/dp, = 1 as compared to using Eq. (5). However, unlike H,, the new Hamiltonian
H, does remain constant along trajectories in (pyx, py, pr, X, y, t) space. Also, given an ini-
tial condition (x, y, py, py, t) to be propagated, the initial value of p; should be set so that
I:IE = 0; this will be important later on.

Now, we perform a canonical coordinate transformation. This is required in order to
“straighten out" certain trajectories passing through the singularity which make sharp bends
in physical space (Celletti 2006). Define a generating function

W(pe, pys s X, Y, T) = py (X2 = Y2 4+ (1 = ) (1 + x(T))) + p2(2XY) + p,T102)

which is a function of the old momenta and new configuration space coordinates. Then,
this defines a transformation between the old (px, py, ps, x, y,t) variables and new
(Px, Py, Pr, X, Y, T) variables through the relations (Thirring 1992)

)

ow
x=-— =X =V +(1-w+x(T) y=—=2XY
apyx apy
ow ow
W W dx
o r = =0=wWpe=(T)+pi

Equation (103) gives us x, y, and ¢ in terms of the new variables. We can also solve for p,
and py to get py = 5(PxX — PyY) and py = %(PxY + PyX), where R = 4(X? + Y?),
This then gives us p; = Pr — %(1 — ) (PxX — PyY) 0‘% (T). Note that in the new variables,
r =+ (X2—=Y2)2+ (2XY)2 = R/4.

Substituting the previous expressions for (py, py, pr, x, y, t) into Eq. (100) gives

He(Px, Py, Pr,X,Y,T)
2 dy P + P}
=Pr — =(1—w)(PxX — PyY)=2(T)+ X"V
T R( w)(Px Y)dt()+ R

d—mw (104)
R

+2n(T) [i(PXX — PyY)— (14 x(T))(PxY + PyX)]

- 1—p _ 4
X2+ A+ 0D +2(X2— YOI+ x(T)) R’
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The m, singularity is now at (X, Y) = (0, 0), where R = 4r, = 0. Since this was a canonical
transformation, the equations of motion in the new coordinates will be

oHe . O0He . OH . oH oHs - oH
_ £y — S A £ Py = — € y = — SPT:_ e

X = = —
d0Px 0Py JPr 0X Y T

(105)

To regularize the singularity at R = 0, we want to be able to use RH, instead of H,. For

this, define a rescaled time s such that d# = R ds. Then, we have that % = g—;% = R%.

Thus, letting prime (") denote d/ds,

BXH ’ oH ! oH (106)

Py=—R—— Pj=—R—° P, =—R—"

0X Y 0T
Since R is a function of only X and Y, it is immediate that X’ = %, Y = %,
T = %, and P} = —%. Furthermore, since p; was chosen earlier to ensure

H, = 0, we also will have H, = 0 along the trajecﬁory in (Px, Py, Pr,X,Y,T) space.
Hence, we find that ®j5f] = REe + . F = RO, This yields Py = — 255 we
similarly find P;, = —%. As RH, has no singularity at R = 0, we thus obtain the
mo-regularized time-s equations of motion

o OIRM OIRM] ., OIRM]
0Py d0 Py 0Pr (107)
o _ ORI, ORH,  OLRH)
X — = Yy — T — .
0X Y T

6.2.1 Usage of regularized PERTBP equations of motion

Let (x/, yi , pfc, p’;,) be an initial state we wish to integrate from r = ¢; to ¢ in the PERTBP.

Recall H;, from Eq. (5), and H, from Eq. (100), with x(t) = —ecos E(t). To use the mj-
regularized equations of motion for this integration, we:

1. Set pf = —He(pi., p’;,, xi, yi, t;), so that I—L(p)"(, p;., pf, xi, yi, ;) =0.
2. Compute initial (Pi R P)",, P%, Xyt Ti) using the equations (where j = +/—1)

X+jY = (x = (1= w +x©) + jy)"?

PX = 2pXX +2pyY Py = _2pr +2pyX (108)

dx
T=t Pr=0—-wpx—@)+ p:.
dt
The sign chosen during the complex square root for X + jY does not matter.
3. Integrate the initial condition (Py, Py, Py, X', Y', T") using Eq. (107), where R =

4(X? + Y?) and H, is given by Eq. (104). Only stop the integration when T = ¢ r:do
not stop before this occurs, even if the integration time reaches 7.
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4. Transform the resulting final state back to (px, py, ps, x, y, t) coordinates using

x=X -V 4+ (1 - wd+x(T) y=2XY
2 2
Py = (PxX = PyY) py = (PxY + PyX) (109)

2 dy
t=T=ty pr=Pr— E(l - W (PxX — PYY)Z(T)'

The first line of Eq. (108) should be interpreted as two real equations corresponding to setting
real and imaginary parts of both sides equal. It follows from the first line of Eq. (103) combined
with the relation (X 4 jY)? = X2 — Y2 4 j(2XY). Also, for step 3, the requirement to stop
integration when T' = ¢ can be implemented using the “events” functionality of MATLAB’s
ODE solvers, or the callback features in Julia’s DifferentialEquations.jl library.

The partial derivatives of RH, appearing in the equations of motion Eq. (107) are straight-
forward to compute but lengthy, so we do not write them here. Throughout the steps listed

2
above, as well as for computing the partial derivatives, we need the quantities %, %, and

%. These are given by the equations

dy = esinE dy gcos E — &2 dn —2e+/1 — g2

_ A _ o7 — = ———— —sinkE,
dt 1l—¢ecosE d2  (l—ecosE) dt (1—ecosE)?

\;vhich can be derived from yx(r) = —ecos E(t), n(t) = T een D2 VC:EEZ(’))Z,
E _

&= m (which in turn follows from taking the time derivative of the standard Kepler’s
equation M = E — ¢sin E; see Bate et al. (1971)).

and the relation

6.2.2 Computational results

In Fig. 7, we show a 2D projection of an example globalized stable manifold mesh for a 5:6
Jupiter-Europa PERTBP invariant circle. This was computed using the regularized PERTBP
equations of motion to evaluate F' —k in the procedure described in Sect. 6.1; in this case,
N = 2048, L = 101, kmax = 6. We have filtered the computed mesh points so as to only
plot those which did not result in a very “visually discontinuous" mesh; this filtering is
needed during visualization, since close flybys of m, can send points which started close
together in extremely different directions. Nevertheless, even after discarding some mesh
points, it is clearly visible in the figure that the manifold passes through the singularity at
my (Europa, marked as a red circle). Using the regularized equations, we experienced no
warnings of integrator divergence during program runtime, which were encountered when
using the unregularized equations.

We also used the regularized equations of motion to recompute the 3:4 W* manifold
mesh shown earlier in Fig. 6. The results matched those which were obtained earlier when
using Eqgs. (3) and (5) for the numerical integrations, thus verifying the correctness of the
regularization procedure. We carried out this computation in Julia, using the DP5 integrator
and parallelizing across 6; with the EnsembleProblem feature of DifferentialEquations.jl
(Rackauckas and Nie 2017); the computation of the 3:4 manifold with N = 1024, L = 101,
kmax = 15 took approximately 250 seconds on the same quad core 17 laptop CPU used earlier.

@ Springer



3 Page34of38 B. Kumar et al.

Fig.7 (x, y) projection of 15¢
Jupiter-Europa PERTBP 5:6 W*
for w = 1.030011437

0.5F

Europa\

o}

y (dimensionless)
o

-0.5-

Ar

-1.5 -1 -05 0 0.5 1 1.5
X (dimensionless)

7 Conclusion

In this paper, we first developed a quasi-Newton method for the simultaneous computation of
unstable invariant circles and their symplectic conjugate center, stable, and unstable bundles
for stroboscopic maps of periodically perturbed PCRTBP models. Our method improves the
computational complexity of the torus calculation to O (N log N) as compared to O (N?) for
the methods used in almost all the existing astrodynamics literature, in addition to giving
useful information on the torus stable and unstable directions. Our method also extends the
O (N log N) method of Haro and de la Llave (2006) and Haro et al. (2016) to unstable tori
with center directions, as is the case for the vast majority of celestial mechanics applications.
We used this quasi-Newton method for continuation of tori and bundles by both perturbation
parameter and rotation number and described how to initialize the continuation from PCRTBP
periodic orbits. We also gave a set of numerical best practices to aid in quasi-Newton method
convergence.

After finding the tori and bundles, we used the results of the continuation to start an
order-by-order method for the computation of Fourier—Taylor series parameterizations of
stable and unstable manifolds for the invariant circles. We found significant improvements in
accuracy and fundamental domain size compared to linear manifold approximations. Finally,
we were able to extend the parameterizations to compute points of the manifolds outside the
fundamental domain, with the aid of a modified Levi-Civita regularization which we derived
for the PERTBP. We expect that similar methods can be used to regularize other periodically
perturbed PCRTBP models as well.

The tools developed were tested in the Jupiter-Europa PERTBP, with the calculations of
the circles, bundles, and manifold parameterizations taking just a few seconds on a 2017-
era laptop with a quad-core Intel i7 CPU. Our Julia program for computation of meshes of
globalized manifold points took a few minutes for each manifold, due to the large number of
numerical integrations involved. As we describe in another paper (Kumar et al. 2021b), with
the help of modern computer graphics processing units, these manifold parameterizations
and meshes can be used to very rapidly search for and accurately compute intersections of
stable and unstable manifolds leading to heteroclinic connections. The methods presented
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in this paper can form an important component for low-energy mission design and transfer
trajectories in such periodically perturbed PCRTBP models.
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A Proof of vanishing Ecc average

In Sect. 4.6, it was mentioned that the average of Ecc () goes to zero with each quasi-
Newton step. We can prove this using a method somewhat inspired by the vanishing lemma
proof of Fontich et al. (2009). For ease of notation, denote this average as A, = E cc(0), and
ECC(G) = Ecc(0) — A, so that ECC has zero average. Also write e, = [0 1 0 017.

- T
Proof Letv,.(0) denote the second column of P, and define E¢(0) = [ELC Ecc Esc Eyc| ;

note that Ec(0)+Ae; is simply the second column of Ereq(#). Left multiplying the definition
of Ereq (Eq. (19)) by P(6 + w) and taking column 2 of the result gives

PO + ) (Ec(0) + Ace2) = DF(K(©)Ve(®) — ve(@ + @) — T(O)DK (O + ).
(110)

Define Ec(0) = P(6 + w)Ec(0), and note that P(6 + w)e; = v.(6 + w). Thus, Eq. (110)
gives

DF(K(@)ve(®) = (1 +1)ve(0 + @) + T(O)DK (0 + w) + Ec(9). (111)

Now, differentiating Eq. (18) yields DF(K(0))DK (#) = DK (6 + w) + DE(0). As men-
tioned in the proof of Lemma 4, F satisfies £2(v(, v2) = (DF(K(©))vi, DF(K(9))v2)
for all v, vy € R4, where £2 is the symplectic form defined by §2 (v, v2) = vlT Jvy. Thus,
£2(ve(9), DK(9))
= Q(DF(K(0))ve(9), DF(K(0))DK (0))
= 2((1+2v(0 +©) + TODK(©® + ) +Ec(6), DK (6 + @) + DE®))
=(1+21)2 (VC(Q +w), DK (6 + w)) + O(DE@©)) + O&c(9)), (112)

where we use 2 (DK (6 + w), DK (6 + w)) = 0 to get the last line. This yields
2 2
22(v.(0), DK(6))d6 = (1 + )\C)/ 2(ve(0 + ), DK + w)) db (113)
0

+O(DE(©)) + O(&c(9)).
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Recognizing that fozn 2(v.(0), DK())do = 02” 2(v.(0+w), DK (6 +w)) df, we have

2
Ae 2(ve(0), DK(0))do = O(DE(9)) + O(Ec(0)). (114)
0

Now, for E and E¢q small enough, v.(0) is an approximate symplectic conjugate to DK (0).
This means that £2(v.(6), DK (8)) ~ 1 (see Eq. (69)), so fozn 2(v:(0), DK(9))do = O().
Hence, it must be that A, = O(DE#)) + O(Ec(H)), so that as the quasi-Newton method
reduces DE(#) and E¢(0) (and thus also £¢(0)) to zero, A, goes to zero as well. O

When carrying out the quasi-Newton step of Sect. 4.6 for correcting P and A, Egs. (38),
(44), and (47) can be solved exactly (including for non-zero averages on the LHS), which
quadratically reduces the E7 ¢, Esc, and Eyc components of E¢(0) (using the definitions
given in the above proof). On the other hand, Eq. (41) for Ecc can be written as

— Ecc(0) = —Ecc(®) — e = Qcc(8) — Qcc (B + o). (115)

As mentioned near the end of Sect. 4.6, we ignore the nonzero LHS average —\A, = —E cc(0)
when solving for Q¢c. Thus, what happens is that the zero-average part Ecc (0) is quadrat-
ically reduced by the quasi-Newton step, but A, may initially remain in E.q. However, the
quadratic reductions in E ¢, ECC(G), Esc,and Eyc, and subsequently also in E(6) during
the following K -correction step quadratically reduce E¢(6) and D E (6). This necessitates a
reduction in A, as described at the end of the above proof.
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