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We present results towards a constructive approach to show the existence of quasi-
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conformally symplectic systems. Finding a quasi-periodic solution of conformally sym-
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the approximate solution and estimates on the derivatives of the map), then there is a
true solution.

The second step in the strategy is to produce numerically a very accurate solution of
the invariance equation (discretizations with 28 Fourier coefficients, each one computed
with 100 digits of precision).

The third step is to compute in a concrete example, the dissipative standard map,
the condition numbers and verify numerically the conditions of the theorem in the
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results agree with three figures with the best numerical values. We point out however
that the numerical methods developed here work also in examples which have not been
accessible to other more conventional methods.

The verification of the estimates presented here is not completely rigorous, since
we do not control the round-off error, nor the truncation error of several operations
in Fourier space. We hope that the positive step taken in this paper will stimulate the
complete computer-assisted proof. Making explicit the condition numbers and verifying
the conditions (even in an incomplete way) will be valuable for the computation close
to breakdown.
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We make available the approximate solutions, the highly efficient algorithm
(quadratic convergence, low storage requirements, low operation count per step) to
compute them (incorporating high precision based on the MPFR library) and the routines
used to verify the applicability of the theorem.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The goal of this paper is to develop a methodology to compute efficiently and reliably quasi-periodic solutions in
concrete systems and to provide an analytical estimate of their breakdown threshold (compare with [1-11]).

The KAM theory, started in [12-14], solved the outstanding problem of establishing the persistence of quasi-periodic
orbits under small perturbations. An important motivation was represented by problems in celestial mechanics [15]. By
now, KAM theory has developed into a very useful paradigm. Surveys of KAM theory and its applications are: [3,15-21].

At the beginning of the theory, the quantitative requirements for applicability led to unrealistic smallness estimates.
In a well known calculation [22], M. Hénon made a preliminary study of the parameters required to apply the theorem to
the three-body problem [13] and obtained that the small parameter (representing the Jupiter—-Sun mass-ratio) should be
smaller tshan 10748, whereas the real value is about 10>, Discouraged by this result, the often quoted conclusion of [22]
was that

“Ainsi, ces théorémes, bien que d'un trés grand intérét théorique, ne semblent pas pouvoir en leur état actuel étre appliqués
d des problémes pratiques”.

The statement of [22] is perfectly correct as stated, but removing the words we have set in bold one obtains a statement
invalid 50 years after the original statement.

The first attempts to study the problem numerically were disappointing. The persistence of quasi-periodic solutions
indeed depends on rather high regularity of the perturbation (the smoothness requirements of some versions of
KAM theory are optimal, [23-25]) and attempts based on low regularity discretizations such as finite elements were
discouraging [26]. Furthermore, lacking a good theory, one can be misled by spurious solutions and it is hard to believe
the true solutions.

By the late 70’s it was folklore belief that the estimates of KAM theory were essentially optimal (the estimates for a
step were optimal and it was expected that they could be saturated simultaneously). By now, the situation has changed
drastically: general bounds based on different schemes [23,27-29] lead to substantially better bounds, than those coming
from older methods.

More related to the present paper, in recent times there has been a rapid development in proofs of KAM theorems in
the “a-posteriori” format common in numerical analysis; a general format of an a-posteriori theorem is given below.

Theorem Format 1. Let X; C Xy be Banach spaces and U C Xy an open set. Consider the map
F:U—> Xy
assume that there are functionals my, ..., m, : U — R™ and xy € U, such that:

(1) IF(x0)llx, < & for some € € R;
(2) mi(xg) < My, ..., Ma(Xg) < My for some condition numbers My, ..., My;
(3) & < &*(My, ..., My), where &* is an explicit function of the condition numbers.

Then, there exists an x* € Xy such that F(x*) = 0 and ||Xo — X*||x, < Cm,,...m,& for some positive constant Cy, ... m,-

One can formulate several classical KAM theorems in this format. One needs to choose an appropriate functional 7
whose zeros imply the existence of quasi-periodic solutions (in such applications x is an embedding that belongs to a
suitable space of functions, see 2.1.1). Notice that we do not need that the system is close to integrable and we do not
require any global assumption on the map, but only some functionals evaluated in the approximate solution.

Another important development is that some of the proofs in a-posteriori theorems have been established by studying
the convergence of numerically efficient methods, which are usually based on developing a Newton method that uses the
geometric properties to take advantage of remarkable cancellations. Note that to develop efficient algorithms, there are
several rather stringent requirements that are not present in more theoretical treatments (for example, it is important to
reduce the number of variables involved; the theoretically very powerful transformation theory is difficult to implement)
and need to consider methods to discretize functions (note that KAM theory requires high regularity; hence, discretization
methods, such as finite elements that do not represent well high derivatives, are not practical).

5 “It does not seem that these theorems, though having a great theoretical interest, can be applied, in their present state, to practical
problems” [22].
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Such Newton-like algorithms are different from the standard Newton’s method in that the inverse derivative is an
unbounded operator. Hence the steps are forced to consider corrections which are less regular than the original function.
The standard interval Newton’s method [30] does not apply in this context, since it assumes that the iterative step maps
elements of a function space into another function in the same space. Many KAM theorems (based in C“ smoothing) are
based on considering steps which are defined from one Banach space to another (these Banach spaces consist of analytic
functions defined in decreasing domains). The proof of convergence depends crucially on the sequence of domains losses
considered.

There are different geometric properties that lead to a KAM theory (see [31,32] for a discussion of the classical contexts
- general, symplectic, volume preserving, reversible - formulated in a format which is not a-posteriori). Other more
modern contexts are presymplectic [33], or closer to the goals of this paper, conformally symplectic [34].

A remarkable result on the existence of normally hyperbolic invariant tori carrying quasi-periodic motions of prefixed
frequencies has been presented in [35,36], where smooth families of real-analytic maps are considered. The papers [35,36]
are based on the theory of normally hyperbolic invariant manifolds [37,38] and (dissipative) KAM theory [31,32], but they
do not assume the presence of any geometrical structure.

Notice that an a-posteriori theorem allows to validate the existence of an approximate solution, independently of how
it has been obtained.

As it turns out, there exist computer science techniques (interval analysis, see [39-41]) which allow one to perform
rigorous bounds mechanically. The coupling of an a-posteriori theorem with interval arithmetic has led to many computer
assistgd proofs of mathematically relevant problems (see, in particular, [42]) that are reduced to the existence of a fixed
point®.

Therefore, a way to prove the existence of a quasi-periodic solution has different stages, each of them requiring a
different methodology.

(A) For a fixed geometric context, prove an a-posteriori KAM theorem.

(B) Make sure that the conditions of the a-posteriori theorem in part A are made explicit and computable.
(C) Produce approximate solutions.

(D) Verify the conditions given in B) on the approximate solutions produced in C).

Point A) of the above strategy was implemented for two dimensional symplectic mappings in [43] (which also estab-
lished upper and lower bounds of Siegel radius) and, more recently, [7] (which gives a very innovative implementation of
a-posteriori KAM estimates). The technique of [7] is successfully applied to the standard map, obtaining computer-assisted
estimates in agreement of 99.996% with numerical upper bounds. The paper [7] has also considered applications to the
non-twist standard map and to the Froeschlé map.

Part A) requires the traditional methods of analysis, but the goals should be an explicit formulation that makes efficient
the other parts of the strategy. Notably, the functional equations should involve functions of as little variables as possible”.

Many of the more modern proofs in Part A) are based in describing an iterative process and showing it converges when
started on a sufficiently approximate solution. For our case, the proof presented in [34] is particularly well suited for
numerical applications. It leads to a quadratically convergent algorithm that requires little storage and a small operation
count per step. The algorithm can be used as the basis of a continuation method, and also a practical method to compute
the breakdown.

Part B) is, in principle, straightforward given the theoretical work already done in [34]; a high quality implementation
requires taking advantage of the cancellations and organizing the estimates very efficiently.

Part C) is very traditional in numerical analysis and can be accomplished in many ways, for example discretizing
the invariance equation, but we stress that there are some interactions with the other parts. Notably, the high accuracy
calculation is based on implementing the algorithm in [34]. Note that if we discretize the functions considered in N
elements, the algorithm requires storage O(N) and a (quadratically convergent) step requires O(N log(N)) operations. This
efficiency allows us to take N = 2'® and use extended precision using only a today’s desktop computer. Clearly, if storage
was O(N?) as in standard “big matrix” Newton methods, storage would have been challenging in today’s computers.

To have an effective part D), the discretization used has to be such that it allows the evaluation of the norms involved.
As indicated above, the KAM theorem requires derivatives of rather high order, so it seems that a Fourier discretization
could be effective if we consider norms that can be read from the Fourier coefficients.

Part D) requires a finite number of operations, but the number is too large to be done by hand. The most delicate
estimates concern the error incurred by the initial approximation and the condition numbers. Finally, one needs to verify
a much smaller (about a dozen) of inequalities that ensure that any solution with these initial error and condition numbers
is the starting point of a convergent iterative method.

The goal of this paper is to present an implementation of a substantial part of this strategy for conformally symplectic
mappings and obtain concrete results for an emblematic example that has been considered many times in the literature:

6 we note, however, that, besides computer assisted proofs based on fixed point theorems, there are other computer assisted proofs which do
not involve fixed points theorems, but which are based on other arguments (exclusion of matches, algebraic operations, etc.).

7 The difficulty of dealing with functions grows very fast with the number of variables. This is known as the curse of dimensionality.

3
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the dissipative standard map. We give explicit estimates on the numerical validation of the golden mean attractor,
providing results for values of the parameters in agreement within 99.94% of the value obtained using numerical
results [44]. We remark that the same strategy has been used in [45] (see also [46,47]), showing an application to a
problem of interest in Celestial Mechanics: the spin-orbit problem with tidal torque.

Even if the present implementation to the standard map goes beyond the results in straightforward numerical
computations, we are not claiming it is a complete computer-assisted proof. The caveats are that in part D), we have
not provided rigorous estimates for the truncation of the evaluation of the error and we have not used interval arithmetic
to control the round-off error. We have performed the calculations with more than 100 digits of precision and checked
that changing the number of figures carried does not affect the estimates of the error.

Although this paper does not accomplish a complete proof, we hope that, by providing extremely fast and efficient
algorithms, making explicit the condition numbers and the inequalities that need to be checked, it goes significantly
beyond the usual numerical analysis practices. Of course, we hope to complete the proof or stimulate interest of others.
Note that the paper contains as supplements the implementation of the calculation of the solutions in extended precision
as well as the solutions themselves.

This paper is organized as follows. In Section 2, we present some standard preliminaries. In Section 3 we state a very
explicit KAM theorem in an a-posteriori format, Theorem 10 which implements part A) of the strategy indicated above.
The proof of Theorem 10 is given in Section 4, see also Appendix B. The KAM estimates for the standard map are presented
in Section 5.

2. Preliminaries

In this Section, we collect several notions that play a role in our results. The material in Section 2.1 concerns standard
properties of analytic functions and can be used mainly as a reference for the notation. In Section 2.2 we introduce
conformally symplectic systems, which are our main geometric assumption. In Section 2.3 we introduce the concrete
model we will study.

2.1. Norms and preliminary lemmas

In this Section we need to specify the norms (see Section 2.1.1), to estimate the composition of functions (see
Section 2.1.2), to bound derivatives (see Section 2.1.3), to introduce Diophantine numbers (see Section 2.1.4), and to give
estimates of a cohomology equation associated to the linearization of the invariance equation (see Section 2.1.5).

2.1.1. Norms
U1

For a vector v = (
v2

. a a .
) € R? and for a matrix A = ( a“ au > € R? x R?, we define the norms as
21 ax

Il = [oil + lval . Al = max] layi| + 1], lara] +laz] |
We start by introducing for p > 0 the following complex extensions of a torus T, of a set B and of the manifold M = Bx T:

T,={z=x+iyeC/Z: x€T, |yl <p},
B,={z=x+iyeC: xeB, |yl <p},
M, =B, xT,.

We denote by A, the set of functions which are analytic in Int(T,) and that extend continuously to the boundary of T,,.
We endow A, with the norm

Ifll, = sup f(z)] ,

zeT),

that makes it into a Banach space.
For a domain ¢ C C x C\Z, let F € A¢ be an analytic function on C and let

IFllc = sup |F(z)] .
zeC
Then, for a vector valued function f = (f1, f>, ..., fa), n > 1, we define the norm
IIfIIc=Sug(lf1|+lfz|+-~-+Lfn|)- (2.1)
A4S
We notice that, in practical applications, it is convenient to use the following upper bound, instead of (2.1):

Ifllc <suplfil +suplfzl + - +suplfal = llfillc + If2llc + -+ fallc -
zeC zeC zeC

4
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By the maximum principle, it suffices to compute the supremum over the boundary of the domain:

Ifllc = sup [fil + sup If2] + - - - + sup [fal .
zedC zedC

For an n; x n, matrix valued function F we define

IFllc = sup|F(z)| ,
zeC

that we can bound as

IFllc < max Zsupml 2)l, Zsupmz Zsupmnz } ;

as before, we can use the maximum principle to compute the supremum on the boundary as

IFllc < max Zsup IFa(2)l, Zsup |Fa(z Zsup |Finy (2 } :
i=1 ze

i1 zedC

Notice that if F is a matrix valued function and f is a vector valued function, then one has

IFflle < IFllc Ifllc -

If, instead of A¢, we have a function defined on A4,, we introduce the corresponding norms as

IFll, = sup |F(z)|

zeTyp

for a function F € A, and

IF|l, < max { > sup [Fo(2) Z sup IFin(z Z sup [Fin (2

for an n; x n, matrix valued function with components in A,.

2.1.2. Composition lemma
Composition of two functions is an important operation in dynamical systems, which enters our main functional
equation, see (2.8) below.

Lemma 2. Let F € Ac be an analytic function on a domain ¢ C C x C/Z.
Assume that the function g is such that g(T,) C C and that the components of g are in A, with p > 0. Then, Fog € A,
and

IFogly, < IFll, -
If, furthermore, we have that dist(g(A,), C x C\Z \ C) = n > 0, then we have:

(i) For all h € A, with ||h|, < n/4, we can define F o (g + h).
(ii) We have:

IFo(g+h)—Fogl,< sup (IDF(2)) lIhl, .
z,dist(z,C)<n/4

1
IFo(g+h)—Fog—DFoghl, < sup (ID*F(2)]) [Ih]l? .
z,dist(z,C)<n/4

2.1.3. Cauchy estimates on the derivatives
Estimates on the derivatives will be needed throughout the whole proof of the main result (Theorem 10).

Lemma 3. For a function h € A,, we have the following estimate on the first derivative on a smaller domain:
IDhl,—s < 87" (I, .
where 0 < § < p. For the £-th order derivatives with £ > 1, one has:

IDh|l,—s < €' 8¢ |Ihll,
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2.1.4. Diophantine numbers
The following definition is standard in number theory and appears frequently in KAM theory.

Definition 4. Llet w € R, T > 1, v > 1. We say that w is Diophantine of class r and constant v, if the following inequality
is satisfied:
lwk —q| > v|k|™", qgeZ, keZ\{0}. (2.2)
The set of Diophantine numbers satisfying (2.2) is denoted by D(v, t). The union over v > 0 of the sets D(v, t) has
full Lebesgue measure in R.
2.1.5. Estimates on the cohomology equation
Given any real-analytic function n, we consider the following cohomology equation for A € R:
00 + w) — Ap(0) = n(d), feT. (2.3)

The solution of an equation of the form (2.3) will be an essential ingredient of the proof, see e.g. (4.5) below. The two
following Lemmas show that there is one real-analytic function ¢, which is the solution of (2.3). Precisely, Lemma 5 applies
for [A\| # 1, w € R and it provides an estimate on the solution ¢ which is not uniform in A, while Lemma 6 applies to
any XA and any » Diophantine, and it provides an estimate on the solution which is uniform in A.

Lemma 5. Assume A € C, |A| # 1, € R. Then, given any real-analytic function n, there is one real-analytic function ¢
satisfying (2.3). Furthermore, the following estimate holds:

-1
lell, < | 1A= 1] linll, -
Moreover, one can bound the derivatives of ¢ with respect to A as

' J! .
||D’)L<P||p =< W Inll, . j=>1.

Lemma 6. Consider (2.3) for 1 € [AO,AEI] for some 0 < Ag < 1 and let € D(v, T). Assume that n € A,, p > 0 and that

/mmw:o.
T

Then, there is one and only one solution of (2.3) with zero average: fT ¢(0)d6 = 0. Furthermore, if ¢ € A,_s for 0 < § < p,
then we have

l@llp—s < Cov "8 lnll, , (24)
where
1 re 1
Co= il @c+ 1) (2.5)
(2m) 27(14A) 3

The proof of Lemma 5 is given in [34], while that of Lemma 6 with the constant Cy as in (2.5) is given in Appendix A.
2.2. Conformally symplectic systems

In this Section we give the definition of conformally symplectic systems for two-dimensional maps. Indeed, the
dissipative standard map that we will introduce in Section 2.3 and that we will consider throughout this paper, is a
two-dimensional, conformally symplectic map. A more general definition of a conformally symplectic system in the
n-dimensional case is provided in [34].

Definition 7. Let M be an analytic symplectic manifold with M = B x T, where B C R is an open, simply connected
domain with a smooth boundary. Let £2 be the symplectic form associated to M. Let f be a diffeomorphism defined on
the phase space M. The diffeomorphism f is conformally symplectic, if there exists a function A : M — R such that

f 2 =12,
where f* denotes the pull-back of f.

We remark that when n = 1, then A can be a function of the coordinates, while it is shown [48] that for n > 2, then
A has to be constant.

In the following discussion, we will always assume that A is a constant, as in the model (2.6) below, which is the main
goal of the present work.
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2.3. A specific model

In this work we consider a specific 1-parameter family f,, of two-dimensional, conformally symplectic maps, known
as the dissipative standard map:

I' = Al 4 p + — sin2rg) ,
2

¢ =9+, (2.6)

where I € B C R with B as in Definition 7, ¢ € T, ¢ € Ry, A € Ry, i € R. This model has been studied both numerically
and theoretically in the literature. For example [49-51] consider the breakdown and conjecture universality properties;
[44] studies the breakdown even for complex values of the parameters; [52] studies the invariant bundles near the circles
and find scaling properties at breakdown; [53,54] study the domains of analyticity in the limit of small dissipation.

To fix some terminology, we shall refer to ¢ as the perturbing parameter, to A as the dissipative parameter, and to u as
the drift parameter.

Notice that the Jacobian of the mapping (2.6) is equal to A, so that the mapping is contractive for A < 1, volume
expanding for A > 1 and it is symplectic for » = 1.

We denote by (-, -) the Euclidean scalar product. We remark that if ] = J(x) is the matrix representing £2 at x in the
Euclidean metric, namely £2,(u, v) = (u, J(x)v) for any u, v € R, then for the mapping (2.6), J is the following constant
matrix:

=(%5) 27)

The map (2.6) is conformally symplectic of factor A for the standard symplectic form 2.

2.3.1. Formulation of the problem of an invariant attractor

We proceed to provide the definition of a KAM attractor with frequency w.

Having fixed a value of the dissipative parameter, our goal will be to prove the persistence of invariant attractors
associated to (2.6) for non-zero values of the perturbing parameter. To this end, we need to require that the frequency
of the attractor, say w € R, is Diophantine according to Definition (2.2). We note that this will require adjusting the drift
parameter u.

Definition 8. Given a family of conformally symplectic maps f, : M — M, a KAM attractor with frequency w is an
invariant torus which can be described by an embedding K : T — M, such that the following invariance equation is
satisfied for all 0 € T :

fuoK(0)=K(6 +w). (2.8)

The Eq. (2.8) will be the key of our statements; it includes both the embedding K and the parameter x as unknowns.

Remark 9. It is interesting to notice that for ¢ = 0 the embedding can be chosen as K(6) = (8, w). In this case, the
mapping (2.6) admits a natural attractor with frequency w = u/(1 — X). This simple observation highlights the role of
the drift © and its relation to the frequency w.

3. A KAM theorem

In this Section we state the main mathematical result, Theorem 10, which is a KAM result in the a-posteriori format
described in Theorem Format 1. Theorem 10 is a constructive version of Theorem 20 in [34] and it specifies the condition
numbers to be measured in the approximate solution as well as the inequalities that imply the existence of a KAM
attractor. It shows that, if there is a function Ko and a number o that, when substituted in (2.8), give a residual (measured
in a norm that we specify) which is smaller than a function of the condition numbers, then there is a solution of (2.8)
close (in some norm that we specify) to Ky, to.

We also note that the method of proof, which is based on constructing an iterative procedure, leads to a very efficient
algorithm. The focus of this paper will be in giving explicit estimates and showing that the hypotheses of the theorem
are satisfied numerically in the example (2.6) for explicit values of ¢, A. In particular, we will verify numerically that the
estimates of the theorem are satisfied taking a numerically computed solution as the approximate solution (see Section 5).

For an embedding Ky = Ky(0) and a frequency w, we start by introducing some auxiliary quantities defined as follows:

Mo(6) = [DKo(8) | ]~ DKo(6)No(6)1
So(8) = ((DKoNo) o T,) " (8)Df,u, © Ko(6) "' DKo(8)No(8) |
No(8) = (DKo(68)"DKo(8))™" . (3.1)

where the superscript T denotes the transposition and T, denotes the shift by w: for a function P = P(6), then
(PoT,)0) =P+ w).
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Theorem 10.

Consider a family f,, : M — M of conformally symplectic mappings with conformal factor 0 < A < 1, defined

on the manifold M = B x T with B C R an open, simply connected domain with a smooth boundary. Let the mappings f,, be

analytic on an

open connected domain C C C x C/Z. Let the following assumptions be satisfied.

H1 Let w € D(v, t) as in (2.2).
H2 There exists an approximate solution (Ko, po) with Ky € A,, for some py > 0 and with g € A, A C R open. Let
(Ko, mo) be such that (2.8) is satisfied up to an error function Eg = Eo(6), namely

fllo o Ko(@) - Kg(9 + a)) = EQ(@) .

Let gq denote the size of the error function, i.e.

€0 = [|Eollpy -

H3 Assume that the following non-degeneracy condition holds:

S SEPLAD
dger S0 Sl +AY )
A—1 AD)

where Sg is given in (3.1), ZE)”, ZEJZ) denote the first and second elements of the vector ZO = Mo‘l o TyD,fuy © Ko, (Bro )0 is the
solution (with zero average in the A = 1 case) of the equation A(By)° — (Byo)° o T, = —(AEJZ))O, where (AEJZ))0 denotes the zero
average part of ABZ). Denote by Tq the twist constant defined as

_ — =T\ !
To = ( K SO(B”O)OMS)>
A

I

H4 Assume there exists { > 0, so that

dist(uo, 0A) = ¢, dist(Ko(T,, ), 9C) > ¢ .
H5 Let 0 < 8g < po. Let «,, = 4Co with Coo constant (whose explicit expression is given in Appendix C). Let the quantities
Qo, Quo, Qzp0, Q0. Qro be defined as
Qo = sup [Dfy,,(2)] .
zeC
Quo = sup |Dpfuy(2)l
zeC
Qz;/_O = sup |D;LDfp.(Z)| ,
ZeC, WeA,|—pugl <2k 80
Quuo = sup ID%fu(2)]
ZeC, WEA,|;—fugl <2k 80
1
QEO = 5 maxl”DzEOHpo—S(y ||DDHE0||00—30’ ”DIZLEO”,O()—&)] . (32)

Assume that g, satisfies the following smallness conditions for suitable real constants Cyo, Cgo, Ca0, Cs0, Cor Cwo, Cw, Cr (see
Appendix C for their explicit expressions):

Cov '8y e0 < ¢, (3.3)
M v ? 850 < 1, (34)
4Chv 8,780 < ¢ (3.5)
4Co080 < &, (3.6)
INollpy (2IIDKollpy + D) Dk < 1 (3.7)
4Q2,0C5080 < Qo , (3.8)
4Q,0Co080 < Quo (3.9)
Co Dk < GCoo » (3.10)
Dk (Cwo + IMoll pyCw + CwDx) < Cyo , (3.11)
D (Cw vy T + CR) < Ceo, (3.12)
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where Dy is defined as
D =4Cp v '8, e . (3.13)
Then, there exists an exact solution (K., w.) of (2.8) such that
fueoKe—KeoT,=0.
The quantities K, 1. are close to the approximate solution, since one has
IKe — Koll pg—so < 4Caov™" 85" IEoll g -
lte — 1ol = 4Co0 lIEoll g - (3.14)

In [34] there are two versions of Theorem 10. One version which applies for any value A € [A~!, A] including the
symplectic case A = 1 (the uniform version); another version which works for a fixed value of A € R\{1} (the non-
uniform version), which is the one we have used as the basis of the results in this paper, where the constants involved
depend on A. Many KAM theorems (based on C” smoothing) are based on considering steps which are defined from one
Banach space to another (these Banach spaces consist of analytic functions defined in decreasing domains). The proof
of convergence depends crucially on the sequence of domain losses considered. The price that [34] pays to obtain the
uniform version is that the small divisor estimates need to be used twice, rather than once. Hence the powers of §, that
appears in (3.14), are higher in the uniform case.

The explicit expressions of the constants entering in the conditions (3.3)-(3.12) are obtained by implementing
constructively the KAM proof presented in [34]. In Section 5 the family f, will be taken as the dissipative standard map
defined in (2.6); then, the explicit expressions for the constants - provided in Appendix C - will allow us to compute
concrete values for gy, once we fix the frequency w and the conformal factor A. Therefore, the conditions (3.3)-(3.12) will
ensure the existence of an invariant attractor with fixed frequency w and for a given conformal factor A.

Remark 11. For any value of A with |A| < 1, Theorem 10 also ensures that the quasi-periodic solution provided by the
manifold K,(T) is a local attractor and that the dynamics on this attractor is analytically conjugated to a rigid rotation.
We also mention that Theorem 10 implies regularity in the parameters, as already stated in [34], which discusses the
Lipschitz dependence of the solution with respect to the drift (see Section 5.1.3 of [34]) and the differentiability of the
drift with respect to parameters (see Section 10.3 of [34]).

Remark 12. An interesting question is how it is possible to use the computer to verify hypotheses that involve irrational
numbers and indeed the Diophantine properties. After all, the standard computer numbers are only rational numbers.
The answer is that the a-posteriori theorem uses the Diophantine properties and that this theorem is indeed given
a traditional proof. To verify the hypothesis, we compute numerically ||f, o K — K o T, || where wy is indeed a rational
number.
It is clear that for £ € (wy, w):

Ifu oK —KoT,l| < lIfuoK —KoTyll+[[KoT,, —KoT,l
S fu oK =Ko Tyl + IIDK o T¢ || | — wp .

100 and that DK is a number of order 1. Hence, the last term does not affect too

In our case, we see that |w — wg| < 10~
much the final result.
Of course, implementing interval arithmetic, one can also use an interval that contains the desired frequency and obtain

estimates for the error of the invariance valid uniformly for all w in this interval.
4. A constructive version of the proof of Theorem 10

We note that in the statement of Theorem 10 (and in the subsequent text) all the constants are given explicitly (see
Appendix C). There are only a few dozen of conditions to check; all these conditions are easy algebraic expressions that
can be checked with a computer.

The proof of Theorem 10 is presented in detail in [34]. However, in [34] the proof was given for a general case and no
explicit estimates on the constants were provided, which are instead given in this Section.

We anticipate that it is easy to see that in the two-dimensional case of the mapping (2.6) all invariant curves are
Lagrangian; this observation will simplify the proof presented in Section 4 with respect to that developed in [34].

4.1. Estimate on the error Ry

Let (Ko, o) be an approximate solution of the invariance equation (2.8) and let Ey = Ey(6) be the associated error
function. In coordinates, the Lagrangian condition K*£2 = 0 becomes

DK, (8) ] DKo(6) =0,
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which shows that the tangent space can be decomposed as,

Range (DI(O(O)) @® Range (]‘1DK0(6)>.
Up to a remainder function Ry = Ry(8), the following identity is satisfied:

Df,y o Ko(6) Mo(6) = Mo(6 + o) (ld 5;’%?) + Ro(6) (4.1)

with My and S as in (3.1). Using that any torus associated to a two-dimensional map is always Lagrangian, one obtains

IRoll oy = IDEoll, - (4.2)
Using Cauchy estimates, a bound on Ry in (4.2) is given by

IRollpg—50 < 85" IEolly - (43)
4.2. Estimates for the increment in the steps

We proceed to find some corrections Wy and oq such that, setting K; = Ko + MgW,, 1 = ro + 0o, one has that the
new approximation (K;, 1) satisfies the following invariance equation:

fuy 0 K1(0) — Kq1(0 + w) = E1(0)

for some error function E; = E{(6). The requirement on E; is that its norm is quadratically smaller than the norm of the
initial approximation Ey. This can be obtained provided that the following equation is satisfied:

Dfyi, © Ko(0) Mo(0)Wo(8) — Mo(6 + @) Wo(0 + @) + Df,, o Ko(8)oo = —Eo(6) . (4.4)
Using (4.1), (4.4) and neglecting higher order terms, one obtains two cohomology equations with constant coefficients for
W)y and op. More precisely, writing Wy in components as Wy = (W((,U, Wéz)), such cohomological equations are given by

W' (6) = Wg (6 + w) = —E(6) — So(0)W;™(8) — Ay (6) o0

AWP0) = W20 + ) = _Eg (9) —A%6) 00 (4.5)

with Sy given in (3.1), while Eo, Zo are defined as

Eo=(EVEP)=M; oT,Ey,  Ap=M;" 0T, Dufu, o Ko (4.6)

where we denote by A“) A(2 the first and second elements of the vector ZO.
We remark that the flrst equation in (4.5) involves small divisors. In fact, the Fourier expansion of the Lh.s. of the first
equation in (4.5) is given by

W(()l)(g) 9 +w) Z W(l) 2mk9 kaa)) )
keZ

Then, we notice that for k = 0 there appears the zero factor 1 — e?”® = 0. On the other hand, the second equation in
(4.5) is always solvable for any || z—é 1 by a contraction mapping argument.

Let us split WSZ as WSZ WO + (W(2 )°, where the first term denotes the average of W ) and the second term
the zero-average part. We remark that the average of W(” can be set to zero without loss of generality. On the other

. . - . 2 .
hand, computing the averages of the cohomological equations (4.5), one can determine WE, ), oo by solving the system of
equations

So SolBro) + Ay ( w ) _( ~So(Ba)® — E" (4.7)
A—1 AD %0 —E ’

where we have split (W(()Z))0 as (Wéz))O = (Bao)® + 00(Byo)°, where (Bg)°, (Byo)° are the zero average solutions of

MBao)” — (Bao) o T, = —(Eg ) ,

M(Boo)* — (Bro)’ o T, = —(Ag)° (48)
with (E(()Z))O, (;\“82))0 denoting the zero average parts of EP, ZEJZ). After solving (4.7), one can proceed to solve (4.5) for the
zero average parts of W(()”, W(()z). Estimates on the corrections Wy and o are given by the following result.

10



R.C. Calleja, A. Celletti and R. de la Llave Communications in Nonlinear Science and Numerical Simulation 106 (2022) 106111

Lemma 13. Let Ky € Ay sy, Ko(Tp,) C domain (f,), dist(Ko(T,, ), 9( domain(f,))) = ¢ > 0 with py, 8o, ¢ as in Theorem 10.
For any |\| # 1 we have
Wollpg—so < Cwov™" 85 lIEollpg -

|O-0| S C{TO ||EO||/)0 ’ (4'9)

where

Coo =T [ I =11 ( 10l + 1) + 110l | 1M g

1
Al = 1]

_ 1 _
Cuzo = 275 (=g IS0l + 1) Quo 1M1,

1
Cwyo = 7(1 + Cso o) IMg Ml
2 ||)L|_-1| QM 0 Po

Cro = Co ISolls(Cwyo + Cio) + M5y + QuolMg o]

Cwo = Cwyo + (Cwyo + Cuyo)V85 (4.10)

Proof. Let Q.o be an upper bound on the norm of D, f,,, as in (3.2). Let ZO be defined as in (4.6); then, we have:
1Aoll sy < QuollMy 'l -

Recalling the definition of Sy in (3.1), we obtain
ISoll o <Je Qo DKo% INo1Z, <Je Qo IKollZ, 45, INolIZ, 857

where we used the estimate ||DKyll,, < [IKoll pg+50 o ! and where J, denotes the norm of the symplectic matrix J in (2.7)
(the norm of J~! is again bounded by J.); with the choice of the norms in Section 2.1.1 it is J, = 1. We notice that, recalling
the definition of So and My in (3.1), one can compute directly the functions and evaluate their norm.

For any |A| # 1, we have the estimates given below, which follow from (4.6), (4.7), (4.8):

4(2) —_— ~ ~1 ~)
Wo I < 76(150(Bi0)® + g g 1EG sy + 1S0(Ba0)® + Eg g 135 1)

A

1 —_
70| (g ISk + 1) QuoliM I, 1ol

+

(ﬁnsoum 1) 1512, NEol g Qo

Cwo lEollpg -

00l = To( 13 = 11 150(Ba0)® + 5l + 150l 1ES 1)

Cao 11Eoll o

with EWZO, Cyo0 as in (4.10). Then, using Lemma 5 and Lemma 6, we have:
WPy < Cugo B0l »
WSl po—s0 < Cwyo v™'85 " 1Eoll g

with Cw,0, Cw,0 as in (4.10). In conclusion, recalling the definition of Cy in (4.10), we obtain (4.9). O

IA

A

IA

4.3. Estimates for the convergence of the iterative step

Let us define the error functional

ElKo, ol =fuy 0 Ko —KooT, .

Let
(Ao, 00) = —nlKo, polko ,

where Ay = —(n[Ko, olEo)1, oo = —(n[Ko, olEo)2. Then, using that Aq = MW, one has:
1Ko, tolEoll pg—s55 < IMoll o IWoll pg—s, + 100l < Cyov™ "85 "l Eollpg

where
Cho = CwollMoll py + Coovdg - (4.11)

11
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In this Section we give quadratic estimates on the norm of DE[Ko, o] Ao+ D, E[Ko, poloo +Eo with Aqg = MoWp; these
estimates are needed to bound the error of the new approximate solution as it will be done in Section 4.4.

Lemma 14. We have the following estimate:

IEo + DE[Ko, 101A0 + Dy E[Ko, 101001l pp—50, < Cwov ™' 85" ||Eo||f,O .

Proof. Taking into account that Wy = M, ! Ag, from (7.15) in [34] we have that,
Eo + DE[Ko, polAg + D, E[Ko, poloo = RoW .
From Lemma 13 and (4.3), we obtain that

IEo + DEIKo. tolAo + Dy ElKo, poloollpg—s, < Cwov™ '8 “llEoll?, - O
4.4. Estimates for the error of the new solution
We proceed to bound the error corresponding to the new approximate solution.

Lemma 15. Let n[Ky, po] be as in Lemma 14 and let ¢ > 0 be such that
dist(r20,04) > ¢, [Ell gk dist(Ko(Tpy), 9C) > ¢ .
Assume that
Coo v "85 " IEollpy < ¢ < 1 (4.12)
with C,o as in (4.11). Then, we obtain the following estimate for the error:
IE[Ko + Ao. o + 00lll pg—sp < Ceo v >85> ||Eo||,zj0 ,
where
Cro = QeolIMoll?,Clo + C2ov?827) .
Ceo = Cwovdy ™™ + Cro - (4.13)
Proof. We define the remainder of the Taylor series expansion as
RI[(Ko, o), (Kg, o)l = EIKG, ol — E[Ko, ol — DEKo, pol(Kg — Ko) — D E[Ko, pol(pg — o) -
Then, we can write
E[Ko + Ao, po + 00] = Eo + DE[Ko, polAo + D, E[Ko, oloo + RI(Ko, o), (Ko + Ao, to + 00)] -
From Lemma 13 and the definition of Qg in (3.2), we obtain
IRllg-s0 < Qeo (14012, s, + lo0) = Crov 2857 1ol

with Crg as in (4.13). Then, from Lemma 14 we conclude that

A

I€1Ko + Ao, 120 + 00lllpg—s, < Cwov ™85 IIEoll2, + Crov™ 28, IIEoll?,

202 2
Ceo v "8, "" IIEoll%,

IA

with Cgg as in (4.13). Notice that (4.12) guarantees that

||A0”p()—50 < ; s |00| <C .0
4.5. Analytic convergence

In this Section we prove that if we start with a small enough error, it is possible to repeat indefinitely the algorithm
and that iterating the algorithm, we obtain a sequence of approximate solutions which converge to the true solution of
the invariance equation (2.8).

Again, let (Ko, j10) be the initial approximate solution with Ky € A, for some py > 0 as in Theorem 10 and define the
sequence of parameters {85}, {on}, h > 0, as

Lo
ShEﬁ, Pht1 = Ph — Op , h>0.

12
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With this choice of parameters the domain of analyticity where the true solution is defined will be a non-empty domain
with size py, given by

[o¢]
o o
Poozpo—zzjjzﬂo—?>0«
j=0

Let (Ky, up), h > 1, be the approximate solution constructed by finding at each step the corrections (W, op,) solving
the analogous of the cohomological equations (4.5) for h = 0. To make the notation precise, all quantities associated to
(Kn, ) will carry a subindex h, indicating the step of the algorithm. Define

en = 1EKn, wn)ll oy »
and let us introduce the following quantities:
dn = 1 Anllpprs Vb = DAl pyyy»  Sh = lon] -
By Lemma 13 we have the following inequalities:
dn < Cav '8, en, v <Cav '8, Ven,  sn < Conen,
where
Can = CwnlIMal p, (4.14)

where the quantities Cyy, C, are obtained as follows:

1 -
Con =T 11 = (g7 15wl 1) + 1Sl | 194

_ 1 _
Cogn = 270 (7 ISl + 1) QM1

1
Curyn = ———— (14 Con Qun ) IM; I,
2 [IA] = 1] Q# h o

Cu = Col ISl (Co + o) + My, + QulIM; i, o]
Cwh = Cwyn + (Cwyn + Cyn)VSE (4.15)
Remark 16. By Lemma 15 one has
eni1 < Cenv 28, 7"}

with

Crh
1
Qen = 3 maX{llDZEhllp,,fah, IDD,.Enll o3, » “D/z/,Eh”pthh]

Cen = Cumvd, "™ + Cra - (4.16)

Qen (IMy 12, Cipy + C20%87)

The results of Theorem 10 are based on the following proposition.

Proposition 17. Let the constants Cqg, Cy0, Ceo be as in (4.14), (4.15), (4.16) with h = 0. Define the following quantities:
Kg = 4Cd0\)7150_r . Ky = 4C,70 . Ko = 22r+1 Cgovizaazt . (4.17)

Assume that the following conditions are satisfied:

273 kpg0 < 1, (4.18)
kx€o < ¢, (4.19)
Ky €0 <, (4.20)
INoll oy (2IIDKo |l 5y + Dk) Dx < 1 (4.21)
Co Dk < GCso » (4.22)
Dic (Cuwvg ™™ +Cr) = Ceo . (423)

13
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Dy (Cwo + IMoll joCw + CwDx) < Cyo (4.24)
4Q2,0Cs080 < Qo , (4.25)
4QMMOC0080 < Qu.O , (426)

where the constants C,, Cw, Cr, Cwo, Dx are defined in Appendix C. Then, for all integers h > 0 the following inequalities
(p1; h), (p2; h), (p3; h) hold:

(p1; h)

IKn — Kollp, < kxéo <¢, [h — ol < ku€o < (4.27)
(p2; h)

en < (kogo) e0 ;
(p3; h)

Can < 2Cq0 Con < 2G50 , Cen < 2Cso .

The proof of Proposition 17 is quite long (see Appendix B), but it is well structured and broken into small steps that
can be easily verified. Proposition 17 allows to give the proof of Theorem 10 by analytic smoothing: at each step, the
corrections (Wj, o) yield increasingly approximate solutions, defined on smaller analyticity domains. The loss of domain
is such that the exact solution is defined on a domain with positive radius of analyticity.

Proof (of Theorem 10). The inequalities (3.14) follow directly from (4.27) and (4.17). The condition (3.3) follows from
(4.12) of Lemma 15, while the conditions (3.4)-(3.12) follow from (4.18)-(4.26) of Proposition 17. O

We conclude by mentioning that the solution is locally unique. In fact, according to [34], if there exist two solutions
(Ka, tq), (Kp, ip) close enough, then there exists s € R such that for all 6 € T:

Ky(0) =Ka(0 +5),  pa=php -
5. KAM estimates for the standard map

In this Section we implement Theorem 10 to obtain explicit estimates on the numerical validation of the golden mean
curve of the dissipative standard map (2.6); such estimates turn out to be close to the numerical breakdown value. We
need to start with an approximate solution (Kjp, o), which satisfies the invariance equation (2.8) with an error term Ey,
whose norm on a domain of radius pp > 0 was denoted as g¢ in Theorem 10.

The construction of the approximate solution (Kp, to) can be obtained by implementing the algorithm described
in [34] and reviewed in Section 5.1 below. An estimate on the quantity &¢ is obtained by imposing the list of conditions
(3.3)-(3.12); explicit bounds are given in Section 5.2, using the definitions of the constants provided in Appendix C.

5.1. Construction of the approximate solution

To construct an approximate solution (Ko, ito) of the invariance equation (2.8), we make use of the fact that the
a-posteriori format described in [34] provides an explicit algorithm, which can be implemented numerically in a very
efficient way. Each step of the algorithm is denoted as follows: “a <— b” means that the quantity a is assigned by the
quantity b.

Algorithm 18. Given Ky : T — M, uo € R, we denote by A € R the conformal factor for f,,. We perform the following
computations:

1) Eo <_fﬂ0 OK() —K() o Tw
2) a < DK

3) Ng <« [ ]!

4) Mo < [a] J7'atNo]
5) < M;'oT,

6) E

7) Po < OlN()

So < (PooT,) Dy, o Ko J7' Po
Ao < My oT, Duf., o Ko

14



R.C. Calleja, A. Celletti and R. de la Llave Communications in Nonlinear Science and Numerical Simulation 106 (2022) 106111

Table 1
The analytical estimate egap for the golden mean curve of (2.6) with A = 0.9 for different values of the
parameter p, measuring the width of the analyticity domain considered for K.

Lo EKAM Agreement with e "

10-5 0.97094171 99.89% 0.06139053
2.107° 0.97136363 99.93% 0.06139054
3.10°° 0.97142178 99.94% 0.06139056
4.10° 0.97136363 99.93% 0.06139060
5.107° 0.97133318 99.93% 0.06139063
6-107° 0.97127502 99.92% 0.06139068
7-107° 0.97120503 99.92% 0.06139072
8.107° 0.97114973 99.91% 0.06139075
9.10°5 0.97094171 99.89% 0.06139079
1074 0.97094171 99.89% 0.06139082
2.107% 0.97011584 99.80% 0.06139146

8) (Buo) solves  A(Bgo)® — (Beo)’ o T, = —(E)°

(Byo)? solves  A(Byo)® — (Bpo)° 0 T,, = N?Z)
9) Find W5, oy solving

0=—SoW; — So(Ba)® — So(Bso)°o0 — Ey — Ao

2) =57 =57
(= DWY = —F2 — A4,

10) (w<2) = (Bu)° + 00(Bso)°
1) WP = w2yp + w
)

)

—

12 (w“ )° solves (W")0 — (WD o T, = —(SoWP)0 — (ESV)0 — (AL))00
13) Ky < Ko + MgWy
Mo < Mo + 00 -

Remark 19. We call attention on the fact that steps 2), 8), 10), 11), 12) involve diagonal operations in the Fourier space.
On the contrary, the other steps are diagonal in the real space (while steps 10), 11) are diagonal in both spaces). If we
represent a function in discrete points or in Fourier space, then we can compute the other functions by applying the Fast
Fourier Transform (FFT). This implies that if we use N Fourier modes to discretize the function, then we need O(N) storage
and O(N log(N)) operations.

Next task is to translate the procedure described before into a numerical algorithm that computes invariant tori of
(2.6). To this end, we fix the frequency equal to the golden ratio:

5—-1
w= V5 . (5.1)
2
We remark that the golden ratio (5.1) satisfies the Diophantine condition (2.2) with constants v = ﬁ =1
Then, we start from (Ko, no) = (0,0), implement Algorithm 5.1 using Fast Fourier Transforms and perform a

continuation method to get an approximation of the invariant circle close to the breakdown value.

To get closer to breakdown, one needs to implement Algorithm 5.1 with a sufficient accuracy. The result described in
Section 5.2 is obtained making all computations by means of the GNU MPFR Library using 115 significant digits. We use our
own extended precision implementation of the classical radix-2 Cooley-Tukey in [55] by using GNU MPFR. We compute
218 Fourier coefficients to discretize the invariant circle; we ask for a tolerance equal to 1074 in the approximation of
the analytic norm (2.1) and of the invariance equation (2.8) to have convergence.

We fix A = 0.9 and (by trial and error to optimize the final result) we select the parameters measuring the size of
the domain as py = 3 - 107>, 89 = po/4. This choice of py is taken to optimize the final result. We denote by exay
the value of the parameter ¢ (appearing in (2.6)) after the algorithm has converged to an approximate solution (K, u);
all the estimates of Theorem 10 (precisely (3.3)-(3.4)-(3.5)-(3.6)-(3.7)-(3.8)-(3.9)-(3.10)-(3.11)-(3.12)) have been verified
numerically for that approximate solution. Table 1 provides the value of exay obtained with 28 Fourier coefficients for
different values of py. We emphasize that the a-posteriori format of Theorem 10 verifies the solution and does not need
to justify how the approximate solution is constructed.

As Table 2 shows, the higher the number of Fourier coefficients, the better is the result, although the execution time
becomes longer. We also notice that the improvement is smaller as the number of Fourier coefficients increases; in
particular, the results are very similar when taking 2'7 and 2'® Fourier coefficients.

The output of the construction of the approximate solution via the MPRF program is represented by the analytic norms
of the following quantities, which will be used to check the conditions (3.3)-(3.12), needed to implement Theorem 10.

15
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Table 2
The analytical estimate egay for the golden mean curve of (2.6) with A = 0.9, po = 3- 107>, as the
number of Fourier coefficients of the solution increases.

n. Fourier EKAM " Agreement Execution time
coefficients with &, (s)

213 0.95730400 0.06140120 98.49% 612.28

214 0.96512016 0.06139562 99.29% 2015.22

215 0.96807778 0.06139307 99.60% 3205.34

216 0.97011583 0.06139161 99.81% 8460.19

21 0.97094171 0.06139089 99.89% 13375.78

218 0.97142178 0.06139056 99.94% 38222.48

All quantities are given with 30 decimal digits:

[Moll,, = 44.9270811990274410452148184267 ,
My 'll,,, = 39.930678840711850152808576113 ,
IDfiqll sy = 5.07550011737521959347639032433 ,
D1l 0y = 12.2074077197778485732557018883 ,
Sollpy = 215.24720762912463716286404004 ,
[INoll,, = 156.534312450915756580422752539 ,
Ny 'll,,, = 591.408362768291837018626059244 ,
IDKoll,,, = 44.9270811990274410452148184267 ,
ID*Ko I, = 221591.876024617607481468301961 ,
To = 7.6434265622376167352649577512 ,
IEoll,, = 7.71650351451832566847490849233107%¢ ,
ID?Eoll,, = 5.1576300492851806964395530006 10~>* . (5.2)

With reference to the quantities in (3.2), we notice that in the case of the dissipative standard map (2.6) we have Q0 = 1
and Q;,0 = Q.0 = 0. The computation of such quantities requires instead a major effort in different models, like the
dissipative spin-orbit problem, see [45] for details. We stress that the quantity which requires the hardest computation
effort is the error Ey and its derivatives.

5.2. Check of the conditions of Theorem 10 and results

We verify numerically the estimates of the theorem on the existence of the golden mean torus for the dissipative
standard map described by equation (2.6) with frequency as in (5.1) and A = 0.9. The corresponding breakdown threshold,
as computed by means of the Sobolev’s method used in [44], or equivalently by means of Greene’s technique (see [44,56]),
gives

e =0.97198 , (5.3)

(compare with [44]). On the other hand, implementing the analytical estimates of Section 4, we obtain that the conditions
(3.3)-(3.12), appearing in Theorem 10 are satisfied for a value of the perturbing parameter equal to

exam = 0.971421780429401935547661013138 . (5.4)
The corresponding value of the drift parameter amounts to
u = 0.061390559555891469231218991051 . (5.5)

The result is validated by running the program with different precision on a DELL Machine with an Intel Xeon Processor
E5-2643 (Quad Core, 3.30 GHz Turbo, 10MB, 8.0 GT/s) and 16 GB RAM. Precisely, we provide in Table 3 the results with
different significant digits.

The results shown in Table 3 suggest that the norms provided in (5.2) are robust and, even if we do not implement
interval arithmetic, we can conjecture that the values provided in (5.2) are not affected by numerical errors. Below 50
digits of precision, the algorithm does not produce any result, since some quantities are so small that a precision less than
50 digits is not enough. This remark leads us to the following statement.

Verification of Theorem 10 for the dissipative standard map. Let us consider the map (2.6) with A = 0.9. Let
po=3-107>, 8y = po/4, ¢ = 3-107>; let us fix the frequency as o = @ Assume that the norms of My, Mo‘l, Df iy,
D?f,,, So, No, Ny ', DKo, D*Ko, Eo, D*Ep and the twist constant 7p are given by the values provided in (5.2). Then, there

16



R.C. Calleja, A. Celletti and R. de la Llave Communications in Nonlinear Science and Numerical Simulation 106 (2022) 106111

Table 3

The analytical estimate egay for the golden mean curve of (2.6) with
A = 0.9, po = 3-107°, number of Fourier coefficients equal to 2'® and
for different precision of the computation, obtained varying the number of
digits as in the first column.

Digits EKAM Execution time (s)
50 0.97142178 27632.88
60 0.97142178 29027.68
70 0.97142178 30094.44
85 0.97142178 32685.89
100 0.97142178 35390.35
115 0.97142178 38222.48

exists an invariant attractor with frequency w for & ~ giay with giay as in (5.4) and for a value of the drift parameter as
in (5.5).

The result stated before verifies the estimates for egay, which is consistent within 99.94% of the numerical value &,
given in (5.3).

Of course, the numerical value in (5.3) is based on indirect numerical methods and there is no theory to estimate its
error. We also point out that the method used to obtain the approximate solution seems more widely applicable than
the numerical method. The Greene’s method is difficult to make work for standard maps with two or more frequencies,
whereas the continuation method works without any problem.

This result shows that, beside a world-wide recognized theoretical interest, KAM theory can also provide a constructive
effective algorithm to estimate the breakdown value with great accuracy. We also point out that computing close to the
breakdown is not just a challenge for numerics. The breakdown of KAM tori is known to be the source of very interesting
mathematical problems. Notably, the very deep renormalization group for quasi-periodic problems was discovered by
numerical experiments [49,57].
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Appendix A. Proof of Lemma 6

In this appendix, we include the proof of Lemma 6. In the proof we follow the construction of [58,59] to derive the
constant Cp in (2.5).

Proof. For the proof of the existence of the solution of (2.3) we refer to [34]; here we provide an explicit estimate of Cy.
To this end, let us expand ¢ and 7 in Fourier series as

e@)= Y we L O)= Y we,

kez\{0} kez\{0}

where ¢y, 7 denote the Fourier coefficients. Note that, since we are assuming f n(@) = dd = 0, we do not need to deal
with averages. Then, equation (2.3) becomes

Z(,?)k(eh”“” _ )L)eZnikG — Z ﬁkeZHiké‘ : (A])

keZ keZ
computing the coefficients ¢, from (A.1) and adding the Fourier terms, one obtains:

_ i 271k
p(0) = Z e2miko _ ) e '
keZ

Let Zy = mingez |w k — q|; then, using sin(x)/x > 2/7 for all 0 < x < 7, we have the following inequality
2miko _ 5 12— (1 — A)? cos¥ (ko) + (1 + A)? sin(kw)
> (14 1) sin(mko) > 4(1 + 1)2Z7 .

le

Therefore we obtain:
e ke — A > 2(1 + A)|Z| = 2(1+ [k .

17
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e—Aamdlk|

Finally, using the estimate ), _, 7k et ekl < 20|l (see [58]) and setting F(8) =4 Y .2, : one has
e

271ikw_)h|2 ’

—2781k|

e
A 2aplk| -
wmwsgmm ATy

o—4mdlk|

A 2
< Z e4mplk Z s
= 7k |62nikw _ )\.|2

keZ keZ
= Inll, VF(),

where in the last inequality we used Parseval’s identity ) ,_, 7| extmelkl = fol (0 Fip)>do < Inll? and that the
function is real || = |n;|. Denoting by I" the Euler gamma function, using the estimates of [59], one has that

2r@r+1
F(8) < 72t 4+ 1)
3v2(1 4+ A)2(28)2 (2w )**
which leads to (2.4) with Gy as in (2.5). O

)

Appendix B. Proof of Proposition 17

The proof of Proposition 17 proceeds by induction. We start by noticing that (p1; 0), (p2; 0), (p3; 0) are trivial. Let
H € Z, and assume that (p1; h), (p2; h), (p3; h) are true for h = 1, ..., H. Then, by Lemma 15 we obtain the Taylor
estimate

en = 1E(Kn-1 + An—1, ptn-1 + on-1)ll, < 2Ceov 28, Ter_, (B.1)

using Cg p—1 < 2Cgo due to (p3; h) for h = 1, ..., H. The estimate (B.1) allows to have a bound of ey, h = 1,...,H, in
terms of &g:

en < 2Cgo 128,77 227" 1g2 |
< (2Cgov’250_2T)HH“'“’H 22r((h—l)+2(h—2)+<~+2“’2)8(2)“
F h h
< (2C50v*280‘2f)21’1 927(2 —(h+1))83
h
< (2C50v7280_21’22180)217180 .

In Sections Appendix B.1, B.2, B.3, we will prove (p1; H+ 1), (p2; H+ 1), (p3; H + 1), under the induction assumptions
(p1; h), (p2; h), (p3; h) for h =1, ..., H. To get such result, we need the following Lemma.

Lemma 20. Assume that (p1; h), (p2; h), (p3; h) hold for h =1, ..., H. For H € Z the following inequality holds:
IDKn+1 — DKoll gy < Dic (B.2)

where Dy is as in (3.13), Cyqo as in (4.14) and provided that
1

21+1K080 < 5 (B3)
with kg as in (4.17). Furthermore, under the inequality:

INollpy (2IIDKollpy +Dx) D < 1, (B.4)
the following relations hold for 0 <h <H + 1:

INn — Nollp, < CnDk (B.5)

IMr — Mollp, < CuDx , (B.6)

My = My 'l < CwtinoDxc (B7)

where Cy, Cy, Cyiny are defined as follows:

Gy = [Nl 2||DKoll 5, + Dk
N = 0 s
71— [INoll oo Dk (211 DKol oy + Di)

1 Je[ G (IDKo g + Dic) + Mol |

Cn(IIDKoll pg + Dk ) + [INoll o +Je - (B.8)
18
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Proof. We start by proving (B.2), under (B.3) and with Dy as in (3.13):
H

DKy 11 — DKol pyyy < Y 05 < ch] 187 ey < Dy . (B.9)
j=0 j=0

The proof of (B.5) is obtained as follows. From the relations
DKy = DKo+ Ky, DK =DKj +K ., K= ZDA» ,

we obtain

~ -1
Ny = (DK, DKy)™" = (K] + R JDKo + i ))
1
+

— (DK] DKo)™ (1 (DKJ DKo)™ (KT DKo + DKJ Ky + K 1<h))

= No(1+ xn)".

having set x, = No(K, DKo + DK, Ky, + K, Ky). Under the inequality (B.4), ensuring that || xxll,, < 1 and using (B.9), we
have the following bound:

1+ ) — 1 < 1l
Tl

which leads to the following relation with Cy as in (B.8):

Il xn 1l

INk = Nollp, < INollpg 1T+ xn) ™" = 1ll, < INoll, . =Gy Dx . (B.10)

Il 1
The proof of (B.6) is obtained starting from the identity
My — Mo = (DK, — DKg | J~! DKy N, —J~! DKq No) .
Then, one has
IMn — Moll 5, < IDKh — DKol 5, +Je IIDKnNy — DKoNoll p, -
From
DKyN, — DKoNg = DK,Ny — DKyNy 4+ DKNg — DKyNg
and from (B.10), we obtain that
IDKyNy — DKoNoll 5, < (CnIIDKnll 5y, + INoll o) Dic - (B.11)

Bounding ||DKy|l,, as [IDKyll,, < IDKollp, + IIDK — DKol 5, We obtain (B.6).
The proof of (B.7) is obtained as follows. Given that the symplectic form is the standard one, the inverse of the matrix
My, is
_ T NpDK,
19y T T _ nDKjy
M;(0) = (DK,, NTIJ DKh> = ( o) )

Indeed, one can verify that due to the Lagrangian character, M, 1M, = Id. By computing the inverse of M, in an analogous
way, one has

1 _p—1 _ [ NwDK, — NoDKJ
My~ =M, _( DK,'] — DK, ] '

The bound for the first row NhDKT NODKT is obtained as in (B.11), while the second row is bounded by J. Dy. This
yields (B.7) with Cyin, as in (B.8). O

We are now in the position to continue with the proof of (p1; H + 1), (p2; H + 1), (p3; H + 1) to which we devote the
rest of this Section.

B.1. Proof of (p1; H + 1)

Using the inequality j + 1 < 2/, one has
H H
IKes1 — Kollpgyy < > di < (Cav™"8; ")) < 4Caov "85 " &0 ;
j=0 j=0

19
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assuming that gq satisfies (4.19), we obtain the first inequality in (4.27). Moreover, we have:

H

H H
2d_1_ .
[H1 — Mol < E sj < E Coi&j < 2Co0 E (kogo)” ™ €0 ;
= = j=0

assuming that gq satisfies (4.18) and (4.20), we obtain the second inequality in (4.27), hence we obtain (p1; H + 1).
B.2. Proof of (p2; H + 1)

Having proven (p1; H + 1), we use the Taylor estimate (B.1) with H + 1 in place of h to obtain (p2; H + 1):
EH4+1 = (zcgov_2552f2zr80)2HH_180 = (kos0) " e0

due to the definition of ¢ in (4.17).
B.3. Proof of (p3; H + 1)
The proof of (p3; H+ 1) is rather cumbersome and needs several auxiliary results. Given the inductive assumption, we
want to prove that
Cant+1 < 2Cq0 , Cont1 < 2G50, Cent1 < 2Ceo - (B.12)

B.3.1. Estimate on |7, — To|
We start with the following result.

Lemma 21. Assume that (p1; h), (p2; h), (p3; h) hold for h = 1, ..., H and that the condition (B.4) of Lemma 20 is valid
together with

4Q2,0Cs080 < Qo , 4Q,1:0Cs080 < Quo -
Let to and 1, be defined as
©  Tmveam \ !
= So  So(Bo)® + Ay
0 = ) -
A—1 A%

and

3 o7\
‘EhE< Sh Sn(Ben)® + A, )
A

~

(2)
-1 Ay
and let 7o = || 7ollpr Tn = llTallp,. For h € N, h =1, ..., H, the following inequality holds:

|Th — Tol < CrDy , (B.13)
where Cr is defined as
752
Czima{C,C 2c-vl} B.14
T 1= 7C. X1Cs, Csg + 2CprinyQuo ( )

with
Cs = 2 Qo { (1INl + CwDx ) [DicClINo I, + CiDx)
DKol INolly + IDKoll D | + Civ 10Kl [DiClINoll, + CiDx)
DKol INolly + IDKoll i | + INoll DKol o (INolL, + CDi)

2
+ Vol DKo |2}

1 _ 1
Csp = WQ#OHMO 1||pOCS + 2JQo ||NO||,230 ||DK0||iom Cminv Qo

1
+ 2C; —— Cui Dy ,
S TR =T minv Quo Dk

Cr = max{Cg, CSB + ZCMinUQ;LO} Dy . (Bl5)

20
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Proof. From

Th < I7ollpy + IThll o, = To + 1Tkl -

where T, =1, — 10 = rg [([ + ro(rh’] - ro’l)) (Tn;l - ‘E,:1):|, we have the estimates

~ Te
T — Tol < <—0C,, B.16
ITh = Tol < Tnllpy = =7 & (B.16)

where C; is a bound on 7, ' — 7, ', say

A2) _ 7@2)
Ah _Ao

Ity =75 Moy = <C . (B.17)

( Sh—So  Su(Bun)® + A" — (So(Bo) +Ay”) )

Ph

To obtain an expression for C;, we bound term by term the matrix appearing in (B.17).
We start with [|Sp, — Sol|,. From (3.1) we have that S, is defined by

Sh = Np(0 + @) "DKy(0 + @)™ Df,, o Kn(0) J~" DKn(6)Nn(0) -
Then, we bound Df,, o Ky, as

sup |Df, (2)] < sup |Df,o(2)| + sup |Df,, () — Dfyy(2)]

zeC zeC zeC

< Qo+ sup |D.Df(2)] 11an — pol

ZeC,ueA,|—prol <2k 80
< Qo +4Qz.0 G080 < 2Qo ,
if (4.25) holds. Notice that we have used (p1; H + 1) to bound u, — o for h =1, ..., H + 1. Finally, we obtain
ISk = Soll, < 2Qo Il Na(6 + @) " DK(6 + )" J;" DKx(6N(6)
— No(6 + @) DKo(0 + )" J;' DKo(0)No(8) Il -
Setting ﬁh = Ny — Ny and writing DK}, as DK, = DK, — DKy + DKy, one obtains
I1Sh = Sollp, < 2Qo II (No + Nyp)(0 + w)" (DKy — DKo + DKo)(6 + )"
je‘l (DK, — DKgy + DKy )(6)(Ng + Np,)(6)
— No(0 + @) "DKo(6 + @)™ J;' DKo(0I)No(8) Il -
Let us bound Nh using (B.5). Then, using that J is a constant matrix, we have:
ISk = Sollo, < 2Qo || [((No+Na)oT.,)" ((DKy — DKo) o T,,)"
+ (NooT,) (DKo 0 T,)" + (Ny o T,,) (DKo 0 T,) "] J !
[(DK, — DKy)(Ng + Nh) + DKoNg + DKONh]
— (NooT,) (DKo 0 T,,)" J;' DKoNo |l
2 @ { (INollyy + IRl DKy = DKoll,

IA

[11DKs = DKoll (1Nl + IRl ) + DKol Noll s ~+ 1DKoll Wi
o+ Mol IDKoll . [ 1DK = DKol (1Mol + IRl

“+ DKol oy N0l oy + DKol [N 1 ]
+ 1IN0l oo DKol oy IDKi — DKol , (IINoll g + Nl )
+ [INoll o DKo 112, N4 } :
Taking into account (B.5), (B.8), we obtain:
1Sk — Soll o < Cs Dk (B.18)

with Cs as in (B.15). Now we bound the upper right element of the matrix appearing in (B.17). This computation will lead
us also to bound the lower right element of the matrix in (B.17). We start from (see (4.6))

Ap=M;"oT, Dufy, oKy, Ao =M;" 0T, Dyufyy0Ko
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and the following estimate that uses (4.26):
sup IDpfun(2)l = Quo + 4Quuo Copeo = 2Qu0 -
Then, we have:
A5 = Aoll oy < 2Quo IMy" = Mgl < 2Cuiny Quo Dic -

Next we estimate ||Sy(Bpr)° — So(Bpo)° |5, ; recall that from (4.8) we have that (Bpn)° and (Byo)° are the solutions of

2(Bon)’ — (Bon) o T, = =AY, A(Byo)® — (Byo)’ o T, = —(A5")° . (B.19)
Expanding (B.19) in Fourier series and equating the coefficients, we obtain (By,)° and (Byo)° leading to
A0 — AT 5.
(Bon)(0) = (Buo)(0) = = ) = e (B.20)

JEL
From (B.20), let us write (By,)° as
(By)° = (Byo)° + B ,

where
a(2) 2(2)
@AY — @A

)0
~ : 0 )i .
By = — E —d = I i
A — eZnuw
Jjez

Let us introduce §h = Sy — So, whose norm can be bounded by (B.18). Then, we have:

11Sa(Bs)® — So(Bo)°ll = 1I(So + Sh) ((Bbo)® + Bn) — So(Bo
< 11Bb0)°ll o 1Sl 110115 1Bl =+ 1811y Bl

where

1olps < Je QollNol2, DKol .
I8ill,, < Cs Dx .

1~ 1 _
1Boo)llpp < mnAEﬂn% = o %o Mg
1

IBull,y, < ————
o= A =1

2Cpiny Quo Dk .

Then, we obtain:

[1Sh(Boi)® — So(Bro)°ll < Csg D

where Cgp is as in (B.15). Recalling (B.17), we obtain
2

5" =75 oy < max{ IS = Soll o 15n(Bon)” — SolBoo Pl + Y 14D = Al | = Cc
j=1

where C; is as in (B.15). From (B.16) we get (B.13). O
B.3.2. Proof of Co y+1 < 2Cyo

We now prove (B.12) and we begin from the second inequality. We start with the following relations, which are a
consequence of (4.15):

Cor = Tasa| I = 11( 51 + 1) + Uit s | 1MLl

1
Al = 1]

1 -
Coo = To[ 12 = 11 (=g 150l +1) + IS0l 1M 'l

with

M 1l < Mg g + 1My = Mg oy < Mgl + Cvtiny Dk
with Cyny as in (B.8). We also have

ISt+1 11y =< S0l pg + I1SH+1 = Soll gy < IS0l py + Cs D
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with Cs as in (B.15). From the relation
Th+1 = To + (Th+1 — To) < To + Cr Dx

with Cr as in (B.14), we obtain:

IA

Cor = (7o + Cr DOfIA = 11 [ oz (Soll g + CsD) + 1]

=1
o+ (ISollso + CsDx) | (Mgl + CotmsDxc )
= Goo + GoDy = 2G50 ,
if (4.22) holds with

C,=¢ [|x— 1] [ (IS0l + CsDx) + 1]

1
= 1]
+ (1Sollpo + CsDx) | (Mg "l + CutnsDxc )

+ 75 {1 - 11] (ISoll o + C5Dk) + 1| + Cutis 01l

[[Al = 1]

1 _ _
= 1 Myl G + s (IMg "l + CuimDx )}

B.3.3. Proof of Ce yy1 < 2Cgo
Recall that éy¢ = 23% and that from (4.16), one has
Ce 1 = CW,H+1V81;_}__1H + CroH+1 -
First, it suffices to prove that
Cw.H+1 < Cwo + Cw Dk

for a constant Cy as in (B.26) below. From (4.15), for Cy, y4+1 We have:

[1 +2Qu0(Coo + Dk C, )](nMo‘l lpo + D) < Cuwyo + Dx Cu -

1
CwyHe1 < ———
» [|A] = 1]

where

1 _
= = L 2% Mg G +2Qu0Co0 + 20,06 Dx |

Cw,
Concerning EWz,H-H- we have:

Cunn = 475+ CrDx) | (ISollo + C5Die) + 1] Quo (1Ml + Dic?

1
B B [|A] — 1]
= Cwyo + Cw, Dk

with
Con = 46 [ IS0l + C5D) + 1] QM 'l +Di?
 4T0Qu0 G5 (Mgl + Dk’
+ 4 Quo| T ISolln + D) + 1](Di + 205 ).

As for Cw, y+1 We have:
Curst = Co [(IS0llag + C5Die)Cinyo + Cu Drc + Cuo + Cu, i) + IMg g
+ Di +2Quo(IM Iy + DiXCoo + DGy )] = Cio + DicCiry
where
Cw, = C0[||50||p0CW2 + CsCwy0 + CsCwy Dk + 11So0ll oy Cwy + CsCuwyo + CsCuw, Dy + 1

+ 2Qu0lMg 1y Co + 2QuoCoo + 2QﬂocaD,<] .

23
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In conclusion, from (4.15) we have:
Cw.n+1 = (Cwyo + DkCw,) + (Cwyo + DxCw, + Cuwyo + D Cu,y Jv852 " HFD
< Cwo + CwDx
with
Cw = Cw, + Cw, 85 + Cy, 185 . (B.26)
In order to get C¢ yy1 as in (4.16), we estimate Cr y+1. To this end, we use the following inequality:
Qe.n+1 < Qeo + CoDax (B.27)
for a suitable constant C, that will be given later in (B.34) and for D,k defined as
Dok =4Ca v 18,7 % &g . (B.28)
We postpone for a moment the proof of (B.27) and we rather stress that, as a consequence of (B.27), we obtain:
Crot1 < Qent1 (IMyta ||f,H+1 C\?V,H+l + C2 V2875 1) < Cro + CrDx
where
Cr = Qro [(ZCM Mol py + Ciy D ((Cwo + CwDx )* + ||M0||20(C3VDK + 2CwoCw)
+ (C2Dx + 250G, W53 | + Co [(IMoll g + CutDi*(Curo + CuDic?
+ (Coo + C(,DK)ZUZSE)’] 55t (B.29)
We obtain that, under (4.23):
Cenv1 < (Cwo + CwD vy 727 HHHED 4 € 4+ CrDy < 2Ceo -

Let us conclude by proving (B.27) starting from the definition
1
Qe 1 = 5 MO D1l s 10D, Bt s 103 Bl |
We recall that

Eyy1 = EKuy1, w1l = fuy o o Kyp1 — Kugpr 0Ty

It is convenient to introduce Ay and Zy such that

H
Kyy1 =Ko + (K1 — Ko) = Ko + Ap MH41 = Mo + Z 0j = o+ &y -
j=0
Then, we have the following bound on Ep1:
NEa+1ll oy —sys = Il (g © Ko — Ko 0 Tpy) + frupy s © K1 — fug 0 Ko
- (I<H+1 - KO) o Tw ”pH+1_3H+1
< lEollp +(1+ sup IDf.(2)]) ko
ZeC,ueA,|u—pol <2k 60
+ sup IDfu(2)] kpto -

zeC,neA,|\n—pol <2k g9
We now observe that the first and second derivatives of f o K are given by
D(f oK) = D(f(K(6))) = Df(K(6)) DK(6)
D*(f o K) = D*(f(K(0)))(DK(8))* + Df(K(8)) D*K(8) . (B.30)
Then, one has

ID*Epsillpy,y < IID?Eollpy + Dax+ || D*fug+z, (Ko + An) (DKo + DAy)
— D*f1y(Ko) DKo Il pyyy; 1DKoll g
+ IDfuo+54 (Ko + An) — Dfyg(Ko)llpyryy 1D°Kollpo
+ 1D*fu+5, (Ko + A) (DKo + DAy) DAy |l 4
+ IDfug+24 (Ko + An) D* Al oy
24
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< ID*Eolly + Dak + sup [D*f,(2)| IDKo 12, k€0
zeC

+ sup ID,.D*,(2)| IDKo |12, .20

ZeC, WeA,|u—pugl <2k 80

+ sup |D*f,,(2)] IDKoll 5y Dic
zeC

+ sug ID*f1o(2)] IDKo | oy k€0 Dic
ze

+ sup DD (2)| IDKollpg K180 Dic
ZeC,ueA,|u—pugl <2k

+ sup D%, ()] DKo [, koo
ze

+ sup |D;4Dfpt(z)| ”DZKOH,OO Kué?o
ZeC,ueA,|u—pol<2kp80

+ sup D%,y (2)] (IDKoll 5o + Dic) Di
ze

+ sup |D*f,,(2)] (IDKoll »y + Di)Dk ki eo

zeC

+ sup ID,.D*f,.(2)| (IDKoll oy + D )Dk k.80

ZeC, e, | —pol <2k

+ sup |Df,y(2)| Dak + sup |D2fuo(2)| kx&o Dok
zeC zeC

4 sup |D.Df.(2)] k€0 Do
Z€C, WEA, |u—110l <2k €0

(B.31)

with [|IDKy |, < IIDKoll 5, + Dx, where Dg was estimated as in (3.13), ||D2KH||pH < ||D2K0||p0 + D,k, where Dy is defined

through the following inequalities and using (4.18):

H H
ID*Kisy1 = D*Kollpyyy < Y ID*Aflly < D87y
j=0 j=0

H
< E Cdjv_18j7r728j < 4Cd01)_150717280 = Dy .
j=1

In a similar way we obtain the following estimate. Given f o K, from (B.30) we have
DD, (f o K) = DD, (f(K()))DK(6) .
Then, we have
DD, Ey11 = DD, Eo + DD, f,,(Ko) (DKy11 — DKo) + DD, (fuy, (Ko + An) — f1,(Ko)) DKpy1
so that
IDDEn+1llpy s < IDDuEollpy + ilel([:) IDD,,.f,.,(2)| Dy
+ Sup ID°D,fig ()| | Ay (1DKollpy + DA 1)

+ sup |DD12/,fp.o(z)| ||EH||,0H+1(||DK0”/70 + ”DAH ”pH-H)

z€C,ueA, |u—pol<2kp 80

IA

10D, Eollm + SUP IDD,fig(2)] D
Ze
+ sup ID?D,ufius(2)] k&0 (IDKoll oy -+ Dic)
ZE

+ sup IDD?f,,(2)| k&0 (DKol + D) -
zeC,neA, |u—pol <2k 0

Finally, we have:

ID2 Ent1ll .y < I1D2Eoll g + sup ID2£u(2)] o -

zeC,ueA, |u—pol<2kp 80
Casting together (B.31), (B.32), (B.33), we obtain (B.27) with
1
G = 5 max { 1+§1615|D3f%(z)| IDKol12, 85
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+

sup ID,.D*f,,(2)] DKo ||, —2253+2

ZeC, e, |—pugl<2ky 0 Po C
+ sup Dfq(2)| DKol oy 80
zeC

+ sup ID*f,1o(2)] IDKo I 5o 4Caov™'85 " €0
ze

+

sup D, D*f,.(2)] IDKol oy 4Co080€0

z2€C,ueA,|u—pol<2kpueg

+suplD2fM0( ) DKol 85

+

sup DD IDKol py 22 U

zeC,ueA,|u—pol <2k 80

+ sup ID*f,1s(2)] (IIDKo [l 5o + Dk )80
zZe

+ sup ID*f(2)I (IDKo |l 5o + D )4Caov "8, "+ &g
zZe

+

sup D, D*f,.(2)I (DKol 5 + Dic) 4C508020

zeC, ueA,|u—pol<2kp &0

+ sup |Df,(2)] + sup |D*f,(2)] kk&o
zeC zeC

+

sup |DMDfM(z)| Ku€o

zeC,ueA, |u—pol <2k 60

SUP DD fy (2)18 + sup ID*D,uf1(2)185 (IIDKoll oy + Dic)

+

0
sup DD’ f,,(2)] Cidovagﬂ (IDKoll o + D).

z€C,ueA, |u—pol<2kp 80

Coo
su D3 f,(z) = 6”2} }
p 1D, fu(2)l Cdovo

zeC,ueA,|u—pol<2kp 80

B.3.4. PTOOf Of Cd,H+] < 2Cqp0
From (4.14), (B.22), using (4.24) we have:

Can1 =

IMys1ll oy Cw.ie1 < (IMoll oy + Di)X(Cwo + CwDk) < 2Cqo -

Appendix C. Constants of the KAM theorem
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(B.34)

The constants entering in the conditions(3.3)-(3.12) of Theorem 10 are defined through the following (long) list. For
fast reference, before each constant we provide the label of the formula where the constant was introduced. We note that

the constants are given in an explicit format and evaluating them requires only a few lines of code.

(4.10)
(4.10)

(4.10)

(4.10)

(4.10)
(4.11)
(4.13)
(4.13)
(4.14)
(4.17)
(4.17)

1 _
Coo =T [ =11 (G IS0l + 1) + IS0l | 15"l
Czo = ——— (14 CoQuo ) 1Ml
2 ||)\| _ 1| Q—l’« 0 £0
_ 1 _
Cuzo = 2T (g7 IS0l + 1) Quo IV 13

Cwyo = C0(||50||p0(cw20 + Cuyo) + 1M g +Quo||Mg1||pocao) ,

Cwo = Cw,o + (Cwyo +6W20)V8(§ )
Coo = CwollMoll 5y + Coovég ,
Cro = Qeo(IMol2, Civo + C2ov°857) .
Ceo = Cwovdy ™ + Cro

Cao = Cwo IMoll,g »

o = 227 Coqu 25727,

ke = 4C v 8,7,
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(4.17) Kk, = 4Cs0 ,
(3.13) Dy = 4Cuv '8, " &0,
(B28)  Dox =4 Cgov '8, % &g,

2[|DKo |l 5 + Dk
(B8)  Cn = INol2, K0 ,
1 — [INoll oo D (21IDKol oy + Dic)

(BS)  Cu = T+Je[GulIDKoll + D) + 1Nl |
(BS)  Cuin = Cn(IDKollpg + Di) + 1ol +Je -
(B15) C, = maxiCs, Ces +2CM,-n,,QH0] Dy .

2

h
B14) G = 0 max{C,C + 2Cuim }
( ) =17 s, Csp MinvQuo
(B.15)  Cs = 2eQ {(INollny + CvDi) [Dic(INollpo + CiDi)

+ DKol o [Noll o + ||D1<o||p0cNDK]

+ Cy DKol [DK(uNonpo + CyDk) + DKol INoll g + ||Dl<o||pocNDK]

o 1Noll oo IDKoll o INoll + D) + C INoll 5 IDKoIZ, | .

1 B 1
(B.15) G = WQMOHMO o Cs + 2JeQo ||No||f)0 ||DKolliom Cminv Qo
1
2Cc ——— Cy; Dy ,
+ S ||)\|_1| Minv Q,uO K
1

B21) € =G {1~ 11 [ g USollg + 6D+ 1]

+ (Sollps +CsDx) | (Mg "l + CotnsDxc )

+ 7o {|)~ =1 [ (I1Soll g + CsDx ) + 1]CMinu

1
Al = 1]

1 _ _
= 1 IV G + s (IMg sy + CunsDxc)

+ Chtiny ||so||p0} :

(B34) G,

1
3 max{l + sup |D*f,(2)| DKo |2, 85
zeC

CrrO
+ sup D, D*f,(2)| DKo%, ——85+
ZeC, WeA,|u—pugl <2k 80 CdO

+ sup [Df,(2)] IDKo |l oy 80
zeC

+ sup ID*f,10(2)] DKol 5y 4Caov™ "85+ 0
ze

+ sup ID,.D*f,.(2)] IDKoll oy 4Cr08080

ZeC, e, |u—pgl<2kpe0

+ sup ID*f,4(2)] 1D*KolI2, 85
zZe

Coo
+ sup ID,.Df,,(2)| ID*Koll py ——v85+2
zeC,ue A, |u—pol<2kp80 CdO

+ sup ID*f,1o(2)] (IDKo |l 5o + Dk )80
ZE

+ sup ID*f,44(2)| (IDKo I 5o + Dic)4Caov "8, "+ eg
ZE

+ sup D,.D*f,.(2)] (IDKol 55 + D) 4C5080¢0

Z€C,WEA,|u—pugl <2k 80
2
+ sup |Dfy,(2)] + sup [D°f,,,(2)] kkeo
zeC zeC
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+ sup |D,.Df,.(2)] k0 ,
zeC,ne A, |u—pol <2k, 0

sup |DD,,f,(2)180 + sup |D*D,.f,(2)I85 (IIDKo |l 5o + Dk)
zeC zeC
Co

0
+ sup IDD2 £, (2)] —~2v85*2 (IIDKol o + Dic).
zeC,pueA, |u—pol <2k &0 CdO

Coo
3 o +2
sup D) o5+
z€C. pe A lu—puo|<2euo Cao

(824)  Cw, = 4Gt [ (ISollpg + CsD) + 1] QuolMg , + D

Al =11

+ 470Qu0 Cs (1M 1l oy + Di )

1
Al = 1]

+ 47 Q,Lo[l (ISollps + CsDi) + 1](Dic +211Mg ")

1
Al —1]
(B29)  Cr = Qo [(szuMonpo + GiuDk)(Cwo + Cw Dk )* + IMoll2, (G Dk + 2Cwo Cw)
+ (C2Dx + 2CaoCo)V235T] +Co [(||M0||pg + CuDx *(Cwo + CwDk )
+ (oo + G DOV 55

(B23)  Cw, [1+2Qu0lIM5 "l Co +2QuoCo0 +2Qu0CoDx |

_ 1
A =1

(B25) Cw, = C0[||SO||p0CW2 + CsCwyo + CsCwy, Dk + 11Soll o Cws
+ GsCwyo + CsCiy Dy + 1
+ 2Qu0lIMg 2o +2Qu0Co0 +2QuoCo x|
(B26)  Cw = Cw; + Cu, 185 + Cwy 085 .
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