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a b s t r a c t

We present results towards a constructive approach to show the existence of quasi-
periodic solutions in non-perturbative regimes of some dissipative systems, called
conformally symplectic systems. Finding a quasi-periodic solution of conformally sym-
plectic systems with fixed frequency requires to choose a parameter, called the drift
parameter.

The first step of the strategy is to establish a very explicit quantitative theorem in an
a-posteriori format as in Calleja et al. (2013). A-posteriori theorems show that if we can
find an approximate solution of an invariance equation, which is sufficiently approxi-
mate with respect to some condition numbers (algebraic expressions of derivatives of
the approximate solution and estimates on the derivatives of the map), then there is a
true solution.

The second step in the strategy is to produce numerically a very accurate solution of
the invariance equation (discretizations with 218 Fourier coefficients, each one computed
with 100 digits of precision).

The third step is to compute in a concrete example, the dissipative standard map,
the condition numbers and verify numerically the conditions of the theorem in the
approximate solutions. For some families which have been studied numerically, the
results agree with three figures with the best numerical values. We point out however
that the numerical methods developed here work also in examples which have not been
accessible to other more conventional methods.

The verification of the estimates presented here is not completely rigorous, since
we do not control the round-off error, nor the truncation error of several operations
in Fourier space. We hope that the positive step taken in this paper will stimulate the
complete computer-assisted proof. Making explicit the condition numbers and verifying
the conditions (even in an incomplete way) will be valuable for the computation close
to breakdown.
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We make available the approximate solutions, the highly efficient algorithm
(quadratic convergence, low storage requirements, low operation count per step) to
compute them (incorporating high precision based on the MPFR library) and the routines
used to verify the applicability of the theorem.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The goal of this paper is to develop a methodology to compute efficiently and reliably quasi-periodic solutions in
concrete systems and to provide an analytical estimate of their breakdown threshold (compare with [1–11]).

The KAM theory, started in [12–14], solved the outstanding problem of establishing the persistence of quasi-periodic
orbits under small perturbations. An important motivation was represented by problems in celestial mechanics [15]. By
now, KAM theory has developed into a very useful paradigm. Surveys of KAM theory and its applications are: [3,15–21].

At the beginning of the theory, the quantitative requirements for applicability led to unrealistic smallness estimates.
In a well known calculation [22], M. Hénon made a preliminary study of the parameters required to apply the theorem to
the three-body problem [13] and obtained that the small parameter (representing the Jupiter–Sun mass-ratio) should be
smaller than 10−48, whereas the real value is about 10−3. Discouraged by this result, the often quoted conclusion of [22]
was that5

‘‘Ainsi, ces théorèmes, bien que d’un très grand intérêt théorique, ne semblent pas pouvoir en leur état actuel être appliqués
á des problèmes pratiques’’.

The statement of [22] is perfectly correct as stated, but removing the words we have set in bold one obtains a statement
invalid 50 years after the original statement.

The first attempts to study the problem numerically were disappointing. The persistence of quasi-periodic solutions
indeed depends on rather high regularity of the perturbation (the smoothness requirements of some versions of
KAM theory are optimal, [23–25]) and attempts based on low regularity discretizations such as finite elements were
discouraging [26]. Furthermore, lacking a good theory, one can be misled by spurious solutions and it is hard to believe
the true solutions.

By the late 70’s it was folklore belief that the estimates of KAM theory were essentially optimal (the estimates for a
step were optimal and it was expected that they could be saturated simultaneously). By now, the situation has changed
drastically: general bounds based on different schemes [23,27–29] lead to substantially better bounds, than those coming
from older methods.

More related to the present paper, in recent times there has been a rapid development in proofs of KAM theorems in
the ‘‘a-posteriori’’ format common in numerical analysis; a general format of an a-posteriori theorem is given below.

Theorem Format 1. Let X1 ⊂ X0 be Banach spaces and U ⊂ X0 an open set. Consider the map

F : U → X0 ;
assume that there are functionals m1, . . . ,mn : U → R

+ and x0 ∈ U , such that:

(1) ‖F(x0)‖X0
< ε for some ε ∈ R;

(2) m1(x0) ≤ M1, . . . ,mn(x0) ≤ Mn for some condition numbers M1, . . . , Mn;

(3) ε ≤ ε∗(M1, . . . ,Mn), where ε∗ is an explicit function of the condition numbers.

Then, there exists an x∗ ∈ X1 such that F(x∗) = 0 and ‖x0 − x∗‖X1
≤ CM1,...,Mnε for some positive constant CM1,...,Mn .

One can formulate several classical KAM theorems in this format. One needs to choose an appropriate functional F
whose zeros imply the existence of quasi-periodic solutions (in such applications x is an embedding that belongs to a
suitable space of functions, see 2.1.1). Notice that we do not need that the system is close to integrable and we do not
require any global assumption on the map, but only some functionals evaluated in the approximate solution.

Another important development is that some of the proofs in a-posteriori theorems have been established by studying
the convergence of numerically efficient methods, which are usually based on developing a Newton method that uses the
geometric properties to take advantage of remarkable cancellations. Note that to develop efficient algorithms, there are
several rather stringent requirements that are not present in more theoretical treatments (for example, it is important to
reduce the number of variables involved; the theoretically very powerful transformation theory is difficult to implement)
and need to consider methods to discretize functions (note that KAM theory requires high regularity; hence, discretization
methods, such as finite elements that do not represent well high derivatives, are not practical).

5 ‘‘It does not seem that these theorems, though having a great theoretical interest, can be applied, in their present state, to practical

problems’’ [22].
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Such Newton-like algorithms are different from the standard Newton’s method in that the inverse derivative is an
unbounded operator. Hence the steps are forced to consider corrections which are less regular than the original function.
The standard interval Newton’s method [30] does not apply in this context, since it assumes that the iterative step maps
elements of a function space into another function in the same space. Many KAM theorems (based in Cω smoothing) are
based on considering steps which are defined from one Banach space to another (these Banach spaces consist of analytic
functions defined in decreasing domains). The proof of convergence depends crucially on the sequence of domains losses
considered.

There are different geometric properties that lead to a KAM theory (see [31,32] for a discussion of the classical contexts
– general, symplectic, volume preserving, reversible – formulated in a format which is not a-posteriori). Other more
modern contexts are presymplectic [33], or closer to the goals of this paper, conformally symplectic [34].

A remarkable result on the existence of normally hyperbolic invariant tori carrying quasi-periodic motions of prefixed
frequencies has been presented in [35,36], where smooth families of real-analytic maps are considered. The papers [35,36]
are based on the theory of normally hyperbolic invariant manifolds [37,38] and (dissipative) KAM theory [31,32], but they
do not assume the presence of any geometrical structure.

Notice that an a-posteriori theorem allows to validate the existence of an approximate solution, independently of how
it has been obtained.

As it turns out, there exist computer science techniques (interval analysis, see [39–41]) which allow one to perform
rigorous bounds mechanically. The coupling of an a-posteriori theorem with interval arithmetic has led to many computer
assisted proofs of mathematically relevant problems (see, in particular, [42]) that are reduced to the existence of a fixed
point6.

Therefore, a way to prove the existence of a quasi-periodic solution has different stages, each of them requiring a
different methodology.

(A) For a fixed geometric context, prove an a-posteriori KAM theorem.

(B) Make sure that the conditions of the a-posteriori theorem in part A are made explicit and computable.

(C) Produce approximate solutions.

(D) Verify the conditions given in B) on the approximate solutions produced in C).

Point A) of the above strategy was implemented for two dimensional symplectic mappings in [43] (which also estab-
lished upper and lower bounds of Siegel radius) and, more recently, [7] (which gives a very innovative implementation of
a-posteriori KAM estimates). The technique of [7] is successfully applied to the standard map, obtaining computer-assisted
estimates in agreement of 99.996% with numerical upper bounds. The paper [7] has also considered applications to the
non-twist standard map and to the Froeschlé map.

Part A) requires the traditional methods of analysis, but the goals should be an explicit formulation that makes efficient
the other parts of the strategy. Notably, the functional equations should involve functions of as little variables as possible7.

Many of the more modern proofs in Part A) are based in describing an iterative process and showing it converges when
started on a sufficiently approximate solution. For our case, the proof presented in [34] is particularly well suited for
numerical applications. It leads to a quadratically convergent algorithm that requires little storage and a small operation
count per step. The algorithm can be used as the basis of a continuation method, and also a practical method to compute
the breakdown.

Part B) is, in principle, straightforward given the theoretical work already done in [34]; a high quality implementation
requires taking advantage of the cancellations and organizing the estimates very efficiently.

Part C) is very traditional in numerical analysis and can be accomplished in many ways, for example discretizing
the invariance equation, but we stress that there are some interactions with the other parts. Notably, the high accuracy
calculation is based on implementing the algorithm in [34]. Note that if we discretize the functions considered in N
elements, the algorithm requires storage O(N) and a (quadratically convergent) step requires O(N log(N)) operations. This
efficiency allows us to take N = 218 and use extended precision using only a today’s desktop computer. Clearly, if storage
was O(N2) as in standard ‘‘big matrix’’ Newton methods, storage would have been challenging in today’s computers.

To have an effective part D), the discretization used has to be such that it allows the evaluation of the norms involved.
As indicated above, the KAM theorem requires derivatives of rather high order, so it seems that a Fourier discretization
could be effective if we consider norms that can be read from the Fourier coefficients.

Part D) requires a finite number of operations, but the number is too large to be done by hand. The most delicate
estimates concern the error incurred by the initial approximation and the condition numbers. Finally, one needs to verify
a much smaller (about a dozen) of inequalities that ensure that any solution with these initial error and condition numbers
is the starting point of a convergent iterative method.

The goal of this paper is to present an implementation of a substantial part of this strategy for conformally symplectic
mappings and obtain concrete results for an emblematic example that has been considered many times in the literature:

6 We note, however, that, besides computer assisted proofs based on fixed point theorems, there are other computer assisted proofs which do

not involve fixed points theorems, but which are based on other arguments (exclusion of matches, algebraic operations, etc.).
7 The difficulty of dealing with functions grows very fast with the number of variables. This is known as the curse of dimensionality.
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the dissipative standard map. We give explicit estimates on the numerical validation of the golden mean attractor,

providing results for values of the parameters in agreement within 99.94% of the value obtained using numerical

results [44]. We remark that the same strategy has been used in [45] (see also [46,47]), showing an application to a

problem of interest in Celestial Mechanics: the spin–orbit problem with tidal torque.

Even if the present implementation to the standard map goes beyond the results in straightforward numerical

computations, we are not claiming it is a complete computer-assisted proof. The caveats are that in part D), we have

not provided rigorous estimates for the truncation of the evaluation of the error and we have not used interval arithmetic

to control the round-off error. We have performed the calculations with more than 100 digits of precision and checked

that changing the number of figures carried does not affect the estimates of the error.

Although this paper does not accomplish a complete proof, we hope that, by providing extremely fast and efficient

algorithms, making explicit the condition numbers and the inequalities that need to be checked, it goes significantly

beyond the usual numerical analysis practices. Of course, we hope to complete the proof or stimulate interest of others.

Note that the paper contains as supplements the implementation of the calculation of the solutions in extended precision

as well as the solutions themselves.

This paper is organized as follows. In Section 2, we present some standard preliminaries. In Section 3 we state a very

explicit KAM theorem in an a-posteriori format, Theorem 10 which implements part A) of the strategy indicated above.

The proof of Theorem 10 is given in Section 4, see also Appendix B. The KAM estimates for the standard map are presented

in Section 5.

2. Preliminaries

In this Section, we collect several notions that play a role in our results. The material in Section 2.1 concerns standard

properties of analytic functions and can be used mainly as a reference for the notation. In Section 2.2 we introduce

conformally symplectic systems, which are our main geometric assumption. In Section 2.3 we introduce the concrete

model we will study.

2.1. Norms and preliminary lemmas

In this Section we need to specify the norms (see Section 2.1.1), to estimate the composition of functions (see

Section 2.1.2), to bound derivatives (see Section 2.1.3), to introduce Diophantine numbers (see Section 2.1.4), and to give

estimates of a cohomology equation associated to the linearization of the invariance equation (see Section 2.1.5).

2.1.1. Norms

For a vector v =
(

v1

v2

)
∈ R

2 and for a matrix A =
(

a11 a12
a21 a22

)
∈ R

2 × R
2, we define the norms as

‖v‖ = |v1| + |v2| , ‖A‖ = max
{
|a11| + |a21|, |a12| + |a22|

}
.

We start by introducing for ρ > 0 the following complex extensions of a torus T, of a set B and of the manifold M = B×T:
Tρ ≡ {z = x+ iy ∈ C/Z : x ∈ T , |y| ≤ ρ} ,
Bρ ≡ {z = x+ iy ∈ C : x ∈ B , |y| ≤ ρ} ,

Mρ = Bρ × Tρ .

We denote by Aρ the set of functions which are analytic in Int(Tρ) and that extend continuously to the boundary of Tρ .

We endow Aρ with the norm

‖f ‖ρ = sup
z∈Tρ

|f (z)| ,

that makes it into a Banach space.

For a domain C ⊂ C× C\Z, let F ∈ AC be an analytic function on C and let

‖F‖C = sup
z∈C
|F (z)| .

Then, for a vector valued function f = (f1, f2, . . . , fn), n ≥ 1, we define the norm

‖f ‖C = sup
z∈C

(|f1| + |f2| + · · · + |fn|) . (2.1)

We notice that, in practical applications, it is convenient to use the following upper bound, instead of (2.1):

‖f ‖C ≤ sup
z∈C
|f1| + sup

z∈C
|f2| + · · · + sup

z∈C
|fn| = ‖f1‖C + ‖f2‖C + · · · + ‖fn‖C .

4
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By the maximum principle, it suffices to compute the supremum over the boundary of the domain:

‖f ‖C ≤ sup
z∈∂C
|f1| + sup

z∈∂C
|f2| + · · · + sup

z∈∂C
|fn| .

For an n1 × n2 matrix valued function F we define

‖F‖C = sup
z∈C
|F (z)| ,

that we can bound as

‖F‖C ≤ max

{
n1∑

i=1
sup
z∈C
|Fi1(z)|,

n1∑

i=1
sup
z∈C
|Fi2(z)|, . . . ,

n1∑

i=1
sup
z∈C
|Fin2 (z)|

}
;

as before, we can use the maximum principle to compute the supremum on the boundary as

‖F‖C ≤ max

{
n1∑

i=1
sup
z∈∂C
|Fi1(z)|,

n1∑

i=1
sup
z∈∂C
|Fi2(z)|, . . . ,

n1∑

i=1
sup
z∈∂C
|Fin2 (z)|

}
.

Notice that if F is a matrix valued function and f is a vector valued function, then one has

‖F f ‖C ≤ ‖F‖C ‖f ‖C .

If, instead of AC , we have a function defined on Aρ , we introduce the corresponding norms as

‖F‖ρ = sup
z∈Tρ

|F (z)|

for a function F ∈ Aρ and

‖F‖ρ ≤ max

{
n1∑

i=1
sup
z∈Tρ

|Fi1(z)|,
n1∑

i=1
sup
z∈Tρ

|Fi2(z)|, . . . ,
n1∑

i=1
sup
z∈Tρ

|Fin2 (z)|
}

for an n1 × n2 matrix valued function with components in Aρ .

2.1.2. Composition lemma

Composition of two functions is an important operation in dynamical systems, which enters our main functional

equation, see (2.8) below.

Lemma 2. Let F ∈ AC be an analytic function on a domain C ⊂ C× C/Z.

Assume that the function g is such that g(Tρ) ⊂ C and that the components of g are in Aρ with ρ > 0. Then, F ◦ g ∈ Aρ

and

‖F ◦ g‖ρ ≤ ‖F‖ρ .

If, furthermore, we have that dist(g(Aρ),C× C\Z \ C) = η > 0, then we have:

(i) For all h ∈ Aρ with ‖h‖ρ < η/4, we can define F ◦ (g + h).

(ii) We have:

‖F ◦ (g + h)− F ◦ g‖ρ ≤ sup
z,dist(z,C)≤η/4

(|DF (z)|) ‖h‖ρ ,

‖F ◦ (g + h)− F ◦ g − DF ◦ g h‖ρ ≤
1

2
sup

z,dist(z,C)≤η/4

(|D2F (z)|) ‖h‖2ρ .

2.1.3. Cauchy estimates on the derivatives

Estimates on the derivatives will be needed throughout the whole proof of the main result (Theorem 10).

Lemma 3. For a function h ∈ Aρ , we have the following estimate on the first derivative on a smaller domain:

‖Dh‖ρ−δ ≤ δ−1 ‖h‖ρ ,

where 0 < δ < ρ. For the ℓ-th order derivatives with ℓ ≥ 1, one has:

‖Dℓh‖ρ−δ ≤ ℓ! δ−ℓ ‖h‖ρ .

5
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2.1.4. Diophantine numbers
The following definition is standard in number theory and appears frequently in KAM theory.

Definition 4. Let ω ∈ R, τ ≥ 1, ν ≥ 1. We say that ω is Diophantine of class τ and constant ν, if the following inequality
is satisfied:

|ω k− q| ≥ ν|k|−τ , q ∈ Z , k ∈ Z\{0} . (2.2)

The set of Diophantine numbers satisfying (2.2) is denoted by D(ν, τ ). The union over ν > 0 of the sets D(ν, τ ) has
full Lebesgue measure in R.

2.1.5. Estimates on the cohomology equation
Given any real-analytic function η, we consider the following cohomology equation for λ ∈ R:

ϕ(θ + ω)− λϕ(θ ) = η(θ ) , θ ∈ T . (2.3)

The solution of an equation of the form (2.3) will be an essential ingredient of the proof, see e.g. (4.5) below. The two
following Lemmas show that there is one real-analytic function ϕ, which is the solution of (2.3). Precisely, Lemma 5 applies
for |λ| 6= 1, ω ∈ R and it provides an estimate on the solution ϕ which is not uniform in λ, while Lemma 6 applies to
any λ and any ω Diophantine, and it provides an estimate on the solution which is uniform in λ.

Lemma 5. Assume λ ∈ C, |λ| 6= 1, ω ∈ R. Then, given any real-analytic function η, there is one real-analytic function ϕ

satisfying (2.3). Furthermore, the following estimate holds:

‖ϕ‖ρ ≤
∣∣ |λ| − 1

∣∣−1‖η‖ρ .

Moreover, one can bound the derivatives of ϕ with respect to λ as

‖Dj
λϕ‖ρ ≤

j!
∣∣ |λ| − 1

∣∣j+1 ‖η‖ρ , j ≥ 1 .

Lemma 6. Consider (2.3) for λ ∈ [A0, A
−1
0 ] for some 0 < A0 < 1 and let ω ∈ D(ν, τ ). Assume that η ∈ Aρ , ρ > 0 and that

∫

T

η(θ ) dθ = 0 .

Then, there is one and only one solution of (2.3) with zero average:
∫
T
ϕ(θ ) dθ = 0. Furthermore, if ϕ ∈ Aρ−δ for 0 < δ < ρ,

then we have

‖ϕ‖ρ−δ ≤ C0 ν−1 δ−τ‖η‖ρ , (2.4)

where

C0 =
1

(2π )τ
π

2τ (1+ λ)

√
Γ (2τ + 1)

3
. (2.5)

The proof of Lemma 5 is given in [34], while that of Lemma 6 with the constant C0 as in (2.5) is given in Appendix A.

2.2. Conformally symplectic systems

In this Section we give the definition of conformally symplectic systems for two-dimensional maps. Indeed, the
dissipative standard map that we will introduce in Section 2.3 and that we will consider throughout this paper, is a
two-dimensional, conformally symplectic map. A more general definition of a conformally symplectic system in the
n-dimensional case is provided in [34].

Definition 7. Let M be an analytic symplectic manifold with M ≡ B × T, where B ⊆ R is an open, simply connected
domain with a smooth boundary. Let Ω be the symplectic form associated to M. Let f be a diffeomorphism defined on
the phase space M. The diffeomorphism f is conformally symplectic, if there exists a function λ :M→ R such that

f ∗Ω = λΩ ,

where f ∗ denotes the pull-back of f .

We remark that when n = 1, then λ can be a function of the coordinates, while it is shown [48] that for n ≥ 2, then
λ has to be constant.

In the following discussion, we will always assume that λ is a constant, as in the model (2.6) below, which is the main
goal of the present work.

6
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2.3. A specific model

In this work we consider a specific 1-parameter family fµ of two-dimensional, conformally symplectic maps, known
as the dissipative standard map:

I ′ = λI + µ+ ε

2π
sin(2πϕ) ,

ϕ′ = ϕ + I ′ , (2.6)

where I ∈ B ⊆ R with B as in Definition 7, ϕ ∈ T, ε ∈ R+, λ ∈ R+, µ ∈ R. This model has been studied both numerically
and theoretically in the literature. For example [49–51] consider the breakdown and conjecture universality properties;
[44] studies the breakdown even for complex values of the parameters; [52] studies the invariant bundles near the circles
and find scaling properties at breakdown; [53,54] study the domains of analyticity in the limit of small dissipation.

To fix some terminology, we shall refer to ε as the perturbing parameter, to λ as the dissipative parameter, and to µ as
the drift parameter.

Notice that the Jacobian of the mapping (2.6) is equal to λ, so that the mapping is contractive for λ < 1, volume
expanding for λ > 1 and it is symplectic for λ = 1.

We denote by (·, ·) the Euclidean scalar product. We remark that if J = J(x) is the matrix representing Ω at x in the
Euclidean metric, namely Ωx(u, v) = (u, J(x)v) for any u, v ∈ R, then for the mapping (2.6), J is the following constant
matrix:

J =
(

0 1
−1 0

)
. (2.7)

The map (2.6) is conformally symplectic of factor λ for the standard symplectic form Ω .

2.3.1. Formulation of the problem of an invariant attractor
We proceed to provide the definition of a KAM attractor with frequency ω.
Having fixed a value of the dissipative parameter, our goal will be to prove the persistence of invariant attractors

associated to (2.6) for non-zero values of the perturbing parameter. To this end, we need to require that the frequency
of the attractor, say ω ∈ R, is Diophantine according to Definition (2.2). We note that this will require adjusting the drift
parameter µ.

Definition 8. Given a family of conformally symplectic maps fµ : M → M, a KAM attractor with frequency ω is an
invariant torus which can be described by an embedding K : T → M, such that the following invariance equation is
satisfied for all θ ∈ T :

fµ ◦ K (θ ) = K (θ + ω) . (2.8)

The Eq. (2.8) will be the key of our statements; it includes both the embedding K and the parameter µ as unknowns.

Remark 9. It is interesting to notice that for ε = 0 the embedding can be chosen as K (θ ) = (θ, ω). In this case, the
mapping (2.6) admits a natural attractor with frequency ω = µ/(1 − λ). This simple observation highlights the role of
the drift µ and its relation to the frequency ω.

3. A KAM theorem

In this Section we state the main mathematical result, Theorem 10, which is a KAM result in the a-posteriori format
described in Theorem Format 1. Theorem 10 is a constructive version of Theorem 20 in [34] and it specifies the condition
numbers to be measured in the approximate solution as well as the inequalities that imply the existence of a KAM
attractor. It shows that, if there is a function K0 and a number µ0 that, when substituted in (2.8), give a residual (measured
in a norm that we specify) which is smaller than a function of the condition numbers, then there is a solution of (2.8)
close (in some norm that we specify) to K0, µ0.

We also note that the method of proof, which is based on constructing an iterative procedure, leads to a very efficient
algorithm. The focus of this paper will be in giving explicit estimates and showing that the hypotheses of the theorem
are satisfied numerically in the example (2.6) for explicit values of ε, λ. In particular, we will verify numerically that the
estimates of the theorem are satisfied taking a numerically computed solution as the approximate solution (see Section 5).

For an embedding K0 = K0(θ ) and a frequency ω, we start by introducing some auxiliary quantities defined as follows:

M0(θ ) ≡ [DK0(θ ) | J−1 DK0(θ )N0(θ )] ,
S0(θ ) ≡ ((DK0N0) ◦ Tω)

⊤(θ )Dfµ0
◦ K0(θ )J

−1DK0(θ )N0(θ ) ,

N0(θ ) ≡ (DK0(θ )
⊤DK0(θ ))

−1 , (3.1)

where the superscript ⊤ denotes the transposition and Tω denotes the shift by ω: for a function P = P(θ ), then
(P ◦ Tω)(θ ) = P(θ + ω).

7



R.C. Calleja, A. Celletti and R. de la Llave Communications in Nonlinear Science and Numerical Simulation 106 (2022) 106111

Theorem 10. Consider a family fµ :M→M of conformally symplectic mappings with conformal factor 0 < λ < 1, defined
on the manifold M ≡ B× T with B ⊆ R an open, simply connected domain with a smooth boundary. Let the mappings fµ be
analytic on an open connected domain C ⊂ C× C/Z. Let the following assumptions be satisfied.

H1 Let ω ∈ D(ν, τ ) as in (2.2).
H2 There exists an approximate solution (K0, µ0) with K0 ∈ Aρ0 for some ρ0 > 0 and with µ0 ∈ Λ, Λ ⊂ R open. Let

(K0, µ0) be such that (2.8) is satisfied up to an error function E0 = E0(θ ), namely

fµ0
◦ K0(θ )− K0(θ + ω) = E0(θ ) .

Let ε0 denote the size of the error function, i.e.

ε0 ≡ ‖E0‖ρ0 .

H3 Assume that the following non-degeneracy condition holds:

det

(
S0 S0(Bb0)0 + Ã

(1)
0

λ− 1 Ã
(2)
0

)
6= 0 ,

where S0 is given in (3.1), Ã
(1)
0 , Ã

(2)
0 denote the first and second elements of the vector Ã0 ≡ M−10 ◦ TωDµfµ0

◦ K0, (Bb0)
0 is the

solution (with zero average in the λ = 1 case) of the equation λ(Bb0)
0− (Bb0)

0 ◦ Tω = −(̃A(2)
0 )0, where (̃A

(2)
0 )0 denotes the zero

average part of Ã
(2)
0 . Denote by T0 the twist constant defined as

T0 ≡

∥∥∥∥∥∥

(
S0 S0(Bb0)0 + Ã

(1)
0

λ− 1 Ã
(2)
0

)−1∥∥∥∥∥∥
.

H4 Assume there exists ζ > 0, so that

dist(µ0, ∂Λ) ≥ ζ , dist(K0(Tρ0 ), ∂C) ≥ ζ .

H5 Let 0 < δ0 < ρ0. Let κµ ≡ 4Cσ0 with Cσ0 constant (whose explicit expression is given in Appendix C). Let the quantities
Q0, Qµ0, Qzµ0, Qµµ0, QE0 be defined as

Q0 ≡ sup
z∈C
|Dfµ0

(z)| ,

Qµ0 ≡ sup
z∈C
|Dµfµ0

(z)| ,

Qzµ0 ≡ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DµDfµ(z)| ,

Qµµ0 ≡ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|D2
µfµ(z)| ,

QE0 ≡
1

2
max

{
‖D2E0‖ρ0−δ0 , ‖DDµE0‖ρ0−δ0 , ‖D2

µE0‖ρ0−δ0

}
. (3.2)

Assume that ε0 satisfies the following smallness conditions for suitable real constants Cη0, CE0, Cd0, Cσ0, Cσ , CW0, CW , CR (see
Appendix C for their explicit expressions):

Cη0 ν−1δ−τ
0 ε0 < ζ , (3.3)

23τ+4 CE0 ν−2 δ−2τ0 ε0 ≤ 1 , (3.4)

4Cd0ν
−1δ−τ

0 ε0 < ζ , (3.5)

4Cσ0ε0 < ζ , (3.6)

‖N0‖ρ0 (2‖DK0‖ρ0 + DK ) DK < 1 (3.7)

4Qzµ0Cσ0ε0 < Q0 , (3.8)

4Qµµ0Cσ0ε0 < Qµ0 , (3.9)

Cσ DK ≤ Cσ0 , (3.10)

DK (CW0 + ‖M0‖ρ0CW + CWDK ) ≤ Cd0 , (3.11)

DK

(
CW νδ−1+τ

0 + CR

)
≤ CE0 , (3.12)

8
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where DK is defined as

DK ≡ 4Cd0 ν−1δ−τ−1
0 ε0 . (3.13)

Then, there exists an exact solution (Ke, µe) of (2.8) such that

fµe ◦ Ke − Ke ◦ Tω = 0 .

The quantities Ke, µe are close to the approximate solution, since one has

‖Ke − K0‖ρ0−δ0 ≤ 4Cd0 ν−1 δ−τ
0 ‖E0‖ρ0 ,

|µe − µ0| ≤ 4Cσ0 ‖E0‖ρ0 . (3.14)

In [34] there are two versions of Theorem 10. One version which applies for any value λ ∈ [A−1, A] including the
symplectic case λ = 1 (the uniform version); another version which works for a fixed value of λ ∈ R\{1} (the non-
uniform version), which is the one we have used as the basis of the results in this paper, where the constants involved
depend on λ. Many KAM theorems (based on Cω smoothing) are based on considering steps which are defined from one
Banach space to another (these Banach spaces consist of analytic functions defined in decreasing domains). The proof
of convergence depends crucially on the sequence of domain losses considered. The price that [34] pays to obtain the
uniform version is that the small divisor estimates need to be used twice, rather than once. Hence the powers of δ, that
appears in (3.14), are higher in the uniform case.

The explicit expressions of the constants entering in the conditions (3.3)-(3.12) are obtained by implementing
constructively the KAM proof presented in [34]. In Section 5 the family fµ will be taken as the dissipative standard map
defined in (2.6); then, the explicit expressions for the constants – provided in Appendix C – will allow us to compute
concrete values for ε0, once we fix the frequency ω and the conformal factor λ. Therefore, the conditions (3.3)-(3.12) will
ensure the existence of an invariant attractor with fixed frequency ω and for a given conformal factor λ.

Remark 11. For any value of λ with |λ| < 1, Theorem 10 also ensures that the quasi-periodic solution provided by the
manifold Ke(T) is a local attractor and that the dynamics on this attractor is analytically conjugated to a rigid rotation.
We also mention that Theorem 10 implies regularity in the parameters, as already stated in [34], which discusses the
Lipschitz dependence of the solution with respect to the drift (see Section 5.1.3 of [34]) and the differentiability of the
drift with respect to parameters (see Section 10.3 of [34]).

Remark 12. An interesting question is how it is possible to use the computer to verify hypotheses that involve irrational
numbers and indeed the Diophantine properties. After all, the standard computer numbers are only rational numbers.

The answer is that the a-posteriori theorem uses the Diophantine properties and that this theorem is indeed given
a traditional proof. To verify the hypothesis, we compute numerically ‖fµ ◦ K − K ◦ Tω0

‖ where ω0 is indeed a rational
number.

It is clear that for ξ ∈ (ω0, ω):

‖fµ ◦ K − K ◦ Tω‖ ≤ ‖fµ ◦ K − K ◦ Tω0
‖ + ‖K ◦ Tω0

− K ◦ Tω‖
≤ ‖fµ ◦ K − K ◦ Tω0

‖ + ‖DK ◦ Tξ‖|ω − ω0| .
In our case, we see that |ω − ω0| ≤ 10−100 and that DK is a number of order 1. Hence, the last term does not affect too
much the final result.

Of course, implementing interval arithmetic, one can also use an interval that contains the desired frequency and obtain
estimates for the error of the invariance valid uniformly for all ω in this interval.

4. A constructive version of the proof of Theorem 10

We note that in the statement of Theorem 10 (and in the subsequent text) all the constants are given explicitly (see
Appendix C). There are only a few dozen of conditions to check; all these conditions are easy algebraic expressions that
can be checked with a computer.

The proof of Theorem 10 is presented in detail in [34]. However, in [34] the proof was given for a general case and no
explicit estimates on the constants were provided, which are instead given in this Section.

We anticipate that it is easy to see that in the two-dimensional case of the mapping (2.6) all invariant curves are
Lagrangian; this observation will simplify the proof presented in Section 4 with respect to that developed in [34].

4.1. Estimate on the error R0

Let (K0, µ0) be an approximate solution of the invariance equation (2.8) and let E0 = E0(θ ) be the associated error
function. In coordinates, the Lagrangian condition K ∗Ω = 0 becomes

DK⊤0 (θ ) J DK0(θ ) = 0 ,

9
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which shows that the tangent space can be decomposed as,

Range
(
DK0(θ )

)
⊕ Range

(
J−1DK0(θ )

)
.

Up to a remainder function R0 = R0(θ ), the following identity is satisfied:

Dfµ0
◦ K0(θ ) M0(θ ) = M0(θ + ω)

(
Id S0(θ )
0 λ Id

)
+ R0(θ ) (4.1)

with M0 and S0 as in (3.1). Using that any torus associated to a two-dimensional map is always Lagrangian, one obtains

‖R0‖ρ0 = ‖DE0‖ρ0 . (4.2)

Using Cauchy estimates, a bound on R0 in (4.2) is given by

‖R0‖ρ0−δ0 ≤ δ−10 ‖E0‖ρ0 . (4.3)

4.2. Estimates for the increment in the steps

We proceed to find some corrections W0 and σ0 such that, setting K1 = K0 + M0W0, µ1 = µ0 + σ0, one has that the

new approximation (K1, µ1) satisfies the following invariance equation:

fµ1
◦ K1(θ )− K1(θ + ω) = E1(θ )

for some error function E1 = E1(θ ). The requirement on E1 is that its norm is quadratically smaller than the norm of the

initial approximation E0. This can be obtained provided that the following equation is satisfied:

Dfµ0
◦ K0(θ ) M0(θ )W0(θ )−M0(θ + ω) W0(θ + ω)+ Dµfµ0

◦ K0(θ )σ0 = −E0(θ ) . (4.4)

Using (4.1), (4.4) and neglecting higher order terms, one obtains two cohomology equations with constant coefficients for

W0 and σ0. More precisely, writing W0 in components as W0 = (W
(1)
0 ,W

(2)
0 ), such cohomological equations are given by

W
(1)
0 (θ )−W

(1)
0 (θ + ω) = −Ẽ(1)

0 (θ )− S0(θ )W
(2)
0 (θ )− Ã

(1)
0 (θ ) σ0 ,

λW
(2)
0 (θ )−W

(2)
0 (θ + ω) = −Ẽ(2)

0 (θ )− Ã
(2)
0 (θ ) σ0 (4.5)

with S0 given in (3.1), while Ẽ0, Ã0 are defined as

Ẽ0 ≡ (̃E
(1)
0 , Ẽ

(2)
0 ) ≡ M−10 ◦ TωE0 , Ã0 ≡ M−10 ◦ Tω Dµfµ0

◦ K0 , (4.6)

where we denote by Ã
(1)
0 , Ã

(2)
0 the first and second elements of the vector Ã0.

We remark that the first equation in (4.5) involves small divisors. In fact, the Fourier expansion of the l.h.s. of the first

equation in (4.5) is given by

W
(1)
0 (θ )−W

(1)
0 (θ + ω) =

∑

k∈Z
Ŵ

(1)
0,k e

2π ikθ (1− e2π ikω) .

Then, we notice that for k = 0 there appears the zero factor 1 − e2π ikω = 0. On the other hand, the second equation in

(4.5) is always solvable for any |λ| 6= 1 by a contraction mapping argument.

Let us split W
(2)
0 as W

(2)
0 = W

(2)

0 + (W
(2)
0 )0, where the first term denotes the average of W

(2)
0 and the second term

the zero-average part. We remark that the average of W
(1)
0 can be set to zero without loss of generality. On the other

hand, computing the averages of the cohomological equations (4.5), one can determine W
(2)

0 , σ0 by solving the system of

equations
(

S0 S0(Bb0)0 + Ã
(1)
0

λ− 1 Ã
(2)
0

)(
W

(2)

0

σ0

)
=
(
−S0(Ba0)0 − Ẽ

(1)
0

−Ẽ(2)
0

)
, (4.7)

where we have split (W
(2)
0 )0 as (W

(2)
0 )0 = (Ba0)

0 + σ0(Bb0)
0, where (Ba0)

0, (Bb0)
0 are the zero average solutions of

λ(Ba0)
0 − (Ba0)

0 ◦ Tω = −(̃E(2)
0 )0 ,

λ(Bb0)
0 − (Bb0)

0 ◦ Tω = −(̃A(2)
0 )0 (4.8)

with (̃E
(2)
0 )0, (̃A

(2)
0 )0 denoting the zero average parts of Ẽ

(2)
0 , Ã

(2)
0 . After solving (4.7), one can proceed to solve (4.5) for the

zero average parts of W
(1)
0 , W

(2)
0 . Estimates on the corrections W0 and σ0 are given by the following result.

10
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Lemma 13. Let K0 ∈ Aρ0+δ0 , K0(Tρ0 ) ⊂ domain (fµ), dist(K0(Tρ0 ), ∂( domain(fµ))) ≥ ζ > 0 with ρ0, δ0, ζ as in Theorem 10.
For any |λ| 6= 1 we have

‖W0‖ρ0−δ0 ≤ CW0 ν−1 δ−τ
0 ‖E0‖ρ0 ,

|σ0| ≤ Cσ0 ‖E0‖ρ0 , (4.9)

where

Cσ0 ≡ T0

[
|λ− 1|

( 1

||λ| − 1| ‖S0‖ρ0 + 1
)
+ ‖S0‖ρ0

]
‖M−10 ‖ρ0 ,

CW20 ≡ 2 T0

( 1

||λ| − 1| ‖S0‖ρ0 + 1
)
Qµ0 ‖M−10 ‖2ρ0 ,

CW20 ≡
1

||λ| − 1|
(
1+ Cσ0 Qµ0

)
‖M−10 ‖ρ0 ,

CW10 ≡ C0

[
‖S0‖ρ0 (CW20 + CW20)+ ‖M−10 ‖ρ0 + Qµ0‖M−10 ‖ρ0Cσ0

]
,

CW0 ≡ CW10 + (CW20 + CW20)νδτ
0 . (4.10)

Proof. Let Qµ0 be an upper bound on the norm of Dµfµ0
as in (3.2). Let Ã0 be defined as in (4.6); then, we have:

‖̃A0‖ρ0 ≤ Qµ0‖M−10 ‖ρ0 .

Recalling the definition of S0 in (3.1), we obtain

‖S0‖ρ0 ≤ Je Q0 ‖DK0‖2ρ0‖N0‖2ρ0 ≤ Je Q0 ‖K0‖2ρ0+δ0
‖N0‖2ρ0 δ−20 ,

where we used the estimate ‖DK0‖ρ0 ≤ ‖K0‖ρ0+δ0 δ−10 and where Je denotes the norm of the symplectic matrix J in (2.7)

(the norm of J−1 is again bounded by Je); with the choice of the norms in Section 2.1.1 it is Je = 1. We notice that, recalling
the definition of S0 and M0 in (3.1), one can compute directly the functions and evaluate their norm.

For any |λ| 6= 1, we have the estimates given below, which follow from (4.6), (4.7), (4.8):

|W (2)

0 | ≤ T0

(
‖S0(Bb0)0 + Ã

(1)
0 ‖ρ0 ‖̃E

(2)
0 ‖ρ0 + ‖S0(Ba0)0 + Ẽ

(1)
0 ‖ρ0 ‖̃A

(2)
0 ‖ρ0

)

≤ T0

[( 1

||λ| − 1| ‖S0‖ρ0 + 1
)
Qµ0‖M−10 ‖2ρ0 ‖E0‖ρ0

+
( 1

||λ| − 1| ‖S0‖ρ0 + 1
)
‖M−10 ‖2ρ0 ‖E0‖ρ0Qµ0

]

≤ CW20 ‖E0‖ρ0 ,

|σ0| ≤ T0

(
|λ− 1| ‖S0(Ba0)0 + Ẽ

(1)
0 ‖ρ0 + ‖S0‖ρ0 ‖̃E

(2)
0 ‖ρ0

)

≤ Cσ0 ‖E0‖ρ0
with CW20, Cσ0 as in (4.10). Then, using Lemma 5 and Lemma 6, we have:

‖(W (2)
0 )0‖ρ0 ≤ CW20 ‖E0‖ρ0 ,

‖W (1)
0 ‖ρ0−δ0 ≤ CW10 ν−1δ−τ

0 ‖E0‖ρ0
with CW10, CW20 as in (4.10). In conclusion, recalling the definition of CW0 in (4.10), we obtain (4.9). �

4.3. Estimates for the convergence of the iterative step

Let us define the error functional

E[K0, µ0] ≡ fµ0
◦ K0 − K0 ◦ Tω .

Let

(∆0, σ0) = −η[K0, µ0]E0 ,

where ∆0 = −(η[K0, µ0]E0)1, σ0 = −(η[K0, µ0]E0)2. Then, using that ∆0 = M0W0, one has:

‖η[K0, µ0]E0‖ρ0−δ0 ≤ ‖M0‖ρ0‖W0‖ρ0−δ0 + |σ0| ≤ Cη0ν
−1δ−τ

0 ‖E0‖ρ0 ,

where

Cη0 ≡ CW0‖M0‖ρ0 + Cσ0νδτ
0 . (4.11)

11
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In this Section we give quadratic estimates on the norm of DE[K0, µ0]∆0+DµE[K0, µ0]σ0+E0 with ∆0 ≡ M0W0; these

estimates are needed to bound the error of the new approximate solution as it will be done in Section 4.4.

Lemma 14. We have the following estimate:

‖E0 + DE[K0, µ0]∆0 + DµE[K0, µ0]σ0‖ρ0−δ0 ≤ CW0 ν−1 δ−1−τ
0 ‖E0‖2ρ0 .

Proof. Taking into account that W0 = M−10 ∆0, from (7.15) in [34] we have that,

E0 + DE[K0, µ0]∆0 + DµE[K0, µ0]σ0 = R0W0 .

From Lemma 13 and (4.3), we obtain that

‖E0 + DE[K0, µ0]∆0 + DµE[K0, µ0]σ0‖ρ0−δ0 ≤ CW0ν
−1δ−1−τ

0 ‖E0‖2ρ0 . �

4.4. Estimates for the error of the new solution

We proceed to bound the error corresponding to the new approximate solution.

Lemma 15. Let η[K0, µ0] be as in Lemma 14 and let ζ > 0 be such that

dist(µ0, ∂Λ) ≥ ζ , ‖E‖ρ0,k dist(K0(Tρ0 ), ∂C) ≥ ζ .

Assume that

Cη0 ν−1δ−τ
0 ‖E0‖ρ0 < ζ < 1 (4.12)

with Cη0 as in (4.11). Then, we obtain the following estimate for the error:

‖E[K0 +∆0, µ0 + σ0]‖ρ0−δ0 ≤ CE0 ν−2 δ−2τ0 ‖E0‖2ρ0 ,

where

CR0 ≡ QE0(‖M0‖2ρ0C
2
W0 + C2

σ0ν
2δ2τ0 ) ,

CE0 ≡ CW0νδ−1+τ
0 + CR0 . (4.13)

Proof. We define the remainder of the Taylor series expansion as

R[(K0, µ0), (K
′
0, µ

′
0)] ≡ E[K ′0, µ′0] − E[K0, µ0] − DE[K0, µ0](K ′0 − K0)− DµE[K0, µ0](µ′0 − µ0) .

Then, we can write

E[K0 +∆0, µ0 + σ0] = E0 + DE[K0, µ0]∆0 + DµE[K0, µ0]σ0 +R[(K0, µ0), (K0 +∆0, µ0 + σ0)] .
From Lemma 13 and the definition of QE0 in (3.2), we obtain

‖R‖ρ0−δ0 ≤ QE0

(
‖∆0‖2ρ0−δ0

+ |σ0|2
)
≡ CR0ν

−2 δ−2τ0 ‖E0‖2ρ0
with CR0 as in (4.13). Then, from Lemma 14 we conclude that

‖E[K0 +∆0, µ0 + σ0]‖ρ0−δ0 ≤ CW0ν
−1δ−1−τ

0 ‖E0‖2ρ0 + CR0ν
−2δ−2τ0 ‖E0‖2ρ0

≤ CE0 ν−2δ−2τ0 ‖E0‖2ρ0
with CE0 as in (4.13). Notice that (4.12) guarantees that

‖∆0‖ρ0−δ0 < ζ , |σ0| < ζ . �

4.5. Analytic convergence

In this Section we prove that if we start with a small enough error, it is possible to repeat indefinitely the algorithm

and that iterating the algorithm, we obtain a sequence of approximate solutions which converge to the true solution of

the invariance equation (2.8).

Again, let (K0, µ0) be the initial approximate solution with K0 ∈ Aρ0 for some ρ0 > 0 as in Theorem 10 and define the

sequence of parameters {δh}, {ρh}, h ≥ 0, as

δh ≡
ρ0

2h+2 , ρh+1 ≡ ρh − δh , h ≥ 0 .

12
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With this choice of parameters the domain of analyticity where the true solution is defined will be a non-empty domain
with size ρ∞ given by

ρ∞ = ρ0 −
∞∑

j=0

ρ0

2j+2 = ρ0 −
ρ0

2
> 0 .

Let (Kh, µh), h ≥ 1, be the approximate solution constructed by finding at each step the corrections (Wh, σh) solving
the analogous of the cohomological equations (4.5) for h = 0. To make the notation precise, all quantities associated to
(Kh, µh) will carry a subindex h, indicating the step of the algorithm. Define

εh ≡ ‖E(Kh, µh)‖ρh ,

and let us introduce the following quantities:

dh ≡ ‖∆h‖ρh+1 , vh ≡ ‖D∆h‖ρh+1 , sh ≡ |σh| .
By Lemma 13 we have the following inequalities:

dh ≤ Cdhν
−1δ−τ

h εh , vh ≤ Cdhν
−1δ−τ−1

h εh , sh ≤ Cσhεh ,

where

Cdh ≡ CWh‖Mh‖ρh (4.14)

where the quantities CWh, Cσh are obtained as follows:

Cσh ≡ Th

[
|λ− 1|

( 1

||λ| − 1| ‖Sh‖ρh + 1
)
+ ‖Sh‖ρh

]
‖M−1h ‖ρh ,

CW2h ≡ 2Th

( 1

||λ| − 1| ‖Sh‖ρh + 1
)
Qµh‖M−1h ‖2ρh ,

CW2h ≡
1

||λ| − 1|
(
1+ Cσh Qµh

)
‖M−1h ‖ρh ,

CW1h ≡ C0

[
‖Sh‖ρh (CW2h + CW2h)+ ‖M−1h ‖ρh + Qµh‖M−1h ‖ρh Cσh

]
,

CWh ≡ CW1h + (CW2h + CW2h)νδτ
h . (4.15)

Remark 16. By Lemma 15 one has

εh+1 ≤ CEhν
−2δ−2τh ε2

h

with

CRh ≡ QEh (‖Mh‖2ρhC
2
Wh + C2

σhν
2δ2τh )

QEh ≡
1

2
max

{
‖D2Eh‖ρh−δh , ‖DDµEh‖ρh−δh , ‖D2

µEh‖ρh−δh

}

CEh ≡ CWhνδ−1+τ
h + CRh . (4.16)

The results of Theorem 10 are based on the following proposition.

Proposition 17. Let the constants Cd0, Cσ0, CE0 be as in (4.14), (4.15), (4.16) with h = 0. Define the following quantities:

κK ≡ 4Cd0ν
−1δ−τ

0 , κµ ≡ 4Cσ0 , κ0 ≡ 22τ+1 CE0ν
−2δ−2τ0 . (4.17)

Assume that the following conditions are satisfied:

2τ+3 κ0ε0 ≤ 1 , (4.18)

κKε0 < ζ , (4.19)

κµε0 < ζ , (4.20)

‖N0‖ρ0 (2‖DK0‖ρ0 + DK ) DK < 1 (4.21)

Cσ DK ≤ Cσ0 , (4.22)

DK

(
CWνδ−1+τ

0 + CR

)
≤ CE0 , (4.23)

13
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DK (CW0 + ‖M0‖ρ0CW + CWDK ) ≤ Cd0 , (4.24)

4Qzµ0Cσ0ε0 < Q0 , (4.25)

4Qµµ0Cσ0ε0 < Qµ0 , (4.26)

where the constants Cσ , CW , CR, CW0, DK are defined in Appendix C. Then, for all integers h ≥ 0 the following inequalities
(p1; h), (p2; h), (p3; h) hold:
(p1; h)

‖Kh − K0‖ρh ≤ κK ε0 < ζ , |µh − µ0| ≤ κµ ε0 < ζ ; (4.27)

(p2; h)

εh ≤ (κ0ε0)
2h−1ε0 ;

(p3; h)
Cdh ≤ 2Cd0 , Cσh ≤ 2Cσ0 , CEh ≤ 2CE0 .

The proof of Proposition 17 is quite long (see Appendix B), but it is well structured and broken into small steps that
can be easily verified. Proposition 17 allows to give the proof of Theorem 10 by analytic smoothing: at each step, the
corrections (Wh, σh) yield increasingly approximate solutions, defined on smaller analyticity domains. The loss of domain
is such that the exact solution is defined on a domain with positive radius of analyticity.

Proof (of Theorem 10). The inequalities (3.14) follow directly from (4.27) and (4.17). The condition (3.3) follows from
(4.12) of Lemma 15, while the conditions (3.4)-(3.12) follow from (4.18)-(4.26) of Proposition 17. �

We conclude by mentioning that the solution is locally unique. In fact, according to [34], if there exist two solutions
(Ka, µa), (Kb, µb) close enough, then there exists s ∈ R such that for all θ ∈ T:

Kb(θ ) = Ka(θ + s) , µa = µb .

5. KAM estimates for the standard map

In this Section we implement Theorem 10 to obtain explicit estimates on the numerical validation of the golden mean
curve of the dissipative standard map (2.6); such estimates turn out to be close to the numerical breakdown value. We
need to start with an approximate solution (K0, µ0), which satisfies the invariance equation (2.8) with an error term E0,
whose norm on a domain of radius ρ0 > 0 was denoted as ε0 in Theorem 10.

The construction of the approximate solution (K0, µ0) can be obtained by implementing the algorithm described
in [34] and reviewed in Section 5.1 below. An estimate on the quantity ε0 is obtained by imposing the list of conditions
(3.3)-(3.12); explicit bounds are given in Section 5.2, using the definitions of the constants provided in Appendix C.

5.1. Construction of the approximate solution

To construct an approximate solution (K0, µ0) of the invariance equation (2.8), we make use of the fact that the
a-posteriori format described in [34] provides an explicit algorithm, which can be implemented numerically in a very
efficient way. Each step of the algorithm is denoted as follows: ‘‘a ← b’’ means that the quantity a is assigned by the
quantity b.

Algorithm 18. Given K0 : T→M, µ0 ∈ R, we denote by λ ∈ R the conformal factor for fµ0
. We perform the following

computations:

1) E0 ← fµ0
◦ K0 − K0 ◦ Tω

2) α← DK0

3) N0 ← [α⊤α]−1
4) M0 ← [α| J−1αN0]
5) β ← M−10 ◦ Tω

6) Ẽ0 ← βE0
7) P0 ← αN0

S0 ← (P0 ◦ Tω)
⊤Dfµ0

◦ K0 J−1 P0
Ã0 ← M−10 ◦ Tω Dµfµ0

◦ K0

14
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Table 1

The analytical estimate εKAM for the golden mean curve of (2.6) with λ = 0.9 for different values of the

parameter ρ0 measuring the width of the analyticity domain considered for K .

ρ0 εKAM Agreement with εc µ

10−5 0.97094171 99.89% 0.06139053

2 · 10−5 0.97136363 99.93% 0.06139054

3 · 10−5 0.97142178 99.94% 0.06139056

4 · 10−5 0.97136363 99.93% 0.06139060

5 · 10−5 0.97133318 99.93% 0.06139063

6 · 10−5 0.97127502 99.92% 0.06139068

7 · 10−5 0.97120503 99.92% 0.06139072

8 · 10−5 0.97114973 99.91% 0.06139075

9 · 10−5 0.97094171 99.89% 0.06139079

10−4 0.97094171 99.89% 0.06139082

2 · 10−4 0.97011584 99.80% 0.06139146

8) (Ba0)
0 solves λ(Ba0)

0 − (Ba0)
0 ◦ Tω = −(̃E(2)

0 )0

(Bb0)
0 solves λ(Bb0)

0 − (Bb0)
0 ◦ Tω = −(̃A(2)

0 )0

9) Find W
(2)

0 , σ0 solving

0 = −S0 W
(2)

0 − S0(Ba0)0 − S0(Bb0)0σ0 − Ẽ
(1)
0 − Ã

(1)
0 σ0

(λ− 1)W
(2)

0 = −Ẽ
(2)
0 − Ã

(2)
0 σ0 .

10) (W
(2)
0 )0 = (Ba0)

0 + σ0(Bb0)
0

11) W
(2)
0 = (W

(2)
0 )0 +W

(2)

0

12) (W
(1)
0 )0 solves (W

(1)
0 )0 − (W

(1)
0 )0 ◦ Tω = −(S0W (2)

0 )0 − (̃E
(1)
0 )0 − (̃A

(1)
0 )0σ0

13) K1 ← K0 +M0W0

µ0 ← µ0 + σ0 .

Remark 19. We call attention on the fact that steps 2), 8), 10), 11), 12) involve diagonal operations in the Fourier space.
On the contrary, the other steps are diagonal in the real space (while steps 10), 11) are diagonal in both spaces). If we
represent a function in discrete points or in Fourier space, then we can compute the other functions by applying the Fast
Fourier Transform (FFT). This implies that if we use N Fourier modes to discretize the function, then we need O(N) storage
and O(N log(N)) operations.

Next task is to translate the procedure described before into a numerical algorithm that computes invariant tori of
(2.6). To this end, we fix the frequency equal to the golden ratio:

ω =
√
5− 1

2
. (5.1)

We remark that the golden ratio (5.1) satisfies the Diophantine condition (2.2) with constants ν = 2

3+
√
5
, τ = 1.

Then, we start from (K0, µ0) = (0, 0), implement Algorithm 5.1 using Fast Fourier Transforms and perform a
continuation method to get an approximation of the invariant circle close to the breakdown value.

To get closer to breakdown, one needs to implement Algorithm 5.1 with a sufficient accuracy. The result described in
Section 5.2 is obtained making all computations by means of the GNUMPFR Library using 115 significant digits. We use our
own extended precision implementation of the classical radix-2 Cooley–Tukey in [55] by using GNU MPFR. We compute
218 Fourier coefficients to discretize the invariant circle; we ask for a tolerance equal to 10−46 in the approximation of
the analytic norm (2.1) and of the invariance equation (2.8) to have convergence.

We fix λ = 0.9 and (by trial and error to optimize the final result) we select the parameters measuring the size of
the domain as ρ0 = 3 · 10−5, δ0 = ρ0/4. This choice of ρ0 is taken to optimize the final result. We denote by εKAM
the value of the parameter ε (appearing in (2.6)) after the algorithm has converged to an approximate solution (K , µ);
all the estimates of Theorem 10 (precisely (3.3)-(3.4)-(3.5)-(3.6)-(3.7)-(3.8)-(3.9)-(3.10)-(3.11)-(3.12)) have been verified
numerically for that approximate solution. Table 1 provides the value of εKAM obtained with 218 Fourier coefficients for
different values of ρ0. We emphasize that the a-posteriori format of Theorem 10 verifies the solution and does not need
to justify how the approximate solution is constructed.

As Table 2 shows, the higher the number of Fourier coefficients, the better is the result, although the execution time
becomes longer. We also notice that the improvement is smaller as the number of Fourier coefficients increases; in
particular, the results are very similar when taking 217 and 218 Fourier coefficients.

The output of the construction of the approximate solution via the MPRF program is represented by the analytic norms
of the following quantities, which will be used to check the conditions (3.3)-(3.12), needed to implement Theorem 10.
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Table 2

The analytical estimate εKAM for the golden mean curve of (2.6) with λ = 0.9, ρ0 = 3 · 10−5 , as the

number of Fourier coefficients of the solution increases.

n. Fourier εKAM µ Agreement Execution time

coefficients with εc (s)

213 0.95730400 0.06140120 98.49% 612.28

214 0.96512016 0.06139562 99.29% 2015.22

215 0.96807778 0.06139307 99.60% 3205.34

216 0.97011583 0.06139161 99.81% 8460.19

217 0.97094171 0.06139089 99.89% 13375.78

218 0.97142178 0.06139056 99.94% 38222.48

All quantities are given with 30 decimal digits:

‖M0‖ρ0 = 44.9270811990274410452148184267 ,

‖M−10 ‖ρ0 = 39.930678840711850152808576113 ,

‖Dfµ0
‖ρ0 = 5.07550011737521959347639032433 ,

‖D2fµ0
‖ρ0 = 12.2074077197778485732557018883 ,

‖S0‖ρ0 = 215.24720762912463716286404004 ,

‖N0‖ρ0 = 156.534312450915756580422752539 ,

‖N−10 ‖ρ0 = 591.408362768291837018626059244 ,

‖DK0‖ρ0 = 44.9270811990274410452148184267 ,

‖D2K0‖ρ0 = 221591.876024617607481468301961 ,

T0 = 7.6434265622376167352649577512 ,

‖E0‖ρ0 = 7.71650351451832566847490849233 10−36 ,

‖D2E0‖ρ0 = 5.1576300492851806964395530006 10−24 . (5.2)

With reference to the quantities in (3.2), we notice that in the case of the dissipative standard map (2.6) we have Qµ0 = 1
and Qzµ0 = Qµµ0 = 0. The computation of such quantities requires instead a major effort in different models, like the
dissipative spin–orbit problem, see [45] for details. We stress that the quantity which requires the hardest computation
effort is the error E0 and its derivatives.

5.2. Check of the conditions of Theorem 10 and results

We verify numerically the estimates of the theorem on the existence of the golden mean torus for the dissipative
standard map described by equation (2.6) with frequency as in (5.1) and λ = 0.9. The corresponding breakdown threshold,
as computed by means of the Sobolev’s method used in [44], or equivalently by means of Greene’s technique (see [44,56]),
gives

εc = 0.97198 , (5.3)

(compare with [44]). On the other hand, implementing the analytical estimates of Section 4, we obtain that the conditions
(3.3)-(3.12), appearing in Theorem 10 are satisfied for a value of the perturbing parameter equal to

εKAM = 0.971421780429401935547661013138 . (5.4)

The corresponding value of the drift parameter amounts to

µ = 0.061390559555891469231218991051 . (5.5)

The result is validated by running the program with different precision on a DELL Machine with an Intel Xeon Processor
E5-2643 (Quad Core, 3.30 GHz Turbo, 10MB, 8.0 GT/s) and 16 GB RAM. Precisely, we provide in Table 3 the results with
different significant digits.

The results shown in Table 3 suggest that the norms provided in (5.2) are robust and, even if we do not implement
interval arithmetic, we can conjecture that the values provided in (5.2) are not affected by numerical errors. Below 50
digits of precision, the algorithm does not produce any result, since some quantities are so small that a precision less than
50 digits is not enough. This remark leads us to the following statement.

Verification of Theorem 10 for the dissipative standard map. Let us consider the map (2.6) with λ = 0.9. Let

ρ0 = 3 · 10−5, δ0 = ρ0/4, ζ = 3 · 10−5; let us fix the frequency as ω =
√
5−1
2

. Assume that the norms of M0, M
−1
0 , Dfµ0

,

D2fµ0
, S0, N0, N

−1
0 , DK0, D

2K0, E0, D
2E0 and the twist constant T0 are given by the values provided in (5.2). Then, there
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Table 3

The analytical estimate εKAM for the golden mean curve of (2.6) with

λ = 0.9, ρ0 = 3 · 10−5 , number of Fourier coefficients equal to 218 and

for different precision of the computation, obtained varying the number of

digits as in the first column.

Digits εKAM Execution time (s)

50 0.97142178 27632.88

60 0.97142178 29027.68

70 0.97142178 30094.44

85 0.97142178 32685.89

100 0.97142178 35390.35

115 0.97142178 38222.48

exists an invariant attractor with frequency ω for ε ≈ εKAM with εKAM as in (5.4) and for a value of the drift parameter as

in (5.5).

The result stated before verifies the estimates for εKAM , which is consistent within 99.94% of the numerical value εc
given in (5.3).

Of course, the numerical value in (5.3) is based on indirect numerical methods and there is no theory to estimate its

error. We also point out that the method used to obtain the approximate solution seems more widely applicable than

the numerical method. The Greene’s method is difficult to make work for standard maps with two or more frequencies,

whereas the continuation method works without any problem.

This result shows that, beside a world-wide recognized theoretical interest, KAM theory can also provide a constructive

effective algorithm to estimate the breakdown value with great accuracy. We also point out that computing close to the

breakdown is not just a challenge for numerics. The breakdown of KAM tori is known to be the source of very interesting

mathematical problems. Notably, the very deep renormalization group for quasi-periodic problems was discovered by

numerical experiments [49,57].
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Appendix A. Proof of Lemma 6

In this appendix, we include the proof of Lemma 6. In the proof we follow the construction of [58,59] to derive the

constant C0 in (2.5).

Proof. For the proof of the existence of the solution of (2.3) we refer to [34]; here we provide an explicit estimate of C0.

To this end, let us expand ϕ and η in Fourier series as

ϕ(θ ) =
∑

k∈Z\{0}
ϕ̂ke

2π ikθ , η(θ ) =
∑

k∈Z\{0}
η̂ke

2π ikθ ,

where ϕ̂k, η̂k denote the Fourier coefficients. Note that, since we are assuming
∫

η(θ ) = dθ = 0, we do not need to deal

with averages. Then, equation (2.3) becomes
∑

k∈Z
ϕ̂k(e

2π ikω − λ)e2π ikθ =
∑

k∈Z
η̂ke

2π ikθ ; (A.1)

computing the coefficients ϕ̂k from (A.1) and adding the Fourier terms, one obtains:

ϕ(θ ) =
∑

k∈Z

η̂k

e2π ikω − λ
e2π ikθ .

Let Zk ≡ minq∈Z |ω k− q|; then, using sin(x)/x ≥ 2/π for all 0 < x < π
2
, we have the following inequality

|e2π ikω − λ|2 = (1− λ)2 cos2(πkω)+ (1+ λ)2 sin2(πkω)

≥ (1+ λ)2 sin2(πkω) ≥ 4(1+ λ)2Z2
k .

Therefore we obtain:

|e2π ikω − λ| ≥ 2(1+ λ)|Zk| ≥ 2(1+ λ)ν|k|−τ .

17
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Finally, using the estimate
∑

k∈Z |η̂k|2 e4πρ|k| ≤ 2‖η‖2ρ (see [58]) and setting F (δ) ≡ 4
∑∞

k=1
e−4πδ|k|

|e2π ikω−λ|2
, one has

‖ϕ‖ρ−δ ≤
∑

k∈Z
|η̂k|e2πρ|k| e−2πδ|k|

|e2π ikω − λ|

≤
√∑

k∈Z
|η̂k|2 e4πρ|k|

√∑

k∈Z

e−4πδ|k|

|e2π ikω − λ|2

≤ ‖η‖ρ
√
F (δ) ,

where in the last inequality we used Parseval’s identity
∑

k∈Z |η̂k|2 e±4πρ|k| =
∫ 1

0
|η(θ ∓ iρ)|2 dθ ≤ ‖η‖2ρ and that the

function is real |η̂−k| = |η∗k |. Denoting by Γ the Euler gamma function, using the estimates of [59], one has that

F (δ) ≤ π2Γ (2τ + 1)

3ν2(1+ λ)2(2δ)2τ (2π )2τ
,

which leads to (2.4) with C0 as in (2.5). �

Appendix B. Proof of Proposition 17

The proof of Proposition 17 proceeds by induction. We start by noticing that (p1; 0), (p2; 0), (p3; 0) are trivial. Let
H ∈ Z+ and assume that (p1; h), (p2; h), (p3; h) are true for h = 1, . . . ,H . Then, by Lemma 15 we obtain the Taylor
estimate

εh = ‖E(Kh−1 +∆h−1, µh−1 + σh−1)‖ρh ≤ 2CE0ν
−2δ−2τh−1ε

2
h−1 , (B.1)

using CE,h−1 ≤ 2CE0 due to (p3; h) for h = 1, . . . ,H . The estimate (B.1) allows to have a bound of εh, h = 1, . . . ,H , in
terms of ε0:

εh ≤ 2CE0 ν−2δ−2τ0 22τ (h−1)ε2
h−1

≤ (2CE0ν
−2δ−2τ0 )1+2+···+2

h−1
22τ ((h−1)+2(h−2)+···+2h−2)ε2h

0

≤ (2CE0ν
−2δ−2τ0 )2

h−1 22τ (2h−(h+1))ε2h

0

≤ (2CE0ν
−2δ−2τ0 22τ ε0)

2h−1ε0 .

In Sections Appendix B.1, B.2, B.3, we will prove (p1;H+ 1), (p2;H+ 1), (p3;H+ 1), under the induction assumptions
(p1; h), (p2; h), (p3; h) for h = 1, . . . ,H . To get such result, we need the following Lemma.

Lemma 20. Assume that (p1; h), (p2; h), (p3; h) hold for h = 1, . . . ,H. For H ∈ Z+ the following inequality holds:

‖DKH+1 − DK0‖ρH+1 ≤ DK , (B.2)

where DK is as in (3.13), Cd0 as in (4.14) and provided that

2τ+1κ0ε0 ≤
1

2
(B.3)

with κ0 as in (4.17). Furthermore, under the inequality:

‖N0‖ρ0 (2‖DK0‖ρ0 + DK ) DK < 1 , (B.4)

the following relations hold for 0 ≤ h ≤ H + 1:

‖Nh − N0‖ρh ≤ CNDK , (B.5)

‖Mh −M0‖ρh ≤ CMDK , (B.6)

‖M−1h −M−10 ‖ρh ≤ CMinvDK , (B.7)

where CN , CM , CMinv are defined as follows:

CN ≡ ‖N0‖2ρ0
2‖DK0‖ρ0 + DK

1− ‖N0‖ρ0DK (2‖DK0‖ρ0 + DK )
,

CM ≡ 1+ Je

[
CN

(
‖DK0‖ρ0 + DK

)
+ ‖N0‖ρ0

]
,

CMinv ≡ CN (‖DK0‖ρ0 + DK )+ ‖N0‖ρ0 + Je . (B.8)
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Proof. We start by proving (B.2), under (B.3) and with DK as in (3.13):

‖DKH+1 − DK0‖ρH+1 ≤
H∑

j=0
vj ≤

H∑

j=0
Cdjν

−1δ−τ−1
j εj ≤ DK . (B.9)

The proof of (B.5) is obtained as follows. From the relations

DKh = DK0 + K̃h , DK⊤h = DK⊤0 + K̃⊤h , K̃h =
h−1∑

j=0
D∆j ,

we obtain

Nh = (DK⊤h DKh)
−1 =

(
(DK⊤0 + K̃⊤h )(DK0 + K̃h)

)−1

= (DK⊤0 DK0)
−1
(
1+ (DK⊤0 DK0)

−1 (̃K⊤h DK0 + DK⊤0 K̃h + K̃⊤h K̃h)
)−1

= N0(1+ χh)
−1 ,

having set χh ≡ N0 (̃K
⊤
h DK0 + DK⊤0 K̃h + K̃⊤h K̃h). Under the inequality (B.4), ensuring that ‖χh‖ρh < 1 and using (B.9), we

have the following bound:

‖(1+ χh)
−1 − 1‖ ≤ ‖χh‖

1− ‖χh‖
,

which leads to the following relation with CN as in (B.8):

‖Nh − N0‖ρh ≤ ‖N0‖ρ0 ‖(1+ χh)
−1 − 1‖ρh ≤ ‖N0‖ρ0

‖χh‖ρh
1− ‖χh‖ρh

≤ CN DK . (B.10)

The proof of (B.6) is obtained starting from the identity

Mh −M0 = (DKh − DK0 | J−1 DKh Nh − J−1 DK0 N0) .

Then, one has

‖Mh −M0‖ρh ≤ ‖DKh − DK0‖ρh + Je ‖DKhNh − DK0N0‖ρh .

From

DKhNh − DK0N0 = DKhNh − DKhN0 + DKhN0 − DK0N0

and from (B.10), we obtain that

‖DKhNh − DK0N0‖ρh ≤ (CN‖DKh‖ρh + ‖N0‖ρ0 ) DK . (B.11)

Bounding ‖DKh‖ρh as ‖DKh‖ρh ≤ ‖DK0‖ρ0 + ‖DKh − DK0‖ρh , we obtain (B.6).
The proof of (B.7) is obtained as follows. Given that the symplectic form is the standard one, the inverse of the matrix

Mh is

M−1h (θ ) =
(
DKh N⊤h | J⊤ DKh

)⊤
=
(

NhDK
⊤
h

DK⊤h J

)
.

Indeed, one can verify that due to the Lagrangian character, M−1h Mh = Id. By computing the inverse of M0 in an analogous
way, one has

M−1h −M−10 =
(

NhDK
⊤
h − N0DK

⊤
0

DK⊤h J − DK⊤0 J

)
.

The bound for the first row NhDK
⊤
h − N0DK

⊤
0 is obtained as in (B.11), while the second row is bounded by Je DK . This

yields (B.7) with CMinv as in (B.8). �

We are now in the position to continue with the proof of (p1;H + 1), (p2;H + 1), (p3;H + 1) to which we devote the
rest of this Section.

B.1. Proof of (p1;H + 1)

Using the inequality j+ 1 ≤ 2j, one has

‖KH+1 − K0‖ρH+1 ≤
H∑

j=0
dj ≤

H∑

j=0
(Cdjν

−1δ−τ
j εj) ≤ 4Cd0ν

−1δ−τ
0 ε0 ;
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assuming that ε0 satisfies (4.19), we obtain the first inequality in (4.27). Moreover, we have:

|µH+1 − µ0| ≤
H∑

j=0
sj ≤

H∑

j=0
Cσjεj ≤ 2Cσ0

H∑

j=0
(κ0ε0)

2j−1ε0 ;

assuming that ε0 satisfies (4.18) and (4.20), we obtain the second inequality in (4.27), hence we obtain (p1;H + 1).

B.2. Proof of (p2;H + 1)

Having proven (p1;H + 1), we use the Taylor estimate (B.1) with H + 1 in place of h to obtain (p2;H + 1):

εH+1 ≤ (2CE0ν
−2δ−2τ0 22τ ε0)

2H+1−1ε0 = (κ0ε0)
2H+1−1ε0 ,

due to the definition of κ0 in (4.17).

B.3. Proof of (p3;H + 1)

The proof of (p3;H+1) is rather cumbersome and needs several auxiliary results. Given the inductive assumption, we
want to prove that

Cd,H+1 ≤ 2Cd0 , Cσ ,H+1 ≤ 2Cσ0 , CE,H+1 ≤ 2CE0 . (B.12)

B.3.1. Estimate on |Th − T0|
We start with the following result.

Lemma 21. Assume that (p1; h), (p2; h), (p3; h) hold for h = 1, . . . ,H and that the condition (B.4) of Lemma 20 is valid
together with

4Qzµ0Cσ0ε0 < Q0 , 4Qµµ0Cσ0ε0 < Qµ0 .

Let τ0 and τh be defined as

τ0 ≡
(

S0 S0(Bb0)0 + Ã
(1)
0

λ− 1 Ã
(2)
0

)−1

and

τh ≡
(

Sh Sh(Bbh)0 + Ã
(1)
h

λ− 1 Ã
(2)
h

)−1

and let T0 ≡ ‖τ0‖ρ0 , Th ≡ ‖τh‖ρh . For h ∈ N, h = 1, . . . ,H, the following inequality holds:

|Th − T0| ≤ CTDK , (B.13)

where CT is defined as

CT ≡
T

2
0

1− T0Cτ

max
{
CS, CSB + 2CMinvQµ0

}
(B.14)

with

CS ≡ 2Je Q0

{(
‖N0‖ρ0 + CNDK

) [
DK (‖N0‖ρ0 + CNDK )

+ ‖DK0‖ρ0‖N0‖ρ0 + ‖DK0‖ρ0CNDK

]
+ CN ‖DK0‖ρ0

[
DK (‖N0‖ρ0 + CNDK )

+ ‖DK0‖ρ0‖N0‖ρ0 + ‖DK0‖ρ0CNDK

]
+ ‖N0‖ρ0‖DK0‖ρ0 (‖N0‖ρ0 + CNDK )

+ CN‖N0‖ρ0‖DK0‖2ρ0
}

,

CSB ≡
1

||λ| − 1|Qµ0‖M−10 ‖ρ0CS + 2JeQ0 ‖N0‖2ρ0 ‖DK0‖2ρ0
1

||λ| − 1| CMinv Qµ0

+ 2CS

1

||λ| − 1| CMinv Qµ0 DK ,

Cτ ≡ max
{
CS, CSB + 2CMinvQµ0

}
DK . (B.15)
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Proof. From

Th ≤ ‖τ0‖ρ0 + ‖̃τh‖ρh = T0 + ‖̃τh‖ρh ,

where τ̃h ≡ τh − τ0 = τ 2
0

[(
I + τ0(τ

−1
h − τ−10 )

)−1
(τ−10 − τ−1h )

]
, we have the estimates

|Th − T0| ≤ ‖̃τh‖ρh ≤
T

2
0

1− T0Cτ

Cτ , (B.16)

where Cτ is a bound on τ−1h − τ−10 , say

‖τ−1h − τ−10 ‖ρh ≡
∥∥∥∥∥

(
Sh − S0 Sh(Bbh)0 + Ã

(1)
h − (S0(Bb0)0 + Ã

(1)
0 )

0 Ã
(2)
h − Ã

(2)
0

)∥∥∥∥∥
ρh

≤ Cτ . (B.17)

To obtain an expression for Cτ , we bound term by term the matrix appearing in (B.17).

We start with ‖Sh − S0‖ρh . From (3.1) we have that Sh is defined by

Sh = Nh(θ + ω)⊤DKh(θ + ω)⊤ Dfµh
◦ Kh(θ ) J

−1 DKh(θ )Nh(θ ) .

Then, we bound Dfµh
◦ Kh as

sup
z∈C
|Dfµh

(z)| ≤ sup
z∈C
|Dfµ0

(z)| + sup
z∈C
|Dfµh

(z)− Dfµ0
(z)|

≤ Q0 + sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DµDfµ(z)| |µh − µ0|

≤ Q0 + 4Qzµ0 Cσ0ε0 ≤ 2Q0 ,

if (4.25) holds. Notice that we have used (p1;H + 1) to bound µh − µ0 for h = 1, . . . ,H + 1. Finally, we obtain

‖Sh − S0‖ρh ≤ 2Q0 ‖ Nh(θ + ω)⊤DKh(θ + ω)⊤ J−1e DKh(θ )Nh(θ )

− N0(θ + ω)⊤DK0(θ + ω)⊤ J−1e DK0(θ )N0(θ ) ‖ρh .

Setting Ñh = Nh − N0 and writing DKh as DKh = DKh − DK0 + DK0, one obtains

‖Sh − S0‖ρh ≤ 2Q0 ‖ (N0 + Ñh)(θ + ω)⊤(DKh − DK0 + DK0)(θ + ω)⊤

J−1e (DKh − DK0 + DK0)(θ )(N0 + Ñh)(θ )

− N0(θ + ω)⊤DK0(θ + ω)⊤ J−1e DK0(θ )N0(θ ) ‖ρh .

Let us bound Ñh using (B.5). Then, using that J is a constant matrix, we have:

‖Sh − S0‖ρh ≤ 2Q0 ‖ [((N0 + Ñh) ◦ Tω)
⊤ ((DKh − DK0) ◦ Tω)

⊤

+ (N0 ◦ Tω)
⊤(DK0 ◦ Tω)

⊤ + (Ñh ◦ Tω)
⊤(DK0 ◦ Tω)

⊤] J−1e

[(DKh − DK0)(N0 + Ñh)+ DK0N0 + DK0Ñh]
− (N0 ◦ Tω)

⊤(DK0 ◦ Tω)
⊤ J−1e DK0N0 ‖ρh

≤ 2Je Q0

{
(‖N0‖ρ0 + ‖Ñh‖ρh ) ‖DKh − DK0‖ρh[

‖DKh − DK0‖ρh (‖N0‖ρ0 + ‖Ñh‖ρh )+ ‖DK0‖ρ0‖N0‖ρ0 + ‖DK0‖ρ0‖Ñh‖ρh
]

+ ‖Ñh‖ρh‖DK0‖ρ0
[
‖DKh − DK0‖ρh (‖N0‖ρ0 + ‖Ñh‖ρh )

+ ‖DK0‖ρ0‖N0‖ρ0 + ‖DK0‖ρ0‖Ñh‖ρh
]

+ ‖N0‖ρ0‖DK0‖ρ0‖DKh − DK0‖ρh (‖N0‖ρ0 + ‖Ñh‖ρh )
+ ‖N0‖ρ0‖DK0‖2ρ0‖Ñh‖ρh

}
.

Taking into account (B.5), (B.8), we obtain:

‖Sh − S0‖ρh ≤ CS DK (B.18)

with CS as in (B.15). Now we bound the upper right element of the matrix appearing in (B.17). This computation will lead

us also to bound the lower right element of the matrix in (B.17). We start from (see (4.6))

Ãh = M−1h ◦ Tω Dµfµh
◦ Kh , Ã0 = M−10 ◦ Tω Dµfµ0

◦ K0
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and the following estimate that uses (4.26):

sup
z∈C
|Dµfµh

(z)| ≤ Qµ0 + 4Qµµ0 Cσ0ε0 ≤ 2Qµ0 .

Then, we have:

‖̃Ah − Ã0‖ρh ≤ 2Qµ0 ‖M−1h −M−10 ‖ρh ≤ 2CMinv Qµ0 DK .

Next we estimate ‖Sh(Bbh)0 − S0(Bb0)0‖ρh ; recall that from (4.8) we have that (Bbh)
0 and (Bb0)

0 are the solutions of

λ(Bbh)
0 − (Bbh)

0 ◦ Tω = −(̃A(2)
h )0 , λ(Bb0)

0 − (Bb0)
0 ◦ Tω = −(̃A(2)

0 )0 . (B.19)

Expanding (B.19) in Fourier series and equating the coefficients, we obtain (Bbh)
0 and (Bb0)

0 leading to

(Bbh)
0(θ )− (Bb0)

0(θ ) = −
∑

j∈Z

(̂A
(2)
h )0j − (̂A

(2)
0 )0j

λ− e2π ijω
e2π ijθ . (B.20)

From (B.20), let us write (Bbh)
0 as

(Bbh)
0 = (Bb0)

0 + B̃h ,

where

B̃h ≡ −
∑

j∈Z

(̂A
(2)
h )0j − (̂A

(2)
0 )0j

λ− e2π ijω
e2π ijθ .

Let us introduce S̃h ≡ Sh − S0, whose norm can be bounded by (B.18). Then, we have:

‖Sh(Bbh)0 − S0(Bb0)0‖ = ‖(S0 + S̃h) ((Bb0)0 + B̃h)− S0(Bb0)0‖
≤ ‖(Bb0)

0‖ρ0 ‖̃Sh‖ρh + ‖S0‖ρ0 ‖̃Bh‖ρh + ‖̃Sh‖ρh ‖̃Bh‖ρh ,

where

‖S0‖ρ0 ≤ Je Q0‖N0‖2ρ0 ‖DK0‖2ρ0 ,

‖̃Sh‖ρh ≤ CS DK ,

‖(Bb0)
0‖ρ0 ≤

1

||λ| − 1| ‖̃A
(2)
0 ‖ρ0 ≤

1

||λ| − 1|Qµ0 ‖M−10 ‖ρ0 ,

‖̃Bh‖ρh ≤
1

||λ| − 1| 2CMinv Qµ0 DK .

Then, we obtain:

‖Sh(Bbh)0 − S0(Bb0)0‖ ≤ CSB DK ,

where CSB is as in (B.15). Recalling (B.17), we obtain

‖τ−1h − τ−10 ‖ρh ≤ max
{
‖Sh − S0‖ρh , ‖Sh(Bbh)0 − S0(Bb0)0‖ρh +

2∑

j=1
‖̃A(j)

h − Ã
(j)
0 ‖ρh

}
≡ Cτ ,

where Cτ is as in (B.15). From (B.16) we get (B.13). �

B.3.2. Proof of Cσ ,H+1 ≤ 2Cσ0

We now prove (B.12) and we begin from the second inequality. We start with the following relations, which are a
consequence of (4.15):

Cσ ,H+1 = TH+1
[
|λ− 1|

( 1

||λ| − 1| ‖SH+1‖ρH+1 + 1
)
+ ‖SH+1‖ρH+1

]
‖M−1H+1‖ρH+1 ,

Cσ0 = T0

[
|λ− 1|

( 1

||λ| − 1| ‖S0‖ρ0 + 1
)
+ ‖S0‖ρ0

]
‖M−10 ‖ρ0

with

‖M−1H+1‖ρH+1 ≤ ‖M−10 ‖ρ0 + ‖M−1H+1 −M−10 ‖ρH+1 ≤ ‖M−10 ‖ρ0 + CMinv DK

with CMinv as in (B.8). We also have

‖SH+1‖ρH+1 ≤ ‖S0‖ρ0 + ‖SH+1 − S0‖ρH+1 ≤ ‖S0‖ρ0 + CS DK
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with CS as in (B.15). From the relation

TH+1 = T0 + (TH+1 − T0) ≤ T0 + CT DK

with CT as in (B.14), we obtain:

Cσ ,H+1 ≤ (T0 + CT DK )
{
|λ− 1|

[ 1

||λ| − 1| (‖S0‖ρ0 + CSDK )+ 1
]

+
(
‖S0‖ρ0 + CSDK

)} (
‖M−10 ‖ρ0 + CMinvDK

)

= Cσ0 + CσDK ≤ 2Cσ0 ,

if (4.22) holds with

Cσ ≡ CT

{
|λ− 1|

[ 1

||λ| − 1| (‖S0‖ρ0 + CSDK )+ 1
]

+
(
‖S0‖ρ0 + CSDK

)} (
‖M−10 ‖ρ0 + CMinvDK

)

+ T0

{
|λ− 1|

[ 1

||λ| − 1| (‖S0‖ρ0 + CSDK )+ 1
]
CMinv + CMinv‖S0‖ρ0

+ |λ− 1| 1

||λ| − 1| ‖M
−1
0 ‖ρ0 CS + CS

(
‖M−10 ‖ρ0 + CMinvDK

)}
. (B.21)

B.3.3. Proof of CE,H+1 ≤ 2CE0

Recall that δH+1 = δ0
2H+1 and that from (4.16), one has

CE,H+1 ≡ CW ,H+1νδ−1+τ
H+1 + CR,H+1 .

First, it suffices to prove that

CW ,H+1 ≤ CW0 + CW DK (B.22)

for a constant CW as in (B.26) below. From (4.15), for CW2,H+1 we have:

CW2,H+1 ≤
1

||λ| − 1|
[
1+ 2Qµ0(Cσ0 + DKCσ )

]
(‖M−10 ‖ρ0 + DK ) ≤ CW20 + DK CW2

,

where

CW2
≡ 1

||λ| − 1|
[
1+ 2Qµ0‖M−10 ‖ρ0Cσ + 2Qµ0Cσ0 + 2Qµ0CσDK

]
. (B.23)

Concerning CW2,H+1, we have:

CW2,H+1 ≤ 4(T0 + CTDK )
[ 1

||λ| − 1| (‖S0‖ρ0 + CSDK )+ 1
]
Qµ0 (‖M−10 ‖ρ0 + DK )

2

= CW20 + CW2
DK

with

CW2
≡ 4CT

[ 1

||λ| − 1| (‖S0‖ρ0 + CSDK )+ 1
]
Qµ0(‖M−10 ‖ρ0 + DK )

2

+ 4T0Qµ0

1

||λ| − 1|CS (‖M−10 ‖ρ0 + DK )
2

+ 4T0 Qµ0

[ 1

||λ| − 1| (‖S0‖ρ0 + CSDK )+ 1
]
(DK + 2‖M−10 ‖ρ0 ) . (B.24)

As for CW1,H+1 we have:

CW1,H+1 ≤ C0

[
(‖S0‖ρ0 + CSDK )(CW20 + CW2

DK + CW20 + CW2
DK )+ ‖M−10 ‖ρ0

+ DK + 2Qµ0(‖M−10 ‖ρ0 + DK )(Cσ0 + DKCσ )
]
= CW10 + DKCW1

,

where

CW1
≡ C0

[
‖S0‖ρ0CW2

+ CSCW20 + CSCW2
DK + ‖S0‖ρ0CW2

+ CSCW20 + CSCW2
DK + 1

+ 2Qµ0‖M−10 ‖ρ0Cσ + 2Qµ0Cσ0 + 2Qµ0CσDK

]
. (B.25)
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In conclusion, from (4.15) we have:

CW ,H+1 ≡ (CW10 + DKCW1
)+ (CW20 + DKCW2

+ CW20 + DKCW2
)νδτ

02
−τ (H+1)

≤ CW0 + CWDK

with

CW ≡ CW1
+ CW2

νδτ
0 + CW2

νδτ
0 . (B.26)

In order to get CE,H+1 as in (4.16), we estimate CR,H+1. To this end, we use the following inequality:

QE,H+1 ≤ QE0 + CQD2K (B.27)

for a suitable constant CQ that will be given later in (B.34) and for D2K defined as

D2K ≡ 4Cd0 ν−1δ−τ−2
0 ε0 . (B.28)

We postpone for a moment the proof of (B.27) and we rather stress that, as a consequence of (B.27), we obtain:

CR,H+1 ≤ QE,H+1 (‖MH+1‖2ρH+1 C
2
W ,H+1 + C2

σ ,H+1ν
2δ2τH+1) ≤ CR0 + CRDK ,

where

CR ≡ QE0

[
(2CM‖M0‖ρ0 + C2

MDK )(CW0 + CWDK )
2 + ‖M0‖2ρ0 (C

2
WDK + 2CW0CW )

+ (C2
σDK + 2Cσ0Cσ )ν

2δ2τ0

]
+ CQ

[
(‖M0‖ρ0 + CMDK )

2(CW0 + CWDK )
2

+ (Cσ0 + CσDK )
2ν2δ2τ0

]
δ−10 . (B.29)

We obtain that, under (4.23):

CE,H+1 ≤ (CW0 + CWDK )νδ−1+τ
0 2−(−1+τ )(H+1) + CR0 + CRDK ≤ 2CE0 .

Let us conclude by proving (B.27) starting from the definition

QE,H+1 ≡
1

2
max

{
‖D2EH+1‖ρH+1−δH+1 , ‖DDµEH+1‖ρH+1−δH+1 , ‖D2

µEH+1‖ρH+1−δH+1

}
.

We recall that

EH+1 = E[KH+1, µH+1] = fµH+1 ◦ KH+1 − KH+1 ◦ Tω .

It is convenient to introduce ∆H and ΞH such that

KH+1 = K0 + (KH+1 − K0) ≡ K0 +∆H , µH+1 = µ0 +
H∑

j=0
σj ≡ µ0 +ΞH .

Then, we have the following bound on EH+1:

‖EH+1‖ρH+1−δH+1 = ‖ (fµ0
◦ K0 − K0 ◦ Tω)+ fµH+1 ◦ KH+1 − fµ0

◦ K0

− (KH+1 − K0) ◦ Tω ‖ρH+1−δH+1

≤ ‖E0‖ρ0 + (1+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|Dfµ(z)|) κKε0

+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|Dµfµ(z)| κµε0 .

We now observe that the first and second derivatives of f ◦ K are given by

D(f ◦ K ) = D(f (K (θ ))) = Df (K (θ )) DK (θ )

D2(f ◦ K ) = D2(f (K (θ )))(DK (θ ))2 + Df (K (θ )) D2K (θ ) . (B.30)

Then, one has

‖D2EH+1‖ρH+1 ≤ ‖D2E0‖ρ0 + D2K+ ‖ D2fµ0+ΞH
(K0 +∆H ) (DK0 + D∆H )

− D2fµ0
(K0) DK0 ‖ρH+1 ‖DK0‖ρ0

+ ‖Dfµ0+ΞH
(K0 +∆H )− Dfµ0

(K0)‖ρH+1 ‖D2K0‖ρ0
+ ‖D2fµ0+ΞH

(K0 +∆H ) (DK0 + D∆H ) D∆H‖ρH+1
+ ‖Dfµ0+ΞH

(K0 +∆H ) D
2∆H‖ρH+1
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≤ ‖D2E0‖ρ0 + D2K + sup
z∈C
|D3fµ0

(z)| ‖DK0‖2ρ0 κKε0

+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DµD
2fµ(z)| ‖DK0‖2ρ0 κµε0

+ sup
z∈C
|D2fµ0

(z)| ‖DK0‖ρ0 DK

+ sup
z∈C
|D3fµ0

(z)| ‖DK0‖ρ0 κKε0 DK

+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DµD
2fµ(z)| ‖DK0‖ρ0 κµε0 DK

+ sup
z∈C
|D2fµ0

(z)| ‖D2K0‖2ρ0 κKε0

+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DµDfµ(z)| ‖D2K0‖ρ0 κµε0

+ sup
z∈C
|D2fµ0

(z)| (‖DK0‖ρ0 + DK ) DK

+ sup
z∈C
|D3fµ0

(z)| (‖DK0‖ρ0 + DK )DK κKε0

+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DµD
2fµ(z)| (‖DK0‖ρ0 + DK )DK κµε0

+ sup
z∈C
|Dfµ0

(z)| D2K + sup
z∈C
|D2fµ0

(z)| κKε0 D2K

+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DµDfµ(z)| κµε0 D2K , (B.31)

with ‖DKH‖ρH ≤ ‖DK0‖ρ0 + DK , where DK was estimated as in (3.13), ‖D2KH‖ρH ≤ ‖D2K0‖ρ0 + D2K , where D2K is defined

through the following inequalities and using (4.18):

‖D2KH+1 − D2K0‖ρH+1 ≤
H∑

j=0
‖D2∆j‖ρj ≤

H∑

j=0
δ−1j vj

≤
H∑

j=1
Cdjν

−1δ−τ−2
j εj ≤ 4Cd0ν

−1δ−τ−2
0 ε0 = D2K .

In a similar way we obtain the following estimate. Given f ◦ K , from (B.30) we have

DDµ(f ◦ K ) = DDµ(f (K (θ )))DK (θ ) .

Then, we have

DDµEH+1 = DDµE0 + DDµfµ0
(K0) (DKH+1 − DK0)+ DDµ(fµH+1 (K0 +∆H )− fµ0

(K0)) DKH+1 ,

so that

‖DDµEH+1‖ρH+1 ≤ ‖DDµE0‖ρ0 + sup
z∈C
|DDµfµ0

(z)| DK

+ sup
z∈C
|D2Dµfµ0

(z)| ‖∆H‖ρH+1 (‖DK0‖ρ0 + ‖D∆H‖ρH+1 )

+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DD2
µfµ0

(z)| ‖ΞH‖ρH+1 (‖DK0‖ρ0 + ‖D∆H‖ρH+1 )

≤ ‖DDµE0‖ρ0 + sup
z∈C
|DDµfµ0

(z)| DK

+ sup
z∈C
|D2Dµfµ0

(z)| κKε0 (‖DK0‖ρ0 + DK )

+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DD2
µfµ(z)| κµε0 (‖DK0‖ρ0 + DK ) . (B.32)

Finally, we have:

‖D2
µEH+1‖ρH+1 ≤ ‖D2

µE0‖ρ0 + sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|D3
µfµ(z)| κµε0 . (B.33)

Casting together (B.31), (B.32), (B.33), we obtain (B.27) with

CQ ≡
1

2
max

{
1+ sup

z∈C
|D3fµ0

(z)| ‖DK0‖2ρ0δ
2
0
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+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DµD
2fµ(z)| ‖DK0‖2ρ0

Cσ0

Cd0

δτ+2
0

+ sup
z∈C
|D2fµ0

(z)| ‖DK0‖ρ0δ0

+ sup
z∈C
|D3fµ0

(z)| ‖DK0‖ρ0 4Cd0ν
−1δ−τ+1

0 ε0

+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DµD
2fµ(z)| ‖DK0‖ρ0 4Cσ0δ0ε0 (B.34)

+ sup
z∈C
|D2fµ0

(z)| ‖D2K0‖2ρ0 δ20

+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DµDfµ(z)| ‖D2K0‖ρ0
Cσ0

Cd0

νδτ+2
0

+ sup
z∈C
|D2fµ0

(z)| (‖DK0‖ρ0 + DK )δ0

+ sup
z∈C
|D3fµ0

(z)| (‖DK0‖ρ0 + DK )4Cd0ν
−1δ−τ+1

0 ε0

+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DµD
2fµ(z)| (‖DK0‖ρ0 + DK ) 4Cσ0δ0ε0

+ sup
z∈C
|Dfµ0

(z)| + sup
z∈C
|D2fµ0

(z)| κKε0

+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DµDfµ(z)| κµε0 ,

sup
z∈C
|DDµfµ0

(z)|δ0 + sup
z∈C
|D2Dµfµ0

(z)|δ20 (‖DK0‖ρ0 + DK )

+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DD2
µfµ(z)|

Cσ0

Cd0

νδτ+2
0 (‖DK0‖ρ0 + DK ),

sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|D3
µfµ(z)|

Cσ0

Cd0

νδτ+2
0

}
.

B.3.4. Proof of Cd,H+1 ≤ 2Cd0

From (4.14), (B.22), using (4.24) we have:

Cd,H+1 = ‖MH+1‖ρH+1 CW ,H+1 ≤ (‖M0‖ρ0 + DK )(CW0 + CWDK ) ≤ 2Cd0 .

Appendix C. Constants of the KAM theorem

The constants entering in the conditions(3.3)-(3.12) of Theorem 10 are defined through the following (long) list. For
fast reference, before each constant we provide the label of the formula where the constant was introduced. We note that
the constants are given in an explicit format and evaluating them requires only a few lines of code.

(4.10) Cσ0 ≡ T0

[
|λ− 1|

( 1

||λ| − 1| ‖S0‖ρ0 + 1
)
+ ‖S0‖ρ0

]
‖M−10 ‖ρ0 ,

(4.10) CW20 ≡
1

||λ| − 1|
(
1+ Cσ0Qµ0

)
‖M−10 ‖ρ0 ,

(4.10) CW20 ≡ 2T0

( 1

||λ| − 1| ‖S0‖ρ0 + 1
)
Qµ0 ‖M−10 ‖2ρ0 ,

(4.10) CW10 ≡ C0

(
‖S0‖ρ0 (CW20 + CW20)+ ‖M−10 ‖ρ0 + Qµ0‖M−10 ‖ρ0Cσ0

)
,

(4.10) CW0 ≡ CW10 + (CW20 + CW20)νδτ
0 ,

(4.11) Cη0 ≡ CW0‖M0‖ρ0 + Cσ0νδτ
0 ,

(4.13) CR0 ≡ QE0(‖M0‖2ρ0C
2
W0 + C2

σ0ν
2δ2τ0 ) ,

(4.13) CE0 ≡ CW0νδ−1+τ
0 + CR0 ,

(4.14) Cd0 ≡ CW0 ‖M0‖ρ0 ,

(4.17) κ0 ≡ 22τ+1 CE0ν
−2δ−2τ0 ,

(4.17) κK ≡ 4Cd0 ν−1δ−τ
0 ,
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(4.17) κµ ≡ 4Cσ0 ,

(3.13) DK ≡ 4Cd0ν
−1δ−τ−1

0 ε0 ,

(B.28) D2K ≡ 4 Cd0ν
−1δ−τ−2

0 ε0 ,

(B.8) CN ≡ ‖N0‖2ρ0
2‖DK0‖ρ0 + DK

1− ‖N0‖ρ0DK (2‖DK0‖ρ0 + DK )
,

(B.8) CM ≡ 1+ Je

[
CN (‖DK0‖ρ0 + DK )+ ‖N0‖ρ0

]
,

(B.8) CMinv ≡ CN (‖DK0‖ρ0 + DK )+ ‖N0‖ρ0 + Je ,

(B.15) Cτ ≡ max
{
CS, CSB + 2CMinvQµ0

}
DK ,

(B.14) CT ≡
T

2
0

1− T0Cτ

max
{
CS, CSB + 2CMinvQµ0

}
,

(B.15) CS ≡ 2JeQ0

{
(‖N0‖ρ0 + CNDK )

[
DK (‖N0‖ρ0 + CNDK )

+ ‖DK0‖ρ0‖N0‖ρ0 + ‖DK0‖ρ0CNDK

]

+ CN‖DK0‖ρ0
[
DK (‖N0‖ρ0 + CNDK )+ ‖DK0‖ρ0‖N0‖ρ0 + ‖DK0‖ρ0CNDK

]

+ ‖N0‖ρ0‖DK0‖ρ0 (‖N0‖ρ0 + CNDK )+ CN‖N0‖ρ0‖DK0‖2ρ0
}

,

(B.15) CSB ≡
1

||λ| − 1|Qµ0‖M−10 ‖ρ0CS + 2JeQ0 ‖N0‖2ρ0 ‖DK0‖2ρ0
1

||λ| − 1| CMinv Qµ0

+ 2CS

1

||λ| − 1| CMinv Qµ0 DK ,

(B.21) Cσ ≡ CT

{
|λ− 1|

[ 1

||λ| − 1| (‖S0‖ρ0 + CSDK )+ 1
]

+
(
‖S0‖ρ0 + CSDK

)} (
‖M−10 ‖ρ0 + CMinvDK

)

+ T0

{
|λ− 1|

[ 1

||λ| − 1| (‖S0‖ρ0 + CSDK )+ 1
]
CMinv

+ |λ− 1| 1

||λ| − 1| ‖M
−1
0 ‖ρ0CS + CS

(
‖M−10 ‖ρ0 + CMinvDK

)

+ CMinv‖S0‖ρ0
}

,

(B.34) CQ ≡
1

2
max

{
1+ sup

z∈C
|D3fµ0

(z)| ‖DK0‖2ρ0δ
2
0

+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DµD
2fµ(z)| ‖DK0‖2ρ0

Cσ0

Cd0

δτ+2
0

+ sup
z∈C
|D2fµ0

(z)| ‖DK0‖ρ0δ0

+ sup
z∈C
|D3fµ0

(z)| ‖DK0‖ρ0 4Cd0ν
−1δ−τ+1

0 ε0

+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DµD
2fµ(z)| ‖DK0‖ρ0 4Cσ0δ0ε0

+ sup
z∈C
|D2fµ0

(z)| ‖D2K0‖2ρ0δ
2
0

+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DµDfµ(z)| ‖D2K0‖ρ0
Cσ0

Cd0

νδτ+2
0

+ sup
z∈C
|D2fµ0

(z)| (‖DK0‖ρ0 + DK )δ0

+ sup
z∈C
|D3fµ0

(z)| (‖DK0‖ρ0 + DK )4Cd0ν
−1δ−τ+1

0 ε0

+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DµD
2fµ(z)| (‖DK0‖ρ0 + DK ) 4Cσ0δ0ε0

+ sup
z∈C
|Dfµ0

(z)| + sup
z∈C
|D2fµ0

(z)| κKε0
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+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DµDfµ(z)| κµε0 ,

sup
z∈C
|DDµfµ0

(z)|δ0 + sup
z∈C
|D2Dµfµ0

(z)|δ20 (‖DK0‖ρ0 + DK )

+ sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|DD2
µfµ(z)|

Cσ0

Cd0

νδτ+2
0 (‖DK0‖ρ0 + DK ),

sup
z∈C,µ∈Λ,|µ−µ0|<2κµε0

|D3
µfµ(z)|

Cσ0

Cd0

νδτ+2
0

}

(B.24) CW2
≡ 4CT

[ 1

||λ| − 1| (‖S0‖ρ0 + CSDK )+ 1
]
Qµ0(‖M−10 ‖ρ0 + DK )

2

+ 4T0Qµ0

1

||λ| − 1|CS (‖M−10 ‖ρ0 + DK )
2

+ 4T0 Qµ0

[ 1

||λ| − 1| (‖S0‖ρ0 + CSDK )+ 1
]
(DK + 2‖M−10 ‖ρ0 )

(B.29) CR ≡ QE0

[
(2CM‖M0‖ρ0 + C2

MDK )(CW0 + CWDK )
2 + ‖M0‖2ρ0 (C

2
WDK + 2CW0 CW )

+ (C2
σDK + 2Cσ0Cσ )ν

2δ2τ0

]
+ CQ

[
(‖M0‖ρ0 + CMDK )

2(CW0 + CWDK )
2

+ (Cσ0 + CσDK )
2ν2δ2τ0

]
δ−10 ,

(B.23) CW2
≡ 1

||λ| − 1|
[
1+ 2Qµ0‖M−10 ‖ρ0Cσ + 2Qµ0Cσ0 + 2Qµ0CσDK

]
,

(B.25) CW1
≡ C0

[
‖S0‖ρ0CW2

+ CSCW20 + CSCW2
DK + ‖S0‖ρ0CW2

+ CSCW20 + CSCW2
DK + 1

+ 2Qµ0‖M−10 ‖ρ0Cσ + 2Qµ0Cσ0 + 2Qµ0CσDK

]
,

(B.26) CW ≡ CW1
+ CW2

νδτ
0 + CW2

νδτ
0 .
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