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Abstract. Image enhancement approaches often assume that the noise
is signal independent, and approximate the degradation model as zero-
mean additive Gaussian. However, this assumption does not hold for
biomedical imaging systems where sensor-based sources of noise are pro-
portional to signal strengths, and the noise is better represented as a Pois-
son process. In this work, we explore a sparsity and dictionary learning-
based approach and present a novel self-supervised learning method for
single-image denoising where the noise is approximated as a Poisson pro-
cess, requiring no clean ground-truth data. Specifically, we approximate
traditional iterative optimization algorithms for image denoising with
a recurrent neural network that enforces sparsity with respect to the
weights of the network. Since the sparse representations are based on
the underlying image, it is able to suppress the spurious components
(noise) in the image patches, thereby introducing implicit regulariza-
tion for denoising tasks through the network structure. Experiments on
two bio-imaging datasets demonstrate that our method outperforms the
state-of-the-art approaches in terms of PSNR and SSIM. Our qualitative
results demonstrate that, in addition to higher performance on standard
quantitative metrics, we are able to recover much more subtle details
than other compared approaches. Our code is made publicly available at
https://github.com/tacalvin/Poisson2Sparse.

1 Introduction

Biomedical image denoising is a challenging inverse problem of recovering a clean
noise-free image from its corresponding corrupted version. Current denoising
strategies [4,28] assume that most prevalent noisy images can be modeled with
additive Gaussian noise. Though this assumption shows reasonable performance
for some applications, it is physically unrealistic for biomedical images as the
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noise varies proportionally to the signal strength and is signal-dependent [12].
As the image acquisition process is discrete in nature, the data captured by
the imaging sensors are often corrupted by shot noise which can be modeled
as a Poisson Process [19,25]. Thus, Poisson denoising methods are of utmost
importance in biomedical image processing and analysis.

Supervised deep learning approaches are proven to be effective for image
denoising tasks [4,28] and are mostly developed on sophisticated neural networks.
The performance of such approaches heavily relies on the availability of large
datasets to train the networks. These large-scale datasets often involve data pairs
of a clean image, X, and a noisy image, X . However in most practical settings,
such as bio-imaging [2], it is difficult to obtain such data pairs. Hence in order
to tackle such scenarios, self-supervised internal learning methods [17] have been
introduced that attempt to employ randomly-initialized neural networks to cap-
ture low-level image statistics. Such networks are used as priors to solve standard
inverse problems such as denoising for single images without requiring its clean
counterpart.

Related Works. The general supervised approach for using deep learning based
denoisers is to use Convolutional Neural Networks (CNNs) and given a dataset
of clean and noisy images, to learn the mapping between them [1,4,9,28]. Recent
works in self-supervised learning [15,16,27] have shown that even without the
use of explicit ground truth, deep learning models can offer surprisingly strong
performance in a range of tasks. Our work is largely inspired by works such as
the Deep Image Prior [17] or Self2Self [20] in which a deep learning model is
trained directly on a single test image with no additional datasets. The core
assumption of such works is that the network is implicitly acting as the regular-
izer and empirical results show the network resists fitting to noise. Given such
advantages of internal learning methods, we propose a novel self-supervised app-
roach to denoise biomedical images that follow the Poisson noise model. Build-
ing on the implicit regularization of a network, we utilize sparse representations
through the network design to handle Poisson Noise. Different from prior works
[4,28], we consider the scenario where only a single noisy image is collected with
no corresponding ground-truth clean image and the noise is Poisson distributed.
We employ the sparse representations because, intuitively, an image will con-
tain many recurrent patches and by finding a sparse representation of the image
patches, we can represent it as a linear combination of elements in a dictionary.
By utilizing this sparse coding framework, the dictionary elements will contain
the basis vectors which minimize the reconstruction error and suppress the noise.

Contributions. We present a novel method for single image Poisson denoising
which leverages a neural network’s inductive bias. Specifically, we use the neural
network to learn the dictionary elements that are resistant to the input noise by
modeling similar and repetitive image patches. We then utilize sparse representa-
tions to reconstruct the image through learned dictionaries and further suppress
input noise. By leveraging the internal learning strategy, our method gains two key
advantages: 1) we only need a single noisy input image which is desirable in many
biomedical applications where data is scarce, and 2) we can train our model in an
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entirely self-supervised manner with no ground-truth which makes our approach
extremely practical. Experiments show our approach is able to outperform exist-
ing state-of-the-art methods significantly. We illustrate our method in Fig. 1 and
summarize the same in Algorithm 1 in the supplemental material.

2 Proposed Methodology: Poisson2Sparse

Problem Statement. Given a single Poisson noisy input image, we aim to gen-
erate the corresponding clean image. We propose to utilize the patch recurrence
property in an image to learn a dictionary that can be utilized to generate a sparse
representation such that the clean image can be recovered. The dictionary elements
will ideally represent a set of over-complete basis functions that can well repre-
sent the image. The sparse representation is then used to reconstruct the image
using the learned dictionary to suppress the noise present in the input image [8,22].
Let the Poisson noisy image be represented by X € R%*? and its corresponding
vectorized form denoted by o € Rdz, where d is the image dimension size. Our
objective is to learn a dictionary to obtain sparse representation of X ¢ that can
be utilized to recover an estimate of the clean image X. To this end, we incor-
porate an unrolled iterative optimization algorithm approximated using a neural
network to learn the dictionary and decompose the noisy image representation into
a sparse code. In this section, we first derive the dictionary-based sparse represen-
tation learning algorithm for the vectorized image, where we represent the learn-
able dictionary as D € R Xk and the sparse vector as o € R**!. Here, k is
the number of elements in a. Next, we leverage the Convolution Sparse Coding
model [3] to obtain an optimization solution where the dictionary is independent
of the vectorized image dimension. This is done by changing the application of the
dictionary Da from a matrix-vector product into a convolution with M dictionar-
ies D € R¥**F around M sparse feature maps A € R4*? [3].

Poisson-Based Optimization Regularizer. We assume that the pixel val-
ues of the noisy vectorized image x( are Poisson distributed random variables
parameterized by pixel values of the ground truth vectorized image x at every
it" index of the image. This allows x[i] to be modeled as xq[i] ~ P(x[i]) [8,22]
where P is the Poisson process defined as follows:

i exp(—=[i])

Pejij(®oli]) = (1)

In order to estimate a denoised clean vector &, we maximize the log-likelihood
of (1). The maximum log-likelihood estimation for clean vector recovery is per-
formed by minimizing the following optimization problem [21]

min (17z — 2" log(z)) s.t. ¢ = 0 (2)
x

where 1 € RY is a vector of ones, = denotes element-wise inequality, and log(-)
is applied element wise. However, the optimization problem defined in (2) is
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known to be an ill-posed problem [10,26]. In order to address this, we follow
a sparse representation approach [18] and aim to estimate Z by computing an
s-sparse vector o and a dictionary D such that £ = Da.

min (17 (Da) — zo” log(Dar)) s.t. [|allo <s, Da =0 (3)
D,
Xo Noisy Image Initial sparse representation Optimize sparse representation iteratively

ith Sparse Xo A
A 1 . — ] [
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Fig. 1. Method Overview. Poisson2Sparse Optimization Steps: We optimize the
sparse representation in the forward pass and then we update the encoder and decoder
through back-propagation in an alternating manner.

This optimization problem in (3) is further relaxed by setting Da = exp(Dax)
to handle the non-negativity constraint [22]. Furthermore, the ¢, constraint on
a makes (3) an NP-hard problem [7]. Hence, we use the ¢; relaxation as in [11],
resulting in the following problem:

min (17 exp(Da) — " (Dar)) + Allex (4)

The above optimization problem in (4) now estimates & by solving for sparse
prior & and dictionary D. Inspired from the Iterative Shrinkage Thresholding
Algorithm (ISTA) [6], we propose to solve for a and D in an alternating man-
ner using a neural network based approach. In order to solve for «, traditional
approaches [6] solve the following optimization problem

min|alp st x =D«

However, trying to solve for that objective directly is difficult and a common
approximation is the following objective using the ¢; relaxation.

1
amgp<gn9m@+MmQ (5)

The ISTA algorithm aims to solve (5) via the update step a «— S(a+ +DT (@ —
Dav)), where L < 0ax (DT D) and S is the soft threshold operator with a thresh-
old of € defined as Sc(x) = sign(x)max(|x| — €,0). With this update step, the
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ISTA algorithm iteratively refines the computed sparse code until a specified con-
vergence criterion. However, in our problem formulation we work with images
with dimension d making the dictionary D € R xk dependent on the size of the
input image. To address this, we use the Convolutional Sparse Coding model as
in [24] and replace the matrix-vector product with a convolution (denoted by *):

M
Da:ZDj*Aj:D*A (6)

J

where D; € RF*k ig filter convolved around a sparse feature map Aj; e Rxd,
This new form of the sparse code and application of the dictionary decouples the
size of the dictionary from the input image size and removes the need to scale
the model with respect to the image size and gives us the following update step:

A; — S(Ai_1 + D7 « (Xo—Dx Ai—l)) (7)

Using the ISTA approach, we can remove the need to optimize for a in (4)
and rewrite the objective function, where ©® is the Hadamard product, as

mri)n (exp(DxA) — X, © (D = A)) (8)

Poisson2Sparse Algorithm. To solve (8) using the ISTA algorithm, we rep-
resent D x A using a neural network fp. The network fy which contains a single
encoder and decoder which computes the sparse representation A with respect to
the network parameters which allows for learnable dictionaries D through back-
propagation. Mathematically, this can be represented as D x A = f3(X ). The
modified optimization problem (8), where we aim to enforce sparsity through
the network structure implicitly, can be rewritten as

min (exp(fo (Xo)) — Xo © fo(Xo)) (9)

which we will refer to as Lpgyisson moving forward. Inspired by recent works
in internal learning [17], we aim to use network fp that will implicitly enforce
sparsity through the network’s structure. Hence, we propose to adapt the internal
learning approach via the ISTA algorithm. Prior works [24] have demonstrated
that by we can approximate computing the update step in the ISTA algorithm
by replacing the D and term DT with a decoder and encoder respectively in (7).

A — S(A + Encoder(X o — Decoder(A))) (10)

Following [24], we approximate ISTA to a finite 7" number of iterations and
by approximating the traditional update with (10) which naturally lends itself
to a recurrent neural network-like structure where instead of passing in a T
length sequence we are refining the sparse code A over T steps instead. This
results in the network’s forward pass that computes the sparse code as well
as the application of the dictionary to the computed sparse code. The sparse
code is then refined over a finite number of steps as opposed to being run until
convergence in the traditional ISTA algorithm.
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Poisson2Sparse Training. In order to train the network, we follow [13] and
generate our input and target image pairs by using the random neighbor down-
sampling. The random neighbor down-sampling is done by dividing the input
image into k x k blocks and for each block, two adjacent pixels are selected and
are used to create down-sampling functions denoted by g; and go. This down-
sampling approach avoids learning the trivial identity solution where the network
learns to simply map the input to output to solve (9). It creates image pairs that
are similar in appearance but are slightly different in terms of the ground truth
pixels. These image pairs can be seen as different realizations of the same noise
distribution and by trying to minimize the loss function for these noisy pairs
we can estimate the true ground truth signal. Optimizing (9) alone with the
generated image pairs will result in blurry images due to the slight difference in
the underlying ground truth and thus we incorporate the regularizer proposed
in [13] which is defined as the following with strength pup .

Table 1. Quantitative Results show that we outperform both self-supervised works
(DIP, Self2Self) and traditional work BM3D (best results in bold).

Dataset | A | DIP Self2Self | BM3D Ours
PSNR (dB)/SSIM
*PINCAT | 40 | 30.222/0.878 | 33.138/0.942 | 32.553/0.944 | 34.309/0.957

20

26.495/0.765

30.067/0.893

31.448/0.911

32.202/0.937

101 22.495/0.601 | 27.028/0.814 | 27.961/0.867 | 30.005/0.898
FMD — 132.417/0.916 | 28.563/0.688 | 29.627/0.854 | 32.980,0.897
Average |- | 27.907/0.790 |29.699/0.834 | 30.397/0.894 | 32.374/0.922

Lx = |1 £o(91(X0)) — 92(X0) — 91(fo(X0)) — g2(fo(X0))|13 (11)

We also add an L1 reconstruction loss which is referred as £ and it aids in
the reduction of artifacts generated from (9). The overall loss function used to
optimize the dictionary parameters fy which is applied per pixel is given as:

L = Lpoisson + L1 + UnLN (12)

3 Experiments and Results

Datasets and Experimental Setup. We used the test set of the follow-
ing datasets to evaluate our approach. (a) Florescent Microscopy Denois-
ing Dataset (FMD) [29]: This dataset contains 12000 Fluorescence Microscopy
images of size 512 x 512 containing noise where Poisson noise is dominant. The
images contain real noise of varying strengths from across multiple microscopy
modalities. In order to obtain clean images a common technique is to aver-
age multiple images for an effective ground truth. For this dataset this is espe-
cially appropriate as the samples are static which allows for accurate registration



Poisson2Sparse: Self-supervised Poisson Denoising from a Single Image 563

between the 50 images used to obtain the effective ground truth. (5) PINCAT
Dataset [23]: This is a simulated cardiac perfusion MRI dataset with clean
images of size 128 x 128. For this dataset, we added artificial noise (where the
strength A of noise indicates the maximum event count, with a lower A indicating
a higher noise). Specifically we can represent a noisy image as X = % where
Z ~ P(AX) and we tested with A = [40, 20, 10] following prior works [27].

Baselines and Evaluation Metrics. We use a traditional denoising approach,
BM3D [5], and internal learning based approaches such as Deep Image Prior (DIP)
[17] and Self2Self [20] as our baselines. While comparison to vanilla ISTA is also
appropriate we found that the results were far worse than any of the methods pre-
viously mentioned despite its fast runtime and will leave those experiments in the
supplementary material. In order to compare methods we use Peak Signal to Noise
Ratio (PSNR) and the Structural Similarity Index (SSIM) as evaluation metrics.

16.920 dB 21.985 dB 26.827 dB 28.831 dB_ 30.433 dB PSNR

__17.580 dB 23.386 dB 27.700 dB 29.082 dB_  31.494 dB PSNR

NIy

22.140 dB 26.448 dB 26.698 dB  28.882 dB PSNR

17.050 dB

(a) Noisy (b) DIP (c) Self2Self  (d) BM3D (e) Ours (f) GT

Fig. 2. Denoising results on the PINCAT dataset. Noise is A = 10. We can see
that our method is able to recover finer details such as the ribs in the image.

Training Details. To optimize the network, we use the Adam optimizer [14]
with a learning rate of 0.0001 and set un = 2 as done in [13]. We use a single
convolutional layer for both the encoder and decoder with a kernel size of 3 x
3, stride of 1, and each layer has 512 filters. For the number of steps in the
network, we empirically find that 10 gave us the best performance and we train
the network over 5500 iterations. We used PyTorch for our implementation and
the model was trained using a Nvidia RTX 2080 Ti for a total of 7min for an
image of size 128 x 128.
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Table 2. Ablation studies. We tested the impact of each term in our loss function
on the overall performance, indicated by a v'.

Loss functions | Metrics

L1 | Lpoisson | PSNR (dB) | APSNR | SSIM | ASSIM

v v 32.202 - 0.9370 | -

v 31.565 —2.01 %[ 0.9335| —0.37 %
v 32.007 —0.61 % | 0.9356 | —0.14 %

Qualitative and Quantitative Results. From our experiments we are able to
outperform existing state-of-the-art approaches for single image denoising by a sig-
nificant margin in terms of the PSNR and SSIM. In Table 1, we can see that for all
noise levels in the PINCAT dataset we are significantly outperforming other self-
supervised and classical methods in terms of the PSNR and the SSIM. In Fig. 2,
we show that our approach can recover the finer details around the rib-cage which
other methods fail to recover to any meaningful degree. Additionally, we can see
that in regions where the ground truth is of a single consistent value we are able to
recover the region with a result that is much smoother than other methods where
significant noise is still present in the final output. With the FMD dataset where
the noise is not pure Poisson noise, we find that on average we are doing better than
existing methods in terms of the PSNR. In terms of the SSIM, we are slightly under-
performing when compared to the DIP but visual inspection shows that DIP in

33.271 dB 34.037 dB 23.984 dB

(a) Noisy (b) DIP (c) Self2Self  (d) BM3D (e) Ours (f) GT

Fig. 3. Denoising results on the FMD dataset. Note that for some cases, Self2Self
failed to denoise the input image and returned only a blank image.
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certain cases DIP will actually over-smooth the resulting image as shown in Fig. 3.
We additionally found that Self2Self is unstable on many of the images resulting
in blank images for a large portion of the dataset which explains the poor results
shown in Table 1. Overall our method performs better than other self-supervised
single image approaches for pure Poisson noise and is competitive in cases where
the noise is not completely Poisson noise.

Ablation Studies. We performed ablation studies on our final loss function (12)
in order to evaluate the performance of its components. We evaluate our approach
using the same architecture for the full and ablated loss functions. Specifically, we
test our full loss function, £ py;sson, and Lr1. For the experiments, we keep the reg-
ularizer £y for all experiments and tested our results on the PINCAT dataset with
Poisson noise with strength A = 20. We use the same metrics used to evaluate the
performance of our approach - PSNR, and SSIM. The results, as shown in Table 2,
indicate that our Poisson-based loss is the key contributor to the performance of
our overall approach; when it is removed we suffer the largest performance drop as
opposed to removing the L1 reconstruction loss. This validates our motivation of
using a specialized loss function for handling Poisson noise. In addition to this, we
find that the inclusion of the L1 reconstruction loss does improve our performance
to a level greater than any of the individual terms on their own. Qualitative results
of the ablation studies are shown in the supplementary material.

4 Conclusion

In this paper, we introduce Poisson2Sparse, a self-supervised approach for single-
image denoising for Poisson corrupted images. We explore the application of
sparsity, in conjunction with internal learning-based methods for image enhance-
ment, and show significantly superior performance to existing approaches. By
only requiring a single noisy image, our method is practical in situations where
the acquisition of clean data can be difficult. Our experiments validate our
method as we are able to outperform existing state-of-the-art methods for self-
supervised approaches under a variety of datasets and varying levels of Poisson
noise, for example, by more ~2 dB PSNR in average performance.

Acknowledgement. The work was partially supported by US National Science Foun-
dation grants 1664172, 1762063, and 2029814.
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