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Numerical Computation of Periodic Orbits and Isochrons for State-Dependent
Delay Perturbation of an ODE in the Plane˚
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Abstract. We present algorithms and their implementation to compute limit cycles and their isochrons for
state-dependent delay differential equations (SDDEs) which are perturbed from a planar ordinary
differential equation (ODE) with a limit cycle. Note that the space of solutions of an SDDE is infinite
dimensional. We compute a two parameter family of solutions of the SDDE which converges to the
solutions of the ODE as the perturbation goes to zero in a neighborhood of the limit cycle. The
method we use formulates functional equations among periodic functions (or functions converging
exponentially to periodic). The functional equations express that the functions solve the SDDE.
Therefore, rather than evolving initial data and finding solutions of a certain shape, we consider
spaces of functions with the desired shape and require that they are solutions. The mathematical
theory of these invariance equations is developed in a companion paper [J. Yang, J. Gimeno, and
R. de la Llave, SIAM J. Math. Anal., 53 (2021), pp. 4031–4067], which provides proofs of a posteriori
theorems. They show that if there is a sufficiently approximate solution (with respect to some explicit
condition numbers), then there is a true solution close to the approximate one. Since the numerical
methods produce an approximate solution, and provide estimates of the condition numbers, we can
make sure that the numerical solutions we consider approximate true solutions. In this paper, we
choose a systematic way to approximate functions by a finite set of numbers (Taylor–Fourier series)
and develop a toolkit of algorithms that implement the operators—notably composition—that enter
into the theory. We also present several results obtained by running the implementations in some
representative cases.
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1. Introduction. Many phenomena in nature and technology are described by limit cycles,
and by now there is an extensive mathematical theory of them [30, 1].

These limit cycles often arise in feedback loops between effects that pump and remove
energy in ways that depend on the state of the system. When the feedback happens instanta-
neously, these phenomena are modeled by an ordinary differential equation (ODE). Neverthe-
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less, in many real phenomena, the feedback takes time to start acting; see, e.g., [3, 14]. In such
cases, the delay differential equations (DDEs) play a role. When the delay term depends on
the state itself, we end up with state-dependent delay differential equations (SDDEs). Such
delays are documented to be important in several areas of science and technology (e.g., in
electrodynamics, population dynamics, neuroscience, circuits, manufacturing, etc.; see [21] for
a relatively recent survey documenting many areas where SDDEs are important models).

Note that, from the mathematical point of view, adding even a small delay term in the
ODE model is a very singular perturbation since the nature of the problem changes drastically.
Notably, the natural phase spaces in delay equations are infinite dimensional (there is some
discussion about which are the most natural ones) rather than the finite dimensional phase
spaces of ODEs.

One would heuristically expect that, if the delay term is a small quantity, there are so-
lutions of the delay problem that resemble the solutions of the unperturbed ODE. Due to
the singular perturbation nature of the problem, justifying this intuitive idea is a nontrivial
mathematical task. Of course, besides the finite dimensional set of solutions that resemble
the solutions of the ODE, one expects many other solutions, which may be very different.

The recent rigorous paper [37] describes a formalism to study the effect of introducing a
delay to an ODE in the plane with a limit cycle. The paper shows that, in some appropriate
sense, the solutions of the ODE persist. The method is, in fact, constructive since it is based
on showing that the iterations of an explicit operator converge.

The goal of this paper is to present algorithms and implementation details and provide
some source code as supplementary material (M133696 01.zip [local/web 368KB]) for the
mathematical arguments developed in [37]. The solutions we compute—and which resemble
the solutions of the ODE—capture the full dynamics of the SDDE in the sense that the
solutions of the SDDE in a neighborhood converge to this finite dimensional solution family
very quickly.

One of the novelties of the method in [37] consists in bypassing the evolution operator
and formulating the existence of periodic orbits (and the solutions converging to them) as the
solutions in a class of functions with periodicity.

On the contrary, if one studies periodic orbits as fixed points of an evolution operator, one
needs to study the smooth dependence of the solutions on the initial data and on parameters,
which is a delicate question for general solutions (see [21]). The approach developed in [37]
does not need to study such a dependency in order to obtain the persistence of the limit cycle
under the perturbation. In fact, the smooth dependence on parameters in [37] is a corollary
rather than a requirement.

Our approach may be generalized to other forms of history dependence using the concept
of extendable differentiability of the right-hand side as proposed in [28].

The companion paper [37] establishes an a posteriori theorem which states that given a
sufficiently approximate solution of the invariance equation, there is a true solution close to
it. To be more precise, an approximate solution is sufficiently approximate if the error is
smaller than an explicit expression involving several properties of the approximate solution
(commonly called condition numbers).

The numerical methods developed and run here produce an approximate solution and
obtain estimates on the condition numbers. So, we can be quite confident that the solutionsD
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produced by our numerical methods correspond to true solutions. The a posteriori results
justify, in fact, that the approximate solution is independent of the method for which it has
been produced.

The algorithms consist in specifying discretizations for all the functional analysis steps
in [37]. We do not present rigorous estimates on the effects of discretizations (they are in
principle applications of standard estimates), but we present analysis of running times. We
have implemented the algorithms above and report the results of running them in some rep-
resentative examples. In our examples, one can indeed obtain very accurate solutions in a few
minutes using a currently available standard laptop.

In addition to the numerical approximations, it is also customary in applied mathematics
to produce approximate solutions using formal asymptotic expansions. For the problem at
hand, the paper [10] develops formal asymptotic expansions of the periodic solutions in powers
of the term in the delay.

The expansions in [10] are readily computable with the methods presented here. They
can be taken as starting points for the fixed point method in [37]. Moreover, our a posteriori
results in [37] show that these expansions are asymptotic in a very strong sense.

1.1. Organization of the paper. The paper is organized in an increasing level of details
trying to guide the reader from the general steps of the algorithms to the more specialized
and most difficult steps.

First, we detail in section 2 an overview of the method developed in [37]. In particular,
we first introduce the unperturbed problem in section 2.1 in order to move to the perturbed
problem in section 2.2. That will lead to the explicit expression of the invariance equation in
section 2.3 and the periodicity and normalization conditions in sections 2.7 and 2.8, respec-
tively.

The algorithms that allow us to solve the invariance equation introduced in section 2.3
are fully detailed in section 3.

The numerical composition of periodic mappings as well as its computational complexity
needs special care. Hence, section 4 explains in detail such a process in a Fourier representa-
tion.

In section 5 we report the results in some representative examples.
Finally, we present conclusions in section 6, where we introduce general remarks on the

novel results in [37].
Our results have as input the outputs of the unperturbed case. They can be obtained

from standard ODE techniques. For completeness, we summarize in Appendix A the steps
and add practical comments of the parameterization method strategy described in [23].

As our numerical representation for periodic orbit is going to be one-dimensional Fourier
expansion, we add Appendix B to summarize possibly well-known results of this kind of
representation and how they are managed and packed from a programming point of view.

2. Overview of the problem and the method.

2.1. The parameterization method for limit cycles and their isochrons in ODEs. Our
numerical starting point is the main result in [23], which we recall informally (omitting pre-
cisions on regularity, domains of definition, etc.).D
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Given an analytic ordinary differential equation (ODE) in the plane

(2.1) 9x “ X0pxq

with a (stable) limit cycle, there are an analytic local diffeomorphism K, in particular a local
change of variables, defined from T ˆ r´1, 1s to R

2, a frequency ω0 ą 0, and a rate λ0 ă 0
such that

(2.2) X0 ˝ Kpθ, sq “ pω0Bθ ` λ0sBsqKpθ, sq “ DKpθ, sq

ˆ
ω0

λ0s

˙
.

Hence, if θ and s satisfy the very simple ODE

9θptq “ ω0,

9sptq “ λ0sptq,
(2.3)

then
xptq “ Kpθptq, sptqq

is a solution of (2.1) in a neighborhood of the limit cycle.
Therefore, the paper [23] trades finding all the solutions near the limit cycle of (2.1) for

finding K, ω0, and λ0 solving (2.2). The paper also develops efficient algorithms for the study
of (2.2), the so-called invariance equation. We provide Appendix A which reproduces the
algorithm, adding some practical comments from our implementation.

The key idea of the formalism in [37] consists in accommodating the delay by just changing
(2.2). We will obtain a modified functional equation, which involves nonlocal terms that reflect
the delay in time. This equation was treated in [37]. Hence, we will produce a two-dimensional
family of solutions of the delay problem which resemble the solutions of the unperturbed
problem (2.1).

The solutions we construct for the SDDE are analogues of the limit cycle as well as the
solutions that converge to the limit cycle exponentially fast (notice that for the simple ODE,
these are all the solutions with initial data in a neighborhood of the limit cycle).

The set Iθ0 “ tKpθ0, s0q : s0 P r´1, 1su is called in the biology literature the “isochron” of
θ0 because the orbit of a point in Iθ0 converges to the limit cycle with a phase θ0. See [36].

2.1.1. Isochron term. The theory of normally hyperbolic manifolds shows that the iso-
chrons are the same as the stable manifolds of points [18] (see also [11] for generalizations
beyond normal hyperbolicity). Therefore, in the ODE case, isochrons and stable manifolds
can be used interchangeably.

However, the theory of delay equations in [19, Chapter 10] (specially Theorem 3.2) pro-
duces stable (or strong stable) manifolds in the (infinite dimensional) phase space. Thus, the
stable manifolds produced there are infinite dimensional.

The solutions we construct are finite dimensional families. To avoid confusion with the
version of the stable manifolds in [19], we prefer to maintain the name isochrons to refer to
the solutions we construct. Thus, the isochrons that we can construct for the cases in [19] are
subsets of the (infinite dimensional) manifolds there. Note that, since the evolution operator
is compact, most of the eigenvalues of the evolution are very small in modulus, in particular,D
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smaller than our choice of λ, so that the solutions in the stable manifold converge to the space
of solutions produced here in a very fast way.

As a matter of fact, our isochrons are slow manifolds—they correspond to the least stable
eigenvalues. In applications, the isochrons will be the most observable solutions since they
correspond to the modes that decrease the slowest so that any solution will converge to the
isochron much faster than the isochron converges to the limit cycle (an analogue of what
happens in ODEs in a stable node).

2.2. The perturbed problem. We consider now a perturbation of (2.1) of the form

9xptq “X
`
xptq, εxpt ´ rpxptqqq

˘

–Xpxptq, 0q ` εP pxptq, xpt ´ rpxptqqq, εq,
(2.4)

where 0 ă ε ! 1, Xpxptq, 0q “ X0pxptqq, εP pxptq, xpt´rpxptqqq, εq – X
`
xptq, εxpt´rpxptqqq

˘
´

Xpxptq, 0q, and the function r is defined in a subset of R2, with positive values and as smooth
as we need, hence bounded in compact sets.

Equation (2.4) is an SDDE for ε ‰ 0. For typographical reasons we will denote rxptq –
xpt ´ rpxptqqq, and then (2.4) can just be written as

9xptq “ X0pxptqq ` εP pxptq, rxptq, εq.

Notice that because of the perturbative nature of the companion paper [37], the function
r in (2.4) can be rather general. That is, r does not need to be restricted to strictly positive
values, which leads to applications to advanced or mixed differential equations. The reason
is because in the proof of existence, only bounds of r and some of its first derivatives in a
neighborhood of the limit cycle are used.

The map r can also depend on parameters, and the same results in the companion theo-
retical paper prove the smooth dependency on the solutions with respect to those parameters.

We point out that we are not considering an explicit dependency on time in the mapping
r. In such a case, we believe that slight modifications in the theoretical paper may be required.

In the current paper we also do not explicitly address the case that r has domain in
a subset of Ckpr´h, hs,R2q for some h ą 0 and some integer k ě 0. Theoretically, it would
require a deep discussion of the smoothness condition of r as well as a small range of ε to fulfill
the convergence conditions of the corresponding a posteriori theorem. Therefore it would be
harder to numerically get the convergence.

2.3. The invariance equation in the perturbed problem. Let T̃ be the universal cover of
the one-dimensional torus T, and let us consider a map K : T̃ ˆ r´1, 1s Ñ R

2, the frequency
as ω0, and the rate as λ0, which solve (2.2). They correspond to the case ε “ 0 in (2.4).

In analogy with the ODE case, we want to find a W pθ, sq with periodicity in the first
variable and numbers ω and λ such that for all θ and s,

(2.5) xptq “ K ˝ W pθ ` ωt, seλtq

is a solution of (2.4).
The mapping W gives us a parameterization of the limit cycle with its isochrons via the

change of coordinates K ˝ W pθ, sq. That is, the limit cycle will be represented by the setD
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tK ˝W pθ, 0q : θ P Tu, and the isochron associated to the angle θ in T will be tK ˝W pθ, sq : s P
r´s0, s0su, where s0 denotes a region of validity in s in the solution (2.5). This region will
depend on the perturbative parameter.

Note that heuristically (and it is also shown in [37]) W is close to the identity map, and
ω and λ are close to the values in the unperturbed case. Hence, we will produce a two-
dimensional family of solutions of the delayed equation (2.4) which resemble the solutions of
the ODE.

Remark 2.1 (number of solutions of (2.5)). Since the phase space of the delay equations
is infinite dimensional, there are many more solutions of (2.4) with different λ, and possibly
they are complex numbers.

Imposing that the tuple pW,ω, λq is such that (2.5) is a solution of (2.4) and knowing that
the tuple pK,ω0, λ0q is also a solution of (2.2) but for ε “ 0, then

(2.6) DK ˝ WDW “ DK ˝ W

ˆ
ω0

λ0W2

˙
` εP pK ˝ W,K ˝ ĂW, εq,

where W2 refers to the second component of W .
Now, since K is a local diffeomorphism, it also acts as a change of variable. In particular,

we can premultiply (2.6) by pDK ˝W q´1 to get the functional equation, whose unknowns are
W ” pW1,W2q, ω, and λ:

(2.7) pωBθ ` λsBsqW pθ, sq “

ˆ
ω0

λ0W2pθ, sq

˙
` εY

`
W pθ, sq, ĂW pθ, sq, ε

˘
,

where we use the shorthand

ĂW pθ, sq – W
`
θ ´ ωrpK ˝ W q, se´λrpK˝W q˘,

Y
`
W pθ, sq, ĂW pθ, sq, ε

˘
– pDK ˝ W pθ, sqq´1P

`
K ˝ W pθ, sq,K ˝ ĂW pθ, sq, ε

˘
.

Equation (2.7) is called the invariance equation, and it will be the center of our attention.
Let us start by making some preliminary remarks about it.

We have ignored the precise definition of the domain of the function W . We need the
range of W to be contained in the domain of K. Note also that it is not clear that the domain
of the right-hand side can match the domain of the left-hand side of (2.7). As it turns out,
this will not matter much for our treatment provided that ε is small enough (see [37] for a
detailed discussion).

From the point of view of analysis, one of the main difficulties of (2.7) is that it involves a
function composed with itself (hence the operator is not really differentiable). Also the term
ĂW does not have the same domain as W . We refer the reader to [37] for a deeper discussion
of the composition domain.

Similar problems appear in the treatment of center manifolds [29, 9], and indeed, in [37],
there are only results for finite differentiable solutions, and the solutions obtained may depend
on cut-offs and extensions taken to solve the problem.1

1On the other hand, the coefficients of the expansion in powers of s are unique and do not depend on
cut-offs and extensions.D
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Based on the experience with center manifolds, we believe, indeed, that the solutions could
only be finitely differentiable and that there are different solutions of the invariance equation
(depending on the extensions considered).

Remark 2.2. In the language of ergodic theory, for those familiar with it, the results of
[37] can be described as saying that there is a factor in the (infinite dimensional) phase space
of the SDDE which is a two-dimensional flow with dynamics close to the dynamics of the
ODE.

In this paper, we will compute numerical approximations of the map giving the semicon-
jugacy as well as the new dynamics of such a factor.

2.4. Format of solution for the invariance equation (2.7). It is shown in [37] that, for
small ε, one can construct smooth solutions of (2.7) of the form

(2.8) W pθ, sq “ W 0pθq ` W 1pθqs `
nÿ

j“2

W jpθqsj ` Wąpθ, sq,

where W j : T Ñ T ˆ R and Wą : T ˆ r´s0, s0s Ñ T ˆ R with Wąpθ, sq “ Opsn`1q and for
some s0 ą 0.

As we will see in more detail later, if one substitutes (2.8) into (2.7) and matches powers
in s, one gets a finite set of recursive equations for the coefficients W j of the expansion (and
for ω, λ). We will deal with these equations in detail later. Note that this will require a
discretization of W j , which are only functions of the angle θ.

2.5. The equations for terms of the expansion of W . Assume for the moment that W 0

and W 1 have already been computed. Then we can substitute the expansion (2.8) of W in
powers of s into the invariance equation (2.7). Matching the coefficients of the powers of s on
both sides, we obtain a hierarchy of equations for W j , j “ 2, 3, . . . .

The equations for W j involve just W 0, . . . ,W j´1. Hence, they can be studied recursively.
In [37] it is shown that if we knowW 0, . . . ,W j´1, it is possible to findW j in a unique way, and,
hence, we can proceed to solve the equations recursively. In this paper, we show that there
are precise algorithms to compute these recursions. We also report results of implementation
in some cases.

Note that W j , j “ 0, . . . , n, in (2.8) are functions only of θ. The function Wą depends
on both θ and s but vanishes at high order in s and does not enter in the equations for
j “ 0, . . . , n.

As it frequently happens in perturbative expansions, the low order equations are special.
The equation for W 0—which gives the periodic solution that continues the limit cycle—also
determines ω. The equation for W 1 also determines λ. The equations for W j , j “ 2, . . . , n,
are all similar and involve solving the same operator (with different terms).

In this paper, we will only consider the computation of the W j , j “ 0, 1, . . . . The term
Wą is estimated in [37], and it is not only high order in s but also actually small in rather
large balls.

Note that even if the W j are unique (up to the parameters in (2.9)), the Wą depends on
properties of the extension considered. This is, of course, very reminiscent of what happens
in the theory of center manifolds [32]. For numerical studies of expansions of center manifoldsD
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we refer the reader to [6, 24, 31] and detailed estimates of the truncation in [8]. The numerical
considerations about the effect of the truncation apply with minor changes to our case.

2.6. Uniqueness of the invariance equation. The equation (2.7) (as well as (2.2)) is
underdetermined. That means if W , ω, and λ solve (2.7), then Wσ,η, ω, and λ also solve the
same equation with

(2.9) Wσ,ηpθ, sq “ W pθ ` σ, ηsq.

The parameters σ and η correspond respectively to choosing a different origin in the angle
coordinate θ and a different scale of the parameter s.

Even if all these solutions in (2.9) are mathematically equivalent, we anticipate that choos-
ing a different η can change the reliability of the numerical algorithms.

In [37], it is shown that the solutions in the family (2.9) are locally unique. That is, all the
solutions of the invariance equation (2.7) are included in (2.9). Hence the numerically com-
puted approximate solutions of the invariance equation identify a unique solution, which is
unambiguous. This uniqueness is crucial to compare different numerical runs as well as to ob-
tain smooth dependence on parameters. Equations (2.12) and (2.13) introduce normalization
conditions that specify the parameters in (2.9).

The uniqueness in [37] is somewhat subtle. The limit cycle is unique, as are the formal
Taylor expansions of isochrons (their parameterizations are unique once we fix origins of
coordinates and scales). On the other hand, the full isochrons are unique only when one
specifies a cut-off. Similar effects happen in the study of center manifolds [32].

From the numerical point of view, we only compute the limit cycle and a finite Taylor
expansion of the isochrons. The error of the remainder of the Taylor expansion is indeed very
small (much smaller than other sources of numerical error, which are already small).

2.7. Periodicity conditions. From the point of view of implementation in computers, it
is convenient to think of the functions K and W in (2.7) which involve angle variables (and
which range on angles) as real functions with boundary conditions (in mathematical language
this is described as taking lifts). Hence, we take

Kpθ ` 1, sq “ Kpθ, sq,

W pθ ` 1, sq “ W pθ, sq `

ˆ
1
0

˙
.

(2.10)

Notice that we are normalizing the angles in (2.10) to run between 0 and 1 rather than in
r0, 2πq.

The periodicity conditions in (2.10) indicate the second component of W is periodic (it
describes a radial coordinate) in θ, while the first component increases by 1 when θ increases
by 1 (it describes an angle). Thus, the circle described by increasing θ makes the angle in the
coordinate go around, so that it is a noncontractible circle in the angle.

For the expansion of W in powers of s as in (2.8), the periodicity conditions amount to

(2.11) W 0pθ ` 1q “ W 0pθq `

ˆ
1
0

˙
and W jpθ ` 1q “ W jpθq for j ě 1.
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In the numerical analysis, there are many well-known ways to discretize periodic functions.
We will use Fourier series, but there are also other alternatives such as periodic splines.

In general, for functions Ψ with Ψpθ ` 1q “ Ψpθq ` 1, we define rΨpθq “ Ψpθq ´ θ which is
a periodic function, i.e., for all θ, rΨpθ ` 1q “ rΨpθq. Then we will discretize rΨ and rewrite the
functional equations so that this is the only unknown.

2.8. Normalization of the solutions. As indicated in the discussion, the invariance equa-
tion has two obvious sources of indeterminacy: One is the choice of the origin of the variable
θ (the σ in (2.9)), and the other is the choice of the scale of the variable s (the η in (2.9)). In
[37] it is shown that these are the only indeterminacies for the solution up to any order n and
that once we fix them, we can get any other solution by applying (2.9).

A convenient way to fix the origin of θ is to require

(2.12)

ż
1

0

“
BθW

0
1 pθ, 0qW1pθ, 0q

‰
dθ “ a,

where W 0 is an initial approximation and a is a real number, typically close to 1. This
normalization is easy to compute and is rather sensitive since, when we move in the family
(2.9), the derivative with respect to the shift is a positive number.

The normalization of the origin of coordinates has no numerical consequences except for
the possibility of comparing the solutions in different runs. The solutions corresponding to
different normalizations have very similar properties. The numerical algorithm, Algorithm 3.1,
in its step 5 leads to a small drift in the normalization in each iteration, but it is guaranteed
to converge to one of the solutions in (2.9).

The second normalization is just a choice of the eigenvector of an operator. We have found
it convenient to take

(2.13)

ż
1

0

BsW2pθ, 0q dθ “ ρ

with a real ρ ‰ 0.
We anticipate that changing the value of ρ is equivalent to changing s into bs, where b is

commonly named scaling factor.
All the choices of ρ are mathematically equivalent—they amount to setting the scale of

the parameter s. The choice of this normalization, however, affects the numerical accuracy
dramatically. Notice that if we change s into bs, the coefficients W jpθq in (2.8) change into
W jpθqbj . Thus, different choices of b may lead the Taylor coefficients to be very large or very
small, which makes the computations with them very susceptible to round-off error. It is
numerically advantageous to choose the scale in such a way that the Taylor coefficients have
a comparable size. In our problem, we are also going to use the scaling to ensure that the
second component of W lies in the domain of K, and then K ˝ W is well defined.

In practice, we run the calculations twice. First we do a preliminary calculation whose
only purpose is to compute an approximation of the scale that makes the coefficients remain
more or less the same size. Then a more definitive calculation can be run. The latter running
is more numerically reliable.D
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Remark 2.3. In standard implementation of the Newton method for fixed points of a
functional, say Ψ, the fact that the space of solutions is two-dimensional leads DΨ ´ Id to
have a two-dimensional kernel and be noninvertible.

In our case, we will develop a very explicit and fast algorithm that produces an approximate
linear right inverse. This linear right inverse leads to convergence to an element of the family
(2.9).

3. Computation of pW,ω, λq—perturbed case. The main result in the paper [37] states
that if ε in (2.7) is small enough, and a periodicity condition like (2.12) and a normalization
like (2.13) are considered, then there exists a unique tuple pW,ω, λq satisfying (2.7), (2.12),
and (2.13).

The formulation of that result is done in an a posteriori format which ensures the existence
of a true solution once an approximate enough solution is provided as initial guess for the
iterative scheme.

Moreover, it also gives the Lipschitz dependence of the solution on parameters which
allows us to consider a continuation approach.

We refer the reader to [37] for a precise formulation of the result involving choices of norms
to measure the error in the approximate solutions. In the following sections, we formulate in
an algorithmic way the steps to follow to converge to the new limit cycle and its isochrons.

3.1. Fixed point approach. We compute all the coefficients W jpθq of the truncated ex-
pression W pθ, sq in (2.8) order by order. The zero and first orders require special attention
due to the fact that the values ω and λ are obtained in (2.7) by matching coefficients of s0

and s1, respectively. The condition that allows us to obtain ω comes from the periodicity
condition (2.11). The mapping W 0 is not a periodic function. But we can use it to get a peri-
odic one defined by Ŵ 0pθq – W 0pθq ´

`
θ
0

˘
. The condition for λ is given by the normalization

condition (2.13). As in the unperturbed case, we are allowed to use a scaling factor. The use
of such a scaling factor allows us to set the value of ρ in (2.13) equal to 1.

Algorithm 3.1 sketches the fixed point procedure to get ω and W 0 whose periodicity
condition is ensured in step 5. In this case the initial condition will be ω0 (the value for ε “ 0)
for ω and

`
θ
0

˘
for W 0pθq since W pθ, sq is close to the identity.

Algorithm 3.1 (s0 case). Let ĄW 0pθq – W 0
`
θ ´ ωr ˝ KpW 0pθqq

˘
.

‹ Input: 9x “ Xpxq ` εP px, x̃, εq, 0 ă ε ! 1, Kpθ, sq “
řm´1

j“0
Kjpθqpb0sqj , b0 ą 0,

ω0 ą 0, λ0 ă 0, and a tolerance tol.

‹ Output: Ŵ 0 : T Ñ R
2 and ω ą 0.

1. Ŵ 0pθq Ð 0 and ω Ð ω0.

2. W 0pθq Ð

ˆ
θ

0

˙
` Ŵ 0pθq.

3. Solve DK ˝ W 0pθqηpθq “ εP pK ˝ W 0pθq,K ˝ ĄW 0pθq, εq. Let η ” pη1, η2q.

4. α Ð
ş
1

0
η1pθq dθ and ω Ð ω0 ` α.D
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5. Solve ωBθŴ
0
1 pθq “ η1pθq ´ α imposing

ş
1

0
Ŵ 0

1 pθq dθ “ 0.

6. Solve pωBθ ´ λ0qŴ 0
2 pθq “ η2pθq.

7. Iterate from step 2 to step 6 until convergence in W 0 and ω with tolerance tol.

Algorithm 3.2 sketches the steps to compute pW 1, λq and Wn for n ě 2. The initial
guesses are λ0 for λ, p 0

1
q for W 1, and p 0

0
q for Wn.

Algorithm 3.2 (s1 case and sn case with n ě 2). Let ĂW pθ, sq – W
`
θ ´ ωr ˝ KpW pθ, sqq,

se´λr˝KpW pθ,sqq˘.
‹ Input: 9x “ Xpxq ` εP px, rx, εq, 0 ă ε ! 1, Kpθ, sq “

řm´1

j“0
Kjpθqpb0sqj , b0 ą 0,

ω0 ą 0, λ0 ă 0, Ŵ 0pθq, W jpθq for 0 ă j ă n, b ą 0, ω ą 0, and a tolerance tol.

‹ Output: either W 1 : T Ñ T ˆ R and λ ă 0 or Wn : T Ñ T ˆ R.

1. Wnpθq Ð

ˆ
0
0

˙
.

s1 If n “ 1, W 1pθq Ð

ˆ
0
1

˙
and λ Ð λ0.

2. W pθ, sq Ð

ˆ
θ

0

˙
` Ŵ 0pθq `

nř
j“1

W jpθqpbsqj .

3. Y pW pθ, sqq Ð DK ˝ W pθ, sq´1P pK ˝ W pθ, sq,K ˝ ĂW pθ, sq, εq.

4. ηpθq Ð εBnY
Bsn pW pθ, sqq|s“0. Let η ” pη1, η2q.

s1 If n “ 1, then λ Ð λ0 `
ş
1

0
η2pθq dθ.

5. Solve pωBθ ` nλqWn
1 pθq “ η1pθq.

6. Solve pωBθ ` nλ ´ λ0qWn
2 pθq “ η2pθq.

7. Iterate from step 2 to step 6 until convergence with tolerance tol. Then undo the
scaling b.

Both Algorithms 3.1 and 3.2 have nontrivial parts, such as the effective computation of
ĂW , the numerical composition of K with W and also with ĂW (see section 4), the effective
computation of step 4 in Algorithm 3.2, and the choice of the scaling factor (see section 3.3).
On the other hand, there are steps in which we can use the same methods as in the unperturbed
case (see Appendix A), such as the solution of linear systems like step 3 in Algorithm 3.2 via
Lemma 3.4 or the solutions of the cohomological equations by Proposition 3.3.

In the next sections we address each of these parts, and they have been successfully im-
plemented and provided as self-contained supplementary material (M133696 01.zip [local/web
368KB]).D
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3.2. Stopping criterion. Algorithms 3.1 and 3.2 require us to stop when the prescribed
tolerances have been reached respectively. Alternatively, one can stop when the invariance
equation is satisfied up to the given tolerance.

3.3. Scaling factor for orders n ě 1. As in the unperturbed case, if W pθ, sq is a solution,
then W pθ` θ0, bsq will be a solution, too, for any θ0 and b. A difference with the ε “ 0 case is

that nowK˝W andK˝ĂW are required to be well defined. That means the second components
of W and ĂW must lie in r´1, 1s. Stronger conditions are

ppsq –
ÿ

jě0

‖W j
2

pθq‖|s|j ď 1 and rppsq –
ÿ

jě0

‖
Ą
W

j
2

pθq‖|s|j ď 1.

In the iterative scheme of Algorithm 3.2, these series become finite sums, and a condition
for the value b ą 0 is led by the upper-bound mints˚, rs˚u where s˚ ą 0 is the value so that
pps˚q “ 1 and, similarly, rs˚ ą 0 is the value verifying rpprs˚q “ 1. Notice that the solutions s˚

and rs˚ exist because ‖W 0
2 pθq‖ ă 1, ‖ĄW 0

2
pθq‖ ă 1, and the polynomials have positive derivative.

3.4. Solutions of the cohomology equations in Fourier representation. Under the Fourier
representation (see section B) we can solve the cohomological equations in steps 5 and 6 in
Algorithm 3.1 as well as in steps 5 and 6 in Algorithm 3.2.

Proposition 3.3 (Fourier version, [23]). Let Epθ, sq “
ř

j,k Ejke
2πikθsj.

‚ If E00 “ 0, then pωBθ ` λsBsqupθ, sq “ Epθ, sq has solution upθ, sq “
ř

j,k ujke
2πikθsj

and

ujk “

#
Ejk

λj`2πiωk
if pj, kq ‰ p0, 0q,

α otherwise

for all real α. Imposing
ş
1

0
upθ, 0q dθ “ 0, then α “ 0.

‚ If E10 “ 0, then pωBθ`λsBs´λqupθ, sq “ Epθ, sq has solution upθ, sq “
ř

j,k ujke
2πikθsj

and

ujk “

#
Ejk

λpj´1q`2πiωk
if pj, kq ‰ p1, 0q,

α otherwise

for all real α. Imposing
ş
1

0
Bsupθ, 0q dθ “ 0, then α “ 0.

The paper [23] also presents a solution in terms of integrals. Those integral formulas for
the solution are independent of the discretization and work for discretizations such as Fourier
series, splines, and collocation methods. Indeed, the integral formulas are very efficient for
discretizations in splines or in collocation methods, which could be preferable in some regimes
where the limit cycles are bursting. In this paper we will not use them since we will discretize
functions in Fourier series and for this discretization, the methods described in Proposition 3.3
are more efficient.

3.5. Treatment of step 3 in Algorithm 3.2. To solve the linear system in step 3 of
Algorithm 3.2, we can use Lemma 3.4, whose proof is a direct power matching.
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Lemma 3.4. Let Apθ, sqxpθ, sq “ bpθ, sq be a linear system of equations for each given pθ, sq,
explicitly, ˆ ÿ

kě0

Akpθqsk
˙ ÿ

kě0

xkpθqsk “
ÿ

kě0

bkpθqsk.

Then, the coefficients xkpθq are obtained recursively by solving

A0pθqxkpθq “ bkpθq ´
kÿ

j“1

Ajpθqxk´jpθq,

which can be done provided that A0pθq is invertible and that one knows how to multiply and

add periodic functions of θ.

3.6. Use of polynomials for elementary operations. We also recall that composition in
the left of a polynomial with an exponential, trigonometric functions, powers, logarithms (or
any function that satisfies an easy differential equation) can be done very efficiently using
algorithms that are reviewed in [20], which go back to [27].

We present here the case of the exponential which can be used in Algorithm 3.2 for the
computation of ĂW .

If P is a given polynomial—or a power series—with coefficients Pj , we see that Epsq “
expP psq satisfies

d

ds
Epsq “ Epsq

d

ds
P psq,

with Taylor coefficients Ej at s “ 0. Equating like powers on both sides, this leads to
E0 “ expP p0q and the recursion

Ej “
1

j

j´1ÿ

k“0

pj ´ kqPj´kEk, j ě 1.

Note that this can also be done if the coefficients of P are periodic functions of θ (or polynomi-
als in other variables). In modern languages supporting overloading or arithmetic functions,
all this can be done in an automatic manner.

Note that if the polynomial has degree ns, the computation up to degree ns takes Θpn2
sq

operations of multiplications of the coefficients.

4. Numerical composition of periodic maps. The goal of this section is to deeply discuss
how we can numerically compute ĂW and the compositions of K with W pθ, sq and ĂW pθ, sq only
having a numerical representation (or approximation) of K and W in Algorithms 3.1 and 3.2.

There are a variety of methods that can be employed to numerically get the composition
of a periodic mapping with another (or the same) mapping. Some of these methods depend
strongly on the representation of the periodic mapping, and others depend only on specific
parts of the algorithm.

We start the discussion from the general methods to those that strongly depend on the
numerical representation. One expects that the general ones will have a bigger numerical
complexity or they will be less accurate.D
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Before starting to discuss the algorithms, it is important to stress again that for functions
of two variables pθ, sq P T ˆ r´1, 1s, there are two complementary ways of looking at them.
We can think of them as functions that, given θ, produce a polynomial in s—this polynomial
valued function will be periodic in θ—or we can think of them as polynomials in s taking
values in spaces of periodic functions (of the variable θ). Of course, the periodic functions
that appear in our interpretation can be discretized either by the values in a grid of points or
by the Fourier transform.

Each of these—equivalent!—interpretations will be useful in some algorithms. In the
second interpretation, we can “overload” algorithms for standard polynomials to work with
polynomials whose coefficients are periodic functions (in particular, Horner schemes). In the
first interpretation, we can easily parallelize algorithms for polynomials for each of the values
of θ using the grid discretization of periodic functions.

Possibly the hardest part of Algorithms 3.1 and 3.2 are the compositions between K with
W and K with ĂW . Due to step 4 of Algorithm 3.2 the composition should be done so that
the output is still a polynomial in s with coefficients that are periodic functions of θ. In our
implementation, we use the automatic differentiation approach [20, 17].

If W pθ, sq “ pW1pθ, sq,W2pθ, sqq is a function of two variables taking values in R
2, then

(4.1) K ˝ W pθ, sq “
m´1ÿ

j“0

KjpW1pθ, sqq pb0W2pθ, sqqj ,

which can be evaluated with m ´ 1 polynomial products and m ´ 1 polynomial sums using a
Horner scheme, once we have computed Kj ˝ W1pθ, sq.

The problem of composing a periodic function with a periodic polynomial in s—to produce
a polynomial in s taking values in the space of periodic functions—is what we consider now.
In particular, we are going to discuss three different approaches and their computational
complexities.

The first is the most general one, and it is based on a dynamic programming technique. It
assumes some given information to build a table from which the composition can be extracted.
In this case the numerical representation is in the part that is assumed to be given.

The second one exploits the Fourier representation in the inputs of the dynamic program-
ming to provide the final full complexity of the composition.

Finally, the third approach also uses the Fourier representation, but rather than using the
dynamic programming technique, it uses the recurrences in automatic differentiation for the
sine and cosine functions.

4.1. Composition via dynamic programming. The most general method considers S a
periodic function, the Kj in (4.1), and qpsq “

řk
j“0

qjs
j a polynomial of a fixed order k ě 0,

where the qj are periodic functions of θ that we consider discretized by their values in a grid
(the W1 in (4.1)).

We want to compute the polynomial p – S ˝ q up to order k. Assume that dj

dθj
Spq0q for

0 ď j ď k are given as input and that they have been previously computed in a bounded
computational cost. These inputs in a computer strongly depend on the numerical represen-
tation of the periodic function S. In later sections we will consider the Fourier series as a
representation which will lead to two different algorithms.D
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Table 1
Composition of a function with a polynomial.

Spq0q d
dθ
Spq0q d2

dθ2
Spq0q ¨ ¨ ¨ dk´1

dθk´1
Spq0q dk

dθk
Spq0q

p0 1 0

p1 0 d
ds
qpsq 0

p2 0 1

2
˝

1

2
˝

...
...

...
...

. . . 0

pk´1 0 1

k´1
˝

1

k´1
˝ ¨ ¨ ¨ 1

k´1
˝ 0

pk 0 1

k
˝

1

k
˝ ¨ ¨ ¨ 1

k
˝

1

k
˝

✶
✐✁✶�

❞
❞✂➲

❞
❞✂ q✭s✮

Figure 1. Generation rule for i “ 2, . . . , k ` 1 Table 1 entries.

The chain rule gives us a procedure to compute the coefficients of ppsq “
řk

j“0
pjs

j .
Indeed, one can build a table, whose entries are polynomials in s, like in Table 1 and following
the generation rule in Figure 1.

The inputs of Table 1 are ai,1 “ 0 for i ‰ 1 and a2,2 “ d
ds
qpsq. Then the entries aij with

2 ď j ď i ď k ` 1 are given by

(4.2) aijpsq “
1

i ´ 1

ˆ
d

ds
ai´1,jpsq ` ai´1,j´1psq

d

ds
qpsq

˙
.

Thus, the coefficients of ppsq are pj “
řk

l“0
ajlp0q dl

dθl
Spq0q for 0 ď j ď k.

Note that it is enough to store in memory k entries of Table 1 to compute all the coefficients
pj .

Moreover, for each entry in the ith row with i “ 2, . . . , k ` 1, one only needs to consider
polynomials of degree k ` 1 ´ i. Overall the memory required is at most 1

2
kpk ` 1q. The

number of arithmetic operations following the rule (4.2) is given by Proposition 4.1.

Proposition 4.1. Let S be a real-periodic function, and let qpsq be a real polynomial of degree

k. Assume dj

dθj
Spqp0qq for j “ 0, . . . , k. The polynomial S ˝ q can be computed using Table 1

with 1

2
kpk ` 1q units of memory and Θpk4q multiplications and additions.

Proof. Note that kpk ` 1q multiplications and pk ` 1q2 additions are needed to perform
the product of two polynomials of degree k. Also k multiplications are needed to performD
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the derivative of a polynomial of degree k multiplied by a scalar. To bound the number of
operations we must consider three different situations of Table 1.

1. The column a3..k,2:
řk´2

i“1
pk ´ i ` 1q “ 1

2
pk2 ` k ´ 6q multiplications.

2. The diagonal a3..k,3..k:

‚
řk´2

j“1
pk ´ j ´ 1qpk ´ j ` 1q ` 1 “ 1

6
p2k3 ´ 3k2 ` k ´ 6q multiplications.

‚
řk´2

j“1
pk ´ j ´ 1q2 ` 1 “ 1

6
p2k3 ´ 9k2 ` 19k ´ 18q additions.

3. The rest:
‚

řk´2

j“1

řk´2

i“j`1
pk´i´1qpk´i`1q`pk´i´2q`1 “ 1

12
p7k4´56k3`71k2`38k´24q

multiplications.
‚

řk´2

j“1

řk´2

i“j`1
pk ´ i ´ 1q2 ` pk ´ iq ` 1 “ 1

12
p5k4 ´ 36k3 ` 85k2 ´ 102k ` 72q

additions.
Overall, there are 7

12
k4 ` Θpk3q multiplications and 5

12
k4 ` Θpk3q additions.

The next theorem, Theorem 4.2, summarizes the previous explanations and provides the
complexities to numerically compute K ˝ W in (4.1). It assumes that di

dθi
Spq0q of Table 1,

which are the di

dθi
KjpW1pθ, 0qq inK˝W , are given as input. These inputs are the only elements

in Table 1 that depend on the numerical representation of the periodic functions (i.e., the Kj

in K ˝ W ), and they make the result in Theorem 4.2 independent of how periodic functions
are represented.

Theorem 4.2. For a fixed θ, the computational complexity to compute the compositions of

Kpθ, sq “
řm´1

j“0
Kjpθqpb0sqj with W pθ, sq “

řk´1

j“0
W jpθqpbsqj and ĂW pθ, sq using Table 1 is

Θpmk4q and space Ωpk2q assuming di

dθi
KjpW 0

1 pθqq as input for i “ 0, . . . , k ´ 1.

Remark 4.3. In general, if nθ denotes the mesh size of the variable θ, we will have k ď
m ! nθ. That is, the mesh size will be much larger than the degree (in s) of Kpθ, sq. That
means that the parallelization in nθ will be more advantageous.

Theorem 4.2 has an important assumption involving di

dθi
KjpW 0

1 pθqq which can have a big
impact in the complexity of K ˝ W pθ, sq. However, such an impact strongly depends on the
numerical representation of Kj , and it will be discussed in the Fourier representation case.

4.2. Composition in Fourier. Theorem 4.2 reduces the problem of computing K ˝W pθ, sq
in (4.1) to the problem of computing composition of a periodic function with another one.

In the case of a Fourier representation (see Appendix B) of an arbitrary mapping S : T Ñ R

(the Kj ’s in (4.1)), such a composition between Fourier truncated series may require one
to know the values not in the standard equispaced mesh tk{nθunθ´1

k“0
of θ, which hampers

the use of the fast Fourier transform (FFT). Indeed, the FFT states a fast way to biject
tSpk{nθqunθ´1

k“0
Ă R to t pSjunθ´1

j“0
Ă C such that

(4.3) Spk{nθq “
nθ´1ÿ

j“0

pSje2πijk{nθ and pSj “
1

nθ

nθ´1ÿ

k“0

Spk{nθqe´2πijk{nθ .

It assumes the mesh of θ to be equispaced. However, the Spq0q may require evaluating S

outside the mesh.
A direct composition of real Fourier series requires a computational complexity Θpn2

θq.
However, nowadays recent algorithms with a Θpnθ log nθq complexity efficiently solve thisD

o
w

n
lo

ad
ed

 0
9
/3

0
/2

2
 t

o
 1

8
8
.9

2
.1

3
9
.7

2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



❈�✁✂✄☎✆✝✞ © ✥✂ ✟✠✡☛☞ ✌✍❛✎✞✝�✄☎✏✑✒ ✄✑✁✄�✒✎❝✞☎�✍ �✓ ✞✝☎t ❛✄✞☎❝✔✑ ☎t ✁✄�✝☎✥☎✞✑✒☞

1530 JOAN GIMENO, JIAQI YANG, AND RAFAEL DE LA LLAVE

possible bottleneck in the performance of our algorithms. See, for instance, the nfft3 in
[25] or finufft in [5, 4]. The package nfft3 allows us to express S : T Ñ R with the same
coefficients as in (B.1) and perform its evaluation in an even number of nonequispaced nodes
pθkqnθ´1

k“0
Ă T by

(4.4) Spθkq “
nθ´1ÿ

j“0

pSje´2πipj´nθ{2qpθk´1{2q.

The corrections of θk in (4.4) are necessary because nfft3 considers T » r´1{2, 1{2q rather
than the other standard equispaced discretization in r0, 1q. nfft3 uses some window func-
tions for a first approximation as a cut-off in the frequency domain and also for a second
approximation as a cut-off in the time domain. This package takes these approximations un-
der control (by bounds) to ensure the solution is a good approximation. Joining these results
with Proposition 4.1 we can rewrite Theorem 4.2 as follows.

Theorem 4.4. The computational complexity to compute in Algorithm 3.2 the compositions

of Kpθ, sq “
řm´1

j“0
Kjpθqpb0sqj with the maps W pθ, sq “

řk´1

j“0
W jpθqpbsqj and ĂW pθ, sq “

řk´1

j“0
ĂW jpθqpbsqj using Table 1 and nfft3, and assuming that Kj, W j, and ĂW j are expressed

with nθ Fourier coefficients, is Θpmk4nθ `mknθ log nθq. The space complexity is Ωpknθ `k2q.

Remark 4.5. Remark 4.3 also applies to Theorem 4.4 in terms of the parallelization of
nθ due to the fact that in general k ď m ! nθ. However, in the parallelism case, the space
complexity increases to Ωpknθ ` k2npq with np the number of processes, although the part
corresponding to knθ can be shared memory.

In particular, the nfft3 can also be used for the zero order W 0 of Algorithm 3.1 giving
in that case the same complexity as in Theorem 4.4 but with k “ 1.

4.3. Automatic differentiation in Fourier. Theorem 4.2 tells us that the composition
K ˝ W pθ, sq can numerically be done independently of the periodic mapping representation.
Nevertheless, differentiation is a notoriously ill-posed problem due to the lack of information
in the discretized problem. Thus, Table 1 is a good option when no advantage of the computer
periodic representation exists or k ! m.

Using the representation (B.3), we can use the Taylor expansion of the sine and cosine by
recurrence [27, 20]. That is, if qpsq is a polynomial, then sin qpsq and cos qpsq are given by
s0 “ sin q0, c0 “ cos q0, and for j ě 1,

(4.5) sj “
1

j

j´1ÿ

k“0

pj ´ kqqj´kck, cj “ ´
1

j

j´1ÿ

k“0

pj ´ kqqj´ksk.

Therefore the computational cost to obtain the sine and cosine of a polynomial is linear with
respect to its degree.

Theorem 4.6 says that the composition of K with W or ĂW is, rather than Θpmk4nθ `
mknθ log nθq as in Theorem 4.4, just Θpmkn2

θq. Therefore if k ! m and nθ is large, the
approach given by Theorem 4.4 has a better complexity, although Theorem 4.6 will be more
stable for larger k.D
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Theorem 4.6. The computational complexity to compute in Algorithm 3.2 the compositions

of Kpθ, sq “
řm´1

j“0
Kjpθqpb0sqj with the maps W pθ, sq “

řk´1

j“0
W jpθqpbsqj and ĂW pθ, sq “

řk´1

j“0
ĂW jpθqpbsqj using automatic differentiation and assuming that Kj, W j, and ĂW j are

expressed with nθ Fourier coefficients is Θpmkn2
θq.

5. Numerical results. The van der Pol oscillator [35] is an oscillator with a nonlinear
damping governed by a second order differential equation.

As an example, we consider the state-dependent perturbation of the van der Pol oscillator
like in [22], which has the form

9xptq “ yptq,

9yptq “ µp1 ´ xptq2qyptq ´ xptq ` εxpt ´ rpxptqqq,
(5.1)

with µ ą 0 and 0 ă ε ! 1. For the delay function rpxptqq we are going to consider two
cases: a pure state-dependent delay case rpxptqq “ 0.006exptq or just a constant delay case
rpxptqq “ 0.006.

The first step consists in computing the change of coordinate K, the frequency ω0 of the
limit cycle, and its stability value λ0 ă 0 for ε “ 0. By standard methods of computing
periodic orbits and their first variational equations, we compute the limit cycles close to
px, yq “ p2, 0q for different values of µ. Table 2 shows the values of ω0 and λ0 for each of those
values of the parameter µ.

Table 2
Values of ω0 and λ0 for different values of the parameter µ in (5.1) with ε “ 0.

µ ω0 λ0

0.25 0.1585366857025485 ´0.2509741760777654

0.5 0.1567232109993800 ´0.5077310891698608

1 0.1500760842377394 ´1.0593769948418550

1.5 0.1409170454968141 ´1.6837946490433340

The computation of Kpθ, sq, following Algorithm A.1, up to order 16 in s and with a
Fourier mesh size of 1024, allows us to plot the isochrons in Figure 2.

In the case of ODEs, the isochrons computed by evaluating the expansion can be globalized
by integration of the ODE (5.1) forward and backward in time; see [23]. In the case of the
SDDE, ε ‰ 0, propagating backwards is not possible. We hope that this limitation can be
overcome, but this will require some new rigorous developments and more algorithms. We
think that this is a very interesting problem.

A relevant indicator for engineers is the power spectrum, i.e., the square of the modulus
of the complex Fourier coefficients. In Figure 3 we illustrate the power spectrum for K0, since
K0 is the one that is commonly observed in a circuit system.

Due to the quadratic convergence of Algorithm A.1 (see [23]), the computations of Table 2
and Figure 2 are performed in less than one minute in a currently available standard laptop.
However, we notice that for values of µ ą 1.5 the method may not converge for the unperturbed
case. The scaling factor and the Fourier mesh size need to be smaller due to spikes, especially
for the high orders in s, i.e., Kjpθq for large j. This is an inherent drawback of the numericalD
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Figure 2. Limit cycles and their isochrons for different values of the parameter µ in the unperturbed case,

(5.1).

representation of periodic functions by Fourier series, which may become very important for
some parameter values.

5.1. Perturbed case. Let us analyze the case of µ “ 1.5 for two different types of delay
functions: a constant one rpxptqq “ 0.006 and a state-dependent one rpxptqq “ 0.006exptq.

The two cases have some advantages to be exploited. For instance, in the constant case
ĂW pθ, sq “ W pθ ´ ωβ, se´λβq is easier to compute than in the state-dependent case. Since in

both cases W and ĂW must be composed by K, the use of automatic differentiation for step
4 in Algorithm 3.2 is still needed. In particular, for Algorithm 3.1 and the composition via
Theorem 4.4, the nfft3 can be used to perform the numerical composition of K with W and
ĂW .

The first steps of our method get ω and λ. These values are summarized respectively in
Tables 3 and 4 for the parameter value µ “ 1.5. They were computed fixing a tolerance forD
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Figure 3. Logscale of the power spectrum of K0 ” pK0

1 ,K
0

2 q for µ “ 1.5 and ε “ 0 in (5.1).

the stopping criterion of 10´10 in double-precision. Because the result is perturbative, these
values are close to those in Table 2 but are further apart as ε increases. Moreover, we report
a speed factor around 2.25 using the nfft3 with respect to a direct implementation of the
Fourier composition.

Table 3
Values of ω for different values of ε in (5.1) with µ “ 1.5 obtained by Algorithm 3.1. ωs corresponds to

the state-dependent delay, and ωc to the constant delay.

ε ωs ωc

10´4
0.140908673246532 0.140908547470887

10´3
0.140833302396846 0.140832045466042

10´2
0.140077545298062 0.140065058638519

Table 4
Values of λ for different values of ε in (5.1) with µ “ 1.5 obtained by Algorithm 3.2. λs corresponds to the

state-dependent delay, and λc to the constant delay.

ε λs λc

10´4 ´1.6838123845562083 ´1.6838091880373793

10´3 ´1.6839721186835845 ´1.6839401491442914

10´2 ´1.6855808865357260 ´1.6852607528946115

Figure 4 shows, for different values of ε in (5.1), the logarithmic error of the invariance
equation for each of the different orders j ě 0, that is, the finite system of invariance equations
obtained after plugging W pθ, sq “

ř
W jpθqsj into (2.7) and matching terms of the same order.

The state-dependent case needs smaller values of ε to satisfy the invariance equation, while
the constant delay case admits larger values of ε which can be deduced from the inequalities
in [37].D
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Figure 4. Log10 scale of the 2-norm of the error in the invariance equation.

Figure 5 shows the difference between the isochrons for the perturbed and unperturbed
cases. As one expects from the theorems in [37], the error is smaller as the perturbation
parameter value ε becomes smaller.
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Figure 5. Log10 scale of the 2-norm of the difference between the perturbed and unperturbed cases, that is,

‖Kj ´ pK ˝ W qj‖.

An important point in Algorithm 3.2 is the well-definedness of the composition of K with
W and ĂW . Because the state-dependent delays consider many more situations than just the
constant delay, one expects that a potentially smaller scaling factor compared to the constant
delay will be needed for computation of big orders. Figure 6 shows that if ε is large, the
scaling factor will need to be small. We also see that for the constant case, it is enough toD
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use a constant scaling factor, and for the state-dependent case, the scaling factor decreases
drastically in the first orders.
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Figure 6. Scaling factor to ensure that the composition of K with W and with ĂW in Algorithm 3.2 are well

defined.

To illustrate the physical observation Figures 7 and 8 show the power spectra of the limit
cycles after the perturbations. More concretely, Figure 7 displays the power spectrum of
pK ˝ W q0 for the pure state-dependent delay case and ε “ 0.01. In contrast with Figure 3,
we observe that for the even indexes these figures have nonzero values in the double-precision
arithmetic sense. On the other hand, Figure 8 shows that these nonzero values in the even
indexes are not present in the constant delay case. The power spectrum for the case ε ą 0
changes from that when ε “ 0 as ε increases.
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Figure 7. Log10 scale of the power spectrum of pK ˝ W q0 for µ “ 1.5, ε “ 0.01, and the state-dependent

delay rpxptqq “ 0.006exptq in (5.1).
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Figure 8. Log10 scale of the difference between the power spectrum of K0 and the power spectrum of

pK ˝ W q0 for µ “ 1.5, different values of ε, and constant delay r “ 0.006 in (5.1).

6. Conclusions. We have presented Algorithms 3.1 and 3.2 to compute limit cycles and
their isochrons for an SDDE coming from perturbing a planar ODE with a limit cycle.

As input of those algorithms we use a parameterization of the limit cycle and its isochrons
of the ODE, which acts as a change of variables in a neighborhood of the unperturbed limit
cycle.

To fix the solution, we use normalization conditions in the zeroth and first orders of the
Taylor–Fourier representation of the solution in the perturbed system.

We have also discussed the numerical composition between Taylor–Fourier expansions
which is the hardest step in those algorithms.

Finally, we have shown numerical experiments, and we provide a code sample as supple-
mentary material (M133696 01.zip [local/web 368KB]), allowing one to adapt the code for
other examples.

We observed that for the unperturbed case, the scaling factor as well as the mesh size play
an important role to get the parameterization. In the perturbed system, the scaling factor also
allows us to ensure the well-definedness of the composition, which causes the scaling factor to
be smaller, especially for the nonconstant delay expression.

We also showed that the perturbative parameter ε affects the convergence of the algorithm.
To compute high orders of W , the ε needs to be smaller in the nonconstant delay. This makes
sense with the existence proofs in [37]. They are based on a contraction argument of an
operator, which is reproduced in the steps of the algorithms used in this paper. The bounds
to ensure the contraction of the operators depend on the norms of the delay function as well
as its derivatives. Therefore, if the delay is not constant, those quantities will cause ε to be
small enough to ensure the contraction in the operator.

The algorithms we have presented in this paper come from the companion paper [37].
Avoiding hard mathematical notation, there are some implications and consequences of this
new technique.

The statements in [37] are formulated for SDDEs (i.e., DDEs whose delays depend on theD
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state) in an a posteriori format which does not depend on time explicitly. The result is then
directly applicable to constant, state-dependent, and even implicitly defined delays.

Although the results therein have been detailed for the case of SDDEs, they also apply
without major modifications to advanced or even mixed differential equations. That means
that the perturbation added to the ODE can, at a current time, require the information at
future or past times.

It is important to stress that our approach does not provide a full parameterization of the
foliation in the phase space of the perturbed model. Indeed, we bypass that discussion by just
providing a partial dynamics near the limit cycle closest to the dynamics of the unperturbed
model. We decided to keep this distinction, calling it isochron (a term often used in biology
for the foliation of a limit cycle in an ODE scenario).

The companion paper [37] also includes a theory for different regularities of the differential
equation, but in the current numerical paper, we only formulated results for analytic systems.
Since we specified which derivatives appear in the calculations, it is clear that the algorithms
for the delay-perturbed case also apply for problems with finite differentiability.

The theoretical result can also be the starting point for computer-assisted proofs (CAPs).
The study of periodic orbit by CAPs independent of the evolution operator has also been
considered in the literature, e.g., in [26], which deals with several delays. We recently learned
of the paper [34], which produces CAPs of analytic periodic solutions. In the case of SDDEs
considered here, analytic solutions are not expected to exist and the framework in [34] would
need to be adjusted; see [16].

Finally, we want to emphasize that our algorithms as well as the algorithm in [23] can
be generalized to higher dimensions with a more tedious notation. It will require changes
in the numerical composition, and its computational complexities will have a more difficult
expression. The good point is that there is still a chance to take advantage of the parallelism
with higher dimensional isochrons.

Appendix A. Computation of pK,ω0, λ0q—unperturbed case. For completeness, we
quote Algorithm 4.4 in [23], adding some practical comments. That algorithm allows us to
numerically compute ω0, λ0, and K : T̃ ˆ r´1, 1s Ñ R

2 in (2.7). We note that the algorithm
has quadratic convergence as it was proved in [23].

Algorithm A.1. Quasi-Newton method.
‹ Input: 9x “ Xpxq in R

2, Kpθ, sq “ K0pθq ` K1pθqb0s, ω0 ą 0, λ0 P R, scaling factor
b0 ą 0, and a tolerance tol.

‹ Output: Kpθ, sq “
řm´1

j“0
Kjpθqpb0sqj , ω0 and λ0 such that ‖E‖ ! 1.

1. E Ð X ˝ K ´ pω0Bθ ` λ0sBsqK.

2. Solve DKẼ “ E and denote Ẽ ” pẼ1, Ẽ2q.

3. σ Ð
ş
1

0
Ẽ1pθ, 0q dθ and η Ð

ş
1

0
BsẼ2pθ, 0q dθ.

4. E1 Ð Ẽ1 ´ σ and E2 Ð Ẽ2 ´ ηs.
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5. Solve pω0Bθ ` λ0sBsqS1 “ E1 imposing

(A.1)

ż
1

0

S1pθ, 0q dθ “ 0.

6. Solve pω0Bθ ` λ0sBsqS2 ´ λ0S2 “ E2 imposing

(A.2)

ż
1

0

BsS2pθ, 0q dθ “ 0.

7. S ” pS1, S2q.

8. Update: K Ð K ` DKS, ω0 Ð ω0 ` σ, and λ0 Ð λ0 ` η.

9. Iterate from step 1 to step 8 until convergence with tolerance tol in K, ω, and λ. Then
undo the scaling b0.

Algorithm A.1 requires some practical considerations:
i. Initial guess. K0 : T̃ Ñ R

2 will be a parameterization of the periodic orbit of the
ODE with frequency ω0. It can be obtained, for instance, by a Poincaré section
method, continuation of integrable systems, or Lindstedt series. An approximation for
K1 : T̃ Ñ R

2 and λ can be obtained by solving the variational equation

DX ˝ K0pθqUpθq “ ω0

d

dθ
Upθq,

Up0q “ Id2.

Hence if peλ0{ω0 ,K1p0qq is the eigenpair of Up1q such that λ0 ă 0, then K1pθq “
UpθqK1p0qe´λ0θ{ω0 .

ii. Stopping criteria. As with any Newton method, a possible condition to stop the
iteration can be when either ‖E‖ or maxt‖DKS‖, |σ|, |η|u is smaller than a given
tolerance.
Note that the a posteriori theorems in [23] give a criterion of smallness on the error
depending on properties of the function K. If these criteria are satisfied, one can
ensure that there is a true solution close to the numerical one.

iii. Uniqueness. Note that in steps 5 and 6, which involve solving the cohomology equa-
tions, the solutions are determined only up to adding constants in the zeroth or first
order terms. We have adopted the conventions (A.1), (A.2). These conventions make
the solution operator linear (which matches well the standard theory of Nash–Moser
methods since it is easy to estimate the norm of the solutions).
As it is shown in [23], the algorithm converges quadratically fast to a solution, but
since the problem is underdetermined, we have to be careful when comparing solutions
of different discretization. In [23] there is discussion of the uniqueness, but for our
purposes in this paper, any of the solutions will work. The uniqueness of the solutions
considered in this paper is discussed in section 2.8.

iv. Convergence. Even though Algorithm A.1 is a quasi-Newton method, [23] proved that
it still has quadratic convergence.D
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Note that it is remarkable that we can implement a Newton-like method without
having to store—much less invert—any large matrix. Note also that we can get a
Newton method even if the derivative of the operator in the fixed point equation has
eigenvalues 1. See Remark 2.3.

v. Cohomological equations. The most delicate steps of the above algorithm are steps 5
and 6, which are often called cohomology equations. These steps involve solving PDEs,
whereas the other steps are much simpler. In the case of a Fourier representation (see
Appendix B), the cohomological equations can be addressed by using Proposition 3.3.

vi. Linear system. Step 2 can be addressed by Lemma 3.4.

Appendix B. Fourier discretization of periodic functions. As mentioned before, the key
part of Algorithm A.1 is to solve the equations in steps 5 and 6. Their numerical resolution
will be particularly efficient when the functions are discretized in Fourier–Taylor series. This
is the only discretization considered in this paper for which we provide a deep discussion.

Recall that a function S : R Ñ R is called periodic when Spθ ` 1q “ Spθq for all θ.
To get a computer representation of a periodic function, we can either take a mesh in θ,

i.e., pθkqnθ´1

k“0
, and store the values of S at the points qS “ p qSkqnθ´1

k“0
P R

nθ with qSk “ Spθkq, or
we can take advantage of the periodicity and represent it in a trigonometric basis.

The discrete Fourier transform (DFT), and also its inverse, allows us to switch between
the two representations above. If we fix a mesh of points of size nθ uniformly distributed in
r0, 1q, i.e., θk “ k{nθ, the DFT is

pS “ p pSkqnθ´1

k“0
P C

nθ

so that

(B.1) qSk “
nθ´1ÿ

j“0

pSje
2πijk{nθ ,

or equivalently,

(B.2) pSk “
1

nθ

nθ´1ÿ

j“0

qSje
´2πijk{nθ .

In the case of a real valued function, pS0 is real and the complex numbers pS satisfy Hermit-
ian symmetry, i.e., pSk “ pS˚

nθ´k (denoting by ˚ the complex conjugate), which implies pSnθ{2 is

real when nθ is even. Then, we define real numbers pa0; ak, bkq
rnθ{2s´1

k“1
if nθ is odd (here r¨s

denotes the ceil function); otherwise pa0, anθ{2; ak, bkq
nθ{2´1

k“1
are defined by

a0 “ 2pS0, anθ{2 “ 2pSnθ{2, ak “ 2Re pSk, and bk “ ´2 Im pSk

with 1 ď k ă rnθ{2s.
Thus, S can be approximated by

(B.3) Spθq “
a0

2
`

anθ{2
2

cospπnθθq `

rnθ{2s´1ÿ

k“1

ak cosp2πkθq ` bk sinp2πkθq,
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where the coefficient anθ{2 only appears when nθ is even, and it refers to the aliasing notion
in signal theory.

Therefore (B.3) is equivalent to (B.1), but rather than 2nθ real numbers, only half of them
are needed.

Henceforth, all real periodic functions S can be represented in a computer by an array
of length nθ whose values are either the values of S on a grid or the Fourier coefficients.
These two representations are for all practical purposes equivalent since there is a well-known
algorithm FFT which allows us to go from one to the other in Θpnθ log nθq operations. The
FFT has very efficient implementations so that the theoretical estimates on time are realistic
(we can use fftw3 [15], which optimizes the use of the hardware).

We can also think of functions of two variables W pθ, sq where one variable θ is periodic and
the other variable s is a real variable. In the numerical implementations, the variable s will be
discretized as a polynomial. Thus W pθ, sq can be thought as a function of θ taking values in
polynomials of length ns. Hence, a function of two variables with periodicity as above will be
discretized by an array nθ ˆns. The meaning could be that it is a polynomial for each value of
θ in a mesh or that it a polynomial whose coefficients are Fourier coefficients. Alternatively,
we could think of W pθ, sq as a polynomial in s taking values in a space of periodic functions.

This mixed representation of Fourier series in one variable and of power series in another
variable is often called Fourier–Taylor series and has been used in celestial mechanics for a
long time, dating back to [7] or earlier. We note that modern computer languages allow one
to overload the arithmetic operations among different types in a simple way.

It is important to note that all the operations in Algorithm A.1 are fast either in the Fourier
representation or in the values of a mesh representation. For example, the product of two
functions or the composition on the left with a known function is fast in the representation
by values in a mesh. More importantly for us, as we will see, the solution of cohomology
equations is fast in the Fourier representation. On the other hand, there are other steps of
Algorithm A.1, such as adding, that are fast in both representations.

Similar consideration of the efficiency of the steps will apply to the algorithms needed to
solve our problem. The main novelty of the algorithms in this paper compared with those of
[23] is that we will need to compose some of the unknown functions (in [23] the unknowns
are only composed on the left with a known function). The algorithms we use to deal with
composition were presented in section 4. The composition operator was the most delicate
numerical aspect, which was to be expected, since it was also the most delicate step in the
analysis in [37]. The composition operator is analytically subtle. A study which gives examples
that results are sharp is in [12]. See also [2].

Remark B.1. Fourier series are extremely efficient for smooth functions which do not have
very pronounced spikes. For rather smooth functions—a situation that appears often in
practice—it seems that Fourier–Taylor series is better than other methods.

It should be noted, however, that in several models of interest in electronics and neuro-
science, the solutions move slowly during a large fraction of the period, but there is a fast
movement for a short time (bursting). In these situations, the Fourier scheme has the dis-
advantage that the coefficients decrease slowly and that the discretization method does not
allow for putting more effort into describing the solutions during the times when they areD
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indeed changing fast. Hence, the Fourier methods become unpractical when the limit cycles
are bursting. In such cases, one can use other methods of discretization. In this paper, we
will not discuss alternative numerical methods, but we note that the theoretical estimates
of [37] remain valid independent of the method of discretization. We hope to come back to
implementing the toolkit of operations of this paper in other discretizations.

Remark B.2. One of the confusing practical aspects of the actual implementation is that
the coefficients of the Fourier arrays are often stored in a complicated order to optimize the
operations and the access during the FFT.

For example, concerning the coefficients ak’s and bk’s in (B.3), in fftw3, the func-
tion fftw plan r2r 1d uses the following order of the Fourier coefficients in a real array
pv0, . . . , vnθ´1q:

v0 “ a0,

vk “ 2ak and vnθ´k “ ´2bk for 1 ď k ă rnθ{2s,

vnθ{2 “ anθ{2,

where the index nθ{2 is taken into consideration if and only if nθ is even. Another standard
order in other packages is just pa0, anθ{2; ak, bkq in sequential order or pa0; ak, bkq if nθ is odd.

To measure errors and size of functions represented by Fourier series, we have found it
useful to deal with weighted norms involving the Fourier coefficients:

‖S‖wℓ1,n “ 2pnθ{2qn| pSnθ{2| `

rnθ{2s´1ÿ

k“1

ppnθ ´ kqn ` knq|pSk|

“ pnθ{2qn|anθ{2| `
1

2

rnθ{2s´1ÿ

k“1

ppnθ ´ kqn ` knqpa2k ` b2kq1{2,

where, again, the term for nθ{2 only appears if nθ is even.
The smoothness of S can be measured by the speed of decay of the Fourier coefficients,

and indeed, the above norms give useful regularity classes that have been studied by harmonic
analysts.

Remark B.3. The relation of the above regularity classes with the most common Cm is
not straightforward, as is well known by Harmonic analysts, [33].

The Riemann–Lebesgue lemma tells us that if S is continuous and periodic, pSk Ñ 0 as
k Ñ 8, and in general if S is m times differentiable, then |pSk||k|m tends to zero. In particular,
|pSk| ď C{|k|m for some constant C ą 0.

In the other direction, from |pSk| ď C{|k|m we cannot deduce that S P Cm.
One has to use more complicated methods. In [13] it was found that one could find a

practical method based on the Littlewood–Paley theorem (see [33]) which states that the
function S is in α-Hölder space with α P R` if and only if for each η ě 0 there is a constant
C ą 0 such that for all t ą 0,

∥

∥

∥

∥

ˆ
B

Bt

˙η

e´t
?

´∆θ

∥

∥

∥

∥

L8pTq
ď Ctα´η.
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The above formula is easy to implement if one has the Fourier coefficients, as is the case in
our algorithms.
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