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Abstract. We present algorithms and their implementation to compute limit cycles and their isochrons for
state-dependent delay differential equations (SDDEs) which are perturbed from a planar ordinary
differential equation (ODE) with a limit cycle. Note that the space of solutions of an SDDE is infinite
dimensional. We compute a two parameter family of solutions of the SDDE which converges to the
solutions of the ODE as the perturbation goes to zero in a neighborhood of the limit cycle. The
method we use formulates functional equations among periodic functions (or functions converging
exponentially to periodic). The functional equations express that the functions solve the SDDE.
Therefore, rather than evolving initial data and finding solutions of a certain shape, we consider
spaces of functions with the desired shape and require that they are solutions. The mathematical
theory of these invariance equations is developed in a companion paper [J. Yang, J. Gimeno, and
R. de la Llave, SIAM J. Math. Anal., 53 (2021), pp. 4031-4067], which provides proofs of a posteriori
theorems. They show that if there is a sufficiently approximate solution (with respect to some explicit
condition numbers), then there is a true solution close to the approximate one. Since the numerical
methods produce an approximate solution, and provide estimates of the condition numbers, we can
make sure that the numerical solutions we consider approximate true solutions. In this paper, we
choose a systematic way to approximate functions by a finite set of numbers (Taylor—Fourier series)
and develop a toolkit of algorithms that implement the operators—notably composition—that enter
into the theory. We also present several results obtained by running the implementations in some
representative cases.
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1. Introduction. Many phenomena in nature and technology are described by limit cycles,
and by now there is an extensive mathematical theory of them [30, 1].

These limit cycles often arise in feedback loops between effects that pump and remove
energy in ways that depend on the state of the system. When the feedback happens instanta-
neously, these phenomena are modeled by an ordinary differential equation (ODE). Neverthe-
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less, in many real phenomena, the feedback takes time to start acting; see, e.g., [3, 14]. In such
cases, the delay differential equations (DDEs) play a role. When the delay term depends on
the state itself, we end up with state-dependent delay differential equations (SDDEs). Such
delays are documented to be important in several areas of science and technology (e.g., in
electrodynamics, population dynamics, neuroscience, circuits, manufacturing, etc.; see [21] for
a relatively recent survey documenting many areas where SDDEs are important models).

Note that, from the mathematical point of view, adding even a small delay term in the
ODE model is a very singular perturbation since the nature of the problem changes drastically.
Notably, the natural phase spaces in delay equations are infinite dimensional (there is some
discussion about which are the most natural ones) rather than the finite dimensional phase
spaces of ODEs.

One would heuristically expect that, if the delay term is a small quantity, there are so-
lutions of the delay problem that resemble the solutions of the unperturbed ODE. Due to
the singular perturbation nature of the problem, justifying this intuitive idea is a nontrivial
mathematical task. Of course, besides the finite dimensional set of solutions that resemble
the solutions of the ODE, one expects many other solutions, which may be very different.

The recent rigorous paper [37] describes a formalism to study the effect of introducing a
delay to an ODE in the plane with a limit cycle. The paper shows that, in some appropriate
sense, the solutions of the ODE persist. The method is, in fact, constructive since it is based
on showing that the iterations of an explicit operator converge.

The goal of this paper is to present algorithms and implementation details and provide
some source code as supplementary material (M133696_01.zip [local/web 368KB]) for the
mathematical arguments developed in [37]. The solutions we compute—and which resemble
the solutions of the ODE—capture the full dynamics of the SDDE in the sense that the
solutions of the SDDE in a neighborhood converge to this finite dimensional solution family
very quickly.

One of the novelties of the method in [37] consists in bypassing the evolution operator
and formulating the existence of periodic orbits (and the solutions converging to them) as the
solutions in a class of functions with periodicity.

On the contrary, if one studies periodic orbits as fixed points of an evolution operator, one
needs to study the smooth dependence of the solutions on the initial data and on parameters,
which is a delicate question for general solutions (see [21]). The approach developed in [37]
does not need to study such a dependency in order to obtain the persistence of the limit cycle
under the perturbation. In fact, the smooth dependence on parameters in [37] is a corollary
rather than a requirement.

Our approach may be generalized to other forms of history dependence using the concept
of extendable differentiability of the right-hand side as proposed in [28].

The companion paper [37] establishes an a posteriori theorem which states that given a
sufficiently approximate solution of the invariance equation, there is a true solution close to
it. To be more precise, an approximate solution is sufficiently approximate if the error is
smaller than an explicit expression involving several properties of the approximate solution
(commonly called condition numbers).

The numerical methods developed and run here produce an approximate solution and
obtain estimates on the condition numbers. So, we can be quite confident that the solutions

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/30/22 to 188.92.139.72 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1516 JOAN GIMENO, JIAQI YANG, AND RAFAEL DE LA LLAVE

produced by our numerical methods correspond to true solutions. The a posteriori results
justify, in fact, that the approximate solution is independent of the method for which it has
been produced.

The algorithms consist in specifying discretizations for all the functional analysis steps
in [37]. We do not present rigorous estimates on the effects of discretizations (they are in
principle applications of standard estimates), but we present analysis of running times. We
have implemented the algorithms above and report the results of running them in some rep-
resentative examples. In our examples, one can indeed obtain very accurate solutions in a few
minutes using a currently available standard laptop.

In addition to the numerical approximations, it is also customary in applied mathematics
to produce approximate solutions using formal asymptotic expansions. For the problem at
hand, the paper [10] develops formal asymptotic expansions of the periodic solutions in powers
of the term in the delay.

The expansions in [10] are readily computable with the methods presented here. They
can be taken as starting points for the fixed point method in [37]. Moreover, our a posteriori
results in [37] show that these expansions are asymptotic in a very strong sense.

1.1. Organization of the paper. The paper is organized in an increasing level of details
trying to guide the reader from the general steps of the algorithms to the more specialized
and most difficult steps.

First, we detail in section 2 an overview of the method developed in [37]. In particular,
we first introduce the unperturbed problem in section 2.1 in order to move to the perturbed
problem in section 2.2. That will lead to the explicit expression of the invariance equation in
section 2.3 and the periodicity and normalization conditions in sections 2.7 and 2.8, respec-
tively.

The algorithms that allow us to solve the invariance equation introduced in section 2.3
are fully detailed in section 3.

The numerical composition of periodic mappings as well as its computational complexity
needs special care. Hence, section 4 explains in detail such a process in a Fourier representa-
tion.

In section 5 we report the results in some representative examples.

Finally, we present conclusions in section 6, where we introduce general remarks on the
novel results in [37].

Our results have as input the outputs of the unperturbed case. They can be obtained
from standard ODE techniques. For completeness, we summarize in Appendix A the steps
and add practical comments of the parameterization method strategy described in [23].

As our numerical representation for periodic orbit is going to be one-dimensional Fourier
expansion, we add Appendix B to summarize possibly well-known results of this kind of
representation and how they are managed and packed from a programming point of view.

2. Overview of the problem and the method.

2.1. The parameterization method for limit cycles and their isochrons in ODEs. Our
numerical starting point is the main result in [23], which we recall informally (omitting pre-
cisions on regularity, domains of definition, etc.).
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Given an analytic ordinary differential equation (ODE) in the plane
(2.1) & = Xo(z)

with a (stable) limit cycle, there are an analytic local diffeomorphism K, in particular a local
change of variables, defined from T x [—1,1] to R?, a frequency wp > 0, and a rate \g < 0
such that

(2.2) Xoo K(0,s) = (wodp + Nosds)K(0,s) = DK (6, s) (;‘jﬁg) :

Hence, if 6 and s satisfy the very simple ODE

(t) = wo

23) (8) = Aos(l),

then
z(t) = K(0(t),s(t))

is a solution of (2.1) in a neighborhood of the limit cycle.

Therefore, the paper [23] trades finding all the solutions near the limit cycle of (2.1) for
finding K, wp, and Ao solving (2.2). The paper also develops efficient algorithms for the study
of (2.2), the so-called invariance equation. We provide Appendix A which reproduces the
algorithm, adding some practical comments from our implementation.

The key idea of the formalism in [37] consists in accommodating the delay by just changing
(2.2). We will obtain a modified functional equation, which involves nonlocal terms that reflect
the delay in time. This equation was treated in [37]. Hence, we will produce a two-dimensional
family of solutions of the delay problem which resemble the solutions of the unperturbed
problem (2.1).

The solutions we construct for the SDDE are analogues of the limit cycle as well as the
solutions that converge to the limit cycle exponentially fast (notice that for the simple ODE,
these are all the solutions with initial data in a neighborhood of the limit cycle).

The set Iy, = {K (0o, s0): so € [—1,1]} is called in the biology literature the “isochron” of
6o because the orbit of a point in Iy, converges to the limit cycle with a phase 6y. See [36].

2.1.1. lIsochron term. The theory of normally hyperbolic manifolds shows that the iso-
chrons are the same as the stable manifolds of points [18] (see also [11] for generalizations
beyond normal hyperbolicity). Therefore, in the ODE case, isochrons and stable manifolds
can be used interchangeably.

However, the theory of delay equations in [19, Chapter 10] (specially Theorem 3.2) pro-
duces stable (or strong stable) manifolds in the (infinite dimensional) phase space. Thus, the
stable manifolds produced there are infinite dimensional.

The solutions we construct are finite dimensional families. To avoid confusion with the
version of the stable manifolds in [19], we prefer to maintain the name isochrons to refer to
the solutions we construct. Thus, the isochrons that we can construct for the cases in [19] are
subsets of the (infinite dimensional) manifolds there. Note that, since the evolution operator
is compact, most of the eigenvalues of the evolution are very small in modulus, in particular,
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smaller than our choice of A, so that the solutions in the stable manifold converge to the space
of solutions produced here in a very fast way.

As a matter of fact, our isochrons are slow manifolds—they correspond to the least stable
eigenvalues. In applications, the isochrons will be the most observable solutions since they
correspond to the modes that decrease the slowest so that any solution will converge to the
isochron much faster than the isochron converges to the limit cycle (an analogue of what
happens in ODEs in a stable node).

2.2. The perturbed problem. We consider now a perturbation of (2.1) of the form

x(t) =X($(t), ex(t — r(x(t))))

(2.4) =X (x(t),0) + eP(z(t), z(t —r(z(t))),e),

where 0 < & « 1, X (2(t),0) = Xo(2(t)), eP(x(t), z(t—r(z(t))), €) = X (x(t),ex(t—r(z(t)))) —
X (x(t),0), and the function r is defined in a subset of R?, with positive values and as smooth
as we need, hence bounded in compact sets.

Equation (2.4) is an SDDE for ¢ # 0. For typographical reasons we will denote Z(t) =
x(t —r(x(t))), and then (2.4) can just be written as

#(t) = Xo(a(t)) + eP(a(t), 3(t), o).

Notice that because of the perturbative nature of the companion paper [37], the function
r in (2.4) can be rather general. That is, » does not need to be restricted to strictly positive
values, which leads to applications to advanced or mixed differential equations. The reason
is because in the proof of existence, only bounds of r and some of its first derivatives in a
neighborhood of the limit cycle are used.

The map r can also depend on parameters, and the same results in the companion theo-
retical paper prove the smooth dependency on the solutions with respect to those parameters.

We point out that we are not considering an explicit dependency on time in the mapping
r. In such a case, we believe that slight modifications in the theoretical paper may be required.

In the current paper we also do not explicitly address the case that r has domain in
a subset of C*([—h, h],R?) for some h > 0 and some integer k > 0. Theoretically, it would
require a deep discussion of the smoothness condition of r as well as a small range of ¢ to fulfill
the convergence conditions of the corresponding a posteriori theorem. Therefore it would be
harder to numerically get the convergence.

2.3. The invariance equation in the perturbed problem. Let T be the universal cover of
the one-dimensional torus T, and let us consider a map K: T x [-1,1] — R?, the frequency
as wo, and the rate as A\, which solve (2.2). They correspond to the case € = 0 in (2.4).

In analogy with the ODE case, we want to find a W (6,s) with periodicity in the first
variable and numbers w and A such that for all § and s,

(2.5) z(t) = K o W(0 + wt, se)

is a solution of (2.4).
The mapping W gives us a parameterization of the limit cycle with its isochrons via the
change of coordinates K o W(0,s). That is, the limit cycle will be represented by the set
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{KoW(0,0): 8 € T}, and the isochron associated to the angle 6 in T will be {K oW (0,s): s €
[—s0, S0]}, where sy denotes a region of validity in s in the solution (2.5). This region will
depend on the perturbative parameter.

Note that heuristically (and it is also shown in [37]) W is close to the identity map, and
w and A are close to the values in the unperturbed case. Hence, we will produce a two-
dimensional family of solutions of the delayed equation (2.4) which resemble the solutions of
the ODE.

Remark 2.1 (number of solutions of (2.5)). Since the phase space of the delay equations
is infinite dimensional, there are many more solutions of (2.4) with different A\, and possibly
they are complex numbers.

Imposing that the tuple (W, w, A) is such that (2.5) is a solution of (2.4) and knowing that
the tuple (K, wo, Ag) is also a solution of (2.2) but for e = 0, then

wo

(2.6) DK o WDW = DK o W <A0W2

> —i—sP(KOW,KOVIN/,s),
where Wy refers to the second component of W.
Now, since K is a local diffeomorphism, it also acts as a change of variable. In particular,

we can premultiply (2.6) by (DK o W)~! to get the functional equation, whose unknowns are
W = (W, Ws), w, and A:

wo

(2.7) (wo + As0s)W (0, 5) = (AOWQ(H, s)

) + EY(W(G, s), MN/(Q, s), 5),

where we use the shorthand
W(G, s) = W(9 —wr(K oW), se_M(KOW)),
Y (W (9,s), W(9,s),¢) = (DK o W(0,s)) ' P(K o W(8,s), K o W(8,s),e).

Equation (2.7) is called the invariance equation, and it will be the center of our attention.
Let us start by making some preliminary remarks about it.

We have ignored the precise definition of the domain of the function W. We need the
range of W to be contained in the domain of K. Note also that it is not clear that the domain
of the right-hand side can match the domain of the left-hand side of (2.7). As it turns out,
this will not matter much for our treatment provided that e is small enough (see [37] for a
detailed discussion).

From the point of view of analysis, one of the main difficulties of (2.7) is that it involves a
function composed with itself (hence the operator is not really differentiable). Also the term
W does not have the same domain as W. We refer the reader to [37] for a deeper discussion
of the composition domain.

Similar problems appear in the treatment of center manifolds [29, 9], and indeed, in [37],
there are only results for finite differentiable solutions, and the solutions obtained may depend
on cut-offs and extensions taken to solve the problem.!

'On the other hand, the coefficients of the expansion in powers of s are unique and do not depend on
cut-offs and extensions.
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Based on the experience with center manifolds, we believe, indeed, that the solutions could
only be finitely differentiable and that there are different solutions of the invariance equation
(depending on the extensions considered).

Remark 2.2. In the language of ergodic theory, for those familiar with it, the results of
[37] can be described as saying that there is a factor in the (infinite dimensional) phase space
of the SDDE which is a two-dimensional flow with dynamics close to the dynamics of the
ODE.

In this paper, we will compute numerical approximations of the map giving the semicon-
jugacy as well as the new dynamics of such a factor.

2.4. Format of solution for the invariance equation (2.7). It is shown in [37] that, for
small €, one can construct smooth solutions of (2.7) of the form

(2.8) W(0,s) = Wo(0) + W(6)s + i Wi(0)s’ + W>(0,s),
j=2

where W7: T — T x R and W>: T x [—sg,50] — T x R with W>(#,s) = O(s"*!) and for
some sg > 0.

As we will see in more detail later, if one substitutes (2.8) into (2.7) and matches powers
in s, one gets a finite set of recursive equations for the coefficients W7 of the expansion (and
for w, A). We will deal with these equations in detail later. Note that this will require a
discretization of W7, which are only functions of the angle 6.

2.5. The equations for terms of the expansion of W. Assume for the moment that W?°
and W' have already been computed. Then we can substitute the expansion (2.8) of W in
powers of s into the invariance equation (2.7). Matching the coefficients of the powers of s on
both sides, we obtain a hierarchy of equations for W7, j = 2,3, ....

The equations for W7 involve just W0, ..., W3~1. Hence, they can be studied recursively.
In [37] it is shown that if we know WY, ... WJ=1 it is possible to find W7 in a unique way, and,
hence, we can proceed to solve the equations recursively. In this paper, we show that there
are precise algorithms to compute these recursions. We also report results of implementation
in some cases.

Note that W7, j = 0,...,n, in (2.8) are functions only of §. The function W> depends
on both 6 and s but vanishes at high order in s and does not enter in the equations for
7=0,...,n.

As it frequently happens in perturbative expansions, the low order equations are special.
The equation for W°—which gives the periodic solution that continues the limit cycle—also

determines w. The equation for W' also determines A. The equations for W7, j = 2,....,n,
are all similar and involve solving the same operator (with different terms).
In this paper, we will only consider the computation of the W7, j = 0,1,.... The term

W= is estimated in [37], and it is not only high order in s but also actually small in rather
large balls.

Note that even if the W7 are unique (up to the parameters in (2.9)), the W> depends on
properties of the extension considered. This is, of course, very reminiscent of what happens
in the theory of center manifolds [32]. For numerical studies of expansions of center manifolds
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we refer the reader to [6, 24, 31] and detailed estimates of the truncation in [8]. The numerical
considerations about the effect of the truncation apply with minor changes to our case.

2.6. Uniqueness of the invariance equation. The equation (2.7) (as well as (2.2)) is
underdetermined. That means if W, w, and X solve (2.7), then W, ,, w, and A also solve the
same equation with

(2.9) Weon(0,s) = W(0 + o,1s).

The parameters o and 7 correspond respectively to choosing a different origin in the angle
coordinate 6 and a different scale of the parameter s.

Even if all these solutions in (2.9) are mathematically equivalent, we anticipate that choos-
ing a different 1 can change the reliability of the numerical algorithms.

In [37], it is shown that the solutions in the family (2.9) are locally unique. That is, all the
solutions of the invariance equation (2.7) are included in (2.9). Hence the numerically com-
puted approximate solutions of the invariance equation identify a unique solution, which is
unambiguous. This uniqueness is crucial to compare different numerical runs as well as to ob-
tain smooth dependence on parameters. Equations (2.12) and (2.13) introduce normalization
conditions that specify the parameters in (2.9).

The uniqueness in [37] is somewhat subtle. The limit cycle is unique, as are the formal
Taylor expansions of isochrons (their parameterizations are unique once we fix origins of
coordinates and scales). On the other hand, the full isochrons are unique only when one
specifies a cut-off. Similar effects happen in the study of center manifolds [32].

From the numerical point of view, we only compute the limit cycle and a finite Taylor
expansion of the isochrons. The error of the remainder of the Taylor expansion is indeed very
small (much smaller than other sources of numerical error, which are already small).

2.7. Periodicity conditions. From the point of view of implementation in computers, it
is convenient to think of the functions K and W in (2.7) which involve angle variables (and
which range on angles) as real functions with boundary conditions (in mathematical language
this is described as taking lifts). Hence, we take

K@+1,s)=K(0,s),

(2.10) 1

W(@+1,s)=W(@b,s)+ <0> .

Notice that we are normalizing the angles in (2.10) to run between 0 and 1 rather than in
[0, 27).

The periodicity conditions in (2.10) indicate the second component of W is periodic (it
describes a radial coordinate) in 6, while the first component increases by 1 when 6 increases
by 1 (it describes an angle). Thus, the circle described by increasing 6 makes the angle in the
coordinate go around, so that it is a noncontractible circle in the angle.

For the expansion of W in powers of s as in (2.8), the periodicity conditions amount to

(2.11) W0 + 1) = Wo(6) + (é) and W7(0+1)=W/(0) forj=>1.
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In the numerical analysis, there are many well-known ways to discretize periodic functions.
We will use Fourier series, but there are also other alternatives such as periodic splines.

In general, for functions ¥ with ¥(6 + 1) = ¥(0) + 1, we define U () = ¥(0) — 0 which is
a periodic function, i.e., for all 0, \TI(H +1) = \T/(G) Then we will discretize U and rewrite the
functional equations so that this is the only unknown.

2.8. Normalization of the solutions. As indicated in the discussion, the invariance equa-
tion has two obvious sources of indeterminacy: One is the choice of the origin of the variable
6 (the o in (2.9)), and the other is the choice of the scale of the variable s (the n in (2.9)). In
[37] it is shown that these are the only indeterminacies for the solution up to any order n and
that once we fix them, we can get any other solution by applying (2.9).

A convenient way to fix the origin of 6 is to require

(2.12) f 1 [0sW71(6,0) W1(6,0)] dO = a,
0

where W0 is an initial approximation and a is a real number, typically close to 1. This
normalization is easy to compute and is rather sensitive since, when we move in the family
(2.9), the derivative with respect to the shift is a positive number.

The normalization of the origin of coordinates has no numerical consequences except for
the possibility of comparing the solutions in different runs. The solutions corresponding to
different normalizations have very similar properties. The numerical algorithm, Algorithm 3.1,
in its step 5 leads to a small drift in the normalization in each iteration, but it is guaranteed
to converge to one of the solutions in (2.9).

The second normalization is just a choice of the eigenvector of an operator. We have found
it convenient to take

1
(2.13) f 0. (6,0)d6 = p
0

with a real p # 0.

We anticipate that changing the value of p is equivalent to changing s into bs, where b is
commonly named scaling factor.

All the choices of p are mathematically equivalent—they amount to setting the scale of
the parameter s. The choice of this normalization, however, affects the numerical accuracy
dramatically. Notice that if we change s into bs, the coefficients W7(6) in (2.8) change into
W (0)b. Thus, different choices of b may lead the Taylor coefficients to be very large or very
small, which makes the computations with them very susceptible to round-off error. It is
numerically advantageous to choose the scale in such a way that the Taylor coefficients have
a comparable size. In our problem, we are also going to use the scaling to ensure that the
second component of W lies in the domain of K, and then K o W is well defined.

In practice, we run the calculations twice. First we do a preliminary calculation whose
only purpose is to compute an approximation of the scale that makes the coefficients remain
more or less the same size. Then a more definitive calculation can be run. The latter running
is more numerically reliable.
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Remark 2.3. In standard implementation of the Newton method for fixed points of a
functional, say W, the fact that the space of solutions is two-dimensional leads DV — Id to
have a two-dimensional kernel and be noninvertible.

In our case, we will develop a very explicit and fast algorithm that produces an approximate
linear right inverse. This linear right inverse leads to convergence to an element of the family
(2.9).

3. Computation of (W, w, \)—perturbed case. The main result in the paper [37] states
that if € in (2.7) is small enough, and a periodicity condition like (2.12) and a normalization
like (2.13) are considered, then there exists a unique tuple (W, w, ) satisfying (2.7), (2.12),
and (2.13).

The formulation of that result is done in an a posteriori format which ensures the existence
of a true solution once an approximate enough solution is provided as initial guess for the
iterative scheme.

Moreover, it also gives the Lipschitz dependence of the solution on parameters which
allows us to consider a continuation approach.

We refer the reader to [37] for a precise formulation of the result involving choices of norms
to measure the error in the approximate solutions. In the following sections, we formulate in
an algorithmic way the steps to follow to converge to the new limit cycle and its isochrons.

3.1. Fixed point approach. We compute all the coefficients W7 () of the truncated ex-
pression W (#,s) in (2.8) order by order. The zero and first orders require special attention
due to the fact that the values w and A are obtained in (2.7) by matching coefficients of s°
and s', respectively. The condition that allows us to obtain w comes from the periodicity
condition (2.11). The mapping WY is not a periodic function. But we can use it to get a peri-
odic one defined by W°() = W0(9) — (8). The condition for X is given by the normalization
condition (2.13). As in the unperturbed case, we are allowed to use a scaling factor. The use
of such a scaling factor allows us to set the value of p in (2.13) equal to 1.

Algorithm 3.1 sketches the fixed point procedure to get w and W9 whose periodicity
condition is ensured in step 5. In this case the initial condition will be wq (the value for € = 0)
for w and (§) for WO(6) since W (8, s) is close to the identity.

Algorithm 3.1 (s° case). Let W0(8) = WO (0 — wr o K(W°(0))).
* Imput: & = X(x) +eP(x,d,¢), 0 < £ « 1, K(6,s) = 270" K9(6)(bos)?, bo > 0,
wo > 0, A\g < 0, and a tolerance tol.

x Output: WO T — R? and w > 0.

1. WO(0) — 0 and w « wo.

[\)

»ww&(®+wwy

3. Solve DK o WO(0)n(6) = eP(K o WO(6), K o W9(0),¢). Let n = (11,72).

W

: a«—Sém(Q)dG and w <« wy + a.
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5. Solve wdgW?(0) = 11(#) — a imposing Sé W(6)do = 0.
6. Solve (wdp — Ao)W(8) = 12(h).
7. Tterate from step 2 to step 6 until convergence in W and w with tolerance tol.

Algorithm 3.2 sketches the steps to compute (W', \) and W™ for n > 2. The initial
guesses are Ao for A, (9) for W1, and (J) for W™.

Algorithm 3.2 (s* case and s™ case with n > 2). Let VNV(H,S) =W (0 —wroK(W(,s)),
SefAroK(W(O,s))) )

* Imput: & = X(x)+eP(z,8,6), 0 < £ « 1, K(6,s) = 270" K9(6)(bos)’, bo > 0,
wo >0, Ao < 0, W), WI(0) for 0 < j <n, b>0,w >0, and a tolerance tol.

* Output: either W': T - TxRand A<Oor W*: T — T x R.

1. Wn(9) — <8>

st Ifn =1, WH0) « (0

1) and A < Ag.

0 R n . .
2. W(0,s) — <O> +WO(6) +j§1 W (6)(bs)?.
3. Y(W(8,s) — DK o W(0,s) " P(K o W(8,s), K o W(8,s),¢).
e (W (8, s))js=0- Let n = (n1,m2).

st Ifn =1, then A\ « X\ + Sé n2(6) dob.

5. Solve (wdp + nA\)W{(0) = n1(0).
6. Solve (wdp +nA — Xog)W3'(0) = n2(0).

7. Iterate from step 2 to step 6 until convergence with tolerance tol. Then undo the
scaling b.

Both Algorithms 3.1 and 3.2 have nontrivial parts, such as the effective computation of
WN/, the numerical composition of K with W and also with W (see section 4), the effective
computation of step 4 in Algorithm 3.2, and the choice of the scaling factor (see section 3.3).
On the other hand, there are steps in which we can use the same methods as in the unperturbed
case (see Appendix A), such as the solution of linear systems like step 3 in Algorithm 3.2 via
Lemma 3.4 or the solutions of the cohomological equations by Proposition 3.3.

In the next sections we address each of these parts, and they have been successfully im-
plemented and provided as self-contained supplementary material (M133696_01.zip [local/web
368KB]).
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3.2. Stopping criterion. Algorithms 3.1 and 3.2 require us to stop when the prescribed
tolerances have been reached respectively. Alternatively, one can stop when the invariance
equation is satisfied up to the given tolerance.

3.3. Scaling factor for orders n > 1. As in the unperturbed case, if W (0, s) is a solution,
then W (60 + 6, bs) will be a solution, too, for any 6y and b. A difference with the e = 0 case is
that now KoW and KoW are required to be well defined. That means the second components
of W and W must lie in [—1,1]. Stronger conditions are

p(s)= SIWE@O) s <1 and  (s) = S IWEOIs < 1.

j=0 j=0

In the iterative scheme of Algorithm 3.2, these series become finite sums, and a condition
for the value b > 0 is led by the upper-bound min{s*, $*} where s* > 0 is the value so that
p(s*) = 1 and, similarly, $* > 0 is the value verifying p(s*) = 1. Notice that the solutions s*

and 3* exist because |[W3(0)|| < 1, [W(6)| < 1, and the polynomials have positive derivative.

3.4. Solutions of the cohomology equations in Fourier representation. Under the Fourier
representation (see section B) we can solve the cohomological equations in steps 5 and 6 in
Algorithm 3.1 as well as in steps 5 and 6 in Algorithm 3.2.

Proposition 3.3 (Fourier version, [23]). Let E(0,s) =3, , Eje?™ik0g7,
o If Egg = 0, then (wdy + Asds)u(f,s) = E(0,s) has solution u(f,s) = Zj’k ujke%rikesj
and
o {wwk if (. k) # (0,0),
Ujk = .
otherwise

for all real «v. Imposing Sé u(0,0)df =0, then a = 0.
o If Eyg =0, then (wdp+Asds—A)u(0,s) = E(0, s) has solution u(0,s) = >, wjpe?™ 0 57
and

iy — | 3Gz G H) # (1,0),
’ e} otherwise

for all real «v. Imposing Sé 0su(0,0)df = 0, then a = 0.

The paper [23] also presents a solution in terms of integrals. Those integral formulas for
the solution are independent of the discretization and work for discretizations such as Fourier
series, splines, and collocation methods. Indeed, the integral formulas are very efficient for
discretizations in splines or in collocation methods, which could be preferable in some regimes
where the limit cycles are bursting. In this paper we will not use them since we will discretize
functions in Fourier series and for this discretization, the methods described in Proposition 3.3
are more efficient.

3.5. Treatment of step 3 in Algorithm 3.2. To solve the linear system in step 3 of
Algorithm 3.2, we can use Lemma 3.4, whose proof is a direct power matching.
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Lemma 3.4. Let A(0,s)x(0,s) = b(0, s) be a linear system of equations for each given (6, s),

explicitly,
<2 Ak(9)5k> Dlan(0)st = > b(6)s".

k=0 k=0 k=0

Then, the coefficients xy(0) are obtained recursively by solving
k
Ap(0)ay (0) = bi(0) — > Aj(0)zi—;(0),
j=1

which can be done provided that Ao(6) is invertible and that one knows how to multiply and
add periodic functions of 0.

3.6. Use of polynomials for elementary operations. We also recall that composition in
the left of a polynomial with an exponential, trigonometric functions, powers, logarithms (or
any function that satisfies an easy differential equation) can be done very efficiently using
algorithms that are reviewed in [20], which go back to [27].

We present here the case of the exponential which can be used in Algorithm 3.2 for the
computation of w.

If P is a given polynomial—or a power series—with coefficients P;, we see that E(s) =
exp P(s) satisfies
Dy - L
ds () s ds
with Taylor coefficients E; at s = 0. Equating like powers on both sides, this leads to
Ey = exp P(0) and the recursion

P(S)7

1°5 .
Ej = S > — k)P Ex, Jj=1
k=0

Note that this can also be done if the coefficients of P are periodic functions of 6 (or polynomi-
als in other variables). In modern languages supporting overloading or arithmetic functions,
all this can be done in an automatic manner.

Note that if the polynomial has degree ng, the computation up to degree n; takes ©(n?)
operations of multiplications of the coefficients.

4. Numerical composition of periodic maps. The goal of this section is to deeply discuss
how we can numerically compute W and the compositions of K with W (0, s) and W(G, s) only
having a numerical representation (or approximation) of K and W in Algorithms 3.1 and 3.2.

There are a variety of methods that can be employed to numerically get the composition
of a periodic mapping with another (or the same) mapping. Some of these methods depend
strongly on the representation of the periodic mapping, and others depend only on specific
parts of the algorithm.

We start the discussion from the general methods to those that strongly depend on the
numerical representation. One expects that the general ones will have a bigger numerical
complexity or they will be less accurate.
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Before starting to discuss the algorithms, it is important to stress again that for functions
of two variables (0,s) € T x [—1,1], there are two complementary ways of looking at them.
We can think of them as functions that, given 6, produce a polynomial in s—this polynomial
valued function will be periodic in —or we can think of them as polynomials in s taking
values in spaces of periodic functions (of the variable ). Of course, the periodic functions
that appear in our interpretation can be discretized either by the values in a grid of points or
by the Fourier transform.

Each of these—equivalent!—interpretations will be useful in some algorithms. In the
second interpretation, we can “overload” algorithms for standard polynomials to work with
polynomials whose coefficients are periodic functions (in particular, Horner schemes). In the
first interpretation, we can easily parallelize algorithms for polynomials for each of the values
of 8 using the grid discretization of periodic functions.

Possibly the hardest part of Algorithms 3.1 and 3.2 are the compositions between K with
W and K with W. Due to step 4 of Algorithm 3.2 the composition should be done so that
the output is still a polynomial in s with coefficients that are periodic functions of 6. In our
implementation, we use the automatic differentiation approach [20, 17].

If W(0,s) = (Wi(0,s), Wa(6,s)) is a function of two variables taking values in R?, then

m—1
(4.1) KoW(0,s) = Y, K/(Wi(0,5)) (boWa(8,9)),
7=0

which can be evaluated with m — 1 polynomial products and m — 1 polynomial sums using a
Horner scheme, once we have computed K7 o W1 (6, s).

The problem of composing a periodic function with a periodic polynomial in s—to produce
a polynomial in s taking values in the space of periodic functions—is what we consider now.
In particular, we are going to discuss three different approaches and their computational
complexities.

The first is the most general one, and it is based on a dynamic programming technique. It
assumes some given information to build a table from which the composition can be extracted.
In this case the numerical representation is in the part that is assumed to be given.

The second one exploits the Fourier representation in the inputs of the dynamic program-
ming to provide the final full complexity of the composition.

Finally, the third approach also uses the Fourier representation, but rather than using the
dynamic programming technique, it uses the recurrences in automatic differentiation for the
sine and cosine functions.

4.1. Composition via dynamic programming. The most general method considers S a
periodic function, the K7 in (4.1), and q(s) = Z?:o gjs’ a polynomial of a fixed order k > 0,
where the ¢; are periodic functions of ¢ that we consider discretized by their values in a grid
(the Wy in (4.1)).

We want to compute the polynomial p :== S o ¢ up to order k. Assume that %S (qo) for
0 < j < k are given as input and that they have been previously computed in a bounded
computational cost. These inputs in a computer strongly depend on the numerical represen-
tation of the periodic function S. In later sections we will consider the Fourier series as a

representation which will lead to two different algorithms.
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Table 1
Composition of a function with a polynomial.
S(q0) #%S(q) HzS@) -+ dm=rSla0) fwS(a0)
Do 1 0
P1 0 %Q(S) 0
D2 0 %D %u
0
Pr—1 0 50 Lo 2o 0
Dk 0 1o 1o ig g
d
a=a(s) o
-0

Figure 1. Generation rule fori=2,...,k+ 1 Table 1 entries.

The chain rule gives us a procedure to compute the coefficients of p(s) = Z?:o pjsl.
Indeed, one can build a table, whose entries are polynomials in s, like in Table 1 and following
the generation rule in Figure 1.

The inputs of Table 1 are a;; = 0 for 7 # 1 and az2 = d%q(s). Then the entries a;; with
2<j<i1<k+1 are given by

(4.2) ai;(s) = zi 1 (;;C%—l,j(S) + ai_1,j_1(8);iCJ(s)> )

Thus, the coefficients of p(s) are p; = Zf:o ajl(O)CZ‘l—;lS(qo) for0<j<k.

Note that it is enough to store in memory k entries of Table 1 to compute all the coefficients
pj-

Moreover, for each entry in the ith row with ¢ = 2,...,k + 1, one only needs to consider
polynomials of degree k + 1 — 4. Overall the memory required is at most %k(k + 1). The
number of arithmetic operations following the rule (4.2) is given by Proposition 4.1.

Proposition 4.1. Let S be a real-periodic function, and let q(s) be a real polynomial of degree
k. Assume %S(Q(O)) for 5 =0,.... k. The polynomial S o q can be computed using Table 1
with $k(k + 1) units of memory and ©(k*) multiplications and additions.

Proof. Note that k(k + 1) multiplications and (k + 1)? additions are needed to perform

the product of two polynomials of degree k. Also k multiplications are needed to perform
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the derivative of a polynomial of degree k multiplied by a scalar. To bound the number of
operations we must consider three different situations of Table 1.
1. The column as_ o: Zf;f(k —i+1) = $(k? + k — 6) multiplications.
2. The diagonal az k3. k:
o Stk —j—1)(k—j+1)+1= 12k -3k + k — 6) multiplications.
o SUTT(k—j—1)%+1=1(2k% — 9k + 19k — 18) additions.
3. The rest:

. 2 Zyk2 i (k—i=1)(k—i+1)+(k—i—2)+1 = {5(7k* =56k +T1k*+38k—24)
multlphcatlons
o SEIVEZ (k—i—1)>+ (k—i) + 1= L(5k* — 36k + 85k — 102k + 72)
addltlons
Overall, there are -5k* + ©(k®) multiplications and %k* + ©(k%) additions. [ ]

The next theorem, Theorem 4.2, summarizes the previous explanatlons and provides the
complexities to numerically compute K o W in (4.1). It assumes that dQZS (qo) of Table 1,

which are the 4 prD K7 (W1(0,0)) in KoW, are given as input. These inputs are the only elements
in Table 1 that depend on the numerical representation of the periodic functions (i.e., the K7
in K o W), and they make the result in Theorem 4.2 independent of how periodic functions
are represented.

Theorem 4.2. For a fized 0, the computational complexity to compute the compositions of
K(0,s) = 375" KI(0)(bos) with W (6,5) = Y7=0 W (0)(bs)? and W (0, s) using Table 1 is

Cgin(W{)(H)) as input fori =0,...,k — 1.

Remark 4.3. In general, if ny denotes the mesh size of the variable 6, we will have k <
m « ng. That is, the mesh size will be much larger than the degree (in s) of K(6,s). That
means that the parallelization in ny will be more advantageous.

Theorem 4.2 has an important assumption involving ;gi KI3(WP(0)) which can have a big
impact in the complexity of K o W (#,s). However, such an impact strongly depends on the

numerical representation of K7, and it will be discussed in the Fourier representation case.

O(mk*) and space Q(k?) assuming

4.2. Composition in Fourier. Theorem 4.2 reduces the problem of computing K oW (0, s)
in (4.1) to the problem of computing composition of a periodic function with another one.

In the case of a Fourier representation (see Appendix B) of an arbitrary mapping S: T — R
(the K7’s in (4.1)), such a composition between Fourier truncated series may require one
to know the values not in the standard equispaced mesh {k/ng}n" Lot 0, which hampers
the use of the fast Fourier transform (FFT). Indeed, the FFT states a fast way to biject
{S(k/ng)}.2, 1 cRto {§j}?ial c C such that

ng—1 ng—1

(4.3) S(k/ng) = Z Sie2mijk/ne andq §I = 1 Z S(k/ng)e2midk/mo
‘ ng
J=0 k=0

It assumes the mesh of 6 to be equispaced. However, the S(qy) may require evaluating S
outside the mesh.

A direct composition of real Fourier series requires a computational complexity @(n%).
However, nowadays recent algorithms with a O(nglogng) complexity efficiently solve this
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possible bottleneck in the performance of our algorithms. See, for instance, the NFFT3 in
[25] or FINUFFT in [5, 4]. The package NFFT3 allows us to express S: T — R with the same
coefficients as in (B.1) and perform its evaluation in an even number of nonequispaced nodes
(k)% = T by

ng—1

(4.4) S(0y,) = Gl o —2mi(j—ng/2)(0k—1/2)

o

j=

The corrections of ), in (4.4) are necessary because NFFT3 considers T ~ [—1/2,1/2) rather
than the other standard equispaced discretization in [0,1). NFFT3 uses some window func-
tions for a first approximation as a cut-off in the frequency domain and also for a second
approximation as a cut-off in the time domain. This package takes these approximations un-
der control (by bounds) to ensure the solution is a good approximation. Joining these results
with Proposition 4.1 we can rewrite Theorem 4.2 as follows.

Theorem 4.4. The computational complexity to compute in Algorithm 3.2 the compositions
of K(0,5) = Y0  K9(0)(bos) with the maps W (0,s) = Y=g WI(0)(bs)! and W(0,s) =
Z?;& W7(6)(bs)’ using Table 1 and NFFT3, and assuming that K7, W3, and W7 are expressed
with ng Fourier coefficients, is ©(mk*ng +mknglogng). The space complexity is Q(kng + k2).

Remark 4.5. Remark 4.3 also applies to Theorem 4.4 in terms of the parallelization of
ng due to the fact that in general k < m <« ng. However, in the parallelism case, the space
complexity increases to Q(kng + k:an) with n, the number of processes, although the part
corresponding to kng can be shared memory.

In particular, the NFFT3 can also be used for the zero order W0 of Algorithm 3.1 giving
in that case the same complexity as in Theorem 4.4 but with k£ = 1.

4.3. Automatic differentiation in Fourier. Theorem 4.2 tells us that the composition
K o W(0,s) can numerically be done independently of the periodic mapping representation.
Nevertheless, differentiation is a notoriously ill-posed problem due to the lack of information
in the discretized problem. Thus, Table 1 is a good option when no advantage of the computer
periodic representation exists or k < m.

Using the representation (B.3), we can use the Taylor expansion of the sine and cosine by
recurrence [27, 20]. That is, if ¢(s) is a polynomial, then sing(s) and cosq(s) are given by
8o = sinqg, cop = cos qg, and for j > 1,

1'% 1'%
(4.5) Sj =7 Z (J — k)aj—kck, Cj = —= (J — k)qj—kSk-
J k=0 J k=0

Therefore the computational cost to obtain the sine and cosine of a polynomial is linear with
respect to its degree.

Theorem 4.6 says that the composition of K with W or 1% is, rather than ©(mk*ngy +
mknglogng) as in Theorem 4.4, just ©(mkn3). Therefore if k « m and ng is large, the
approach given by Theorem 4.4 has a better complexity, although Theorem 4.6 will be more
stable for larger k.
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Theorem 4.6. The computational complexity to compute in Algorithm 3.2 the compositions
of K(0,s) = Z;”:_Ol K7(0)(bos)? with the maps W (0,s) = Z?;S WI(0)(bs)? and W(0,s) =
Z;:ol W3(0)(bs)? using automatic differentiation and assuming that K7, W7, and W/ are
expressed with ng Fourier coefficients is ©(mkn}).

5. Numerical results. The van der Pol oscillator [35] is an oscillator with a nonlinear
damping governed by a second order differential equation.

As an example, we consider the state-dependent perturbation of the van der Pol oscillator
like in [22], which has the form

(5.1)

with 4 > 0 and 0 < ¢ « 1. For the delay function r(z(t)) we are going to consider two
cases: a pure state-dependent delay case r7(z(t)) = 0.006e*") or just a constant delay case
r(x(t)) = 0.006.

The first step consists in computing the change of coordinate K, the frequency wy of the
limit cycle, and its stability value Ay < 0 for ¢ = 0. By standard methods of computing
periodic orbits and their first variational equations, we compute the limit cycles close to
(x,y) = (2,0) for different values of p. Table 2 shows the values of wy and Ay for each of those
values of the parameter pu.

Table 2
Values of wo and Ao for different values of the parameter p in (5.1) with e = 0.

p | wo | Ao

0.25 | 0.1585366857025485 | —0.2509741760777654
0.5 0.1567232109993800 | —0.5077310891698608
1 0.1500760842377394 | —1.0593769948418550
1.5 0.1409170454968141 | —1.6837946490433340

The computation of K(6,s), following Algorithm A.1, up to order 16 in s and with a
Fourier mesh size of 1024, allows us to plot the isochrons in Figure 2.

In the case of ODEs, the isochrons computed by evaluating the expansion can be globalized
by integration of the ODE (5.1) forward and backward in time; see [23]. In the case of the
SDDE, ¢ # 0, propagating backwards is not possible. We hope that this limitation can be
overcome, but this will require some new rigorous developments and more algorithms. We
think that this is a very interesting problem.

A relevant indicator for engineers is the power spectrum, i.e., the square of the modulus
of the complex Fourier coefficients. In Figure 3 we illustrate the power spectrum for K, since
K9 is the one that is commonly observed in a circuit system.

Due to the quadratic convergence of Algorithm A.1 (see [23]), the computations of Table 2
and Figure 2 are performed in less than one minute in a currently available standard laptop.
However, we notice that for values of i > 1.5 the method may not converge for the unperturbed
case. The scaling factor and the Fourier mesh size need to be smaller due to spikes, especially
for the high orders in s, i.e., K7(8) for large j. This is an inherent drawback of the numerical
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Figure 2. Limit cycles and their isochrons for different values of the parameter p in the unperturbed case,
(5.1).

representation of periodic functions by Fourier series, which may become very important for
some parameter values.

5.1. Perturbed case. Let us analyze the case of p = 1.5 for two different types of delay
functions: a constant one 7(z(t)) = 0.006 and a state-dependent one 7(z(t)) = 0.006e*®).

The two cases have some advantages to be exploited. For instance, in the constant case
W(Q, s) = W(# — wpB, se ) is easier to compute than in the state-dependent case. Since in
both cases W and W must be composed by K, the use of automatic differentiation for step
4 in Algorithm 3.2 is still needed. In particular, for Algorithm 3.1 and the composition via
Theorem 4.4, the NFFT3 can be used to perform the numerical composition of K with W and
W,

The first steps of our method get w and A. These values are summarized respectively in
Tables 3 and 4 for the parameter value u = 1.5. They were computed fixing a tolerance for
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Figure 3. Logscale of the power spectrum of K° = (K{, K9) for y=1.5 ande =0 in (5.1).

the stopping criterion of 107!° in double-precision. Because the result is perturbative, these
values are close to those in Table 2 but are further apart as ¢ increases. Moreover, we report
a speed factor around 2.25 using the NFFT3 with respect to a direct implementation of the
Fourier composition.

Table 3
Values of w for different values of € in (5.1) with p = 1.5 obtained by Algorithm 3.1. ws corresponds to
the state-dependent delay, and w. to the constant delay.

e T s e
10~ ][ 0.140908673246532 | 0.140908547470887
1073 || 0.140833302396846 | 0.140832045466042
1072 || 0.140077545298062 | 0.140065058638519

Table 4
Values of \ for different values of € in (5.1) with p = 1.5 obtained by Algorithm 3.2. As corresponds to the
state-dependent delay, and A: to the constant delay.

€ “ As Ae
10~% [[ —1.6838123845562083 | —1.6838091880373793
1072 || —1.6839721186835845 | —1.6839401491442914
1072 —1.6855808865357260 | —1.6852607528946115

Figure 4 shows, for different values of ¢ in (5.1), the logarithmic error of the invariance
equation for each of the different orders j > 0, that is, the finite system of invariance equations
obtained after plugging W (6, s) = > W7(0)s’ into (2.7) and matching terms of the same order.
The state-dependent case needs smaller values of € to satisfy the invariance equation, while
the constant delay case admits larger values of ¢ which can be deduced from the inequalities
in [37].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/30/22 to 188.92.139.72 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1534

JOAN GIMENO, JIAQI YANG, AND RAFAEL DE LA LLAVE

state-dependent

_6 T T T T
e=0.0001 ——

S T e=0001
o -8 €= 0.01 ;.
& | a
g -9 /
= gl
= —10 sl
.g 1 77//7H//////
5 12 b

~13

2 4 6 8 10

order

Figure 4. Logl0 scale of the 2-norm of the error in the invariance equation.
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Figure 5 shows the difference between the isochrons for the perturbed and unperturbed
cases. As one expects from the theorems in [37], the error is smaller as the perturbation

parameter value £ becomes smaller.
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Figure 5. Logl0 scale of the 2-norm of the difference between the perturbed and unperturbed cases, that is,

[T — (K oW)|.

An important point in Algorithm 3.2 is the well-definedness of the composition of K with
W and W. Because the state-dependent delays consider many more situations than just the
constant delay, one expects that a potentially smaller scaling factor compared to the constant
delay will be needed for computation of big orders. Figure 6 shows that if ¢ is large, the
scaling factor will need to be small. We also see that for the constant case, it is enough to
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use a constant scaling factor, and for the state-dependent case, the scaling factor decreases
drastically in the first orders.

state-dependent constant-delay

0.99
8;2 | e=0.0001 — 0.98
054 | €=0.001 0.97
0.52 \ e =0.01 0.96
L 05 0.95 - ¢=0.0001 —+—
2 48 ML 0.94 b £=0.001 —
2 0.46 \ 093 - e=0.01 —
044 | T 0.92
042 0.91
' 4 i I | I 0.9
0. 0.89

2 4 6 8 10 12

order

2 4 6 8§ 10 12

order

Figure 6. Scaling factor to ensure that the composition of K with W and with W in Algorithm 3.2 are well
defined.

To illustrate the physical observation Figures 7 and 8 show the power spectra of the limit
cycles after the perturbations. More concretely, Figure 7 displays the power spectrum of
(K o W)? for the pure state-dependent delay case and ¢ = 0.01. In contrast with Figure 3,
we observe that for the even indexes these figures have nonzero values in the double-precision
arithmetic sense. On the other hand, Figure 8 shows that these nonzero values in the even
indexes are not present in the constant delay case. The power spectrum for the case ¢ > 0
changes from that when € = 0 as ¢ increases.

0 0 n-
-2 4 _i M-
o= A o g
= Oy = g ’
o -8 I} o - HHT
-0 [t -0 gl
12 JIT -12 I
-14 M -14
-16 HH’—Hm ] -16 MMHH
0 5 10 1520 25 30 35 40 0 10 20 30 40 50
Fourier index Fourier index

Figure 7. LoglO scale of the power spectrum of (K o W)O for n = 1.5, ¢ = 0.01, and the state-dependent
delay r(xz(t)) = 0.006e*® in (5.1).
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Figure 8. Logl0 scale of the difference between the power spectrum of K® and the power spectrum of
(K oW)° for p = 1.5, different values of €, and constant delay r = 0.006 in (5.1).

6. Conclusions. We have presented Algorithms 3.1 and 3.2 to compute limit cycles and
their isochrons for an SDDE coming from perturbing a planar ODE with a limit cycle.

As input of those algorithms we use a parameterization of the limit cycle and its isochrons
of the ODE, which acts as a change of variables in a neighborhood of the unperturbed limit
cycle.

To fix the solution, we use normalization conditions in the zeroth and first orders of the
Taylor—Fourier representation of the solution in the perturbed system.

We have also discussed the numerical composition between Taylor—Fourier expansions
which is the hardest step in those algorithms.

Finally, we have shown numerical experiments, and we provide a code sample as supple-
mentary material (M133696_01.zip [local/web 368KB]), allowing one to adapt the code for
other examples.

We observed that for the unperturbed case, the scaling factor as well as the mesh size play
an important role to get the parameterization. In the perturbed system, the scaling factor also
allows us to ensure the well-definedness of the composition, which causes the scaling factor to
be smaller, especially for the nonconstant delay expression.

We also showed that the perturbative parameter ¢ affects the convergence of the algorithm.
To compute high orders of W, the € needs to be smaller in the nonconstant delay. This makes
sense with the existence proofs in [37]. They are based on a contraction argument of an
operator, which is reproduced in the steps of the algorithms used in this paper. The bounds
to ensure the contraction of the operators depend on the norms of the delay function as well
as its derivatives. Therefore, if the delay is not constant, those quantities will cause € to be
small enough to ensure the contraction in the operator.

The algorithms we have presented in this paper come from the companion paper [37].
Avoiding hard mathematical notation, there are some implications and consequences of this
new technique.

The statements in [37] are formulated for SDDEs (i.e., DDEs whose delays depend on the
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state) in an a posteriori format which does not depend on time explicitly. The result is then
directly applicable to constant, state-dependent, and even implicitly defined delays.

Although the results therein have been detailed for the case of SDDEs, they also apply
without major modifications to advanced or even mixed differential equations. That means
that the perturbation added to the ODE can, at a current time, require the information at
future or past times.

It is important to stress that our approach does not provide a full parameterization of the
foliation in the phase space of the perturbed model. Indeed, we bypass that discussion by just
providing a partial dynamics near the limit cycle closest to the dynamics of the unperturbed
model. We decided to keep this distinction, calling it isochron (a term often used in biology
for the foliation of a limit cycle in an ODE scenario).

The companion paper [37] also includes a theory for different regularities of the differential
equation, but in the current numerical paper, we only formulated results for analytic systems.
Since we specified which derivatives appear in the calculations, it is clear that the algorithms
for the delay-perturbed case also apply for problems with finite differentiability.

The theoretical result can also be the starting point for computer-assisted proofs (CAPs).
The study of periodic orbit by CAPs independent of the evolution operator has also been
considered in the literature, e.g., in [26], which deals with several delays. We recently learned
of the paper [34], which produces CAPs of analytic periodic solutions. In the case of SDDEs
considered here, analytic solutions are not expected to exist and the framework in [34] would
need to be adjusted; see [16].

Finally, we want to emphasize that our algorithms as well as the algorithm in [23] can
be generalized to higher dimensions with a more tedious notation. It will require changes
in the numerical composition, and its computational complexities will have a more difficult
expression. The good point is that there is still a chance to take advantage of the parallelism
with higher dimensional isochrons.

Appendix A. Computation of (K, wg, A\g)—unperturbed case. For completeness, we
quote Algorithm 4.4 in [23], adding some practical comments. That algorithm allows us to
numerically compute wy, Ao, and K: T x [-1,1] — R? in (2.7). We note that the algorithm
has quadratic convergence as it was proved in [23].

Algorithm A.1. Quasi-Newton method.
* Input: & = X(x) in R?, K(0,5) = K°(0) + K'(0)bgs, wo > 0, A\g € R, scaling factor
bo > 0, and a tolerance tol.

* Output: K(0,s) = 370" K7(0)(bos)’, wo and Ao such that || E| « 1.
1. B« X oK — (wply + A\gsds)K.

2. Solve DKE = E and denote E = (Ey, Fs).

3. 0« §o B1(0,0)d0 and n  § 0,E(6,0) d.

4. E1<—E1—UandE2<—E2—ns.
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. Solve (wpdg + Agsds)S1 = Ey imposing

(A1) fol $1(6,0)d6 = 0.
. Solve (wpdg + A\gs0s)S2 — A\gS2 = Ey imposing

(A.2) L ' 9.52(6.0)d6 = 0.

S = (81, Ss).

. Update: K — K+ DKS, wy < wg + 0, and Ag < Ag + 7.

. Iterate from step 1 to step 8 until convergence with tolerance tol in K, w, and A\. Then

undo the scaling by.

Algorithm A.1 requires some practical considerations:

i.

ii.

iii.

iv.

Initial guess. K°: T — R? will be a parameterization of the periodic orbit of the
ODE with frequency wg. It can be obtained, for instance, by a Poincaré section
method, continuation of integrable systems, or Lindstedt series. An approximation for
K': T — R? and )\ can be obtained by solving the variational equation
0 d
DX o K°(6)U(0) = wO@U(Q),
U(0) = Ids.

Hence if (e*/*0, K1(0)) is the eigenpair of U(1) such that Ay < 0, then K'(f) =
U(6)K*(0)e=o0/wo,

Stopping criteria. As with any Newton method, a possible condition to stop the
iteration can be when either ||E| or max{|DKS|,|o|,|n|} is smaller than a given
tolerance.

Note that the a posteriori theorems in [23] give a criterion of smallness on the error
depending on properties of the function K. If these criteria are satisfied, one can
ensure that there is a true solution close to the numerical one.

Uniqueness. Note that in steps 5 and 6, which involve solving the cohomology equa-
tions, the solutions are determined only up to adding constants in the zeroth or first
order terms. We have adopted the conventions (A.1), (A.2). These conventions make
the solution operator linear (which matches well the standard theory of Nash—Moser
methods since it is easy to estimate the norm of the solutions).

As it is shown in [23], the algorithm converges quadratically fast to a solution, but
since the problem is underdetermined, we have to be careful when comparing solutions
of different discretization. In [23] there is discussion of the uniqueness, but for our
purposes in this paper, any of the solutions will work. The uniqueness of the solutions
considered in this paper is discussed in section 2.8.

Convergence. Even though Algorithm A.1 is a quasi-Newton method, [23] proved that
it still has quadratic convergence.
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Note that it is remarkable that we can implement a Newton-like method without
having to store—much less invert—any large matrix. Note also that we can get a
Newton method even if the derivative of the operator in the fixed point equation has
eigenvalues 1. See Remark 2.3.

v. Cohomological equations. The most delicate steps of the above algorithm are steps 5
and 6, which are often called cohomology equations. These steps involve solving PDEs,
whereas the other steps are much simpler. In the case of a Fourier representation (see
Appendix B), the cohomological equations can be addressed by using Proposition 3.3.

vi. Linear system. Step 2 can be addressed by Lemma 3.4.

Appendix B. Fourier discretization of periodic functions. As mentioned before, the key
part of Algorithm A.1 is to solve the equations in steps 5 and 6. Their numerical resolution
will be particularly efficient when the functions are discretized in Fourier—Taylor series. This
is the only discretization considered in this paper for which we provide a deep discussion.

Recall that a function S: R — R is called periodic when S(6 + 1) = S(0) for all 6.

To get a computer representation of a periodic functlon we can either take a mesh in 6,

e., (0k)r2, 0 , and store the values of S at the points S = (Sk)Z" 01 e R™ with Sy = S(6k), or
we can take advantage of the periodicity and represent it in a trigonometric basis.

The discrete Fourier transform (DFT), and also its inverse, allows us to switch between
the two representations above. If we fix a mesh of points of size ng uniformly distributed in
[0,1), i.e., O = k/ng, the DFT is

S = (Sp)pe,t e Cmo

so that
ng—1

(B.1) Sy = Z Sje%”k/n“’,
j=

or equivalently,

~ 1 Mt 5
(B.2) Sk=— > Sjer2miaking,

In the case of a real valued function, Sp is real and the complex numbers S satisfy Hermit-
ian symmetry, i.e. Sk = S ¥ _k (denoting by * the complex conJugate) which implies Sne /2 18
real when ngy is even. Then we define real numbers (ap; ak, bk)[n”/ 271 if g s odd (here [-]

ng/2—1

denotes the ceil function); otherwise (ao, an,2; @, bi)p, " are defined by
ag = 2§0, Apy/2 = 2§n9/2, ap = 2Re§k, and b, = —21m§k

with 1 <k < [ng/2].
Thus, S can be approximated by

[ne/2]—1
(B.3) S(0) = % + an§/2 cos(mngh) + Z ay, cos(2mkB) + by sin(27k6),
k=1
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where the coefficient a
in signal theory.

Therefore (B.3) is equivalent to (B.1), but rather than 2ny real numbers, only half of them
are needed.

Henceforth, all real periodic functions S can be represented in a computer by an array
of length ng whose values are either the values of S on a grid or the Fourier coefficients.
These two representations are for all practical purposes equivalent since there is a well-known
algorithm FFT which allows us to go from one to the other in ©(nglogny) operations. The
FFT has very efficient implementations so that the theoretical estimates on time are realistic
(we can use FFTW3 [15], which optimizes the use of the hardware).

We can also think of functions of two variables W (6, s) where one variable 6 is periodic and
the other variable s is a real variable. In the numerical implementations, the variable s will be
discretized as a polynomial. Thus W (6, s) can be thought as a function of € taking values in
polynomials of length ns. Hence, a function of two variables with periodicity as above will be
discretized by an array ng x ns. The meaning could be that it is a polynomial for each value of
f in a mesh or that it a polynomial whose coefficients are Fourier coefficients. Alternatively,
we could think of W (6, s) as a polynomial in s taking values in a space of periodic functions.

This mixed representation of Fourier series in one variable and of power series in another
variable is often called Fourier—Taylor series and has been used in celestial mechanics for a
long time, dating back to [7] or earlier. We note that modern computer languages allow one
to overload the arithmetic operations among different types in a simple way.

It is important to note that all the operations in Algorithm A.1 are fast either in the Fourier
representation or in the values of a mesh representation. For example, the product of two
functions or the composition on the left with a known function is fast in the representation
by values in a mesh. More importantly for us, as we will see, the solution of cohomology
equations is fast in the Fourier representation. On the other hand, there are other steps of
Algorithm A.1, such as adding, that are fast in both representations.

Similar consideration of the efficiency of the steps will apply to the algorithms needed to
solve our problem. The main novelty of the algorithms in this paper compared with those of
[23] is that we will need to compose some of the unknown functions (in [23] the unknowns
are only composed on the left with a known function). The algorithms we use to deal with
composition were presented in section 4. The composition operator was the most delicate
numerical aspect, which was to be expected, since it was also the most delicate step in the
analysis in [37]. The composition operator is analytically subtle. A study which gives examples
that results are sharp is in [12]. See also [2].

ng/2 Only appears when ny is even, and it refers to the aliasing notion

Remark B.1. Fourier series are extremely efficient for smooth functions which do not have
very pronounced spikes. For rather smooth functions—a situation that appears often in
practice—it seems that Fourier—Taylor series is better than other methods.

It should be noted, however, that in several models of interest in electronics and neuro-
science, the solutions move slowly during a large fraction of the period, but there is a fast
movement for a short time (bursting). In these situations, the Fourier scheme has the dis-
advantage that the coefficients decrease slowly and that the discretization method does not
allow for putting more effort into describing the solutions during the times when they are
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indeed changing fast. Hence, the Fourier methods become unpractical when the limit cycles
are bursting. In such cases, one can use other methods of discretization. In this paper, we
will not discuss alternative numerical methods, but we note that the theoretical estimates
of [37] remain valid independent of the method of discretization. We hope to come back to
implementing the toolkit of operations of this paper in other discretizations.

Remark B.2. One of the confusing practical aspects of the actual implementation is that
the coefficients of the Fourier arrays are often stored in a complicated order to optimize the
operations and the access during the FFT.

For example, concerning the coefficients ay’s and by’s in (B.3), in FFTW3, the func-
tion fftw_plan r2r_1d uses the following order of the Fourier coefficients in a real array

(UO') s 7U’n9—1):
vy = ap,
v = 2ay, and v, = —2b;,  for 1 < k < [ng/2],
Ung/2 = Qny/2s

where the index ng/2 is taken into consideration if and only if ng is even. Another standard
order in other packages is just (ao, an,/2; ax, bx) in sequential order or (ao; ax, bx) if ng is odd.

To measure errors and size of functions represented by Fourier series, we have found it
useful to deal with weighted norms involving the Fourier coefficients:

[no/2]—1
IS ]lwer s = 2(20/2)" Sy ol + Y ((ng — k)™ + E™)[ S|
k=1
[ne/2]—1
= (10/2)"|an, 2| + 5 D1 ((ng— k)" + E")(aj + b)),
k=1

where, again, the term for ng/2 only appears if ng is even.

The smoothness of S can be measured by the speed of decay of the Fourier coefficients,
and indeed, the above norms give useful regularity classes that have been studied by harmonic
analysts.

Remark B.3. The relation of the above regularity classes with the most common C™ is
not straightforward, as is well known by Harmonic analysts, [33].

The Riemann—Lebesgue lemma tells us that if S is continuous and periodic, §k — 0 as
k — o0, and in general if S is m times differentiable, then |Sy||k|™ tends to zero. In particular,
15, < C/|k|™ for some constant C > 0.

In the other direction, from |S;| < C/|k|™ we cannot deduce that S € C™.

One has to use more complicated methods. In [13] it was found that one could find a
practical method based on the Littlewood-Paley theorem (see [33]) which states that the
function S is in a-Holder space with o € R, if and only if for each 1 = 0 there is a constant

C' > 0 such that for all £ > 0,
H (;)netv —A0 < e,

Lo(T)
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The above formula is easy to implement if one has the Fourier coefficients, as is the case in
our algorithms.
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