
0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3152074, IEEE
Transactions on Computers

TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX, 20XX 1

vTrust: Remotely Executing Mobile Apps
Transparently With Local Untrusted OS

Yutao Tang, Zhengrui Qin, Zhiqiang Lin, Yue Li, Shanhe Yi, Fengyuan Xu, and Qun Li Fellow, IEEE

Abstract—Increasingly, many security and privacy-sensitive applications are running on mobile platforms. However, as mobile
operating systems are becoming increasingly sophisticated, they are vulnerable to various attacks. In addressing the need of running
high assurance mobile apps in a secure environment even though the operating systems are untrusted, this paper presents VTRUST, a
new mobile app trusted execution environment, which offloads the general execution and storage of a mobile app to a trusted remote
server (e.g., a VM running in a cloud) and secures the I/O between the server and the mobile device with the aid of a trusted hypervisor
on the mobile device. Specifically, VTRUST establishes an encrypted I/O channel between the local hypervisor and the remote server.
In this way, any sensitive data flowing through the mobile OS, which the hypervisor hosts, is encrypted from the perspective of the local
mobile OS. To enhance the performance of VTRUST, we have also designed multiple optimizations, such as output data compression
and selective sensor data transmission. We have implemented VTRUST, and our evaluation shows that it has limited impact on both
user experience and the application performance.

Index Terms—Trusted Execution Environment, Virtualization, Mobile Computing.

✦

1 INTRODUCTION

MOBILE devices have become increasingly integral and
ubiquitous in recent years, with over a billion active

devices worldwide today [1], surpassing desktop comput-
ers as the most popular personal computing platform [2].
Inevitably, this trend has made many organizations, even
though demanding high security, start to use mobile devices
(e.g., smartphones, tablets, iPads) at daily work to access
security and privacy-sensitive data due to the increased
productivity and job satisfaction [3]. For instance, hospi-
tals have allowed doctors and nurses to access patient
healthcare records using mobile devices [4], [5]; government
agencies and military have allowed classified documents
accessed and processed with smartphones [6], [7], [8]; many
businesses and financial agencies permit their employees
to process confidential data on their mobile devices for
convenience [9].

The Problem. Unfortunately, along with the convenience,
mobile devices also bring unprecedented security chal-
lenges, especially for security-sensitive applications (apps in
short). The new forms of malware targeting mobile devices
are on the rise with the increasing popularity of mobile
phones. For instance, mobile malware increased more than
three times between 2015 and 2016 [10]. Attackers and

• Yutao Tang is with the Guilin University of Electronic Technology, Guilin,
China.E-mail: Yutao.Tang@guet.edu.cn

• Zhengrui Qin is with Northwest Missouri State University, Maryville,
MO. E-mail: zqin@nwmissouri.edu

• Yue Li is with Fackbook,Menlo Park, CA. E-mail: yli@cs.wm.edu
• Zhiqiang Lin is with Ohio State University, Columbus, OH.

E-mail: zlin@cse.ohio-state.edu
• Shanhe Yi is VMWare, Palo Alto, CA. E-mail: yshanhe@vmware.com
• Fengyuan Xu is with Nanjing University, Nanjing, China.

E-mail: fengyuan.xu@nju.edu.cn
• Qun li is with the College of William and Mary, Williamsburg, VA.

E-mail: liqun@cs.wm.edu

cybercriminals have realized that mobile devices are easier
targets than conventional computing platforms (e.g., desk-
tops) because mobile devices are so resource-constraint that,
in many cases, security is sacrificed for performance and
convenience. These attacks, ranging from ransomware [11]
to advanced persistent threats (APT) [12], can persistently
and stealthily steal valuable data from mobile devices. Some
of them can even get the root privilege [13]. Even security-
sensitive departments, such as the military, may fail to
protect the devices adequately. For example, most recently,
Israeli military personals were reported being spied by
attacks through trojanized apps in mobile devices [14].

Local Execution Solutions. Many researchers propose vari-
ous approaches to protect sensitive data on mobile devices.
One widely-used approach is to store all sensitive data
remotely in the corporate server and use VPN [15] to access
them, which extends the corporate network across a public
network through encryption. As a result, employees can still
securely connect to the corporate network when working
remotely. Unfortunately, although this approach can protect
the data during transmission, it cannot guarantee data se-
curity in mobile devices. For instance, a compromised OS
can easily breach the sensitive data once it is downloaded
into mobile devices. Another approach is the full-disk en-
cryption [16], [17], aiming at securing the mobile storage.
Several advanced schemes use a remote trusted server to
store the decryption keys [18], [19] to ensure security in case
that the device is lost. However, the decryption key and
intermediate data, such as the decrypted content, are still
available in plaintext in the main memory when apps are
executed. Therefore, these solutions do not entirely prevent
a compromised OS from accessing sensitive data.

Remote Execution Solutions. To tackle the security chal-
lenges, a promising direction is to offload security-sensitive
apps to a server [8], such as using Virtual Network

Authorized licensed use limited to: William & Mary. Downloaded on September 30,2022 at 22:34:05 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3152074, IEEE
Transactions on Computers

TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX, 20XX 2

Fig. 1: vTrust solution.

Computing (VNC) [20] or Secure Virtual Mobile Platform
(SVMP) [21]. This scheme sandboxes the execution and
storage of sensitive apps in a verified remote execution
environment. It uses a proxy to transmit I/O data (e.g.,
sensing, touchscreen input, and screen output) at the mobile
OS. This solution does not leave any sensitive data in the
local memory or the local disk. Thus, a compromised OS
cannot directly access these data. Furthermore, the security
of the remote execution environment can also be enhanced
through existing security infrastructures. In addition, it
facilitates central audit and supervision of sensitive data.
Unfortunately, a severe drawback to the existing remote
execution solutions is that they do not consider the I/O pro-
tection. I/O exposure opens up opportunities for attackers
to intercept sensitive information from the input and output
data. Without any proper I/O protection, the sensitive apps
are far from being immune to local OS compromise. For
example, the malicious OS can collect sensitive data through
screenshots [22] or sensors [23], [24], [25], [26].

Our Solution. This paper proposes VTRUST (V for Vir-
tualization), a new Trusted Execution Environment (TEE)
for mobile apps. Like existing remote execution solutions,
VTRUST enforces data security by outsourcing the computa-
tion and storage of a sensitive app into a security-enhanced
virtual machine (VM) running on a remote trusted server
(e.g., a VM managed by an enterprise). In addition, VTRUST
leverages the virtualization extension on the mobile device
to protect I/O data. As Figure 1 shows, VTRUST establishes
an encrypted I/O channel between the remote server and
the local hypervisor. It encrypts all input data in the hy-
pervisor before sending them to the local mobile OS, and
these data will be decrypted in the remote server. The output
data works similarly in the opposite direction. In this way,
VTRUST protects the local mobile I/O from unauthorized
access from local mobile OS. Meanwhile, VTRUST allows
users to install non-sensitive apps on the local mobile and
provides a mechanism to seamlessly switch between (non-
sensitive) local apps and (sensitive) remote apps.

The benefits brought by VTRUST are prominent. In terms
of security, VTRUST remotely sandboxes sensitive apps and
completely prevents a compromised local OS from accessing
the memory and storage of these apps. Virtualizing the exe-
cution environment on a server also makes it feasible to de-

ploy powerful but resource-hungry security enhancements,
such as anti-virus, VM-introspection, and data flow tracking
techniques. Meanwhile, it is resilient to mobile device losses
since the data is not stored locally at all. Furthermore,
VTRUST makes management much more straightforward.
All VMs on the server are within the same network and
fully controlled by the IT department of an organization.
Access to data can be granted or revoked at any time,
even without the mobile devices’ physical presence. The IT
department can also easily track the data flow to ensure
users are handling them properly. Additionally, it provides
a manageable way to upgrade the system and apply system
patches.

As a proof of concept, we have built a prototype of
VTRUST on an ARM-based development board and a remote
server with virtualized Android for x86. To further improve
VTRUST, we have also applied multiple optimizations, such
as output data compression and selective sensor data trans-
mission. Through comprehensive analysis and experiments,
we have evaluated the security, efficiency, and overhead of
VTRUST. Our experimental results show that VTRUST can
defend against various attacks with little overhead on the
protected apps.

In short, we make the following contributions.
• We design a novel virtualization-based TEE— VTRUST,

which offers easier management and stronger
protection by executing sensitive mobile apps in a
trusted remote server with secure I/O protected by the
local hypervisor.

• We have implemented a prototype of VTRUST on
an Arndale development board, and a server was
running Android-X86. We have also developed several
optimizations to enhance the performance of VTRUST.

• We have evaluated the performance of VTRUST and
observed that VTRUST incurs little overhead. In
addition, there are little user experience change thanks
to the transparency offered by VTRUST.

The rest of the paper is organized as follows. Section 2
gives an overview of our system VTRUST. Section 3 details
the system design, and Section 4 presents the implementa-
tion details. Section 5 provides the evaluation of our system.
Section 6 analyzes the security of our system. Section 7
discusses some limitations of our systems and future im-
provements. Section 8 compares the related work. Section 9
concludes the paper.

2 OVERVIEW

This section describes our design goals, system overview,
assumption, threat model, and scope.

2.1 Design Goals
While there are many ways of designing a TEE for mobile
apps, we seek to achieve the following objectives:

• Full Protection. A compromised mobile OS cannot steal
any data of sensitive apps, no matter whether through
peeking at intermediate data in memory or the I/O or
the persistent data in local storage.

• Transparent to Apps. The deployment of our VTRUST
does not require any modification on the mobile apps,
such that legacy apps can run in our system.

Authorized licensed use limited to: William & Mary. Downloaded on September 30,2022 at 22:34:05 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3152074, IEEE
Transactions on Computers

TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX, 20XX 3

• Seamless Switching. VTRUST must concurrently sup-
port both protected apps running on a server and un-
protected apps running in the untrusted mobile device.
It needs to ensure a seamless switch at the mobile client
between protected and non-protected apps.

• Low Overhead. The protected apps must function
properly with an acceptable performance overhead.

2.2 Assumptions, Threat Model, and Scope

Assumptions. We consider a trusted computing base (TCB)
that includes the hypervisor at the mobile side and the
VMs at the remote side. We assume that the hypervisor is
secure and trusted (ideally, it is verified). Note that it is also
a one-time effort to deploy the hypervisor on the mobile
device. Our assumption is practical since the hypervisor
only needs to provide a virtual environment for Guest OS
and encrypt/decrypt I/O data. It does not offer any service
interfaces to the outside world and is transparent to the
users. We also assume the users are willing to sacrifice some
performance and resolution for security.

The remote VMs are assigned to the users and main-
tained by the IT administrators. Each VM is carefully pro-
tected and monitored by advanced techniques, such as
anti-virus software, fine-grained system logs, firewalls, and
intrusion detections. We also assume the apps installed on
the VMs are carefully developed and verified. Thus they are
trusted. The IT administrator installs the apps and possible
tools on the VMs for the users and disallows customized
installation of any un-trusted apps.

Threat Model. We assume the mobile OS is not trusted.
Users may download a malicious app even through an
official app store. One recent example is app InstaAgent [27],
which stole Instagram user credentials and sent them to
a third-party server without the user’s knowledge. Fur-
thermore, the mobile device itself may have vulnerabilities,
through which some attackers can even get the root privi-
lege and then access all the resources available to the mobile
OS.

Scope. We provide this solution for organizations that have
high requirements for security. VTRUST aims to guarantee
data security rather than attack prevention. VTRUST cannot
defend against malicious attacks, such as DoS, but it still can
ensure data security and notify the users of the presence of
the attacks at the same time.

2.3 VTRUST Terminology

A key enabling technology of VTRUST is virtualization.
Both the local mobile device and the remote server leverage
virtualization for different purposes. The mobile device
uses it to protect I/O data from being accessed by the local
untrusted mobile OS, and the server uses it for multiplexing
(and other security such as isolation and introspection). To
avoid potential confusion, in the rest of the paper, we use
the “Hypervisor” to refer to the hypervisor on the mobile
device, the “VM” to refer to the VM on the server, and the
“mobile OS” to refer to the local mobile OS.

Fig. 2: An Overview of VTRUST.

3 DETAILED DESIGN

In this section, we present the design of VTRUST. We will
first introduce the architecture of VTRUST, then describe the
design of the key components in VTRUST

3.1 VTRUST Overview
Figure 2 shows the overview of VTRUST. At a high level,

VTRUST uses a client-server architecture and consists of
three key components: Hyper Stub and Client Stub running
in the mobile device, and Server Stub running in the remote
server (e.g., a VM).

The server in VTRUST can host many VMs for multiple
mobile devices, atop each VM runs an Android mobile OS.
For a more straightforward presentation, we only show a
single VM instance in Figure 2. Meanwhile, in practice, a
mobile device can correspond to multiple isolated VMs to
provide a higher level of security, and the server can be
multiplexed to support many mobile devices.

The mobile device runs a Hypervisor, which hosts a
single mobile OS as the Guest OS. An end-user can only
interact with the mobile OS, which occupies the whole
screen. The Hypervisor is entirely invisible to the end-user
and only performs encryption and decryption for security-
sensitive apps. It is worth pointing out that, since the Hy-
pervisor hosts only one Guest OS, the Guest OS can achieve
a performance being nearly native [28].

When end-users start to access security-sensitive apps,
VTRUST enters a particular mode, called Shield Mode. In this
mode, VTRUST protects sensitive apps against an untrusted
OS by encrypting all input/output data going through the
untrusted OS. Specifically, on one hand, any input from
the mobile device (e.g., sensors and touch actions) will be
encrypted in Hyper Stub, then be delivered to the Client
Stub, and further be transmitted to Server Stub. Then, the
Server Stub decrypts the data and provides it to the app.
On the other hand, if the sensitive app has any output,
the data will be delivered to the user through the same
channel(i.e., encrypted in Server Stub and forwarded to the
Client Stub, and then decrypted at the Hyper Stub). Therefore,
the untrusted mobile OS can only view encrypted data of

Authorized licensed use limited to: William & Mary. Downloaded on September 30,2022 at 22:34:05 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3152074, IEEE
Transactions on Computers

TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX, 20XX 4

the sensitive apps while the user and the sensitive app can
view the unencrypted data.

3.2 Key Components
VTRUST includes three key components: Server Stub, Client
Stub, and Hyper Stub. The following paragraph will elabo-
rate on each of them respectively.

Server Stub. The Server Stub runs as a system service of the
Android Framework on the VM, and it tunnels the com-
munication between the Client Stub and the sensitive apps.
Specifically, it mainly focuses on two functionalities. First, it
communicates with Client Stub, including receiving and de-
crypting user input data from Client Stub (e.g., touch actions
and sensor readings), and encrypting output data (i.e., audio
and screen frames) and sending them to Client Stub. Second,
it communicates with the sensitive apps, including sending
the received input data to or gathering output data from the
sensitive app. Since the sensitive apps have no awareness of
the Server Stub’s existence, they only communicate with the
underlying Android framework for I/O like they usually
do. Therefore, to make the communication transparent, we
create several virtual devices in the VM and feed the data
from the Server Stub to these virtualized devices. In this way,
the above-lying sensitive apps can transparently consume
data from the mobile device as if the data were generated
locally.

Client Stub. As the figure shows, Client Stub includes two
parts. The upper part, we call it Client Stub App, is a
standard mobile app running at the App level. Client Stub
App provides users a graphic portal to access sensitive apps
running on the server. Through Client Stub App, users can
connect to the remote server via traditional methods, such
as VPN. After establishing the network connection between
the Client Stub and the Server Stub, the client screen switches
to show the decrypted frames transmitted from the VM, and
users can interact with Client Stub App to control sensitive
apps, just like a VNC or remote desktop app. The lower
part, we call it Client Stub Daemon, are two typical Android
Daemon processes which manage input and output data,
respectively. Client Stub Daemon runs in the system level
and plays a messenger role between Client Stub App and
Hyper Stub since they cannot directly transfer messages to
each other. The channel setup between Client Stub App and
Client Stub Daemon is relatively easy. They can pass data
to each other via Android API such as “Intent”. However,
the communications between Client Stub Daemon and Hyper
Stub are very challenging due to no API between them. To
solve this problem, VTRUST creates several virtual devices
in Mobile OS and use them as channels to bridge Client Stub
Daemon and Hyper Stub.

Hyper Stub. Hyper Stub is a set of processes running in
the hyper level. As a part of TEE, Hyper Stub must be
designed to process critical tasks only to minimize TEE size.
In VTRUST, Hyper Stub only focuses on encrypt/decrypt and
communication. Specifically, Hyper Stub encrypts input data
and forwards it to Client Stub Daemon by writing them into
corresponding virtual devices, and decrypt the output data
received from Client Stub Daemon before sending them to
hardware such that users can view the frames on the screen.

Client Stub Hyper Stub Server Stub

Initiate a session

Send certh and randh Forward certh and randh

Verify Hyper Stub's identity
Extract pubkeyh

Send certs and rands

Forward certs and rands

Verify Server Stub's identity
Extract pubkeys

Send randsecret (Encrypted)

Generate a keysess Generate a keysess

Send randsecret (Encrypted)

Fig. 3: The detail process of handshake.

We choose to use a Client Stub running on the mobile OS
instead of the Hyper Stub as the I/O relay is mainly due to
the following reasons. First, we aim to provide users with a
minimum experience change. Having a Client Stub enables
users to interact with sensitive apps running on the remote
server in the same way as they are local. Second, we can rely
on the Guest OS to provide a rich runtime environment for
Client Stub. Third, the Hyper Stub can focus on the security
part; it only needs to handle encryption/decryption and
provide a virtual environment for the guest OS.

4 IMPLEMENTATION

In this section, we share the implementation details of
VTRUST. Most of our implementation lies in how we trans-
parently handle the I/O for sensitive apps. Therefore, we
first describe how we handle the secure communication in
§4.1, then the output in §4.2, and the input in §4.3.

4.1 Secure Communication

Secure communication between Hyper Stub and Server Stub
is the foundation of VTRUST. As mentioned in the previ-
ous section, VTRUST encrypts all sensitive data that goes
through mobile OS and does the decryption either in Hyper
Stub or in Server Stub. The Client Stub only forwards data
rather than processes it. Though this solution can effectively
protect our sensitive data against a compromised mobile OS,
it brings the following challenges to our system.
(I) How to build a new session? In VTRUST, the user

can decide when to connect to or disconnect from
sensitive apps by operating the portal provided by
Client Stub App. When Client Stub receives a signal that
the user wants to initiate a secure connection, it will
assist Hyper Stub and Server Stub to handshake before
they transmit data between each other. VTRUST uses
an asymmetric encryption method for the handshaking
process. Figure 3 shows the detailed steps. In a typical
handshake, Client Stub first notifies Hyper Stub, which
returns certh, a certificate of Hyper Stub, as well as
randh, a random number. Client Stub then sends certh
and randh to Server Stub, which verifies the identity

Authorized licensed use limited to: William & Mary. Downloaded on September 30,2022 at 22:34:05 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3152074, IEEE
Transactions on Computers

TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX, 20XX 5

Fig. 4: The format of a typical packet in VTRUST.

of Hyper Stub via certh. Once the verification succeeds,
Server Stub extracts pubkeyh, the public key of Hyper
Stub, from certh, and send its own certificate, certs,
and a random number, rands, to Hyper Stub. Similarly,
Hyper Stub verifies Server Stub’s identity and extracts its
public key pubkeys. Finally, Hyper Stub sends a secret,
randsecret, encrypted with pubkeys, to Server Stub. With
randh, rands and randsecret, Hyper Stub and Server
Stub can both derive the same key, keysess, and use it to
exchange sensitive data. Note that both certificates are
provided by the administrator and are not accessible by
the attackers.

(II) How to secure data transferring? Once both Server
Stub and Hyper Stub obtain keysess in the handshaking
stage, they can use it to encrypt data to be transferred
with symmetric encryption algorithms for better perfor-
mance. However, the encrypted data must go through
an untrusted OS, which might tamper or discard the en-
crypted data, or even replace it with previous encrypted
data. To solve this problem, we deliberately design the
format of the transferring packet. As Figure 4 shows,
each packet includes four segments. The first segment
is the data body. The second and the third segments
are a sequence number and a timestamp, respectively,
which are utilized to defend against replay attacks. The
last segment is a checksum, which is used for integrity
check. Algorithm 1 presents how an encrypted packet
is processed. Furthermore, VTRUST has a session time-
out rule. For instance, if the timeout is set to 5 minutes,
Hyper Stub and Server Stub need to restart a new session
once the session has been idling for 5 minutes.

(III) How to separate sensitive from non-sensitive data?
VTRUST allows users to run both local apps and sensi-
tive apps simultaneously to maximize user experience.
This means Hyper Stub needs to know where the re-
ceived data is from. To achieve this goal, we create a
set of separated virtual devices, called secure devices,
in Mobile OS for each sensitive input/output source.
Secure devices are only used for exchanging sensitive
data and can only be accessed by Client Stub Daemon
at the system level. As the result, Hyper Stub can easily
capture sensitive data and non-sensitive data by access-
ing secure devices and ordinary devices, respectively.

(IV) How to switch between local apps and sensitive apps?
In VTRUST, the users can switch between a sensitive
app and a local app the same way as they do between
local apps, e.g., by pressing the “Overview/Recent”
button, though they lead to different operations in the
low level. When the user switches from a sensitive
app to a local app, VTRUST needs to exit Shield Mode
immediately such that the local app can receive in-
put from the hardware and display its frames on the
screen. To support this functionality, We override the

ALGORITHM 1: Packet Decrypting

encrypted← getReceivedPacket()
isValid← FALSE
status, decrypted← decryptPacketMethod(encrypted)
if status = TRUE then

body, seq num, timestamp, checksum←
parseDataMethod(encrypted)

if seq num > current seq then
if getCurrentTimestamp() − timestamp ≤

THRESHOLD then
body checksum←

calculateChecksumMethod(body)
if body checksum = checksum then

isValid← TRUE
end

end
end

end
if isValid = FALSE then

reportAndLogThisIncident()
return ERROR

end
else

current seq← seq num
return body

end

onPause() method of Client Stub App, which is invoked
during the switching process. In this method, Client
Stub App temporarily stops receiving the output data
from Server Stub, and notifies Hyper Stub to exit Shield
Mode. Similarly, we override onResume() method of
Client Stub App, allowing VTRUST to re-enter Shield
Mode and resume data transferring between Server
Stub and Hyper Stub when the user switches back to
a sensitive app from a local app. Note that VTRUST
does not require Server Stub and Hyper Stub to restart a
new connection. They can resume the previous session
unless it is expired.

4.2 Processing the Output

The typical output of mobile apps is screen frames [29]
and audios. Currently, we only implement the screen frame
output for its prevalence since almost all apps desire screen
display. Although VTRUST does not support audio output
at this stage, we can easily add this feature into our system
since the audio output can follow a similar procedure as
screen frames. The process of how screen frames are pro-
cessed in VTRUST is illustrated in Figure 5. In a typical
Android system, all screen updates will eventually be sent
to the frame buffer for screen rendering. Therefore, when a
session starts, the Server Stub periodically fetches plaintext
frames from the frame buffer located in the OS kernel,
compresses them and converts them into a packet in the
format described in Figure 4. Next, Server Stub encrypts
these packets and sends them to the Client Stub on the
mobile device through the network. On the mobile device
side, the Client Stub forwards received packets to Hyper
Stub. When detecting a new incoming packet, Hyper Stub
decrypts it with keysess, verify the integrity of decoded
data, decompresses the data body to a frame, and sends
the restored frame to the screen. During the implementation

Authorized licensed use limited to: William & Mary. Downloaded on September 30,2022 at 22:34:05 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3152074, IEEE
Transactions on Computers

TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX, 20XX 6

Fig. 5: Screen Frames Processing in VTRUST.

of the frame data transmission, several critical issues need
to be addressed:

• Encryption Algorithm. A fast encryption algorithm is
essential for VTRUST since it aims to provide a satis-
factory user experience. In our implementation, we use
the AES-128 block cipher [30] with GCM mode. The
main reason is that AES is a mature and widely adopted
encryption technique. Furthermore, AES-GCM is writ-
ten in parallel and has lower encryption overhead than
other AES variants (like AES-CBC). According to our
evaluation in §5.1, AES-GCM is the most efficient en-
cryption algorithms in our evaluation.

• Data Compression. Low latency is critical to VTRUST.
To provide a decent frame rate even under non-ideal
network conditions, we need to avoid sending huge
frame data from the server to the mobile device. Thus,
it is important to reduce the transmission data size in
real-time. Fortunately, after analyzing the frames, we
have found that many apps do not change their GUI
significantly. As the result, we design a simple compres-
sion algorithm, which calculates the difference between
two neighboring frames using exclusive-or operation,
and then we use LZ4 [31] algorithm to compress the
outcome to minimize the data load.

• Frame Data Integrity. The integrity check is crucial to
VTRUST. An encrypted frame will never be processed
by the Hyper Stub unless it passes the integrity check.
For instance, if an encrypted frame is modified in
mobile OS by an attacker, it will fail to pass the integrity
check, and Hyper Stub will report this incident to Server
Stub, which eventually reports to the administrator for
further inspection. In VTRUST, we use SHA-256 [32] for
integrity check.

4.3 Processing the Input
Mobile devices typically have two types of input: touch-
screen input and sensor input. In the following, we describe
how VTRUST handles them correspondingly.

Touchscreen. The touchscreen data includes the user’s raw
touch actions on the touch screen, such as PRESS/RELEASE,
x, y. It flows in the opposite direction of the frame data,
except that the touch screen data does not need compres-
sion/decompression due to its small size. Specifically, in
Shield Mode, the Hyper Stub will encrypt the touchscreen
data from the hardware and then feeds the encrypted data
to the secure virtual devices supporting the local mobile

OS. The ciphertext will be forwarded to the Client Stub,
and delivered to the Server Stub, which further decrypts and
adjusts the data field in the event and injects the event di-
rectly to the upper-lying Android system through a system
API (i.e., InputManager.injectInputEvent). In most
cases, touch actions from mobile are consumed by sensitive
apps. One exception is the reserved “Overview/Recent”
button. When the user presses this button, which is ap-
parently not for sensitive apps themselves, Server Stub will
capture this signal and notify Client Stub Daemon to trigger
“Overview/Recent” button’s event in mobile OS. As the
result, the user will switch to local apps and exit Shield
Mode.

Similar to the screen frames, the touchscreen input
must be encrypted in Hyper Stub. In our implementation,
we leverage the Prefix Cipher [33], a well-known Format-
Preserving Encryption (FPE) scheme based on block ci-
phers, to encrypt the touchscreen data with the data size
being preserved. A Prefix Cipher algorithm is proven to
be as strong as the block cipher [33]. We use a standard
AES encryption to construct the Prefix Cipher algorithm.
Specifically, the ciphertext of our encryption algorithm is
generated by applying AES encryption to the plaintext over
a key and then taking the order of the AES ciphertext as
the ciphertext of our algorithm. Unlike other encryption
algorithms, a mapping table is maintained to decrypt the
ciphertext since this process is not invertible. We choose
Prefix Cipher over other FPE algorithms because of its high
efficiency. It requires only one table lookup to decrypt the
message, which is necessary when the data volume is high.

Sensors. In the mobile device, sensor data offers input from
multiple dimensions and provides richer functionalities to
mobile apps. Though the sensors bring a wealth of advan-
tages, it has been shown that sensor data can be leveraged
to launch various attacks (e.g., [23], [24], [25], [26], [34]).
Therefore, VTRUST has to secure the sensor input.

However, unlike touchscreen data exclusively consumed
by one app, sensor data is shared among all apps requesting
it. In Shield Mode, local apps cannot receive any sensitive
sensor data since VTRUST encrypts and redirects these sen-
sitive input to secure devices for data protection; that is,
local apps can only receive non-sensitive sensor data. If
we blindly forward all sensor data to Server Stub in Shield
Mode, it will not only increase the computation/network
overhead of VTRUST, but also affect local apps using sensor
data that are not requested by the sensitive app at the same

Authorized licensed use limited to: William & Mary. Downloaded on September 30,2022 at 22:34:05 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3152074, IEEE
Transactions on Computers

TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX, 20XX 7

time, leading to a reduced user experience. To mitigate this
effect, we choose only to encrypt and transmit the sensor
data requested by the sensitive apps. When sensitive apps
no longer need certain sensors, VTRUST will release them
immediately such that local apps may use them.

Fig. 6: Sensors Input Processing in VTRUST.

The detailed steps of how VTRUST handles sensor input
is illustrated in Figure 6. Step ① The sensitive app requests
a type of sensor data, such as the accelerometer data, and
register a listener to the sensor manager in the Android
system of the VM. Step ② Our modified sensor manager
notifies the Server Stub of the request from the sensitive app.
Step ③-Step ④ The Server Stub sends the requested sensor
type to Hyper Stub. Upon receiving the request, Hyper Stub
will encrypt the sensor data and redirect it from the ordinary
virtual device to the corresponding secure device. Step ⑤-
Step ⑦ The data is relayed back to the sensitive app through
Client Stub, Server Stub, and the sensor input system. Finally,
the sensitive app consumes these sensor data.

Unlike the touchscreen with an existing system API to
input the data, injecting the sensor data is more challenging.
Fortunately, we accomplish this process by leveraging the
Hardware Abstraction Layer (HAL) [35] in the Android
system. In particular, HAL lies between the Android frame-
work and the Linux kernel, which encapsulates the raw data
from the device drivers into events for consumption from
the above Android framework services, where these events
are further delivered to apps. In light of this, we implement
a special sensor HAL module in the Android system on
the VM to handle all kinds of sensor input without any
modification to the upper layer apps and services. Unlike
normal HAL modules, which receive data from drivers in
the Linux kernel, our sensor HAL modules communicate
with the Server Stub to accept input data through an internal
socket channel.

Fig. 7: Comparison of different encryption algorithms.

5 EVALUATION

In this section, we present the evaluation results. Specif-
ically, we evaluated the performance of VTRUST using
an Arndale development board [36] as the mobile device
since it adopts Exynos 5250 SoC, which supports hardware
virtualization. Also, the Exynos 5250 SoC has a Samsung
Exynos 5 dual core processor running at 2.0GHz with 2GB
of RAM. Meanwhile, the development board runs a light-
weight Linux as the host OS and establishes its virtualiza-
tion environment using KVM and QEMU [37]. KVM and
QEMU provide a hardware abstraction layer, upon which
an Android 4.1.1 is installed as the guest OS. The remote
server used in our experiments is a desktop server with
4.2GHz Intel i7-6700K CPU, 32GB RAM, and 4TB disk.
In addition, the development board is equipped with an
external accelerometer [38] and 7 inch touchscreen [39]. As
for the server, we run Android-x86 VMs on the remote
server by using the VMware workstation hypervisor.

In our experiment, we first performed the microscopic
measurement of VTRUST that includes the overhead from
the encryption and decryption (§5.1), the compression and
decompression (§5.2), and then at the macroscopic in terms
of throughput (§5.3) and the responsiveness (§5.4).

5.1 Encryption and Decryption

The encryption algorithm is critical for the performance of
VTRUST. To ensure optimal user experience, we need to
carefully choose the specific encryption algorithm. For input
encryption, as we use a mapping table on the input value,
the overhead can be negligible due to the simplicity of the
algorithm and moderate data size. On the other hand, the
output encryption and decryption procedures can introduce
significant latency as the data being encrypted are screen
frames, which are normally quite large.

In our experiment, the guest OS on the mobile device has
a 640x480 resolution with RGB-565-color encoding, giving a
frame size of 614, 400 bytes. We evaluate five encryption
algorithms, which are DES, IDEA, Blowfish, AES-128 with
CBC mode, and AES-128 with GCM mode. For each of the
algorithm, we transmit 100 frames and record the aver-
age delay introduced by encryption/decryption procedures.
The results are plotted in Figure 7.

Our experiments show that the five algorithms have sig-
nificant difference regarding computation overhead, which
is stemmed from different algorithm complexity. Compared
to other 4 conventional algorithms, AES-128 with GCM

Authorized licensed use limited to: William & Mary. Downloaded on September 30,2022 at 22:34:05 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3152074, IEEE
Transactions on Computers

TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX, 20XX 8

Fig. 8: Compression ratios.

mode has lower computation overhead. Another observa-
tion is that the encryption is faster than the decryption
for each of the five algorithms, due to the following two
reasons: (1) the server where the encryption is conducted is
more powerful than the mobile device where the decryption
is done; and (2) the server equipped with Intel processor can
take advantage of AES-NI [40], which introduced a set of
new AES (Advanced Encryption Standard) instructions for
hardware acceleration.

5.2 Compression and Decompression

In this experiment, we measured the compression ratios of
our compression algorithm for different apps.

To cover more use cases, we deliberately select 7 typical
mobile apps from different genres in our evaluation (as seen
in Figure 8). In our experiment, we leverage the MobiPlay
tool [41] to generate the workload. This tool records a user’s
interaction on the tested app as a sequence of high level
events and can then replay these recorded events at a later
time. To record the initial workload, we manually operate
each app for 60 seconds. For example, when testing Chrome,
we scroll a web page up and down to emulate user activities
when browsing. Note that the same workload is used for the
throughput and responsiveness evaluations in §5.3 and §5.4.

Figure 8 illustrates the box-plots of the compression
ratios for the 7 apps. As shown in the figure, apps can get
decent compression ratio with our method. Some apps, like
Gplay, Notes, and Kids Doodle, have compression ratio
greater than 10.

5.3 Throughput

Here we evaluate the frame throughput of VTRUST. The
frame throughput is defined as the number of frames that
are transmitted from remote server and shown on the
mobile device screen per second. Frame throughput is an
important factor that directly impacts the user experience.
For instance, a low frame throughput may lead to jagged
motions on the mobile device screen, which is considered as
poor user experience. As the frame throughput is mainly
affected by encryption overhead, compression ratio, and
network bandwidth, we tune our experimental settings with
3 different network bandwidth: (a) 100 Mbps, (b) 25Mbps,
and (c) 10Mbps. For each network bandwidth, we measure

the frame throughput in uncompressed + encrypted and com-
pressed + encrypted forms using the same apps and replay
tools mentioned in §5.2.

Figure 9 shows that the throughput of uncompressed
frame is significantly slower than compressed frame under
condition (b) and (c) . With the help of our compression
technique, VTRUST can maintain a relatively high through-
put even under a low bandwidth condition. Meanwhile, we
can find that apps with lower compression rate usually have
poor FPS. Although the FPS achieved by VTRUST is not
comparable to local execution, we consider it is acceptable
for the security-sensitive applications with the security gain.

5.4 Responsiveness

Besides the throughput, the response time is also critical in
VTRUST since long response time significantly hinders user
experience, causing many usability issues. In light of this,
we conducted an experiment to measure the input latency
and output latency of VTRUST.

The input latency is defined as the duration from the
time when data, such as sensor data, is received in hy-
pervisor to the moment when it is received by sensitive
app. To evaluate the input latency, we further generate 500
touchscreen events (by pressing touchscreen randomly) in
addition to our initial workload on the client device under
the 3 scenarios. Note that the sensor data is very similar
to touchscreen data in size, and evaluating the touchscreen
is representative for all input data. Figure 10(a) illustrates
the results. Since each touchscreen event is very small in
size, the network latency introduced is small, which gives
us a total input latency of less than 30ms. Such a latency is
acceptable for most users.

Similarly, we measure the output latency, which is the
duration from the time when the frame is written into
the frame buffer to the moment when it is shown on the
mobile screen, and the results are shown in Figure 10(b).
The output is from the Chrome workload, which has the
largest output size after compression, and thus the largest
latency. As expected, the latency in network transmission is
higher than the input latency, varying from 90ms to 160ms
in average under different network conditions. This latency
is noticeable. However, for most sensitive apps, it is still
usable and fairly responsive.

6 SECURITY ANALYSIS

Having presented the design and implementation of
VTRUST, next, we discuss how and why our system can
defend against various attacks and keep the sensitive apps
secured under untrusted mobile operating systems.

As stated in the threat model in §2.2, an attacker can
access or modify all resources that the local mobile OS is
entitled to. In addition, she can eavesdrop or manipulate
the network connections between the mobile device and
the server. But, the attacker cannot read the memory or
storage of sensitive apps, as the apps are running on another
machine, which is out of the attacker’s control. In addi-
tion, the attacker is also isolated from the critical resource
of the hypervisor thanks to the virtualization technology
on ARM. Consequently, VTRUST’s architecture intrinsically

Authorized licensed use limited to: William & Mary. Downloaded on September 30,2022 at 22:34:05 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3152074, IEEE
Transactions on Computers

TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX, 20XX 9

Fig. 9: FPS of VTRUST output.

100 Mbps 25 Mbps 10 Mbps
0

5

10

15

20

25

30

35

40

La
te

nc
y

(m
s)

21.3 24.7 28.7
* Average Value

(a) Touchscreen latency

100 Mbps 25 Mbps 10 Mbps
0

50

100

150

200

250

300

La
te

nc
y

(m
s)

83.5 122.6 157.2
* Average Value

(b) Screen frame latency

Fig. 10: VTRUST responsiveness.

secures both the storage and the memory of sensitive data.
Therefore, the only attack interface of VTRUST is the I/O
data, which needs to go through the mobile OS controlled
by the attacker. In order to secure this part, VTRUST encrypts
all I/O data that the attacker can access so that the user can
securely access the sensitive app from their mobile device.

This paragraph lists several typical attacks targeting
mobile OS and explains how VTRUST protects the sensitive
apps.

1) Tampering. VTRUST relies on the mobile OS to forward
input and output data from remote VM to Hypervi-
sor. Hence, an attacker could tamer with the received
data before sending it to Hypervisor. For this type of
attack, VTRUST can easily detect it through integrity
check since the attacker does not have our keysess. Any
incoming data that failed passing integrity checking
will be discarded, and VTRUST will log this incident
for further analysis.

2) Replay. The client OS could replay old frames to the
Hypervisor. In this case, although the received data can
pass integrity check, VTRUST still can detect this type of
attack by checking its sequence number and timestamp.
If its sequence number is less than the current one or
the timestamp is too old, VTRUST will regard it as an
incident.

3) Fast Switching. The client OS may quickly switch
between the privileged app and a local app. In this
scenario, the attacker cannot get any frame or touch-
screen data. However, it is possible that the attacker

can infer the sensor data that has recently been used
by the sensitive app. When client OS switch to a local
app, since VTRUST only encrypt the sensor data when
a sensitive app is using it and switching will force
VTRUST to release the sensor. To mitigate this problem,
we can either rely on the administrator to set up rules
specifying which sensors are available to the local app
or implement a delay release strategy in which the
Hypervisor will only release this sensor after a certain
period of time, e.g., 5 minutes after VTRUST exits Shield
Mode.

4) Interrupting. The client OS might throw away the pack-
ets intended to the Hypervisor or VM. When this type
of attack occurs, VTRUST does not leak any information,
and the user will quickly notice this problem. Currently,
We rely on the user to report this incident.

7 LIMITATIONS AND FUTURE WORK

Limitations. VTRUST is still not perfect and it has a number
of limitations. First, the I/O encryption cannot fully protect
the sensor data. Persistent data such as GPS, temperature,
or light sensor data, can be easily inferred from local apps
since they do not get drastically changed. Instead, VTRUST
focuses on protecting transient sensor data (e.g., the gyro-
scope or the accelerometer), since these data has been used
in many side-channel attacks [34], [42].

Second, VTRUST transmits screen frames through the
network. The performance overhead, in terms of FPS, is
non-negligible, especially in the case that the screen content
changes rapidly. Therefore, high FPS demanding apps, such
as video-playing apps, may suffer from noticeable user
experience degradation. Though not ideal when running on
the server, these apps are normally considered non-sensitive
and should be locally installed to ensure high quality of
service. On the other hand, sensitive apps, such as banking
or email applications, are usually more static in display,
and VTRUST is able to provide a more satisfactory user
experience.

Third, in our current prototype implementation, the
VTRUST server runs on Android for X86, which cannot run
ARM-based apps. However, this limitation would no longer
exist in an ARM-based server. On the other hand, we also
note that more and more apps start to support X86 platform.

Authorized licensed use limited to: William & Mary. Downloaded on September 30,2022 at 22:34:05 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3152074, IEEE
Transactions on Computers

TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX, 20XX 10

Future Work. There are a number of avenues to improve
VTRUST. In addition to address the above limitations, we
can also work on improving its performance and security.

• Compression Overhead. Currently, VTRUST still incurs
less satisfactory compression ratio for apps that have
intensive output change, such as Youtube. However,
adopting stronger compression algorithms may intro-
duce longer delay. To reduce the time needed for com-
pression while maintain high compression ratio, we
can leverage hardware-assisted lossless compression
techniques, such as H.265 [43]. These techniques are
very efficient, we believe VTRUST could have a much
shorter latency and higher FPS with them.

• Advanced protection. We have mentioned that VTRUST
can be built on very strong security infrastructure on
the server side. However, there is still a limited number
of security infrastructures that protect Android system
due to the fact that most Android devices are too
resource-restrained to apply advanced security mea-
sures in the device itself. Interestingly, VTRUST opens
up new opportunities for adopting Android-specific
security products, e.g., Android framework level log-
ging and tracing systems, and more powerful data flow
tracking tools like TaintDroid [44], in our remote VMs.

8 RELATED WORK

Computation offloading approaches. Many projects [18],
[45], [46], [47], [48], [49], [50] seek to protect the sensitive
data with the assistance of a remote cloud. CleanOS [18]
monitors the usage of sensitive data and encrypts data that
are temporarily not used. To avoid the leak of encryption
key in case of device losses, CleanOS stores the encryption
keys in a trusted cloud and downloads them only when
necessary. TinMan [45] goes further along this direction. It
keeps track of the processes that access the sensitive data,
and migrates these processes to a highly-secured environ-
ment in the cloud for remote execution. When these pro-
cesses finish accessing sensitive data, they will be migrated
back to the mobile device. In this way, the sensitive data
is protected from the local untrusted OS. However, these
solutions all focus on protecting non-user-interactive data,
and cannot be applied to protect I/O data.

Systems C1 C2 C3 C4 C5 C6 C7 C8
CleanOS [18] ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗
TinMan [45] ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗

TrustZone [51] ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗
Overshadow [52] ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓

OSP [53] ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗
SGX [54] ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

VNC [20] ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓
VTRUST ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C1: Memory protection C2: I/O protection
C3: Storage protection C4: Easy management
C5: Supporting mobile device C6: Supporting legacy applications
C7: Securing data after device loss C8: Resource-rich

TABLE 1: Comparison with the related work.

TrustZone-based solutions. Trustzone was first introduced
in 2003 for ARM processors. As we have mentioned, this
technology aims to provide a deterministic protection mech-
anism to protect apps from the untrusted OS running in

the normal world. Many efforts [51], [55] take advantage of
this feature and save the SCC in the secure world. Processes
running in the normal world can only access the SCC by in-
voking a set of well-defined APIs. This design assumes that
the secure world is fully trusted. Unfortunately, in practice,
Trustzone is still vulnerable to attacks [56], especially when
more SCC is put into the secure world [57].

Hypervisor-based solutions. Some works [58] attempt to
enforce security policies and provide TEEs with the aid of a
hypervisor. Systems like Overshadow [52] and CHAOS [59]
aim to protect the whole process even when the OS is
malicious. However, these techniques are designed for the
PCs rather than the mobile systems, and they are also found
being vulnerable to newly identified attacks [60]. While
OSP [53] combines a hypervisor and TrustZone to pro-
vide an on-demand protection and secure I/O, it requires
modification of existing apps. Meanwhile, unlike VTRUST
that offers a centralized security management, OSP cannot
achieve this.

Other hardware-based solutions. Intel recently introduced
SGX [54] for app developers to protect their own sensitive
code and data using a hardware protected secure enclave, in
which the data remains protected even when the BIOS, vir-
tual machine monitor, operating system, and device drivers
are compromised. While SGX holds the greatest promises
for TEE, it has been mainly applied in cloud computing (e.g.,
SGXBOUNDS [61] for shielded execution and VC3 [62] for
secure analytics) and we have not witnessed how it can be
used to protect mobile apps.

Remote Execution Solutions. Many existing applications,
such as VNC [20], SVMP [21] and Rio [63], allow I/O or
hardware sharing between different devices. For example,
Rio enables two mobile devices to share their hardware
resources, such as the camera, or the speaker. Though
VTRUST and Rio provide similar functions, our system is
security-oriented and has a different implementation. One
key design of VTRUST is to securely transmit I/O data.

Summary. A summary of the comparison between VTRUST
and the existing closely related efforts can be found in Ta-
ble 1. We notice that VTRUST holds all of the capabili-
ties compared, and the most closely related system is the
VNC [20], especially from the user experience perspective.
However, with VNC, untrusted operating systems are still
able to view the I/O of the sensitive apps, which may open
up attack opportunities for attackers.

9 CONCLUSION

We have presented VTRUST, a novel software-based
trusted execution environment for mobile apps based
on a server and a hypervisor. The key insight is to
leverage virtualization in both mobile devices and servers
to construct a secure execution environment across two
trusted parties: the hypervisor on a mobile device and
a remote server. VTRUST ensures no exposure of data in
memory, storage, and I/O by delegating the mobile app
computation and storage to the remote server and securing
the I/O channel via encryption. As such, VTRUST protects
the execution of sensitive apps from an untrusted operating

Authorized licensed use limited to: William & Mary. Downloaded on September 30,2022 at 22:34:05 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3152074, IEEE
Transactions on Computers

TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX, 20XX 11

system. We implement a prototype of VTRUST and conduct
extensive evaluations. Our experimental results show that
VTRUST introduces little impact on user experience and the
performance of security-sensitive apps.

ACKNOWLEDGEMENT
This project was supported in part by US National
Science Foundation grant CNS-1816399 . This work was
also supported in part by the Commonwealth Cyber
Initiative, an investment in the advancement of cyber
R&D, innovation and workforce development. For more
information about CCI, visit cyberinitiative.org.

REFERENCES

[1] H. Leonard, “There will soon be one smartphone for every
five people in the world,” http://www.businessinsider.com/
15-billion-smartphones-in-the-world-22013-2, February 2013.

[2] “Mobile marketing statistics compilation,” http:
//www.smartinsights.com/mobile-marketing/
mobile-marketing-analytics/mobile-marketing-statistics/, Jul
2015.

[3] “Ibm mobile solutions drive digital innovation,” http://www.
ibm.com/mobile, September 2017.

[4] A. Nerminathan, A. Harrison, M. Phelps, K. M. Scott, and
S. Alexander, “Doctors’ use of mobile devices in the clinical
setting: a mixed methods study,” Internal medicine journal, vol. 47,
no. 3, pp. 291–298, 2017.

[5] “Mobile security essential healthcare provider
priority,” https://healthitsecurity.com/news/
mobile-security-essential-healthcare-provider-priority, 2017.

[6] “U.s. military phones: Android is system
of choice,” http://www.zdnet.com/article/
us-military-phones-android-is-system-of-choice/, February
2012.

[7] “U.s. government, military to get secure android
phones,” http://www.cnn.com/2012/02/03/tech/mobile/
government-android-phones/index.html, February 2012.

[8] “Digital government - bring your own device,”
https://obamawhitehouse.archives.gov/digitalgov/
bring-your-own-device, August 2012.

[9] “Financial services rely on byod – how do they stay secure?”
https://www.forbes.com/sites/louiscolumbus/2019/10/31/
financial-services-rely-on-byod--how-do-they-stay-secure/?sh=
49c9d8447ace, 2019.

[10] “Mobile advertising trojans exploiting super-user rights became
the top mobile malware threat in 2016,” https://www.kaspersky.
com/about/press-releases/2017 mobile-advertising-trojans, Jan-
uary 2017.

[11] “One kind of android smartphone ransomware is behind a mas-
sive rise in malicious software,” http://www.zdnet.com/article/,
June 2017.

[12] “Advanced persistent threats now hitting mobile devices,”
https://www.networkworld.com/article/2173639/wireless/
advanced-persistent-threats-now-hitting-mobile-devices.html,
December 2013.

[13] J. Bickford, R. O’Hare, A. Baliga, V. Ganapathy, and L. Iftode,
“Rootkits on smart phones: Attacks and implications,” 2009.

[14] “Hackers are using android malware to spy on israeli
military personnel,” https://thehackernews.com/2017/02/
android-malware-israeli-military.html, February 2017.

[15] “Why frame rate matters,” https://gizmodo.com/
why-frame-rate-matters-1675153198, Jan 2015.

[16] S. M. Diesburg and A.-I. A. Wang, “A survey of confidential data
storage and deletion methods,” ACM Computing Surveys (CSUR),
vol. 43, no. 1, p. 2, 2010.

[17] “Encrypting file system in windows xp and windows server
2003,” https://technet.microsoft.com/en-us/enus/library/
bb457065.aspx, 2003.

[18] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu, and
N. Sarda, “Cleanos: Limiting mobile data exposure with idle
eviction.” in OSDI, vol. 12, 2012, pp. 77–91.

[19] R. Geambasu, J. P. John, S. D. Gribble, T. Kohno, and H. M.
Levy, “Keypad: an auditing file system for theft-prone devices,”
in Proceedings of the sixth conference on Computer systems. ACM,
2011, pp. 1–16.

[20] “Virtual network computing,” https://en.wikipedia.org/wiki/
Virtual Network Computing, 2016.

[21] “Virtual smart phones in the cloud,” https://svmp.github.io/,
November 2014.

[22] C.-C. Lin, H. Li, X. Zhou, and X. Wang, “Screenmilker: How to
milk your android screen for secrets,” in 21st Annual Network
and Distributed System Security Symposium (NDSS), San Diego,
California, USA, 2014.

[23] L. Cai and H. Chen, “Touchlogger: Inferring keystrokes on touch
screen from smartphone motion.” HotSec, vol. 11, pp. 9–9, 2011.

[24] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring user inputs
on smartphone touchscreens using on-board motion sensors,” in
Proceedings of the fifth ACM conference on Security and Privacy in
Wireless and Mobile Networks. ACM, 2012, pp. 113–124.

[25] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “Accessory:
password inference using accelerometers on smartphones,” in
Proceedings of the Twelfth Workshop on Mobile Computing Systems
& Applications. ACM, 2012, p. 9.

[26] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury,
“Tapprints: your finger taps have fingerprints,” in Proceedings of
the 10th international conference on Mobile systems, applications, and
services. ACm, 2012, pp. 323–336.

[27] “Instaagent app pulled after ’harvesting passwords’,” https://
www.bbc.com/news/34787402, Nov 2015.

[28] V. O. Systems, “Kvm on arm performance,” http://www.
virtualopensystems.com/en/products/kvm-performance/,
November 2014.

[29] T. Li, C. An, X. Xiao, A. T. Campbell, and X. Zhou, “Real-time
screen-camera communication behind any scene,” in Proceedings
of the 13th Annual International Conference on Mobile Systems, Appli-
cations, and Services, 2015, pp. 197–211.

[30] N.-F. Standard, “Announcing the advanced encryption standard
(aes),” Federal Information Processing Standards Publication, vol. 197,
pp. 1–51, 2001.

[31] “Lz4,” https://lz4.github.io/lz4/, Jul 2016.
[32] H. Gilbert and H. Handschuh, “Security analysis of sha-256 and

sisters,” in International workshop on selected areas in cryptography.
Springer, 2003, pp. 175–193.

[33] J. Black and P. Rogaway, “Ciphers with arbitrary finite domains,”
in Cryptographers’ Track at the RSA Conference. Springer, 2002, pp.
114–130.

[34] E. Novak, Y. Tang, Z. Hao, Q. Li, and Y. Zhang, “Physical media
covert channels on smart mobile devices,” in Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing. ACM, 2015, pp. 367–378.

[35] “Android hardware abstraction layer documentation,” https://
source.android.com/devices/halref/index.html, Feburary 2015.

[36] Samsung, “Arndale board,” http://www.arndaleboard.org/
wiki/index.php/Main Page, November 2014.

[37] V. O. Systems, “Kvm virtualization on arndale development
board,” http://www.virtualopensystems.com/en/solutions/
guides/kvm-virtualization-on-arndale/, November 2014.

[38] “Serial accelerometer dongle,” https://www.sparkfun.com/
products/retired/10537, November 2014.

[39] “Raspberry pi touch display,” https://www.raspberrypi.org/
products/raspberry-pi-touch-display/, November 2016.

[40] “Introduction to intel® aes-ni and intel® se-
cure key instructions,” https://software.intel.
com/content/www/us/en/develop/articles/
introduction-to-intel-aes-ni-and-intel-secure-key-instructions.
html, Jul 2010.

[41] Z. Qin, Y. Tang, E. Novak, and Q. Li, “Mobiplay: A remote
execution based record-and-replay tool for mobile applications,”
in Proceedings of the 38th International Conference on Software Engi-
neering. ACM, 2016, pp. 571–582.

[42] Y. Michalevsky, D. Boneh, and G. Nakibly, “Gyrophone: Recogniz-
ing speech from gyroscope signals.” in USENIX Security, 2014, pp.
1053–1067.

[43] “High efficiency video coding,” https://en.wikipedia.org/wiki/
High Efficiency Video Coding, Jul 2016.

[44] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smart-

Authorized licensed use limited to: William & Mary. Downloaded on September 30,2022 at 22:34:05 UTC from IEEE Xplore. Restrictions apply.

http://www.businessinsider.com/15-billion-smartphones-in-the-world-22013-2
http://www.businessinsider.com/15-billion-smartphones-in-the-world-22013-2
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://www.ibm.com/mobile
http://www.ibm.com/mobile
https://healthitsecurity.com/news/mobile-security-essential-healthcare-provider-priority
https://healthitsecurity.com/news/mobile-security-essential-healthcare-provider-priority
http://www.zdnet.com/article/us-military-phones-android-is-system-of-choice/
http://www.zdnet.com/article/us-military-phones-android-is-system-of-choice/
http://www.cnn.com/2012/02/03/tech/mobile/government-android-phones/index.html
http://www.cnn.com/2012/02/03/tech/mobile/government-android-phones/index.html
https://obamawhitehouse.archives.gov/digitalgov/bring-your-own-device
https://obamawhitehouse.archives.gov/digitalgov/bring-your-own-device
https://www.forbes.com/sites/louiscolumbus/2019/10/31/financial-services-rely-on-byod--how-do-they-stay-secure/?sh=49c9d8447ace
https://www.forbes.com/sites/louiscolumbus/2019/10/31/financial-services-rely-on-byod--how-do-they-stay-secure/?sh=49c9d8447ace
https://www.forbes.com/sites/louiscolumbus/2019/10/31/financial-services-rely-on-byod--how-do-they-stay-secure/?sh=49c9d8447ace
https://www.kaspersky.com/about/press-releases/2017_mobile-advertising-trojans
https://www.kaspersky.com/about/press-releases/2017_mobile-advertising-trojans
http://www.zdnet.com/article/
https://www.networkworld.com/article/2173639/wireless/advanced-persistent-threats-now-hitting-mobile-devices.html
https://www.networkworld.com/article/2173639/wireless/advanced-persistent-threats-now-hitting-mobile-devices.html
https://thehackernews.com/2017/02/android-malware-israeli-military.html
https://thehackernews.com/2017/02/android-malware-israeli-military.html
https://gizmodo.com/why-frame-rate-matters-1675153198
https://gizmodo.com/why-frame-rate-matters-1675153198
https://technet.microsoft.com/en-us/enus/library/bb457065.aspx
https://technet.microsoft.com/en-us/enus/library/bb457065.aspx
https://en.wikipedia.org/wiki/Virtual_Network_Computing
https://en.wikipedia.org/wiki/Virtual_Network_Computing
https://svmp.github.io/
https://www.bbc.com/news/34787402
https://www.bbc.com/news/34787402
http://www.virtualopensystems.com/en/products/kvm-performance/
http://www.virtualopensystems.com/en/products/kvm-performance/
https://lz4.github.io/lz4/
https://source.android.com/devices/halref/index.html
https://source.android.com/devices/halref/index.html
http://www.arndaleboard.org/wiki/index.php/Main_Page
http://www.arndaleboard.org/wiki/index.php/Main_Page
http://www.virtualopensystems.com/en/solutions/guides/kvm-virtualization-on-arndale/
http://www.virtualopensystems.com/en/solutions/guides/kvm-virtualization-on-arndale/
https://www.sparkfun.com/products/retired/10537
https://www.sparkfun.com/products/retired/10537
https://www.raspberrypi.org/products/raspberry-pi-touch-display/
https://www.raspberrypi.org/products/raspberry-pi-touch-display/
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-aes-ni-and-intel-secure-key-instructions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-aes-ni-and-intel-secure-key-instructions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-aes-ni-and-intel-secure-key-instructions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-aes-ni-and-intel-secure-key-instructions.html
https://en.wikipedia.org/wiki/High_Efficiency_Video_Coding
https://en.wikipedia.org/wiki/High_Efficiency_Video_Coding

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3152074, IEEE
Transactions on Computers

TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX, 20XX 12

phones,” ACM Transactions on Computer Systems (TOCS), vol. 32,
no. 2, p. 5, 2014.

[45] Y. Xia, Y. Liu, C. Tan, M. Ma, H. Guan, B. Zang, and
H. Chen, “Tinman: Eliminating confidential mobile data exposure
with security oriented offloading,” in Proceedings of the Tenth
European Conference on Computer Systems, ser. EuroSys ’15. New
York, NY, USA: ACM, 2015, pp. 27:1–27:16. [Online]. Available:
http://doi.acm.org/10.1145/2741948.2741977

[46] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer
with code offload,” in MobiSys ’10, 2010.

[47] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“Clonecloud: elastic execution between mobile device and cloud,”
in Proceedings of the sixth conference on Computer systems. ACM,
2011, pp. 301–314.

[48] R. Kemp, N. Palmer, T. Kielmann, and H. E. Bal, “Cuckoo: A com-
putation offloading framework for smartphones.” in MobiCASE.
Springer, 2010, pp. 59–79.

[49] Y. Tang, Y. Li, Q. Li, K. Sun, H. Wang, and Z. Qin, “User input
enrichment via sensing devices,” Computer Networks, vol. 196, p.
108262, 2021.

[50] A. Bandi and J. A. Hurtado, “Big data streaming architecture
for edge computing using kafka and rockset,” in 2021 5th Inter-
national Conference on Computing Methodologies and Communication
(ICCMC). IEEE, 2021, pp. 323–329.

[51] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using arm trustzone
to build a trusted language runtime for mobile applications,” in
ASPLOS ’14, 2014.

[52] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-
spurger, D. Boneh, J. Dwoskin, and D. R. Ports, “Overshadow:
A virtualization-based approach to retrofitting protection in com-
modity operating systems,” in ASPLOS ’08, 2008.

[53] Y. Cho, J.-B. Shin, D. Kwon, M. Ham, Y. Kim, and Y. Paek,
“Hardware-assisted on-demand hypervisor activation for efficient
security critical code execution on mobile devices.” in USENIX
Annual Technical Conference, 2016, pp. 565–578.

[54] “Intel® software guard extensions,” https://software.intel.com/
en-us/sgx, Jan 2017.

[55] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh,
J. Ma, and W. Shen, “Hypervision across worlds: Real-time kernel
protection from the arm trustzone secure world,” in Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2014, pp. 90–102.

[56] Y. Chen, Y. Zhang, Z. Wang, and T. Wei, “Downgrade attack on
trustzone,” arXiv preprint arXiv:1707.05082, 2017.

[57] S. C. Misra and V. C. Bhavsar, “Relationships between selected
software measures and latent bug-density: Guidelines for improv-
ing quality,” in International Conference on Computational Science and
Its Applications. Springer, 2003, pp. 724–732.

[58] E. Bugnion, J. Nieh, and D. Tsafrir, “Hardware and software sup-
port for virtualization,” Synthesis Lectures on Computer Architecture,
vol. 12, no. 1, pp. 1–206, 2017.

[59] H. Chen, F. Zhang, C. Chen, Z. Yang, R. Chen, B. Zang, and
W. Mao, “Tamper-resistant execution in an untrusted operating
system using a virtual machine monitor,” 2007.

[60] Y. Cheng, X. Ding, and R. Deng, “Appshield: Protecting applica-
tions against untrusted operating system,” Singaport Management
University Technical Report, SMU-SIS-13, vol. 101, 2013.

[61] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia,
P. Felber, and C. Fetzer, “Sgxbounds: Memory safety for shielded
execution,” in Proceedings of the Twelfth European Conference on
Computer Systems. ACM, 2017, pp. 205–221.

[62] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich, “Vc3: Trustworthy data
analytics in the cloud using sgx,” in Security and Privacy (SP), 2015
IEEE Symposium on. IEEE, 2015, pp. 38–54.

[63] A. Amiri Sani, K. Boos, M. H. Yun, and L. Zhong, “Rio:
A system solution for sharing i/o between mobile systems,”
in Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’14. New
York, NY, USA: ACM, 2014, pp. 259–272. [Online]. Available:
http://doi.acm.org/10.1145/2594368.2594370

Yutao Tang Dr. Tang is a researcher with the
School of Artificial Intelligence at Guilin Univer-
sity of Electronic Technology. He got his Ph.D. in
Computer Science from the College of William
and Mary. His research focuses on edge com-
puting, deep learning, and network security.

Zhengrui Qin Dr. Qin is an Associate Professor
with the School of Computer Science and In-
formation Systems at Northwest Missouri State
University. He earned his Ph.D. in Computer Sci-
ence from the College of William and Mary. His
research interests lie in cybersecurity and mobile
computing.

Zhiqiang Lin Dr. Lin is a Professor of Computer
Science and Engineering at The Ohio State
University. His research focuses on cybersecu-
rity, particularly on software security and trusted
computing, and most recently on mobile, IoT,
cloud, and blockchain security. Dr. Lin is a re-
cipient of NSF CAREER Award and AFOSR YIP
Award.

Yue Li Dr. Li is a Senior Research Scientist at
Meta. He got his Ph.D. in Computer Science
from the College of William and Mary. His re-
search focuses on network security and mobile
computing.

Shanhe Yi Dr. Yi is an Research Scientist at
Meta. He got his Ph.D in Computer Science from
the College of William and Mary. His research
focuses on wireless networking and edge com-
puting.

Authorized licensed use limited to: William & Mary. Downloaded on September 30,2022 at 22:34:05 UTC from IEEE Xplore. Restrictions apply.

http://doi.acm.org/10.1145/2741948.2741977
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
http://doi.acm.org/10.1145/2594368.2594370

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3152074, IEEE
Transactions on Computers

TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX, 20XX 13

Fengyuan Xu Dr. Xu is a Professor with the
Department of Computer Science and Technol-
ogy at Nanjing University. He earned his Ph.D.
in Computer Science from the College of William
and Mary and received the Distinguished Disser-
tation Award in Natural and Computational Sci-
ences.His research focuses on the Real-Time
Cyber-Physical Metaverse, Autonomous Trust
and Privacy Mechanisms, and Intelligent Edge
Computing Systems.

Qun Li Dr. Li is a Professor of Department of
Computer Science at William and Mary. He got
his Ph.D from Dartmouth College. His current re-
search interests include wireless networks, IoT,
edge computing, pervasive computing, and se-
curity and privacy. Dr. Li is a recipient of the NSF
CAREER Award and IEEE fellow.

Authorized licensed use limited to: William & Mary. Downloaded on September 30,2022 at 22:34:05 UTC from IEEE Xplore. Restrictions apply.

