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Abstract -

One of the many ways in which automation may help the
construction industry is on-site material management. This
paper presents an automated process where materials are
selected for staging by detecting construction progress from
site images. The materials are then delivered to their re-
spective workface locations by a robot. The effectiveness of
the material selection process is assessed using a simulated
and physical construction site. We demonstrate that our
process is successful under a number of different conditions
and environments. Our system contributes to the feasibility
of autonomously managing materials on a construction site
and reveals potential avenues for future research.
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1 Introduction

This paper seeks to create a process that allows a robot
to: a) recognize the current state of a construction project,
b) predict which materials will be needed, and c¢) deliver
those materials to their appropriate workface. The work
presented here focuses on the first two of these com-
ponents. Material management is an important part of
any construction project. Consisting of the transporta-
tion, storage, identification, handling, and usage of ma-
terials, material management is directly related to effi-
ciency, safety, and waste during construction. One case
study found that the cost of inefficiencies resulting from
improper material management was 5.7 times greater than
the cost of implementing material management [1]. With
respect to safety, Lipscomb et al. observed that 11.5%
of slipping and tripping accidents on construction sites
occurred while the worker was carrying an object [2]. Ad-
ditional studies have found that human error, accidents,
and damage during transportation to the site or on the site
were all sources of construction material waste [3].

The use of robots for construction site material deliv-
ery could maximize the tracking of materials while also
minimizing waste. Robots used at night or moving along
dedicated pathways could also increase safety, provided

no workers are present at night. Hence, the goal of this re-
search is to develop a system that can automatically detect
construction progress and deliver the materials that will
be needed for the next step in a construction plan.

The task of automating the tracking of construction
progress is referred to as automated progress monitoring
[4]. Research in this area typically compares a 3D model
of the structure to be built (as-planned model) with another
model generated using sensor data of the construction site
(as-built model). The as-planned model is derived from
a building information model (BIM), and contains phys-
ical and functional information about the structure. By
comparing these models, individual elements of the struc-
ture such as walls, beams, or columns are recognized and
their progress assessed. The expected progress is derived
from a critical path schedule. In this paper however, no
expected amount of progress is prescribed, and progress
monitoring is used as a means to automate material selec-
tion for delivery via mobile robots. As such, we refer to
this problem as automated progress defection as opposed
to automated progress monitoring.

This paper presents an automated process where mate-
rials are selected for staging based on images collected by
a mobile robot on a construction site. The system devel-
oped for selecting materials makes use of a pre-existing
technique for automated progress monitoring. The out-
put of this process may then be used to instruct a robot
to deliver materials to specific workface locations where
the material will be needed. The primary contribution of
this paper is an automated process for guiding the timely
distribution of construction materials.

In the next section we review related work before de-
scribing the process itself. Next, experiments demonstrate
our process followed by an analysis of the experimental
results. The paper concludes with directions for future
work.

2 Related work

Recent advances in robotics have begun to make the
use of construction robots a possibility [5]. Mobile robots
however must cope with the cluttered and dynamic en-
vironments found in construction sites, which research
in obstacle detection [6] and localization using BIM [7]
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Figure 1. System Diagram: Input photographs, BIM, and construction plan are used to generate a list of materials

to be delivered by a robot.

have begun to address. The capability of robots to place
construction elements has also been investigated [8], and
mobile manipulators capable of moving materials on con-
struction sites have been demonstrated [9].

A great deal of research has focused on automated
progress monitoring for construction sites [4, 10]. At-
tempts have been made to automate construction progress
monitoring using either laser scanners [11, 12] or images
[13, 14, 15] of the site to generate an as-built model. The
model must then be aligned/registered with the BIM in
order to compare them for determining progress. This
typically involves a degree of manual manipulation, al-
though studies have demonstrated automated techniques
[16]. Some methods utilize machine learning to help in
monitoring progress [13, 11, 15]. Others incorporate tem-
poral information to take advantage of relationships be-
tween construction elements [11, 14]. Bayesian models
[13] and computer vision have also been used to recognize
construction materials [15].

Our work uses a method developed by Golparvar-Fard
et al. [13]. In their process, unordered site images and a
4D BIM are used to automatically monitor the construc-
tion progress of a site. Images are used to reconstruct the
as-built model by first using structure-from-motion (SfM)
to create a sparse point cloud of feature points. Multi-view
stereo (MVS) techniques are then used to create a dense
point cloud. Once the model is aligned with the BIM, the
model space is discretized into voxels to support the infer-
ence of progress over small areas of the construction site.
The voxels are labeled for both the as-planned and as-built
models based on their occupancy and visibility from the
site images. These labels are then used to determine the
probability of observing progress for each construction
element by applying a Bayesian probabilistic approach.
Finally, by rephrasing the problem as a linear classifica-
tion problem, a support vector machine (SVM) is trained
to calculate a probability threshold for each element and
classify it as either having progressed or not progressed.

For the purposes of this paper, Golparvar-Fard et al.’s pro-
cess is simplified by removing the SVM.

3 System description

Our process is depicted in Figure 1 and consists of five
parts. These are system setup, as-built reconstruction,
model discretization and labeling, material selection, and
material delivery.

3.1 System setup

The inputs for our system can be found in box (a) in
Figure 1, and are 1) site photographs, 2) a BIM, and 3) a
linear construction plan. These inputs serve as the basis for
generating the as-planned and as-built point cloud models,
and when combined with a construction plan allow for
materials to be selected via progress detection.

The critical characteristic of the BIM input is that it
is a 3D model composed of uniquely named construction
elements. Each element also has a material label, which
can be used for generating a list of materials for a robot
to deliver. As a medium for design, BIM does not al-
ways contain the level of detail assumed by this paper. For
example, a brick wall would be a single 3D model with
the individual bricks visually represented using a mapped
texture. Before discretizing the BIM, we specify a volume
of interest on the model space using Cartesian bounds
biower and bypper.  All 3D objects outside these bounds
are removed from the as-planned model, such that only
construction elements important for progress detection re-
main. The result is an as-planned model consisting of the
set of elements 8 = {01, ..., B Nyomens }-

To generate a list of materials for delivery, a plan is also
required. When a construction schedule is generated, it
is targeted for craft labor tasks, and thus it normally con-
tains temporal information in the form of a task schedule,
where multiple tasks may be performed concurrently. Our
process assumes a more granular linear plan consisting of
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a series of steps k =1, ..., Nseps, Where one or more con-
struction elements are placed at each step. In this paper,
the word step specifically refers to a step in a linear plan
and not some component of the material selection process.

The input images must provide enough information to
discern the current step based on the plan without hav-
ing to infer based on relationships between construction
elements. In general, this means that the collection of im-
ages used will feature at least one element placed during
the previous step and one space where an element will
go in the following step. Additionally, the images must
be devoid of any unplanned occlusions blocking construc-
tion elements. The only permissible occlusions are other
construction elements. When collecting images in simu-
lation, the precise location and orientation for each image
was also provided. This was done to remove the need for
manually aligning the as-built point cloud model with the
as-planned model by selecting corresponding points, as
was done for the physical experiments.

3.2 As-built reconstruction

In this paper, as-built reconstruction is the process of
using site images to create a 3D point cloud of the con-
struction site. As indicated in Figure 1 by box (b), the
as-built point cloud model, denoted from here onward as
as-built PC, is needed to detect progress and determine
which construction elements have been placed.

The process of reconstructing the as-built PC from
the provided camera images and poses is handled by
COLMAP [17], an open source structure-from-motion
(SfM) and multi-view stereo (MVS) pipeline. SfM com-
pares identical features for a scene across multiple images
to generate the scene’s 3D geometry. The outputs from
SfM are then used with MVS to map normal and depth
information onto the images. This results in a dense point
cloud Py representing the as-built construction site, and is
used as the as-built PC. Notice that the subscript » indi-
cates a variable’s association with the as-built PC.

3.3 Model discretization and labeling

The as-planned model is discretized into finite, fixed
volume voxels of width § for labeling (see Figure 1 box
¢). By dividing the as-planned model into smaller vol-
umes, visibility can be reasoned per voxel for each element,
thereby informing the progress detection which voxels are
expected to contain points from Pp.

To voxelize the as-planned model, each element is con-
verted into a point cloud Pe, where e = 1,. .., Neiements 1S
an index for each construction element. Doing so allows
each voxel to be associated with a particular element based
on the Pe with the most points inside the voxel. This adds

The as-planned model space is discretized based on
combinations of Pe for all e with

Nements
V= fvoxelGrid( Pe, (S, blowen bupper)

e=1

)

where fyoxelgria() generates voxels of width &, bounded
between limits biower and Dupper, from a union of Pe point
clouds. The result is a voxel grid V where voxels V; for
Jj =1,..., Nvoxels are only placed where at least one point
exists. Each V; is provided two labels, for the as-planned
model and as-built PC, and will have values of either empty

(E), occupied (0), or blocked (B).

3.4 Material selection

The as-built PC is compared with the as-planned model
at various steps per the linear plan. By starting with the
final step and analyzing in reverse order, as shown in box
(d) in Figure 1, the step which matches the as-built PC is
detected. This process informs the current construction
progress and determines what materials need to be deliv-
ered for the subsequent step. Due to this relationship, the
terms progress detection and material selection are used
mostly interchangeably in this paper.

To begin detecting progress, a new voxel grid Vi SV

for step k must be created. For details on how a voxel V;
is assigned to a voxel grid Vi, see Figure 2.

3.4.1 Label blocked voxels

Next, progress detection requires the blocked voxels in
the as-planned model to be labeled. Only voxels expected
to contain points from P» should be checked for occu-
pancy, so the voxels labeled as blocked are discounted.

Voxels are traversed and labeled in a manner similar
to [13]. Readers are directed to the method outlined by
Golparvar-Fard et al. for further details on voxel traver-
sal and labeling blocked voxels based on the as-planned
model. However, unlike Golparvar-Fard et al., we do not
use the radiance of a voxel’s projected pixels to evaluate
if a voxel is occupied. This removes the need for a visi-
bility constraint, and thereby enables a unique voxel label
solution to be found even when considering one image at
a time. Therefore, the order of voxel traversal is defined
by

dij =[x — x| 2)
where x j and x; are the center of Vi, ; and image i respec-
tively in the world coordinate frame. The voxels in Vi« are
then traversed in order of increasing distance d;;, ;.

The as-planned label for Vi, ; is specified as (0 p) or
(B p) based on the number of reprojected pixels of Vi, ;
with an evaluation of 1 as described by [13]. Here, the

a requirement that each P. must have the same density p subscript p indicates a variable’s association with the as-

of equally spaced points.

planned model. Further, Vk,; can be labeled as (Bp) if d,;
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Figure 2. Model discretization and labeling visualized using a structure consisting of three elements: (a) Red,
green and blue construction elements with e = 1, 2, 3 respectively. Current step is k. (b) 2D zoom of voxel
grid Vi with point clouds P1, P2 and Ps. Voxels j1 and j2 have more points from P2 than P1 or Ps, leading to
e k=1(231)and ej, x = (2). (c) 2D zoom of voxel grid Vi-1 where element 2 was removed from the voxel
grid and from e, k-1 and e}, k-1, giving e, k-1 = (3,1) and ej, k-1 = (). Voxel j1 now belongs to element

e=3.

is greater than some distance threshold as well. This was
done primarily to reduce computation time.

3.4.2 Label occupied voxels

The voxels not labeled as blocked in the as-planned
model, are labeled for occupancy based on the as-built PC.
By counting the number of occupied and empty voxels for
each element, the probability of observing each element is
determined.

Because the assumption was made that no unplanned
occlusions were present in the images used to reconstruct
the as-built PC, all voxels labeled with (B p) are also la-
beled (By). Each voxel Vi, ; not labeled (B») is checked to
see if it contains a point from P». If so, then it is labeled
occupied (O»). However, when V is generated, it is pos-
sible for some voxel faces to be very close to an element
face. Due to the limited precision of the reconstruction
process, scenarios where points in Pp fall just outside of a
voxel can be common. To address this problem for some
empty voxel Vi, ;, all voxels adjacent to Vi, j, which are not
part of Vi, are also checked for occupancy. Here, two vox-
els are considered adjacent if they share a common face.
If a point is found in any of the adjacent voxels, then Vi, j
is labeled (O»). Otherwise it is labeled empty (Eb).

3.4.3 Plan traversal for material selection

Given a step in the linear plan, the probability of ob-
serving each element in that step is calculated. The first
step found where every element placed in that step is ex-
pected to be observed, is said to be the current state of
construction. By knowing the construction progress, the
materials required are known and may be delivered.

Progress detection is performed to recognize element
Oke in Ok, starting with k = Nyeps. As with [13], progress
is evaluated by comparing a probability to a threshold.
Provided evidence of occupancy ne, Golparvar-Fard et al.
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Figure 3. Example progress board from physical
experiment. Columns represent steps of the plan,
and rows represent construction elements organized
by step. Each band of color within a cell, is the
P(1e[ne) of element e for whatever step k the sys-
tem is on. No color (white) indicates that element
is not visible. Here, each step involves placing one
element, so there is a single band of color per cell.
The process of determining the current step is visu-
alized by the black arrow and outlined cells.

define the probability of e, the event of observing an
expected element, as 4

P In)=

e e

®)
Ob + E Oke

Given our assumptions, and a linear construction plan
rather than a general schedule, P(ie|n.) is satisfactory
to detect fke. If P(e|ne) is greater than the threshold,
then the element is marked as having progressed.

After evaluating the progress for all elements in 6, the
current step is said to be k + 1 if progress was detected
for all elements placed in step k. Otherwise, progress
detection is performed on step k — 1 as shown in Figure 1.

We now introduce the progress board in Figure 3 to
better explain this process. A progress board functions as
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Figure 4. BIM, experiment environment, and exam-
ple image capture for physical and simulation exper-
iments

arecording of all steps the material selection analyzes. To
find the elements placed on some step, we search the grid
diagonal, moving from the top right cell to the bottom left,
as shown in Figure 3.

Once the current step is determined, the elements for
that step are chosen to be delivered by a robot. Because
each element is associated with a material, the result is the
robot receiving a list of materials to deliver.

4 Experiments

4.1 Simulation experiment

The BIM used in simulation was designed to resemble
the foundation of a small structure which can be seen in
Figure 4(a). Images were captured of the simulation at an
interim step in the plan, and progress detection was used to
determine the current step. Using the progress detection
results, a list of materials for delivery was output. This
process was evaluated at every step in the plan.

The BIM was generated as an FBX file, with unique
names for each construction element. Materials were dis-
tinguished using specific tags in the element names. For
this research, the two materials used were standard bricks
and concrete masonry units (CMUs). The linear plan was
designed such that elements were distributed across steps

Table 1. Camera properties

camera  width height focal principal principal

(px) (px) length  pt. ox pt. oy
f9)  (px) (px)
simulation 2048 1536 1525.1 1024 768
ZED2i 2208 1242 1063.6 1107.2  632.1

based on wall face and course. In total, the plan contained
57 steps to place 447 elements.

Unity was used for the material selection simulation.
Unity offers a capable physics engine, cameras for simu-
lating image capture, and importation of many assets into
the simulation. Additional textures and construction props
were added, as shown in Figure 4(a), to make the simula-
tion look more realistic and improve the performance of
the as-built reconstruction. It should be noted that if a prop
was ever occluding a construction element in the camera
view, it was removed for that as-built reconstruction. The
lighting in the simulation was configured to represent noon
at Penn State in early summer to balance realistic lighting
and ease of reconstruction.

Uncompressed site images were captured using camera
objects arranged in Unity. The cameras were arranged
in groups of 4 for each reconstruction, as seen in Figure
4(a). The camera intrinsics were chosen to resemble a
smartphone camera and are provided in Table 1. It should
be noted that the simulated camera parameters differ from
the physical camera because the simulation experiments
were conducted before the ZED 2i camera was acquired.
These camera parameters and poses were imported into
COLMAP [17].

During reconstruction, COLMAP’s default “low” qual-
ity settings were used to reduce computation time. Our
process performed the material selection and returned a
list of materials for delivery. When discretizing the BIM,
the voxel width § and point cloud density p where chosen
to be 0.0254 m (1 in) and 15,500 pts/m? respectively. The
threshold for progress to be detected for an element was
set to 0.25, and the distance threshold for a voxel to be
considered visible was set to 4 m. All parameters were
chosen empirically.

4.2 Physical experiment

The BIM used for the physical experiments consisted of
a small stack of CMUs arranged in a corner shape. The
completed construction can be seen in Figure 4(b). Con-
struction was conducted on top of a parking deck to best
approximate the large concrete flooring found on many
construction sites. Images were then captured using the
Stereolabs ZED 2i camera while varying the current step,
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Table 2. Material selection results across all elements in 8k for k =

current state, where Pk (te|ne) is the

probability of an element placed during step k being observed

Setting # recon- Min Avg. Max # mistaken # bricks not # CMUs not
structions Pk (Ye|ne) Pr(Pelne) Pk (e|ne) steps selected selected

morning 8 0.429 0.744 0.995 0 0 0

afternoon 18 0.502 0.830 1 0 0 0

evening 8 0.497 0.702 0.881 0 0 0

simulation 57 0.289 0.831 1 0 0 0

sim. occluded 2 0 0.585 1 2 1 0

time of day, and position of camera. Using the collected
images, progress detection was performed to assess if the
correct materials could be selected based on progress.

Once again, the BIM for the physical experiments was
generated as an FBX file. The actual CMUs used were
foam blocks (Figure 4(b)). Foam CMUs were chosen for
ease of handling in future robot experiments. Unlike the
simulation experiments, the linear plan for the physical
experiments only had 1 CMU placed per step, with a total
of 10 steps.

The physical experiments were varied in three ways:
lighting, camera position, and construction step. Lighting
was varied by taking images in the morning, afternoon, and
late evening. Additional variation due to weather occurred
naturally. Sets of images were captured around the CMUs
at approximately 90°apart. For each lighting condition
and position, the CMU corner was constructed to steps
6 and 10. Images were also captured and processed for
every step, but these were only gathered in the afternoon
at a single position around the CMU corner. In total, 34
variations of physical experiment were performed.

A ZED 2i camera was mounted on a tripod to capture
uncompressed images, and its rectified intrinsics can be
found in Table 1. The ZED 2i is factory geometrically cal-
ibrated, and so no manual calibration was performed prior
to the experiments. For each as-built reconstruction, the
tripod’s center column was extended in 0.06 m increments
a total of 0.3 m to capture left and right images. This
yielded 12 images per reconstruction, which will now be
referred to as a set of images. A Python script was written
to record the images, and was run using an NVIDIA Jetson
Nano Developer Kit-B01. An example of an experiment
setup is in Figure 4(b).

When processing the real images, COLMAP was set to
its default “high” settings to increase the final point density
of the reconstruction. Although the poses of the camera
were not measured for use in COLMAP, the camera intrin-
sics were still provided using the ZED camera Python API.
Again, SfM and MVS was performed using COLMAP’s
command line interface.

After reconstruction, because the camera poses were

not recorded, the as-built PC had to be aligned to the same
coordinate frame as the BIM. CloudCompare’s Align tool
was used to generate a transformation matrix using the
CMU vertices as a reference point. The matrix was used
to rotate and scale both the as-built PC and reconstructed
camera poses during progress detection. No changes were
made to the material selection process. All parameters
were left at their previous values.

5 Results and discussion

Evaluation of our system in both simulation and phys-
ical environments resulted in the successful selection of
the correct materials for delivery across all of the con-
struction steps, camera locations, and lighting differences
tested. As seen in Table 2, all minimum probabilities were
above the threshold of 0.25 when there were no occlusions,
so no materials were improperly selected. In practice, this
means the material selection system will determine the
correct materials to deliver for the construction site, pro-
vided ample lighting and images, and the workface is free
of obstructions. While the system was successful, some
experiments do demonstrate how failures could occur.

Correct materials are not selected for delivery when ele-
ments placed during the current state of construction have
too many voxels labeled as empty. In the experiments
conducted through this research, voxels were incorrectly
labeled as empty primarily because of poor lighting and
occlusions. A representative example of the effect of light-
ing on progress detection can be seen in Figure 5(a). Even
though the sun was nearly directly overhead, the brick faces
in the shade were reconstructed noticeably worse than the
faces in the sun. Table 2 shows the probability Pk (1e|ne)
that an element placed during the current state is observed
was generally higher during the afternoon than morning or
evening, although no materials were mistakenly selected.
However, Table 2 shows both simulated reconstructions
where occlusions were introduced resulted in the wrong
steps being determined. Figure 5(b) depicts voxels labeled
as empty (red) due to a spotlight leg occluding some of the
bricks from the cameras. This resulted in the current state
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(a) Foam CMU corner at noon

(b) Simulated experiment with an occlusion

Figure 5. As-built reconstruction point cloud and
voxel labels: red = empty, black = blocked, green
= occupied, yellow grid lines = current construction
elements

being detected as 19 instead of 23. The reason for this
can be observed in Figure 6. Looking at step 23 (actual
current state) on the diagonal, red bands can be seen in
the cell. There are multiple bands in each cell because
multiple elements are placed per step. The red bands in-
dicate that some elements were not detected, and explains
why progress detection continued searching for the cur-
rent step. Further down the diagonal, the elements in steps
21 and 19 were detected fairly well. In Figure 5(b) it is
shown that these steps represent the brick courses directly
below step 23. Therefore, step 19 was deemed the current
state because it was reconstructed enough to be detected as
opposed to step 21. The consequence of this error is that
the number of bricks selected for delivery would be based
on step 19 instead of step 23. For these two steps, this is
only the difference between delivering 8 and 7 bricks, but
the error could be greater or smaller if the mistake was
between a different pair of steps.

Two other limitations of this material selection system
are its reliance on detailed construction schedules and as-
planned to as-built model alignment. As stated in sub-
section 3.1, this paper uses a BIM and linear plan with
an uncommon level of detail. For a system such as the
one presented here to be used on a real construction site,
detailed schedules for element placement will need to be
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Figure 6. Progress board for simulation at step 23

incorporated into BIM, or methods will need to be de-
veloped to reverse engineer the information from current
models. Assuming such scheduling data is available, care
must still be placed into aligning the as-built PC with
the BIM coordinate frame, as errors will be magnified by
small misalignments for large models. This concern can
be reduced by collecting more images and by automating
as-built model alignment using GPS or registering images
with on-site control markers [16].

6 Conclusion

This paper has demonstrated a process for auto-
mated material selection based on detecting construction
progress from robot captured images. Our system was
evaluated in simulation and at a simulated, physical con-
struction site. The material selection process was shown to
be robust to lighting and is capable of detecting any step in
a linear plan despite limitations related to model alignment
and occlusions. This paper contributes a progress detec-
tion system capable of selecting the necessary materials
for further construction progress. The system presented
serves as a template for future advancement, which will al-
low workers to spend less time documenting progress and
moving materials, and more time helping the construction
industry reach its productivity goals.

Future research aims to address the noted limitations
and investigate the challenges of detecting progress on
a real construction site. These challenges include scala-
bility, large varieties of construction elements, non-linear
construction schedules, and the generally more complex
and varied environment that a construction site poses.
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