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Abstract - 
One of the many ways in which automation may help the 

construction industry is on-site material management. This 
paper presents an automated process where materials are 
selected for staging by detecting construction progress from 
site images. The materials are then delivered to their re- 
spective workface locations by a robot. The effectiveness of 
the material selection process is assessed using a simulated 
and physical construction site. We demonstrate that our 
process is successful under a number of different conditions 
and environments. Our system contributes to the feasibility 
of autonomously managing materials on a construction site 
and reveals potential avenues for future research. 
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1 Introduction 

This paper seeks to create a process that allows a robot 
to: a) recognize the current state of a construction project, 
b) predict which materials will be needed, and c) deliver 
those materials to their appropriate workface. The work 
presented here focuses on the first two of these com- 
ponents. Material management is an important part of 
any construction project. Consisting of the transporta- 
tion, storage, identification, handling, and usage of ma- 
terials, material management is directly related to effi- 
ciency, safety, and waste during construction. One case 
study found that the cost of inefficiencies resulting from 
improper material management was 5.7 times greater than 
the cost of implementing material management [1]. With 
respect to safety, Lipscomb et al. observed that 11.5% 
of slipping and tripping accidents on construction sites 
occurred while the worker was carrying an object [2]. Ad- 
ditional studies have found that human error, accidents, 
and damage during transportation to the site or on the site 
were all sources of construction material waste [3]. 

The use of robots for construction site material deliv- 
ery could maximize the tracking of materials while also 
minimizing waste. Robots used at night or moving along 
dedicated pathways could also increase safety, provided 

no workers are present at night. Hence, the goal of this re- 
search is to develop a system that can automatically detect 
construction progress and deliver the materials that will 
be needed for the next step in a construction plan. 

The task of automating the tracking of construction 
progress is referred to as automated progress monitoring 
[4]. Research in this area typically compares a 3D model 
of the structure to be built (as-planned model) with another 
model generated using sensor data of the construction site 
(as-built model). The as-planned model is derived from 
a building information model (BIM), and contains phys- 
ical and functional information about the structure. By 
comparing these models, individual elements of the struc- 
ture such as walls, beams, or columns are recognized and 
their progress assessed. The expected progress is derived 
from a critical path schedule. In this paper however, no 
expected amount of progress is prescribed, and progress 
monitoring is used as a means to automate material selec- 
tion for delivery via mobile robots. As such, we refer to 
this problem as automated progress detection as opposed 
to automated progress monitoring. 

This paper presents an automated process where mate- 
rials are selected for staging based on images collected by 
a mobile robot on a construction site. The system devel- 
oped for selecting materials makes use of a pre-existing 
technique for automated progress monitoring. The out- 
put of this process may then be used to instruct a robot 
to deliver materials to specific workface locations where 
the material will be needed. The primary contribution of 
this paper is an automated process for guiding the timely 
distribution of construction materials. 

In the next section we review related work before de- 
scribing the process itself. Next, experiments demonstrate 
our process followed by an analysis of the experimental 
results. The paper concludes with directions for future 
work. 

2 Related work 
Recent advances in robotics have begun to make the 

use of construction robots a possibility [5]. Mobile robots 
however must cope with the cluttered and dynamic en- 
vironments found in construction sites, which research 
in obstacle detection [6] and localization using BIM [7] 
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Figure 1. System Diagram: Input photographs, BIM, and construction plan are used to generate a list of materials 
to be delivered by a robot. 

 
 

have begun to address. The capability of robots to place 
construction elements has also been investigated [8], and 
mobile manipulators capable of moving materials on con- 
struction sites have been demonstrated [9]. 

A great deal of research has focused on automated 
progress monitoring for construction sites [4, 10]. At- 
tempts have been made to automate construction progress 
monitoring using either laser scanners [11, 12] or images 
[13, 14, 15] of the site to generate an as-built model. The 
model must then be aligned/registered with the BIM in 
order to compare them for determining progress. This 
typically involves a degree of manual manipulation, al- 
though studies have demonstrated automated techniques 
[16]. Some methods utilize machine learning to help in 
monitoring progress [13, 11, 15]. Others incorporate tem- 
poral information to take advantage of relationships be- 
tween construction elements [11, 14]. Bayesian models 
[13] and computer vision have also been used to recognize 
construction materials [15]. 

Our work uses a method developed by Golparvar-Fard 
et al. [13]. In their process, unordered site images and a 
4D BIM are used to automatically monitor the construc- 
tion progress of a site. Images are used to reconstruct the 
as-built model by first using structure-from-motion (SfM) 
to create a sparse point cloud of feature points. Multi-view 
stereo (MVS) techniques are then used to create a dense 
point cloud. Once the model is aligned with the BIM, the 
model space is discretized into voxels to support the infer- 
ence of progress over small areas of the construction site. 
The voxels are labeled for both the as-planned and as-built 
models based on their occupancy and visibility from the 
site images. These labels are then used to determine the 
probability of observing progress for each construction 
element by applying a Bayesian probabilistic approach. 
Finally, by rephrasing the problem as a linear classifica- 
tion problem, a support vector machine (SVM) is trained 
to calculate a probability threshold for each element and 
classify it as either having progressed or not progressed. 

For the purposes of this paper, Golparvar-Fard et al.’s pro- 
cess is simplified by removing the SVM. 

 
3 System description 

Our process is depicted in Figure 1 and consists of five 
parts. These are system setup, as-built reconstruction, 
model discretization and labeling, material selection, and 
material delivery. 

 
3.1 System setup 

The inputs for our system can be found in box (a) in 
Figure 1, and are 1) site photographs, 2) a BIM, and 3) a 
linear construction plan. These inputs serve as the basis for 
generating the as-planned and as-built point cloud models, 
and when combined with a construction plan allow for 
materials to be selected via progress detection. 

The critical characteristic of the BIM input is that it 
is a 3D model composed of uniquely named construction 
elements. Each element also has a material label, which 
can be used for generating a list of materials for a robot 
to deliver. As a medium for design, BIM does not al- 
ways contain the level of detail assumed by this paper. For 
example, a brick wall would be a single 3D model with 
the individual bricks visually represented using a mapped 
texture. Before discretizing the BIM, we specify a volume 
of interest on the model space using Cartesian bounds 
𝒃𝒃lower and 𝒃𝒃upper. All 3D objects outside these bounds 
are removed from the as-planned model, such that only 
construction elements important for progress detection re- 
main. The result is an as-planned model consisting of the 
set of elements 𝜃𝜃 = {𝜃𝜃1, . . . , 𝜃𝜃 𝑁𝑁elements }. 

To generate a list of materials for delivery, a plan is also 
required. When a construction schedule is generated, it 
is targeted for craft labor tasks, and thus it normally con- 
tains temporal information in the form of a task schedule, 
where multiple tasks may be performed concurrently. Our 
process assumes a more granular linear plan consisting of 

System Setup (a) Material Selection (d) 
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a series of steps 𝑘𝑘 = 1, . . . , 𝑁𝑁steps, where one or more con- 
struction elements are placed at each step. In this paper, 
the word step specifically refers to a step in a linear plan 

The as-planned model space is discretized based on 
combinations of 𝑃𝑃𝑒𝑒 for all 𝑒𝑒 with 

𝑁𝑁elements 

and not some component of the material selection process. 
The input images must provide enough information to 

𝑉𝑉 = 𝑓𝑓voxelGrid (  
𝑒𝑒=1 

𝑃𝑃𝑒𝑒, 𝛿𝛿, 𝒃𝒃lower, 𝒃𝒃upper) (1) 

discern the current step based on the plan without hav- 
ing to infer based on relationships between construction 
elements. In general, this means that the collection of im- 
ages used will feature at least one element placed during 
the previous step and one space where an element will 
go in the following step. Additionally, the images must 
be devoid of any unplanned occlusions blocking construc- 
tion elements. The only permissible occlusions are other 
construction elements. When collecting images in simu- 
lation, the precise location and orientation for each image 
was also provided. This was done to remove the need for 
manually aligning the as-built point cloud model with the 
as-planned model by selecting corresponding points, as 
was done for the physical experiments. 

 
3.2 As-built reconstruction 

In this paper, as-built reconstruction is the process of 
using site images to create a 3D point cloud of the con- 
struction site. As indicated in Figure 1 by box (b), the 
as-built point cloud model, denoted from here onward as 
as-built PC, is needed to detect progress and determine 
which construction elements have been placed. 

The process of reconstructing the as-built PC from 
the provided camera images and poses is handled by 
COLMAP [17], an open source structure-from-motion 
(SfM) and multi-view stereo (MVS) pipeline. SfM com- 
pares identical features for a scene across multiple images 
to generate the scene’s 3D geometry. The outputs from 
SfM are then used with MVS to map normal and depth 
information onto the images. This results in a dense point 
cloud 𝑃𝑃𝑏𝑏 representing the as-built construction site, and is 
used as the as-built PC. Notice that the subscript 𝑏𝑏 indi- 
cates a variable’s association with the as-built PC. 

3.3 Model discretization and labeling 

The as-planned model is discretized into finite, fixed 
volume voxels of width 𝛿𝛿 for labeling (see Figure 1 box 
c). By dividing the as-planned model into smaller vol- 
umes, visibility can be reasoned per voxel for each element, 
thereby informing the progress detection which voxels are 
expected to contain points from 𝑃𝑃𝑏𝑏. 

To voxelize the as-planned model, each element is con- 
verted into a point cloud 𝑃𝑃𝑒𝑒, where 𝑒𝑒 = 1, . . . , 𝑁𝑁elements is 
an index for each construction element. Doing so allows 
each voxel to be associated with a particular element based 
on the 𝑃𝑃𝑒𝑒 with the most points inside the voxel. This adds 
a requirement that each 𝑃𝑃𝑒𝑒 must have the same density 𝜌𝜌 
of equally spaced points. 

where 𝑓𝑓voxelGrid () generates voxels of width 𝛿𝛿, bounded 
between limits 𝑏𝑏lower and 𝑏𝑏upper, from a union of 𝑃𝑃𝑒𝑒 point 
clouds. The result is a voxel grid 𝑉𝑉 where voxels 𝑉𝑉𝑗𝑗 for 
𝑗𝑗 = 1, . . . , 𝑁𝑁voxels are only placed where at least one point 
exists. Each 𝑉𝑉𝑗𝑗 is provided two labels, for the as-planned 
model and as-built PC, and will have values of either empty 
(𝐸𝐸), occupied (𝑂𝑂), or blocked (𝐵𝐵). 

3.4 Material selection 

The as-built PC is compared with the as-planned model 
at various steps per the linear plan. By starting with the 
final step and analyzing in reverse order, as shown in box 
(d) in Figure 1, the step which matches the as-built PC is 
detected. This process informs the current construction 
progress and determines what materials need to be deliv- 
ered for the subsequent step. Due to this relationship, the 
terms progress detection and material selection are used 
mostly interchangeably in this paper. 

To begin detecting progress, a new voxel grid 𝑉𝑉𝑘𝑘 ⊆ 𝑉𝑉 
for step 𝑘𝑘 must be created. For details on how a voxel 𝑉𝑉𝑗𝑗 

is assigned to a voxel grid 𝑉𝑉𝑘𝑘, see Figure 2. 
 

3.4.1 Label blocked voxels 

Next, progress detection requires the blocked voxels in 
the as-planned model to be labeled. Only voxels expected 
to contain points from 𝑃𝑃𝑏𝑏 should be checked for occu- 
pancy, so the voxels labeled as blocked are discounted. 

Voxels are traversed and labeled in a manner similar 
to [13]. Readers are directed to the method outlined by 
Golparvar-Fard et al. for further details on voxel traver- 
sal and labeling blocked voxels based on the as-planned 
model. However, unlike Golparvar-Fard et al., we do not 
use the radiance of a voxel’s projected pixels to evaluate 
if a voxel is occupied. This removes the need for a visi- 
bility constraint, and thereby enables a unique voxel label 
solution to be found even when considering one image at 
a time. Therefore, the order of voxel traversal is defined 
by 

𝑑𝑑𝑖𝑖, 𝑗𝑗 = ∥𝒙𝒙 𝑗𝑗 − 𝒙𝒙𝑖𝑖 ∥ (2) 
where 𝒙𝒙 𝑗𝑗 and 𝒙𝒙𝑖𝑖 are the center of 𝑉𝑉𝑘𝑘, 𝑗𝑗 and image 𝑖𝑖 respec- 
tively in the world coordinate frame. The voxels in 𝑉𝑉𝑘𝑘 are 
then traversed in order of increasing distance 𝑑𝑑𝑖𝑖, 𝑗𝑗 . 

The as-planned label for 𝑉𝑉𝑘𝑘, 𝑗𝑗 is specified as (𝑂𝑂 𝑝𝑝) or 
(𝐵𝐵 𝑝𝑝) based on the number of reprojected pixels of 𝑉𝑉𝑘𝑘, 𝑗𝑗 
with an evaluation of 1 as described by [13]. Here, the 
subscript 𝑝𝑝 indicates a variable’s association with the as- 
planned model. Further, 𝑉𝑉𝑘𝑘, 𝑗𝑗 can be labeled as (𝐵𝐵 𝑝𝑝) if 𝑑𝑑𝑖𝑖, 𝑗𝑗 
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  (a) (b) (c) 
 

Figure 2. Model discretization and labeling visualized using a structure consisting of three elements: (a) Red, 
green and blue construction elements with 𝑒𝑒 = 1, 2, 3 respectively. Current step is 𝑘𝑘. (b) 2D zoom of voxel 
grid 𝑉𝑉𝑘𝑘 with point clouds 𝑃𝑃1, 𝑃𝑃2 and 𝑃𝑃3. Voxels 𝑗𝑗1 and 𝑗𝑗2 have more points from 𝑃𝑃2 than 𝑃𝑃1 or 𝑃𝑃3, leading to 
𝒆𝒆 𝑗𝑗1 ,𝑘𝑘 = (2, 3, 1) and 𝒆𝒆 𝑗𝑗2 ,𝑘𝑘 = (2). (c) 2D zoom of voxel grid 𝑉𝑉𝑘𝑘−1 where element 2 was removed from the voxel 
grid and from 𝒆𝒆 𝑗𝑗1 ,𝑘𝑘−1 and 𝒆𝒆 𝑗𝑗2 ,𝑘𝑘−1, giving 𝒆𝒆 𝑗𝑗1 ,𝑘𝑘−1 = (3, 1) and 𝒆𝒆 𝑗𝑗2 ,𝑘𝑘−1 = (). Voxel 𝑗𝑗1 now belongs to element 
𝑒𝑒 = 3. 

 
 

is greater than some distance threshold as well. This was 
done primarily to reduce computation time. 

 
3.4.2 Label occupied voxels 

The voxels not labeled as blocked in the as-planned 
model, are labeled for occupancy based on the as-built PC. 
By counting the number of occupied and empty voxels for 
each element, the probability of observing each element is 
determined. 

Because the assumption was made that no unplanned 
occlusions were present in the images used to reconstruct 
the as-built PC, all voxels labeled with (𝐵𝐵 𝑝𝑝) are also la- 
beled (𝐵𝐵𝑏𝑏). Each voxel 𝑉𝑉𝑘𝑘, 𝑗𝑗 not labeled (𝐵𝐵𝑏𝑏) is checked to 
see if it contains a point from 𝑃𝑃𝑏𝑏. If so, then it is labeled 
occupied (𝑂𝑂𝑏𝑏). However, when 𝑉𝑉 is generated, it is pos- 
sible for some voxel faces to be very close to an element 
face. Due to the limited precision of the reconstruction 
process, scenarios where points in 𝑃𝑃𝑏𝑏 fall just outside of a 
voxel can be common. To address this problem for some 
empty voxel 𝑉𝑉𝑘𝑘, 𝑗𝑗 , all voxels adjacent to 𝑉𝑉𝑘𝑘, 𝑗𝑗 , which are not 
part of 𝑉𝑉𝑘𝑘, are also checked for occupancy. Here, two vox- 
els are considered adjacent if they share a common face. 
If a point is found in any of the adjacent voxels, then 𝑉𝑉𝑘𝑘, 𝑗𝑗 
is labeled (𝑂𝑂𝑏𝑏). Otherwise it is labeled empty (𝐸𝐸𝑏𝑏). 

 
 
 

 
 
 

Figure 3. Example progress board from physical 
experiment. Columns represent steps of the plan, 
and rows represent construction elements organized 
by step. Each band of color within a cell, is the 
𝑃𝑃(𝜓𝜓𝑒𝑒|𝜂𝜂𝑒𝑒) of element 𝑒𝑒 for whatever step 𝑘𝑘 the sys- 
tem is on. No color (white) indicates that element 
is not visible. Here, each step involves placing one 
element, so there is a single band of color per cell. 
The process of determining the current step is visu- 
alized by the black arrow and outlined cells. 

 
 

define the probability of 𝜓𝜓𝑒𝑒, the event of observing an 
expected element, as 

𝑃𝑃(𝜓𝜓 |𝜂𝜂 ) =
   

𝑂𝑂𝑏𝑏
 (3) 

3.4.3 Plan traversal for material selection 
𝑒𝑒  𝑒𝑒   

𝑂𝑂𝑏𝑏 + 
𝐸𝐸𝑏𝑏 

 
𝜃𝜃𝑘𝑘,𝑒𝑒 

Given a step in the linear plan, the probability of ob- 
serving each element in that step is calculated. The first 
step found where every element placed in that step is ex- 
pected to be observed, is said to be the current state of 
construction. By knowing the construction progress, the 
materials required are known and may be delivered. 

Progress detection is performed to recognize element 
𝜃𝜃𝑘𝑘,𝑒𝑒 in 𝜃𝜃𝑘𝑘, starting with 𝑘𝑘 = 𝑁𝑁steps. As with [13], progress 
is evaluated by comparing a probability to a threshold. 
Provided evidence of occupancy 𝜂𝜂𝑒𝑒, Golparvar-Fard et al. 

Given our assumptions, and a linear construction plan 
rather than a general schedule, 𝑃𝑃(𝜓𝜓𝑒𝑒|𝜂𝜂𝑒𝑒) is satisfactory 
to detect 𝜃𝜃𝑘𝑘,𝑒𝑒. If 𝑃𝑃(𝜓𝜓𝑒𝑒|𝜂𝜂𝑒𝑒) is greater than the threshold, 
then the element is marked as having progressed. 

After evaluating the progress for all elements in 𝜃𝜃𝑘𝑘, the 
current step is said to be 𝑘𝑘 + 1 if progress was detected 
for all elements placed in step 𝑘𝑘. Otherwise, progress 
detection is performed on step 𝑘𝑘 − 1 as shown in Figure 1. 

We now introduce the progress board in Figure 3 to 
better explain this process. A progress board functions as 
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Foam CMUs 
 
 

 Jetson Nano 

ZED 2i camera 

 

 Table 1. Camera properties  

camera width 
(px) 

height 
(px) 

focal 
length 
𝑓𝑓 (px) 

principal 
pt. 𝑜𝑜𝑥𝑥 
(px) 

principal 
pt. 𝑜𝑜𝑦𝑦 
(px) 

 

simulation 2048 1536  1525.1 1024 768 
ZED 2i 2208 1242  1063.6 1107.2 632.1 

 
(a) Simulation experimental setup 

 

(b) Physical experimental setup 
 

Figure 4. BIM, experiment environment, and exam- 
ple image capture for physical and simulation exper- 
iments 

 
 

a recording of all steps the material selection analyzes. To 
find the elements placed on some step, we search the grid 
diagonal, moving from the top right cell to the bottom left, 
as shown in Figure 3. 

Once the current step is determined, the elements for 
that step are chosen to be delivered by a robot. Because 
each element is associated with a material, the result is the 
robot receiving a list of materials to deliver. 

 
4 Experiments 
4.1 Simulation experiment 

The BIM used in simulation was designed to resemble 
the foundation of a small structure which can be seen in 
Figure 4(a). Images were captured of the simulation at an 
interim step in the plan, and progress detection was used to 
determine the current step. Using the progress detection 
results, a list of materials for delivery was output. This 
process was evaluated at every step in the plan. 

The BIM was generated as an FBX file, with unique 
names for each construction element. Materials were dis- 
tinguished using specific tags in the element names. For 
this research, the two materials used were standard bricks 
and concrete masonry units (CMUs). The linear plan was 
designed such that elements were distributed across steps 

based on wall face and course. In total, the plan contained 
57 steps to place 447 elements. 

Unity was used for the material selection simulation. 
Unity offers a capable physics engine, cameras for simu- 
lating image capture, and importation of many assets into 
the simulation. Additional textures and construction props 
were added, as shown in Figure 4(a), to make the simula- 
tion look more realistic and improve the performance of 
the as-built reconstruction. It should be noted that if a prop 
was ever occluding a construction element in the camera 
view, it was removed for that as-built reconstruction. The 
lighting in the simulation was configured to represent noon 
at Penn State in early summer to balance realistic lighting 
and ease of reconstruction. 

Uncompressed site images were captured using camera 
objects arranged in Unity. The cameras were arranged 
in groups of 4 for each reconstruction, as seen in Figure 
4(a). The camera intrinsics were chosen to resemble a 
smartphone camera and are provided in Table 1. It should 
be noted that the simulated camera parameters differ from 
the physical camera because the simulation experiments 
were conducted before the ZED 2i camera was acquired. 
These camera parameters and poses were imported into 
COLMAP [17]. 

During reconstruction, COLMAP’s default “low” qual- 
ity settings were used to reduce computation time. Our 
process performed the material selection and returned a 
list of materials for delivery. When discretizing the BIM, 
the voxel width 𝛿𝛿 and point cloud density 𝜌𝜌 where chosen 
to be 0.0254 m (1 in) and 15,500 pts/m2 respectively. The 
threshold for progress to be detected for an element was 
set to 0.25, and the distance threshold for a voxel to be 
considered visible was set to 4 m. All parameters were 
chosen empirically. 

 
4.2 Physical experiment 

The BIM used for the physical experiments consisted of 
a small stack of CMUs arranged in a corner shape. The 
completed construction can be seen in Figure 4(b). Con- 
struction was conducted on top of a parking deck to best 
approximate the large concrete flooring found on many 
construction sites. Images were then captured using the 
Stereolabs ZED 2i camera while varying the current step, 

Props 

Bricks CMUs 
Cameras 
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Table 2. Material selection results across all elements in 𝜃𝜃𝑘𝑘 for 𝑘𝑘 = current state, where 𝑃𝑃𝑘𝑘 (𝜓𝜓𝑒𝑒|𝜂𝜂𝑒𝑒) is the 
probability of an element placed during step 𝑘𝑘 being observed 

 
Setting # recon- Min Avg. Max # mistaken # bricks not # CMUs not 

structions 𝑃𝑃𝑘𝑘 (𝜓𝜓𝑒𝑒|𝜂𝜂𝑒𝑒)  𝑃𝑃𝑘𝑘 (𝜓𝜓𝑒𝑒|𝜂𝜂𝑒𝑒)  𝑃𝑃𝑘𝑘 (𝜓𝜓𝑒𝑒|𝜂𝜂𝑒𝑒)  steps selected selected 
morning 8 0.429 0.744 0.995 0 0 0 
afternoon 18 0.502 0.830 1 0 0 0 
evening 8 0.497 0.702 0.881 0 0 0 
simulation 57 0.289 0.831 1 0 0 0 
sim. occluded 2 0 0.585 1 2 1 0 

 
time of day, and position of camera. Using the collected 
images, progress detection was performed to assess if the 
correct materials could be selected based on progress. 

Once again, the BIM for the physical experiments was 
generated as an FBX file. The actual CMUs used were 
foam blocks (Figure 4(b)). Foam CMUs were chosen for 
ease of handling in future robot experiments. Unlike the 
simulation experiments, the linear plan for the physical 
experiments only had 1 CMU placed per step, with a total 
of 10 steps. 

The physical experiments were varied in three ways: 
lighting, camera position, and construction step. Lighting 
was varied by taking images in the morning, afternoon, and 
late evening. Additional variation due to weather occurred 
naturally. Sets of images were captured around the CMUs 
at approximately 90°apart. For each lighting condition 
and position, the CMU corner was constructed to steps 
6 and 10. Images were also captured and processed for 
every step, but these were only gathered in the afternoon 
at a single position around the CMU corner. In total, 34 
variations of physical experiment were performed. 

A ZED 2i camera was mounted on a tripod to capture 
uncompressed images, and its rectified intrinsics can be 
found in Table 1. The ZED 2i is factory geometrically cal- 
ibrated, and so no manual calibration was performed prior 
to the experiments. For each as-built reconstruction, the 
tripod’s center column was extended in 0.06 m increments 
a total of 0.3 m to capture left and right images. This 
yielded 12 images per reconstruction, which will now be 
referred to as a set of images. A Python script was written 
to record the images, and was run using an NVIDIA Jetson 
Nano Developer Kit-B01. An example of an experiment 
setup is in Figure 4(b). 

When processing the real images, COLMAP was set to 
its default “high” settings to increase the final point density 
of the reconstruction. Although the poses of the camera 
were not measured for use in COLMAP, the camera intrin- 
sics were still provided using the ZED camera Python API. 
Again, SfM and MVS was performed using COLMAP’s 
command line interface. 

After reconstruction, because the camera poses were 

not recorded, the as-built PC had to be aligned to the same 
coordinate frame as the BIM. CloudCompare’s Align tool 
was used to generate a transformation matrix using the 
CMU vertices as a reference point. The matrix was used 
to rotate and scale both the as-built PC and reconstructed 
camera poses during progress detection. No changes were 
made to the material selection process. All parameters 
were left at their previous values. 

 
5 Results and discussion 

Evaluation of our system in both simulation and phys- 
ical environments resulted in the successful selection of 
the correct materials for delivery across all of the con- 
struction steps, camera locations, and lighting differences 
tested. As seen in Table 2, all minimum probabilities were 
above the threshold of 0.25 when there were no occlusions, 
so no materials were improperly selected. In practice, this 
means the material selection system will determine the 
correct materials to deliver for the construction site, pro- 
vided ample lighting and images, and the workface is free 
of obstructions. While the system was successful, some 
experiments do demonstrate how failures could occur. 

Correct materials are not selected for delivery when ele- 
ments placed during the current state of construction have 
too many voxels labeled as empty. In the experiments 
conducted through this research, voxels were incorrectly 
labeled as empty primarily because of poor lighting and 
occlusions. A representative example of the effect of light- 
ing on progress detection can be seen in Figure 5(a). Even 
though the sun was nearly directly overhead, the brick faces 
in the shade were reconstructed noticeably worse than the 
faces in the sun. Table 2 shows the probability 𝑃𝑃𝑘𝑘 (𝜓𝜓𝑒𝑒|𝜂𝜂𝑒𝑒) 
that an element placed during the current state is observed 
was generally higher during the afternoon than morning or 
evening, although no materials were mistakenly selected. 
However, Table 2 shows both simulated reconstructions 
where occlusions were introduced resulted in the wrong 
steps being determined. Figure 5(b) depicts voxels labeled 
as empty (red) due to a spotlight leg occluding some of the 
bricks from the cameras. This resulted in the current state 
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(a) Foam CMU corner at noon 

 
 
 
 
 
 
 
 
 
 

(b) Simulated experiment with an occlusion 
 

Figure 5. As-built reconstruction point cloud and 
voxel labels: red = empty, black = blocked, green 
= occupied, yellow grid lines = current construction 
elements 

 
 

being detected as 19 instead of 23. The reason for this 
can be observed in Figure 6. Looking at step 23 (actual 
current state) on the diagonal, red bands can be seen in 
the cell. There are multiple bands in each cell because 
multiple elements are placed per step. The red bands in- 
dicate that some elements were not detected, and explains 
why progress detection continued searching for the cur- 
rent step. Further down the diagonal, the elements in steps 
21 and 19 were detected fairly well. In Figure 5(b) it is 
shown that these steps represent the brick courses directly 
below step 23. Therefore, step 19 was deemed the current 
state because it was reconstructed enough to be detected as 
opposed to step 21. The consequence of this error is that 
the number of bricks selected for delivery would be based 
on step 19 instead of step 23. For these two steps, this is 
only the difference between delivering 8 and 7 bricks, but 
the error could be greater or smaller if the mistake was 
between a different pair of steps. 

Two other limitations of this material selection system 
are its reliance on detailed construction schedules and as- 
planned to as-built model alignment. As stated in sub- 
section 3.1, this paper uses a BIM and linear plan with 
an uncommon level of detail. For a system such as the 
one presented here to be used on a real construction site, 
detailed schedules for element placement will need to be 

Figure 6. Progress board for simulation at step 23 

 
incorporated into BIM, or methods will need to be de- 
veloped to reverse engineer the information from current 
models. Assuming such scheduling data is available, care 
must still be placed into aligning the as-built PC with 
the BIM coordinate frame, as errors will be magnified by 
small misalignments for large models. This concern can 
be reduced by collecting more images and by automating 
as-built model alignment using GPS or registering images 
with on-site control markers [16]. 

 
6 Conclusion 

This paper has demonstrated a process for auto- 
mated material selection based on detecting construction 
progress from robot captured images. Our system was 
evaluated in simulation and at a simulated, physical con- 
struction site. The material selection process was shown to 
be robust to lighting and is capable of detecting any step in 
a linear plan despite limitations related to model alignment 
and occlusions. This paper contributes a progress detec- 
tion system capable of selecting the necessary materials 
for further construction progress. The system presented 
serves as a template for future advancement, which will al- 
low workers to spend less time documenting progress and 
moving materials, and more time helping the construction 
industry reach its productivity goals. 

Future research aims to address the noted limitations 
and investigate the challenges of detecting progress on 
a real construction site. These challenges include scala- 
bility, large varieties of construction elements, non-linear 
construction schedules, and the generally more complex 
and varied environment that a construction site poses. 
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