Version of Record: https://www.sciencedirect.com/science/article/pii/S1389128621002917

Manuscript_e1414566348630913444b0c7ba0585dc

User Input Enrichment via Sensing Devices

Yutao Tang*, Yue Lif, Qun Lif, Kun Sun?, Haining Wang§, Zhengrui Qinﬂ
*Sam’s Club Lab
Yutao.Tang @ walmart.com
fDepartment of Computer Science, College of William and Mary
{yli,liqun} @cs.wm.edu
IDepartment of Information Sciences and Technology, George Mason University
ksun3 @ gmu.edu
§Department of Electrical and Computer Engineering, Virginia Tech
hnw@vt.edu
9School of Computer Science and Information Systems, Northwest Missouri State University
zqin@nwmissouri.edu

Abstract—Nowadays a user may have many electronic devices.
However, these devices suffer from different resource and usage
constraints. On one hand, mobile devices, such as smartphones,
have short battery life, limited computing power, and small-
sized display. On the other hand, more powerful devices such
as desktops or smart TVs are bulky and lack motion-related
input data. In this paper, we aim to integrate these two types
of devices into one computing platform when both devices are
accessible to a user, in which their individual advantages are
combined for users’ convenience. To this end, we develop a new
user-centric paradigm on computing systems, called Application
Execution with Sensing Input (AESIP), which can transparently
inject sensing data to a powerful yet stationary device using an
auxiliary mobile device. Not requiring any modification on the
mobile device’s OS and applications, AESIP supports all mobile-
specific input data sources, such as touchscreen, gyroscope, and
accelerometer. As one design goal of AESIP is to maximize the
user’s Quality of Experience (QoE), we tackle several usability
challenges and enable richer functionality. We implement a
prototype of AESIP on a Nexus 5, a Raspberry Pi and a desktop
machine. Our performance evaluation shows that AESIP induces
little latency and negligible bandwidth usage, and it significantly
increases the battery life of a mobile device. We further conduct
a user study to evaluate the usability of AESIP.

I. INTRODUCTION

Digital electronic devices have significantly changed peo-
ple’s life for decades. These devices are designed for various
purposes, and different traits bring them different advantages
under certain circumstances. For instance, personal computers,
tablets, and smart TVs are usually powerful with faster CPU
and wider screen. However, these devices are also more
stationary, such that the functionality is limited by the lack
of many input sources, such as motion-related sensors includ-
ing accelerometer and gravity sensor. Meanwhile, users also
have more handy and portable devices, for example, mobile
phones and smart watches, which are usually equipped with
many sensors and support convenient input operations via
the touchscreen. As a result, applications that leverage more
input data are developed to provide richer functions. However,
these mobile devices have short battery life, limited computing
power, and smaller display size and resolution.

Obviously, the two different types of devices offer unique
computing and communication services to users, but either of
them has its own limitations. It would be an ideal scenario
to seamlessly integrate them into one computing platform,
as shown in Figure 1, where they are able to complement
each other and deliver a significantly improved Quality of
Experience (QoE) to users. People have developed many
techniques to support hardware sharing. One common example
is screen mirroring [1], [2], which allows users to freely run
their mobile phone applications on a wider screen. However,
this mechanism is battery hungry and demands persistent
high bandwidth. Application-level screen sharing, such as
Google Chromecast [3], enables mobile devices for controlling
purpose only. However, they are only specific to their own
applications, and thus cannot be applied to other apps. Some
other techniques, such as VNC [4], [5], attempt to move the
computation to a remote device and use another device to serve
I/0s. However, VNC on a mobile platform usually does not
support sensor data sharing. Besides, it introduces long latency
and heavy dependence on the network conditions since screen
frames are usually transmitted. RIO [6] is a systematic solution
enabling the sharing of all the I/O between two mobile devices.
However, it requires extensive modifications on the OSes of
the two parties, and the use of Distributed Shared Memory
(DSM) [7], [8] consumes much network resource.

In this paper, we present Application Execution with
Sensing InPut (AESIP), which provides a fully functional
input sharing between two types of devices running Android
without losing any sensing traits. AESIP aims to bind the two
devices together to feature both powerful computation/display
and handy maneuvers/operations. It usually runs the applica-
tion on a relatively stationary but powerful machine (denote as
the execution-device), such as a desktop, and meanwhile ac-
cepts input data from a portable gadget (denote as the sensing-
device) like a smartphone or a smart watch. In other words, the
sensing-device is used as an auxiliary input generator and the
execution-device performs computation, output, and display
tasks.

A major challenge of AESIP is how to transparently

© 2021 published by Elsevier. This manuscript is made available under the Elsevier user license

https://www.elsevier.com/open-access/userlicense/1.0/

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1389128621002917

Fig. 1: Integrate two types of devices into one computing
platform

decouple the input from the application execution without
modifying the application. One of our design goals is that no
modification should be made on existing applications. Such a
feature significantly enhances the usability and applicability
of AESIP, since it is impractical to assume all application
developers are motivated to update their applications. To this
end, we leverage the Android input subsystem and low-level
Hardware Abstraction Layer (HAL) [9] of Android systems
to provide virtual hardware components on the execution-
device and feed the data from the sensing-device as if the
data is locally generated. Note that our design does not need
to modify the OS of the sensing-device. A user only needs
to install a client application on his/her device as a normal
application. Furthermore, virtual buttons are introduced in
some applications to provide customized controlling. When
virtual buttons are used, it is challenging for users to accurately
locate the buttons on their not-displaying screen. We address
the issue by statically mapping the virtual buttons back to the
sensing-device, such that the buttons appear on the screen of
the sensing-device.

The benefits of AESIP are four-fold. First, AESIP is cost
effective. It supports a large range of devices; the sensing-
device can be any smartphone and smartwatch, and the
execution-device can be both ARM-based and x86-based
devices running Android system. This allows users to use
their existing hardware devices and software apps while
enjoying similar user experience provided by dedicated
devices like Xbox Kinect. Second, AESIP is application
transparent. To run with AESIP, no modification is needed
for apps, and a user just need to directly download apps
from popular app store such as Google Play as usual. Third,
AESIP combines the advantages of both sensing-device and
execution-device while circumvents their disadvantages. For
examples, users can play graphically demanding games with
large-screen smart TVs on low-end resource-limited smart-
phones. Finally, AESIP bridges the gap between different

OSes with different versions. Its loosely coupled interface
between sensing-device and execution-device makes it easy
to be applied to different devices.

We have implemented a prototype of AESIP, in which
sensing-device runs on a Google Nexus 5 and execution-
device is deployed and tested on both Raspberry Pi 4 (ARM-
based) and a desktop (x86-based) [10] that run Android
systems. The sensing-device supports four types of input,
including touchpad, touchscreen, keyboard, and sensing data
from the Nexus device. We conduct a comprehensive perfor-
mance evaluation and demonstrate that AESIP has low latency,
negligible network usage, and improved battery performance
on the sensing-device. To evaluate the usability of AESIP, we
conduct a user study with 32 participants. The participants are
asked to use three different applications through AESIP and
complete a questionnaire afterwards. The results show that
AESIP generally has good usability.

The major contributions of this paper are summarized below.

o« We propose AESIP, a user-centric paradigm that can
share sensing input data from a sensing-device with
an execution-device. AESIP adopts a light-weight and
effective approach to transparently inject input data to
the execution-device. Meanwhile, many usability issues
are addressed for improving QoE.

« We implement a prototype of AESIP. Specifically,
sensing-device runs on an off-the-shelf Nexus 5 mobile
device and execution-device is tested on both ARM-based
Raspberry Pi 4 and a X86-based desktop. Besides the core
functions, we also implement additional functions such as
a static input mapping mechanism.

o We evaluate the performance of AESIP, which shows low
latency, low network bandwidth requirement, and reduced
battery consumption.

o We evaluate the usability of AESIP through a user
study, in which most participants have very good user
experience.

The rest of the paper is organized as follows. Section II
introduces the design goals and a high level view of the system
architecture of AESIP. Section III details the design and
implementation of AESIP, as well as enhanced functionality,
and presents a prototype of AESIP on Android system. Sec-
tion IV evaluates the performance of AESIP, including latency,
data volume,and power consumption. Section V measures the
usability of AESIP through a user study. Section VII surveys
related works, and finally, Section VIII concludes the paper.

II. SCHEME OVERVIEW

In this section, we first set our design goals when developing
AESIP. These design goals are essential to build an effective
and usable system, and help us make better design and
implementation decisions. Afterwards, we illustrate a high-
level view of the system architecture. Finally, we introduce
several use cases that AESIP can improve user experience.

A. Design Goals

We first list the design goals of AESIP in the following.

Coverage. AESIP should provide abundant input methods
to satisfy most applications’ requirements. Users are able to
easily interact with the applications running on the execution-
device.

No modification on applications. The modification require-
ment on existing applications may largely cripple the adoption
of AESIP as it is not practical to expect all developers to abide.
AESIP does not require any modification on applications. In
fact, all input signals are generated as if they are from the
local device, such that the running applications retain full
functionality.

High QoE. There could be many usability issues when
using a mobile device as the input device. These issues have
to be considered for achieving high QoE. We carefully address
them under different scenarios.

Low overhead. Many applications are time sensitive, es-
pecially those involving intensive user interactions. A high
overhead of AESIP may render the applications unusable.
Therefore, AESIP should be responsive in a timely manner.

Easy deployment. AESIP can be easily deployed on user’s
devices (e.g., smartphone and smartwear). AESIP does not
need any special privilege, such as root privilege. In addition,
AESIP supports various types of input devices.

B. System Architecture Overview

Input data Input subsystem App 1
Collector <:> Injector
sensor subsystem | | App 2 |

. |
4[/ 73
; .
t’ss,”. & H
ZANN
- %
Operating system level 7 App N

App level
Overseer

Operating system level App level)

Sensing-device Execution-device

Fig. 2: A high level view of AESIP

Given the design goals above, we now present the architec-
ture of AESIP. Figure 2 illustrates its outline. AESIP funda-
mentally involves two parties. One is the sensing-device and
the other is the execution-device. The two parties communicate
through network channels.

The collector is responsible for input data collection and is
usually installed in a sensor-rich handy device (the sensing-
device), such as a mobile phone. It provides a user-friendly
interface to control the execution-device. The collector is
installed in the form of a normal application. Namely, the
collector does not need any special privilege so that any
device can be used without modification. After authentication
and pairing, a sensing-device establishes a connection to the
execution-device and starts generating input data. The input
data includes data from the touchscreen, touchpad, keyboard,
and sensors. In certain scenarios, it also receives data from
the execution-device. For example, in the case of sensing data

transmission, the execution-device needs to first notify the
sensing-device that a certain type of sensor data is needed.

The execution-device hosts the applications and provides
the user with visual or aural feedback, which is usually an
empowered but relatively stationary device, such as a personal
computer and an Android TV box. The execution-device
embeds an injector exercising as the tube transmitting data
between the applications and the collector. It accepts input
data from collector via the network, and then transparently
injects the input data to the local OS as if the data is natively
generated. The data injection is done by reconstructing system
motion events and feeding them to the Android input subsys-
tem, as well as leveraging HAL to deliver sensor data. The
injector is able to simultaneously accept data from multiple
collectors, allowing collective controlling from several users.
More details are elaborated in Section III

C. Use Cases

In the following, we provide several typical use cases, in
which AESIP can improve user’s QoE.

Sensing-demanding games on Large screen: A larger
screen is going to help users see more clearly and provide an
immersive experience for games. AESIP can easily bring these
features to reality. With AESIP, a user could play sensing-
demanding games on an Android TV while controlling the
game characters through the accelerometer data from his/her
mobile phone.

Stable displaying: Today many people use E-health apps
on their mobile devices for body training, where the apps
provide guidance and count the movement using sensor data.
It is hard for a user to focus on both the guidance on the screen
and exercising with the device (to generate the sensing data
for counting). With AESIP, the user could simply mount the
sensing-device on her arm and look at the execution-device
for instructions.

Multiple player. Given the fact that all inputs are aggre-
gated and processed in the execution-device, AESIP supports
using multiple sensing-devices to generate input data. Thus,
AESIP allows multiple users to corporately control an appli-
cation, which opens up a new control mechanism on which
future applications, such as corporative gaming, may be built
to provide higher QoE.

III. IMPLEMENTATION

Although straightforward in principle, the detailed design
and implementation of AESIP are non-trivial. We build a
prototype of AESIP on Android systems. Namely, both of the
sensing-device and the execution-device are running Android
as their OSes. There are two reasons we choose to do so.
First, it is the most popular mobile OS world wide. Nowadays
Android has been ported to many devices, such as Android
TV, Tablets, and Android for x86 on Desktops or Laptops.
More devices will soon start to adopt Android as their OS.
Second, Android is open-sourced, allowing us to modify the
OS at the execution-device side.

It is worth to mention that though the sensing-device
implementation is on Android, it is easy to migrate to other
OSes, such as the i0S and Windows Phone OS. This is because
the interfaces between collector and injector are well defined
with protocol buffer [11], which can serialize structured data
regardless of the programming language and the platform.
As long as the communication protocol between the sensing-
device and the execution-device is followed, any mobile device
can be used as a sensing-device.

In this section, we will elaborate on the detailed design and
implementation of AESIP. We focus on how to handle each
type of the input data since it is the key function of AESIP.

A. Authentication and Pairing

The very first step is to handshake. The sensing-device
should be able to find the execution-device, but the execution-
device should not allow any random sensing-device to connect.
Thus, pairing the devices with authentication is needed to for
the security purposes. Secure pairing with authentication is a
well-studied field and can be implemented in many ways. We
use a simple scheme that supports the management of multiple
sensing-devices with the aid of an overseer.

Figure 2 illustrates this process. (1) The overseer on the
execution-device is started as a daemon service, which listens
to the connection from collector. (2) The collector authenti-
cates itself to the overseer by connecting to the IP address
and port of the overseer with a pre-set passcode. (3) If the
authentication is successful, the overseer will then generate a
session key, and send it to both the collector and the injector.
(4) The collector and the injector uses the shared session key
to encrypt/decrypt the data and communicate with each other.
We use the platform-independent gRPC [12] to transmit the
data.

B. Data Tubing

In order to provide the best user experience, selecting and
properly handling the input data is critical to our system. We
find four types of input can cover most of the demands. They
are touchscreen, touchpad, keyboard, and sensors. Among the
four types, three of them (except for the sensors) need user
interactions, which means a user interface is needed. We set
each of the types in a tab in the collector. Whenever the user
needs a certain type of input, she switches to the tab and
operates accordingly. In the following, we introduce each type
of the input data, including why we need them and how to
handle them.

1) Touchscreen: The touchscreen is the most natural and
frequent input platform for applications. AESIP provides a
user interface built on the Android SurfaceView class. When
a user interacts with the SurfaceView object, the underlying
Android service will detect the action on the screen and
encapsulate it into a MotionEvent data structure. The data
structure will be sent back to the SurfaceView object. In
this step, the collector captures the user’s interaction on the
touchscreen.

To serialize the data in order to support devices with differ-
ent OSes, the collector should collect 14 necessary data fields.
Examples are downTime (the time when the user originally
pressed down), eventTime (the time when this event happens),
action (the action performed, such as ACTION_DOWN), etc.
Note that the coordinates recorded are further scaled to reflect
an accurate match between the SurfaceView instance and the
screen of the execution-device.

When the data is collected from the sensing-device, the
collector extracts the fields from the MotionEvent and sends
them to the execution-device through wireless network. Upon
receiving the data, the execution-device will construct a new
MotionEvent object from the received data, and then inject
the object to the Android input subsystem. Specifically, the
execution-device gets an instance of the InputManger class,
and then calls the InputManager.injectinputEvent() procedure
and passes in the MotionEvent instance.

2) Touchpad: Featuring a usable touchscreen incurs a us-
ability issue because the sensing-device merely generates input
data without receiving any feedback. Consider the scenario
when a user wishes to tap on an application icon shown on
the execution-device, she may find it difficult to do so since
the screen of the sensing-device does not show the icon and
finding the correct position is challenging.

In order to tackle the problem, we adopt a solution in which
we emulate a touchpad. The touchpad consists of a touching
area and a button, just like the touchpad on a laptop, except
that the button is located under the touching area for better
usability. The touchpad input tab is shown in Figure 3. It
controls a cursor that navigates on the display of the execution-
device. This approach is practical since the touchpad cursor
moves with relative coordinates and is much easier for a user
to keep track of. For example, if a user wishes to launch an
application, she needs to first move the touchpad cursor to the
application icon and then tap on the button. Android for X86
has demonstrated that a mouse can handle most of the touch
screen input. Our approach is equally powerful.

To implement the touchpad, the collector features another
tab hosting a SurfaceView interface. The cursor is drawn
as a FloatingView object on the screen of the execution-
device. This object is on top of any other View objects and
is controlled by the injector. The cursor does not interact
with other objects, but only indicates a position that is under
operation.

Note that the touchpad allows two types of operations:
interactive and non-interactive. Interactive operations imply
any operations that have a real impact on the execution-
device, such as tapping, swiping, pressing, and dragging,
while non-interactive operations simply move the cursor. The
key difference is that interactive operations intend to operate
on the screen of the execution-device and expect certain
responses. Fundamentally, an interactive operation injects Mo-
tionEvent events to the OS of the execution-device while a
non-interactive operation does not. The two types of operations
can be easily differentiated by checking whether the button
is pressed/tapped. For example, if a user presses the button

én Yl @ 3:58

Collector

I TOUCHPAD | TOUCHSCREEN KEYBOARD

TOUCHING AREA

BUTTON

Fig. 3: Touchpad Input

while moving the cursor via sliding on the touching area of
the touchpad, it represents a drag operation. All MotionEvents
generated at the collector will be delivered to the injector,
which then adjusts and injects these events to the local input
subsystem. The adjustment is important since the coordinates
of the MotionEvents should reference to the cursor’s position.
For instance, if the cursor is located at (z,y) at the display of
the execution-device and the user performs a drag by pressing
the button and sliding on the touching area at position (a, b)
on the sensing-device’s display. The collector will capture
MotionEvent starting from (a,b) and a batch of following
movements (M = {mi2. ,}, and m; = (mz, m4y,)) from
the sensing-device. The injector will adjust all points such that
the operation is performed starting from (z, y) and the follow-
ing movement is adjusted as m), = (m;z +y —a, miy +y—D>).

3) Keyboard: Most mobile OSes (e.g., Android, i0S, and
Windows Phone) provide software keyboard because they are
touchscreen-based. Even with our touchscreen implementa-
tion, inputting on the execution-device is still hard and counter-
ing a user’s input habit, since the user needs to manually move
the cursor to each character and tap on the collector. Besides,
it raises security concerns if the user inputs credentials on the
execution-device, which is more likely to leak the credentials.
For example, a guest may be able to peek the YouTube
password of the user from the smart TV screen. For the sake
of user experience and security, we enable a sensing-device
side keyboard input generation channel, instead of simply
relying on the built-in keyboard of the Android system on
the execution-device. Specifically, we integrate another tab on
the collector that has a built-in Android keyboard. The user
switches to the tab and then input just like she normally does
on a mobile device whenever she has the need.

To implement the keyboard, the collector provides an

én 4 @ 4:00
Collector
I TOUCHPAD | TOUCHSCREEN KEYBOARD
keyboardi_nd
in inp input $
1 2 3 4 5 6 7 8 9 o
qwe T T ty ui op

Fig. 4: Keyboard Input

EditText View for the user. The user can leverage the soft
keyboard on it to input data. Figure 4 shows a screenshot
of the keyboard input tab. Every character keyed in will be
captured by the collector, which in turn encapsulates it and
directly sends it to the injector. The three necessary fields fed
to the Protocol Buffer are time, character, and devicelD. Upon
receiving the encapsulated data, the injector reconstructs the
KeyEvent and injects it to the Android input subsystem, such
that the applications are able to receive the event. Similarly,
this KeyEvent will be injected by the InputManager Class
of Android. Note that copy and paste operations on the soft
keyboard are handled as the pasted content is typed in per
character.

4) Sensor data: Contemporary mobile devices are featured
with various sensors, including the accelerometer, gyroscope,
and gravity sensor. The data generated by these sensors
are widely used in many applications, such as exercising
or gaming applications. However, motion-related sensor data
cannot be easily generated by the execution-device due to its
stationary nature. As such, using the sensing-device to generate
sensor data for the execution-device is necessary.

In our implementation, all the sensor data is provided by the
sensing-device. If the application running on the execution-
device needs to use certain types of sensor data, it will first
register to the local sensor service. The sensor service will
notify the injector that forwards the request to collector. The
collector then starts to collect sensor data on the local device
by registering the same type of a listener on the sensing-
device, and forwards the data back to the injector. Unlike
other actions that could leverage existing Android APIs to
inject data to the Android subsystem, there is no API to
inject a sensor data structure. We manage to inject the data
by leveraging the Hardware Abstraction Layer (HAL). Just as

the name suggests, HAL abstracts hardware and isolates the
Android framework from the Linux kernel and the underlying
hardware. In a typical Android system, the Linux kernel driver
reads the input data from registers, and then sends the input
data to HAL, which packages the data and further delivers it
to the upper layer Android framework and applications. The
definition of each type of input data should be pre-registered
in HAL such that HAL knows how to handle the data. Such
a system opportunity enables the injector to directly inject
the input data to HAL as if the data is locally generated.
As such, the applications can function normally without any
modifications. AESIP leverages such a technique to achieve
transparency.

Sensing-Device Execution-Device

App level App level —I
@ PP Target App
Collector | ’
T
Sensor Sub-
Operating System Injector | | System
[HAL

Fig. 5: Sensor data flow

Figure 5 illustrates this procedure. The application registers
a listener to the sensor manager [13] when it needs to access
a certain sensor. We modify the sensor manager such that
whenever a new listener is registered, it sends a notification
to the injector, which in turn signals the collector through net-
works. After receiving the signal, the collector itself registers
a listener of the same sensor type to its local sensor manager
and starts to collect data and send them to the execution-
device. To feed the data to the application, we disable the
original sensor HAL in the execution-device, which is unaware
of the existence of the injector. Instead, we create our specially
tailored HAL to facilitate the data flow. At system startup, our
HAL will create a thread, which listens to the injector, and
decode the sensor data inside. Then, the thread will wrap the
raw sensor data to a data structure that conforms to the HAL
sensor data definition and forward the data structure to the
upper layer Android framework. As such, the application can
fetch the sensor data without any modifications.

C. Functionality Enhancement

Apart from the main framework of AESIP, we apply en-
hancements to the system for better usability or possible richer
functionality.

1) Virtual buttons: Nowadays, there are many mobile appli-
cations that provide customized input for application-specific
operations. A typical use case is the virtual buttons in an
application. While it is easy to operate on these virtual
buttons when running on the mobile device, it incurs similar
usability shortcoming with AESIP just like the touchscreen.
Specifically, users may find it difficult to accurately locate the
positions of these buttons on the mobile device screen since

the visuals are only shown on the screen of the execution-
device. Using a cursor is not ideal under this scenario for two
reasons. First, multiple virtual buttons are frequently combined
into more sophisticated actions, which is not achievable by
using a cursor. Second, it also requires too much user effort to
maneuver the cursor, especially in many real-time applications
when prompt or combinations of operations are needed.

In order to resolve the problem, we develop a static input
mapping mechanism to help the users locate these virtual
buttons. Furthermore, it allows the users to freely layout these
buttons on the mobile device such that the user experience
may become even better. This is because virtual buttons are
usually small and corner-positioned as the buttons should not
take too much space and cover other content. We describe the
mapping mechanism as follows.

Sensing-Device

Fig. 6: A virtual button example

The Touchscreen tab in the collector has a button specific
to this function. Whenever the user switches to this tab and
taps on the button, it sends a notification to the injector, which
then takes a screen shot of the display of the execution-device.
Afterwards, the injector transmits the captured picture back to
the collector, which then displays this frame on the screen.
The virtual buttons usually do not change their locations in an
application, and thus, the users are able to locate the virtual
buttons even though the displayed screen is static. Further-
more, due to the fact that the collector only needs to serve
the virtual buttons, we further allow the user to customize the
screen area to better fit her needs. Specifically, the user can
keep the useful areas (where the virtual buttons are), and cut
off all other content by cropping the screenshot. The saved
space can then be used to better accommodate the buttons. In
a full-fledged AESIP, some feedback features like pressing
sound or vibration may also be added in order to prevent
users from constantly losing focus on the buttons. Figure 6

shows an example of “Virtual button”. In this example, we
install “Streets of Rage 2” app on the execution-device. As
we can see, the user sets up the “Virtual buttons” on the
sensing-device, and use them to control the game running on
execution-device.

2) Multiple Collectors: With our design, AESIP is able
to support multiple input sources. For example, two users
may cooperate on two sensing-devices to control a single
application. This can be achieved by using the injector to
accept data from multiple collectors. The injector maintains
a data queue such that data from any collector is added to
the queue in the order of time. Since different collectors have
different IDs in the MotionEvent injected, the application can
recognize the events from different operations. However, the
application is not aware that the operations are from multiple
devices. Instead, it simply considers that all operations are
from the same device. For example, if two users slide on
their touchscreens in different directions, the application may
consider it a zooming operation.

One particular use case is to use the static input mapping
mechanism to achieve cooperative gaming. The control can be
extended to multiple sensing-devices when there are multiple
virtual buttons on the screen. As such, these virtual buttons
can be divided into multiple displays and operated by multiple
users without interfering each other. One main advantage of
this approach is that it does not need application awareness.
On the other hand, the applicability could be limited. First,
an application may not always have virtual buttons. The other
types of input data are not supported. Second, most current
applications are only designed to be used by a single user,
so having two persons operating on the application may not
be very useful at the current stage. However, this feature
enriches the functionality of AESIP and future multi-user-
aware applications may be developed to provide even richer
functionality.

IV. EVALUATION

We deploy a prototype of AESIP to evaluate its perfor-
mance and overhead. The collector is installed on a Nexus 5
mobile phone (the sensing-device), and the execution-device
is deployed on a x86 virtual machine running on top of
a desktop and a Raspberry Pi 4 platform, respectively.
The router we used provides a 300Mbps bandwidth. Note that
since AESIP is intended to run in a Local Area Network
(LAN) environment, 300Mbps is considered as a common
bandwidth. We evaluate AESIP in terms of the input data
transmission latency, data volume, and the power consumption
on the sensing-device.

A. Latency

The latency of input data transmission is very important
since high latency significantly degrades the usability. The
latency mainly consists of two parts. The first part is the
network delay. We record the time of an event being received
by the collector, which is denoted as t;. On the injector,

we record the time that the same event is received from the
network, which is denoted as t5. Here to — t; represents the
delay of the network transmission. The second part is the delay
induced by injecting the data to the application. To measure
this delay, we record the time when the application receives
the event (denoted as t3). This is done by using a dummy
application developed by us. Thus, t3 — to implies the delay
caused by injecting the data event.

We conduct two independent experiments which use a
Raspberry Pi 4 (ARM-based) and a Virtual machine on
desktop (x86-based) as the execution-device, respectively.
In each experiment, we send 100 events per class of
touchscreen, touchpad, and keyboard, as well as 500 sensor
events, from the collector to the target application that is run-
ning on the execution-device. The results of network latency
and injection latency are shown in Figure 7 and Figure 8,
respectively. As we can see from the figures, the ARM-based
execution-device has slightly shorter latency than the x86-
based execution-device. The reason is that the ARM-based
execution-device runs directly on the hardware and it can
receive messages from sensing-device immediately while
the x86-based execution-device runs on the virtual machine
provided by Host OS which needs to forward messages
to the virtual machine. In the two experiments, the four
types of input have small network latency, which is in average
around 20-40ms. Besides, these input do not differ much.
Similarly, the injection latency is also fairly small, around
40-50ms for touchscreen, touchpad, and keyboard events.
The sensor events have significantly lower latency. This may
be because the injection methods are different. The former
three types of events are injected through the Android input
subsystem. By contrast, sensor events are injected directly
through HAL. The Android system may handle input from
the two channels differently.

80

Platform
[x86-based
Em ARM-based

70

60 J—

50 4

40

Latency

304

20 4

10

1 1 1 1
Touch Screen Touch Pad Keyboard Sensor

Fig. 7: Network Latency

100

Platform
1 x86-based

1 ARM-based
80

o1

40 4

1 T1

1
Touch Screen

Latency

L] IT

T
Touch Pad

1 1
Keyboard Sensor

Fig. 8: Injection Latency

B. Data Volume

With AESIP, the input data that is transmitted should not
be too large; otherwise, the network may not be able to
consume the data faster than data generation. In this case, the
input data will suffer from much larger transmission latency.
Even worse, the network may start to drop packets, making
the application unresponsive. We show that AESIP has very
small data volume, even if the sensor data is extensively read.
We casually use the touchscreen, touchpad, and keyboard to
control the execution-device within a 1-minute window. As
for the sensors, we request data from four types of sensors,
including the accelerometer, gyroscope, gravity sensor, and
the light sensor. Note that we also conduct Data Volume
evaluation on x86 and ARM platforms, but the results on
different platforms do not show a noticeable difference.
Therefore, we only show the results on x86-based platform

Figure 9 shows the data volume produced by the four input
types. The spikes in the figures represent active operations.
As the sensors are constantly being requested, there is always
data in transmission. However, even though we have activated
four sensors in the experiment, the data generated is at most
around 10KBps. Besides sensors, the touchpad has more active
operations, as shown in Figure 9c, because a user usually lies
her finger on the screen to control the cursor. It can be seen that
none of the other three input types produce more than 4KBps
data. Compared to today’s network bandwidth, such a small
amount of data is negligible. Thus, we prove that AESIP has
a very low requirement on network conditions as it consumes
very small bandwidth.

C. Power consumption

One advantage of AESIP is its power efficiency on the
sensing-device, which usually has a limited battery capacity.
Since the computing and displaying tasks are offloaded to the
execution-device, the sensing-device is largely released from
battery draining. On the other hand, the execution-device is
usually stationary and connected to a power outlet, such as

Q 4
[=2]
we: JAN /\ NUOA A
@0
g 1 6 11 16 21 26 31 36 41 46 51 56
°
>
8
1]
(€ o> MM VA st O
0 A
1 6 11 16 21 26 31 36 41 46 51 56
2
9N A M
0

Timeline (s)
Fig. 9: Data Volume

(a) sensor data (b) touchscreen (c) touchpad (d) keyboard

the desktop we used, so the power is less of a concern. We
measure the power consumption of the mobile device with
and without AESIP when using two applications. Specifically,
we record the power usage in a one-hour period when the
device is idle, watching a Youtube clip, watching the same
clip with AESIP, playing Doodle Jump, and playing Doodle
Jump with AESIP. Doodle Jump is a leisure game where the
main character keeps bouncing up against boards and avoids
obstacles by moving left or right. The principle behind this
game is that a user tilts the mobile phone to control the
direction of the character and the tilting is reflected on the
accelerometer readings.

Battery Usage {Percentagel

5 4

Idle otube et

Doodle |wrp

Doodle Junps
Fig. 10: Battery Consumption

“*#” indicate that the application is used via AESIP

The results of the power consumption are shown in Fig-
ure 10. It is intuitive that the power consumption is the smallest
when the mobile phone is idle. In the case of watching a
Youtube video using AESIP, there is not much difference
(only 1%) from the idle state, since the heavy operations
are offloaded to the execution-device. Unlike playing Youtube
video, in the case of Doodle Jump, the mobile phone still
remains in a busy state, even with AESIP, due to the fact that
it is actively retrieving data from the accelerometer. However,
the power usage is still 69% less than playing it locally.
The reason is that some computation has been offloaded

to the execution-device, and the power consumption of
the limited data transfer overhead (less than 15Kk/s) is
smaller than the power saving of computation offloading.
Since users are much more sensitive to the power level
of the sensing-device, using AESIP greatly alleviates the
frustration caused by the quick battery drain.

In summary, the evaluation results show that: (1) AESIP
has a very low network latency and injection latency on
both x86-based and ARM-based platforms; (2) AESIP
requires very small bandwidth; and (3) AESIP consumes
less power than running the Apps directly on sensing-
device.

V. USER STUDY

Usability is a main consideration of AESIP. In order to
evaluate how easy it is to use, we conduct a user study to
gather feedback and comments from normal users. Toward this
end, we recruit a total of 32 volunteers using AESIP. We set
up a lab computer that runs Android for x86 with a 27-inch
display, which serves as the execution-device. The sensing-
device is a Nexus 5 mobile phone that runs Android 6. We
pre-installed all the applications that are used in this study.
Besides, The sensing-device and execution-device are paired
prior to the study.

The volunteers consist of 14 females and 18 males. Since
the user study is done in a school scale, most of our volunteers
age 20-30 years old and have a bachelor’s degree. We try to
diversify the background of our volunteers by recruiting them
from eight different fields of study, including mathematics,
law, finance, economy, computer science, etc. The participants
are asked to use three applications with AESIP, which are
carefully selected and include all the input features that are
provided. Each application takes several steps to use, and we
describe them as follows.

Youtube. The first task is to use AESIP to watch a video
clip on Youtube. Each participant is asked to open the Youtube
application on the execution-device, log in using a test account
managed by us, and randomly search a short video to watch.

Doodle Jump. Each participant is asked to play the Doodle
Jump game. The participant needs to tilt the sensing-device to
control the game character for jumping up.

Monster Truck. Monster Truck is another game that is con-
trolled by the virtual buttons on the display of the execution-
device. The game needs two hands to tap the virtual buttons
on both sides of the mobile phone. We ask each participant
to map the virtual buttons to the screen of the sensing-device
and play the game.

TABLE I: User experience questionnaire on AESIP.

Ql. Rate your experience of using YouTube

Q2. Rate your experience of using Doodle Jump
Q3. Rate your experience of using Monster Truck
Q4. Is latency acceptable?

Q5. Are input tabs easy to use?

Q6. Rate the overall usability

We ask the participants to use each of three applications for
five minutes. Afterwards, they are presented a short post-study
questionnaire regarding the usability of AESIP. As shown in
Table I, the questionnaire is anonymous and consists of six 6-
point scale questions, where 6-point indicates strongly agree
and 1-point indicates strongly disagree. The first three ques-
tions are about the experience using each specific application,
and the latter three questions are more general. All participants
successfully complete the study within 30 minutes.

Figure 11 shows the results of the questionnaire, from
which we can see that different applications have different
ratings of usability. Using Youtube receives the highest rating
(more than 80% of participants agree that they have a better
user experience on AESIP than on a mobile phone), since it
does not need extensive user interaction and offers desirable
high-resolution display experience. Playing Doodle Jump is
comparably favored on AESIP. Several participants mention
that tilting the mobile phone no longer affects the view point
of the display, which is the reason why playing on AESIP has
a better user experience. On the other hand, playing Monster
Truck on AESIP is not as favored as the other two applications,
though it is still considered usable. As mentioned by the
participants, they sometimes lose the focus of their fingers
on the virtual buttons. In this scenario, they need to keep
switching their sights between the monitor and mobile phone.
Meanwhile, four participants explicitly mention that the virtual
buttons work well as long as you crop it correctly. As virtual
buttons were associated with more feedback such as vibration
or beeping sounds, the usability would be further improved.

When asked if the latency of AESIP is acceptable, most
participants (75%) agree or strongly agree. This is consistent
with our performance evaluation result that AESIP introduces
small latency. When asked about how easy the input tabs can
be used, some participants have concerns when multi-finger
operations or prompt consecutive operations are needed. In
these cases, a touchpad may not be ideal. This is also the
main reason why some users do not consider that the input is
easy to use.

In summary, AESIP enables users with better user experi-
ence when running some applications, such as the less interac-
tive application Youtube. While there is a slight degradation in
usability in certain application scenarios, the overall usability
of AESIP is still considered high by most of our participants.

VI. LIMITATIONS

AESIP is not perfect so far, and it has several limitations
that could be mitigated or removed in our future work.

First, compared to other existing system like Xbox Kinect
and Rio [6], AESIP is not very suitable for handling apps that
require to frequently transfer large volume of data, e.g. video
and audio, between the sensing-device and the execution-
device, since large data transmission will drain more energy
of the sensing-device and introduce larger latency, which may
degrade user experience.

16 : :
average: 4.4
14 median: 5
12} |sd: 1.1
< 10
3
c 8
=}
Z 6
4
2
0
Point
(a) Rate using Youtube
16 : : :
average: 3.8
14 median: 4
121} |sd: 1.3
< 10
3
e 8
=}
Z 6
4
2
0
Point
(c) Rate using Monster Truck
16 : :
average: 3.5
14 median: 4
12} |sd: 1.2
< 10
3
e 8
=}
Z 6
4
2
0

Point

(e) Input Tabs are Easy to Use

16 ‘ ‘

average: 4.3
14 median: 5
121} |sd: 1.3
10
3
£ 8
=]
Z 6
4
2
0
Point
(b) Rate using Doodle Jump
16 ‘ ‘ ‘
average: 5.0
141 | median: 5
121} |sd: 1.0
< 10
3
e 8
>
Z 6
4
2
0
Point
(d) Latency is Acceptable
16 ‘ ‘
average: 4.0
14 median: 4
12} |sd: 1.3
10
3
e 8
=]
Z 6
4
2
0

1 2 3 4 5 6
Point

(f) Rate Overall Usability

Fig. 11: Survey Results

Second, AESIP does not provide good support for ani-
mated “Virtual button”. All “Virtual buttons” displayed on
the sensing-device are static, and the users need to redo the
mapping process if the button changes. Even thought keeping
the original mapping usually does not affect the operation

10

for most cases, the different displays on sensing-device and
execution-device may confuse users. Fortunately, this issue
can be solved by monitoring the source animated “Virtual
button” on the execution-device in real time, Once AESIP
detects the content in the source area changes, it would update

the destination area on the sensing-device accordingly, we will
leave this feature as our future work.

Third, most Android apps, especially games, are designed
to play on smartphone, whose aspect ratio and resolution are
usually different from those on execution-device. Therefore,
when we run these apps on execution-device, they do not
fully occupy the screen, leaving the unoccupied part black.
This situation is even worse when apps only support portrait
display.

Finally, in our current prototype implementation, the
sensing-device is only tested on Android smartphone. We will
test more devices, such as smart watch and iOS based system
in the future.

VII. RELATED WORK

Hardware sharing is an important topic that has been long
studied in different levels. Many techniques have been devel-
oped to share resources, such as remote file systems [14], [15],
memory sharing [16], [17], and network USB [18], [19], [20],
[21]. Specifically, M2 [20] presents a data-centric solution that
utilizes high-level device data to support I/O sharing between
heterogeneous devices. FLUID [21] allows users to migrate or
replicate individual user interfaces of a single app on multiple
devices. All these methods enable remote resource access to
build more advanced resource sharing tools.

Similar to AESIP, some other tools are used for control-
ling purposes, such as VNC [4], [5], [22], THINC [23], X
server [24], and [25]. However, existing tools have limited
usage on a mobile platform, such as inability to handle sensor
data. For example, [25] designed a mobile app to use touch
gestures to control the smart TV such as search and pick
a movie, however it cannot handle sensor data. In order to
address this problem, Rio [6] proposes a more low-level and
systematic solution by using Distributed Shared Memory [7],
[8]. What differentiates AESIP from Rio is that AESIP focuses
more on application controlling and usability. The implemen-
tation of AESIP is also more light-weight and involves fewer
modifications on the devices. Specifically, AESIP does not
require any system modifications on the sensing-device while
Rio needs to modify both parties.

Remote computation offloading for mobile devices nowa-
days have become a quite common practice [26]. Many
solutions leverage a server or a cloud service to do the
computation. Examples are Cloudlets [27], Clonecloud [28],
MAUI [29], COMET [30], and others like [31], [32], [33],
[34], [35], [36]. These techniques all attempt to move the
heavy computation tasks to a more powerful platform, such
as a remote server or a cloud service. There are also other
remote computation schemes aiming at providing better secu-
rity support [37], [38], [39], [40], [41]. For instance, Session-
Magnifier [37] shares a browser session bettwen an untrusted
computer and a mobile phone, where users can perform
sensitive activities on the phone while normally browsing on
the computer. TinMan [40] stores confidential records on a
remote server and removes the sensitive operations on these
records from the local device. CleanOS [39] and Keypad [38]

11

secure a key by either evicting it or making the key retrieval
auditable. Leveraging mobile devices for more secure user
authentication on a computer is also frequently discussed [42],
[43], [44], [45], where mobile devices support a second data
channel. Furthermore, efficient communication among devices
are also studied in an inter-connected environment [46].

VIII. CONCLUSION

Nowadays, many people have multiple electronic devices
for different purposes, such as smart TVs, desktops, smart
phones, smart watches, and so on. These devices are very
different with respect to CPU power, power life, screen size,
portability, and richness of input. It is of great interest to
integrate or bridge them into one seamless computing platform
such that better user experience can be offered to human users
by overcoming the constraints of each individual device. In this
paper, we propose AESIP, a new user-centric paradigm that
allows a sensing-device to supply input data to a more power-
ful execution-device, such that different-purposed devices can
complement each other with their own traits and advantages
to provide much improved QoE (Quality of Experience) for
users. AESIP supports the transparent transmission of four
popular types of input data with user QoE considerations,
namely touchscreen, touchpad, keyboard and sensor. We im-
plement a prototype of AESIP on the Android platform and
evaluate its performance in terms of data transmission latency,
data volume, and power consumption on the sensing-device.
Our results show that AESIP incurs very small overhead and
significantly reduces the power drain on the sensing-device.
We also evaluate its usability by conducting a user study
involving 32 participants, and the results show that AESIP
is considered to have high usability by most participants.

REFERENCES

mobzapp, “Screen stream mirroring,” http://mobzapp.com/mirroring/
index.html, 2016.

M. McGill, J. Williamson, and S. A. Brewster, “Mirror, mirror, on the
wall: collaborative screen-mirroring for small groups,” in Proceedings
of the ACM International Conference on Interactive Experiences for TV
and Online Video. ACM, 2014.

“Google chromecast,” https://store.google.com/product/chromecast_
2015.

Wikipedia, “Virtual network computing,” https://en.wikipedia.org/wiki/
Virtual_Network_Computing, 2014.

TightVNC, “Tightvnc software,” http://www.tightvnc.com/, 2017.

A. Amiri Sani, K. Boos, M. H. Yun, and L. Zhong, “Rio: A system
solution for sharing i/o between mobile systems,” in Proceedings of the
12th Annual International Conference on Mobile Systems, Applications,
and Services. ACM, 2014, pp. 259-272.

J. B. Carter, J. K. Bennett, and W. Zwaenepoel, Implementation and
performance of Munin. ACM, 1991, vol. 25, no. 5.

S. Zhou, M. Stumm, K. Li, and D. Wortman, “Heterogeneous distributed
shared memory,” IEEE Transactions on parallel and distributed systems,
vol. 3, no. 5, pp. 540-554, 1992.

“Android hardware abstraction layer documentation,” https://source.
android.com/devices/halref/index.html, Feburary 2015.

C.-W. Huang, “Android-x86 project,” http://www.android-x86.org/,
November 2014.

Google, “Google protocol buffer,”
protocol-buffers/, November 2016.

[2]

[3

[t}

[4

=

[5]
[6]

[7]
[8]

[9]
[10]

[11] https://developers.google.com/

[12]
[13]
[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

(33]

[34]

——, “Introduction to grpc,”
introduction/, November 2018.
“Sensormanager,” http://developer.android.com/reference/android/
hardware/SensorManager.html, Feburary 2015.

P. J. Leach and D. Naik, “A common internet file system (cifs/1.0)
protocol,” Internet-Draft, IETF, Tech. Rep., 1997.

A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth
network file system,” in ACM SIGOPS Operating Systems Review,
vol. 35, no. 5. ACM, 2001, pp. 174-187.

P. J. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel, “Tread-
marks: Distributed shared memory on standard workstations and oper-
ating systems.” in USENIX Winter, vol. 1994, 1994, pp. 23-36.

J. Protic, M. Tomasevic, and V. Milutinovic, “Distributed shared mem-
ory: Concepts and systems,” IEEE Parallel & Distributed Technology:
Systems & Applications, vol. 4, no. 2, pp. 63-71, 1996.

A. Hari, M. Jaitly, Y.-J. Chang, and A. Francini, “The swiss army
smartphone: Cloud-based delivery of usb services,” in Proceedings of
the 3rd ACM SOSP Workshop on Networking, Systems, and Applications
on Mobile Handhelds. ACM, 2011, p. 5.

FabulaTech, “Usb over network,” http://www.usb-over-network.com/,
2017.

N. AlDuaij, A. Van’t Hof, and J. Nieh, “Heterogeneous multi-mobile
computing,” in Proceedings of the 17th Annual International Conference
on Mobile Systems, Applications, and Services, 2019, pp. 494-507.

S. Oh, A. Kim, S. Lee, K. Lee, D. R. Jeong, S. Y. Ko, and I. Shin,
“Fluid: Flexible user interface distribution for ubiquitous multi-device
interaction,” in The 25th Annual International Conference on Mobile
Computing and Networking, 2019, pp. 1-16.

Z. Zhang, H. Cao, S. Su, and W. Li, “Energy aware virtual network
migration,” IEEE Transactions on Cloud Computing, 2020.

R. A. Baratto, L. N. Kim, and J. Nieh, “Thinc: a virtual display
architecture for thin-client computing,” in ACM SIGOPS Operating
Systems Review, vol. 39, no. 5. ACM, 2005, pp. 277-290.

Xserver, “xserver,” https://www.x.org/archive/current/doc/man/man1/
Xserver.1.xhtml, 1987.

J. Sun, Y. Li, L. Wang, X. Li, X. Ma, J. Xu, and G. Chen, “Controlling
smart tvs using touch gestures on mobile devices,” in 2015 IEEE 12th
Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th
Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl
Conf on Scalable Computing and Communications and Its Associated
Workshops (UIC-ATC-ScalCom). 1EEE, 2015, pp. 1222-1229.

Y. Geng, Y. Yang, and G. Cao, “Energy-efficient computation offloading
for multicore-based mobile devices,” in IEEE INFOCOM 2018-1EEE
Conference on Computer Communications. 1EEE, 2018, pp. 46-54.
M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The
case for vm-based cloudlets in mobile computing,” IEEE Pervasive
Computing, vol. 8, no. 4, pp. 14-23, Oct. 2009. [Online]. Available:
http://dx.doi.org/10.1109/MPRV.2009.82

B.-G. Chun, S. Thm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings of
the sixth conference on Computer systems. ACM, 2011, pp. 301-314.
E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in MobiSys 10, 2010.

M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“Comet: code offload by migrating execution transparently,” in Presented
as part of the 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12), 2012, pp. 93-106.

D. Chatzopoulos, C. B. Fernandez, S. Kosta, and P. Hui, “Offloading
computations to mobile devices and cloudlets via an upgraded nfc
communication protocol,” IEEE Transactions on Mobile Computing,
2019.

X. Meng, W. Wang, Y. Wang, V. K. Lau, and Z. Zhang, “Closed-
form delay-optimal computation offloading in mobile edge computing
systems,” arXiv preprint arXiv:1906.09762, 2019.

L. N. Huynh, Q.-V. Pham, X.-Q. Pham, T. D. Nguyen, M. D. Hos-
sain, and E.-N. Huh, “Efficient computation offloading in multi-tier
multi-access edge computing systems: A particle swarm optimization
approach,” Applied Sciences, vol. 10, no. 1, p. 203, 2020.

S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang, “Intelligent
edge: Leveraging deep imitation learning for mobile edge computation
offloading,” IEEE Wireless Communications, vol. 27, no. 1, pp. 92-99,
2020.

https://grpc.io/docs/what-is-grpc/

12

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

U. Saleem, Y. Liu, S. Jangsher, X. Tao, and Y. Li, “Latency minimization
for d2d-enabled partial computation offloading in mobile edge comput-
ing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp.
44724486, 2020.

M. Du, Y. Wang, K. Ye, and C.-Z. Xu, “Algorithmics of cost-driven
computation offloading in the edge-cloud environment,” IEEE Transac-
tions on Computers, 2020.

C. Yue and H. Wang, “Sessionmagnifier: A simple approach to secure
and convenient kiosk browsing,” in Proceedings of the 11th international
conference on Ubiquitous computing. ACM, 2009, pp. 125-134.

R. Geambasu, J. P. John, S. D. Gribble, T. Kohno, and H. M. Levy,
“Keypad: an auditing file system for theft-prone devices,” in Proceedings
of the sixth conference on Computer systems. ACM, 2011, pp. 1-16.
Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu, and
N. Sarda, “Cleanos: Limiting mobile data exposure with idle eviction.”
in OSDI, vol. 12, 2012, pp. 77-91.

Y. Xia, Y. Liu, C. Tan, M. Ma, H. Guan, B. Zang, and H. Chen, “Tinman:
Eliminating confidential mobile data exposure with security oriented
offloading,” in EuroSys '15. New York, NY, USA: ACM, 2015, pp.
27:1-27:16.

G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid
android: versatile protection for smartphones,” in Proceedings of the
26th Annual Computer Security Applications Conference. ACM, 2010,
pp. 347-356.

D. McCarney, D. Barrera, J. Clark, S. Chiasson, and P. C. van Oorschot,
“Tapas: design, implementation, and usability evaluation of a password
manager,” in ACSAC. ACM, 2012.

C. S. Nikolaos Karapanos, Claudio Marforio and S. Capkun, “Sound-
proof: Usable two-factor authentication based on ambient sound,” in
Proc. USENIX Security, 2015.

L. Wang, Y. Li, and K. Sun, “Amnesia: A bilateral generative password
manager,” in Distributed Computing Systems (ICDCS), 2016 IEEE 36th
International Conference on. IEEE, 2016, pp. 313-322.

Y. Li, H. Wang, and K. Sun, “Bluepass: A secure hand-free password
manager,” in Securecomm, 2017.

R. Yu, G. Xue, and X. Zhang, “Application provisioning in fog
computing-enabled internet-of-things: A network perspective,” in /IEEE
INFOCOM 2018-IEEE Conference on Computer Communications.
IEEE, 2018, pp. 783-791.

