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Abstract—Compared to software defects which can be patched
in the field, hardware defects are permanent. As hardware itera-
tions accelerate, a leftward shift in hardware testing is necessary.
Among all existing techniques, formal methods (both automated
and deductive) are the most effective solutions in detecting
vulnerabilities in hardware. However, most of the existing formal
methods are not scalable to large-scale designs due to the lack
of practical automated tools. Very recently, hardware fuzzing
solutions are proposed which treat the executable simulation code
directly as software and test it with a Fuzz tool such as AFL or
Symbolic Execution Engine such as KLEE. In this paper, we
survey existing hardware fuzzing studies and discuss whether it
is a valuable research direction to pursue. We also review these
approaches by identifying potential challenges and gaps, based
on which we present visions that can be performed to eliminate
these challenges.

Index Terms—Hardware Security, Formal Verification, Hard-
ware Fuzzing

I. INTRODUCTION

The rapid growth of the semiconductor industry put the
threat of hardware system front and center among all security
concerns. The reasoning behind this issue includes the long
hardware supply chain, widely use of intellectual property
(IP), explosive increase of Internet of Things (IoT) devices.
System-on-chip (SoC) designers or system integrators have
unprecedented security concerns with the growth of third-party
vendors in the semiconductor industry [1]. As the complexity
of SoC design keeps rising, SoC designers have been over-
whelmed with the workload of manually diagnosing security
vulnerabilities for a long time. Consequently, the industry
has an urgent demand for automated methods to detect and
evaluate vulnerabilities within the design stage.

On the other hand, the mitigation of vulnerabilities after
the design stage leads to increased costs and delayed time-to-
market (TTM). With the increased complexity of integrated
circuits, hardware engineers rarely design them from scratch.
In a rapidly evolving market, economic pressure demand,
shorter design cycles, and increasingly complex designs are
leading toward the increased adoption of third-party IP (3PIP),
exposing systems to more potential vulnerabilities to Hardware
Trojans. Innocent or malicious hardware flaws are permanent
with little or no way to “patch” the hardware. Replacing
flawed integrated circuits – or even repairing it – may be

costly and complicated, with estimates ranging wildly [2],
[3]. Consequently, a modified chip design process with left-
shift verification has become a trend [4], with pre-silicon
verification techniques gained increasing prominence.

In the hardware security area, a variety of countermeasures
have been developed for the verification and validation of
SoC’s security at pre-silicon level [5], [6]. Among all existing
solutions, formal methods have proven to be effective in
detecting various vulnerabilities [5], [6]. However, scalability
is still a considerable challenge when applying these methods
to complex designs such as SoC [5]. In fact, only very few
of the current SoC formal verification approaches are scalable
and practical in the industry due to 1) the lack of automatic
and efficient tools [7], 2) the use of inappropriate modeling
and validating approaches in securing SoC system [8].

In exploring vulnerabilities in software, Fuzzing becomes
a popular and scalable solution in recent years due to its
capability of handling large applications. The feature that
Fuzzing relies on few knowledge of the target and could apply
flexibly to different portions of the software world, such as
kernel, application, file system, server backend, makes Fuzzer
maintained by a great diversity of people, which makes the
field of Fuzzing vibrant. For hardware design, the correct
design of complex hardware poses serious challenges for
chip engineers. Simulation is traditionally the standard for
hardware testing. However, it is not feasible to simulate all
possible input patterns to verify a hardware design. Moreover,
Trojan detection in 3PIP is more challenging than other logic
modules, especially that there is no golden chip as a reference
model in many application scenarios.

To solve these issues, researchers start to apply software
fuzzing in addressing threats in the hardware platform recently
[9], [10]. Although fuzzing is an effective software approach,
there are still limitations and inappropriate assumptions to use
it on hardware directly. In this paper, we investigate these
approaches and delve more deeply into the compiler and
simulator utilized as the infrastructure of hardware fuzzing.
The main contributions of this paper are listed below.

• This survey offers a literature review on the formal
verification and analysis approaches utilized in securing
hardware design and software programs, respectively.

• Technique details of existing hardware fuzzing ap-978-1-6654-0959-9/21/$31.00 ©2021 IEEE
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Figure 1: PCH framwork: vendor proves security of hardware
and consumer checks the results [5] .

proaches RFuzzing and HW-Fuzzing are summarized.
Analysis and discussion are performed in these methods
relying on conversion from hardware to software.

• The research trends in applying fuzzing approaches in
hardware security are proposed.

II. PRE-SILICON HARDWARE SECURITY VERIFICATION

We provide an introduction to formal methods evaluating
hardware at the pre-silicon stage, mainly at register-transfer
level (RT-Level). Hardware security checking using formal
methods briefly includes satisfiability (SAT) solving [11],
model checking [12], theorem proving [8], [13], equivalence
checking [14], symbolic simulation [15], as well as informa-
tion flow tracking (IFT) [16]. We mainly discuss IFT, theorem
proving and model checking due to their popularity.

A. Interactive Theorem Proving
Theorem provers are used to prove the satisfiability or

disatisfiability of the target system against properties. Theorem
proving provides a flexible way to model and validate a series
of predefined properites in a design. As such, the popularity
and demand of these tools have increased over the years,
with Coq [17] and Z3 [18] being amongst the latest being
introduced. However, it is challenging to apply them to verify
the large-scale system due to the enormous time cost and
manual workload.

Among formal approaches proof-carrying hardware (PCH)
is developed to assure IP trustworthiness using an interactive
theorem prover [6]. The idea of PCH approach comes from
proof-carrying code (PCC) which was developed for assuring
software programs [19]. Authors in [6] proposed the first PCH
framework for checking dynamically reconfigurable hardware
platforms. This PCH validates the equivalence between the
hardware specification and implementation through employing
equivalence checking in combinational circuits. Other PCH
frameworks are geared towards verifying security proper-
ties on untrusted soft-IP cores [5], solving scalability issues
[8], and runtime concerns [11]. Software and hardware co-
verification approaches have also been proposed [13] to elim-
inate the semantic boundary between hardware and software.

In these frameworks, the Coq proof assistant was used to
represent security properties, hardware designs, and formal
proofs.Although PCH frameworks have been effective in en-
suring the trustworthiness of soft-IP cores [5], the approach is
still unable to reach SoC level security checks [8].
B. Model Checking

There are many model checking based approaches utilized
in verifying and validating hardware and software applica-
tions.In this method, the state-space of the model is explored
to check whether a given specification is satisfied. Applying to
hardware verification, the Verilog/VHDL code of the hardware
accompanied by an initial state is represented as a transition
system and its behavioral specification is represented as a
temporal logic [8]. If there exists a case where the model does
not satisfy the specification, a counterexample is produced by
the model checker. At this point, the user is free to utilize this
information to correct the design.

Symbolic Model Checking (SMC) is one of the earliest
methods for hardware verification [20]. It uses a reduced
binary decision diagram (ROBDD) to express transition sys-
tem states. ROBDDs are a unique, canonical representaiton
of a Boolean expression of the system [21]. Another model
checking approach, called bounded-model checking (BMC),
performs symbolic checking through a SAT solver replacing
binary decision diagrams (BDDs) [22]. However, these model
checking applications are not effective in checking SoC level
hardware due to the state-space explosion issue.

A system-on-chip (SoC) bus protocol verification frame-
work was presented in [12] with the goal of verifying the
security properties of SoC bus implementations. The bus
protocol specification plays the role of the golden reference.
Experimental results on an ARM AMBA protocol demonstrate
that the approach is applicable to prevent information leakage
and DoS attack by verifying security properties. However, only
the bus interconnect is considered during testing. Unfortu-
nately, the method also suffers from the state-space explosion
problem resulting in scalability issues.
C. Information-Flow Tracking

Information-flow tracking (IFT) approaches attempt to de-
tect unintended or hidden paths which may lead to the leakage
of sensitive information. As such, a non-interference policy is
enforced in these solutions, reducing the dependency between
lower sensitive outputs and higher sensitive inputs [23]. Ex-
isting IFT solutions usually require manual work for either
annotating RTL code or proving properties. Users are tasked
with selecting sources and targets for potential information
leaks. IFT serves as a backbone for the area of language-based
security, allowing for the creation of HDLs that can assure
the trustworthiness of hardware at the design stage. Various
secure RTL programming languages, such as Caisson [24],
Sapper [25], and SecVerilog [26] are developed to check the
noninterference property based on IFT. The main drawback
of IFT is the cost of applying the method. To setup the
information flow policy, developers or users must learn the
sophisticated tag system used by the languages and tools to
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manually instrument the design. To alleviate the issue, instead
of enforcing non-interference, Guo et al. proposed QIF-Verilog
in [27] to relax the property of a hardware description. QIF-
Verilog quantifies how much information is leaked by extend-
ing the Verilog HDL with a security label. The label is used
to calculate an accumulated remaining uncertainty (RU) using
the entropy generated during label propagation. Leakages are
quantified through the accumulated RU in a given design.

III. SOFTWARE SECURITY ANALYSIS

Recently, researchers have started to leverage software se-
curity analysis techniques to perform security analysis. In this
section, we provide an introduction to some of these schemes.
A. Static Analysis

Static analysis is a technique which performs checks on
source code through semantic analysis, forgoing the execution
of the code [28]. Among the first uses was PFORT verifier
[29], which was employed to screen the portability Fortran
code to detect potential problems. Static analysis tools detect
vulnerabilities according to a predefined specific pattern. This
poses limitations on what can be accomplished. First, if a rule
has not been written to find a particular problem, static analysis
tools will not be able to detect it [30]. Second, since a pattern
can appear in a non-malicious or vulnerable context, static
analysis tools are prone to high false positive rates and may
be forced to generalize and miss actual vulnerable code [31].
Third, static analysis presents challenges in terms of model
size and functionality which may result in an explosion of
states [32], [33].
B. Dynamic Analysis and Fuzzing

In contrast to static analysis, dynamic analysis uses a
program’s state at run-time to detect potential bugs. This
scheme can achieve high accuracy in bug detection, but is
faced with some fundamental constraints. The most glaring
issue is that it is impractical to exhaust all inputs for testing.
In writing test cases, users generally consider some common
scenarios such as forward test, reverse engineering [34] and
boundary value [35].

Fuzzing (short for fuzz testing), which was first proposed
by Miller [36] is “an automatic testing technique that covers
numerous boundary cases using invalid data (from files, net-
work protocols, application programming interface (API) calls,
and other targets) as application inputs to better ensure the
absence of exploitable vulnerabilities” [37]. Fuzzers automate
the generation of inputs which are used to dynamically test
a program. This incurs low labor costs coupled with high
test efficiency. Furthermore, inputs generated by fuzzers are
unpredictable. Fuzzing technology is a typical application of
the law of large numbers. With the massive progress of fuzzing
test, it is bound to detect zero day vulnerabilities [38]–[40].
C. Behavior of Fuzzers

The core concept behind fuzzers has not changed over time.
However, software fuzzers have been iterated many times, with
new features being added. New fuzzing frameworks have a
feedback scheme which drives a genetic algorithm for input
generation. Figure 2 shows the traditional fuzzing test process.

Figure 2: Work process of fuzz testing: the fuzzer will generate
inputs until a violation occurs. The violation results in a crash
that can be recorded and analyzed for potential vulnerabilities.

A Fuzz test starts with a set of generated program inputs. The
testcases should, on the one hand, satisfy the required input
format of the program as closely as possible, and on the other
hand, bring the program close to failure. Once the input is
generated, it is fed to the target program. Fuzzer automatically
starts the target program and monitors the running status
until it knows that the target program has stopped executing.
After this, Fuzzer verifies the existence of violation by signals
from the operating system. If there is, Fuzzer records the
vulnerability found, if not, then another test is run.

Common instrumentation tools such as AddressSanitizer
[41] and LeakSanitizer [42] provide extra safety checks on
software at the cost of some performance overhead. When vi-
olation of a running program is detected by the instrumentation
of these frameworks, a forcible program termination is issued.

D. Types of Fuzzers

Fuzzers can be classified by the method of testbench gen-
eration, the degree of target source code dependency, and the
exploration strategy. A fuzzing framework may fall within one
or more of these categories.

1) Input Generation: Fuzzers can be categorized by the
way they generate inputs for the test program. A generation-
based fuzzer utilizes entries in a configuration file as inputs.
This method improves testing efficiency as the most common
inputs can easily be provided to the program. Examples of this
type of fuzzer include Peach [43], Trinity [44], Sulley [45],
Csmith [46]. Unfortunately, the configuration file may not be
exhaustive and may allow for vulnerabilities to go undetected.

Mutation-based fuzzers utilize a single input and will au-
tomatically mutate it on every round of testing. This type of
fuzzer requires little knowledge of the program being tested,
and can automatically generate new test inputs by using the
used input as a seed. Examples of this type of fuzzer include
American Fozzy Lop (AFL) [47], Driller [48], and Mayhem
[49]. However, mutation-based fuzzers are difficult to apply to
programs that can accept multiple different file types [50].

2) Target source code dependency: Fuzzers can also be
classified by their dependency to the source code of the
application in the test harness. White box fuzzers, such as
Peach [43], require access to the source code of the program,
gaining information through static analysis. Black-box fuzzers,
such as LibFuzzer [51], perform fuzzing tests directly on
executables, without access to the source code. Gray-box
fuzzers such as AFL instrument the source code of the program
being tested during compilation. After this point, the original
source code is no longer used. AFL uses the instrumentation
in the binary to monitor the execution of the program and
generate a coverage map of the code being executed.
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Figure 3: Structure of RFuzz [10]. RFuzz uses Midas as a
bridge between the simulator and the fuzzer. A buffer is used
to handle the communication between the simulator and fuzzer.

3) Exploration strategy: Fuzzers can also be classified as
directed fuzzers or coverage-based fuzzers. Directed fuzzers
aim to generate test cases that cover the target path of the
program, with the expectation of faster testing of the program.
Coverage-based fuzzers, on the other hand, aim to generate test
cases that cover as many execution paths as feasible, expecting
more exhaustive testing and maximizing the detection of bugs.

Table I: Comparison of testing techniques. Fuzzing has a low
entry cost while yielding scalable results and high accuracy.

Technique Deployment Accuracy Scalability

static analysis easy low good
dynamic analysis hard high unknown
fuzzing easy high good

IV. HARDWARE FUZZING

Recently, researchers have tried to apply the concepts be-
hind software fuzzing into RTL code with the objective of
finding flaws in hardware. We will now examine the two most
prominent solutions: RFuzz [10] and HW-Fuzzing [9].
A. RFuzz

RFuzz [10] is a part of Flexible Internal Representation for
RTL (FIRRTL) [52]. It is a project that aims to investigate the
use of coverage-directed fuzzing for RTL pre-silicon testing.
As shown in Figure 3, the structure is like a normal software
fuzzing test. Inspired by American Fuzzy Lop (AFL) [47],
multiplexer are chosen as a branch coverage point similar to
edge coverage in software fuzzing. This choice is justified
in that multiplexers feature very similar characteristics to
branches in software. Branches in software determine the exe-
cution path potentially altering the value of variables, whereas
multiplexers act on signals much of the same way. RFuzz
uses Midas [53] as a back-end. Midas provides a performance
and power evaluation platform which can use different HDL
simulators to simulate the hardware design and an interface
which allows the fuzzer engine to communicate with the
unit under test. RFuzz can use Verilator [54] for emulation
purposes or Xilinx Vivado [55] for FPGA acceleration. The
latter is done in an attempt to solve the problem of slow
simulation of large-scale hardware designs. RFuzz employs
AFL as the fuzzing engine for input generation and mutation.

However, testing through the supervision of simulation soft-
ware is not ideal. In the software fuzzing domain, processes

Figure 4: HW-Fuzzing model [9]. HW-Fuzzing uses Verilator
as a target directly. Both fuzzer and simulator are running on
the same platform so buffer is omitted.

are Device Under Test (DUT) and crashes are a result of
the operating system signaling an improper action. Compared
with the traditional software FUZZ, RFuzz is comparable to
use a virtual machine hypervisor as the testing harness for a
program. Much like the illegal actions in the program do not
crash the hypervisor, the simulated hardware does not crash
the simulator. Simulation software will steadily produce an
output for any input given a DUT.

Although the authors claim that RFuzz works close to the
RT-level, choosing a multiplexer as the means of detecting
coverage puts the translation closer to a netlist level. After RTL
synthesis, much of the semantics of higher-level languages
are lost. The recovery of RTL level semantics has proven
to be an NP-Hard problem [56]. RFuzz employs FPGA-
accelerated fuzzing in an attempt to speed up the fuzzing
procedure. This may increase the cost of fuzzing design,
since specialized hardware must be used. This further faces
the issue that hardware structures do not necessarily map
properly to an FPGA’s fabric [57], which raises questions in
the capabilities of the system. RFuzz is further limited by
the language support in Midas due to latter’s dependency on
FIRRTL. This is currently restricted to Chisel, Verilog, and
portions of SystemVerilog [58].

B. HW-Fuzzing

HW-Fuzzing [9] follows the RFuzz model while also ex-
hibiting some of its shortcomings. As shown in Figure 4,
with a nearly identical model, the authors make three major
changes to the design. HW-Fuzzing narrows the application
of the fuzzer engine to the unit under test only rather than
the applying it to the entire test harness. Authors also modify
the coverage statistical method to reduce tool runtime. Lastly,
HW-Fuzzing employs predefined SystemVerilog assertions as
simulation termination condition.

HW-Fuzzing proposed the idea that the test target of the
fuzzer should not contain the simulator itself. However, HW-
Fuzzing continues using Verilator as the tool and claims to
acquire the equivalent model of the C++ language for Verilog
code through this approach. Sadeghi [59] questions those
approaches and leaves the problem of equivalence between
the software model and the hardware model to be proven.
The HW-Fuzzing team uses Verilator as an agent to compile
SystemVerilog HDL into C++ code, which can then be built by
standard C++ compilers. However, Verilator further requires
the linking of additional auxiliary libraries as part of generat-
ing the final executable. This may be treated as an emulated
model, rather than a simulated model, which brings back the
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question of accuracy, and whether sending and receiving data
from the model is sufficient to determine fuzzer coverage.

Second, the group claims that the coverage of multiplexers
lacks a proof of equivalence with the coverage of design
verification. As such, they opt for using the default coverage
statistics in AFL, namely that of the instrumentation on the
source code of the simulation software during the compilation
process. This is fine as long as the result of the conversion
is an equivalent model. Verilator is a cycle-accurate emulator
that does not guarantee the software model and the hardware
model would yield the same state at any given moment [54].
Such requirements are not constraints for Verilator.

Lastly, since hardware models do not directly crash a
simulator, authors introduce SystemVerilog assertions to the
simulation treating them as a crash. This limits the testing
scope available through HW-Fuzz as extra manual instru-
mentation is required. For instance, authors are only able to
utilize OpenTitan [60] to test their proposed mechanism. Due
to the nature of hardware and simulators, questions can be
raised about the equivalence of a SystemVerilog assertion and
a software crash. Moreover, existing tools such as Cadence
JapserGold [61] or Synopsys VC Formal [62] can perform
the same type of evaluation at coverage with similar or less
required workload [63]. These tools, much like HW-Fuzz,
may have a difficult time finding vulnerabilities in hardware
because of the manual instrumentation required. Assertions
will only trigger based on the particular condition they are
checking. Testers are responsible for their creation.

V. OVERCOMING LIMITATIONS AND ENVISIONING
HARDWARE FUZZERS

If it is desired to build a hardware fuzzing system based
on an existing fuzzer, the simulator should provide a feedback
model similar to the crash model used by regular software
fuzzers. In software testing, since the test environment is
the same as the actual running environment, the fuzzer can
determine the termination of software operation by an OS-
generated process termination signal. The execution environ-
ment provides the means for the fuzzer to obtain the reason for
the termination, such as crash and hang-off. In contrast, HDL
simulators and emulator do not offer an equivalent termination
for fuzzers to exploit: there is no crash or hang-off in the
simulation utilized in RFuzz and HW-Fuzz. Even if a fuzzer
detects the satisfiability of the predefined assertion, it checks
a known flaw rather than explores an unknown threat.

Checking of the assertion at each cycle of the hardware
simulation poses two problems. Unlike a software crash which
indicates a failure at a specific point in the program, an
assertion being triggered during simulation is a result of a
series of events that occur in parallel. Although the assertion
signals a failure in the design, it does not reveal the underlying
cause of the detected problem. This takes us to the next issue.
Some of these processes are the result of multi-cycle actions.
For example, the reflection of the change in the architec-
tural state on a CPU due to a single instruction may take
several clock cycles, including those required for decoding,

dispatching, execution, and committing of the effects. The
process may be even longer if the instruction was incorrectly
issued due to a misprediction, in which case any temporary
changes to the microarchitecture must be rolled back. Current
assertion mechanisms are unable to “follow” on the multi-
cycle operation of sequential hardware, further limiting the
types of checks that can be performed.

We consider that a proper hardware fuzzing mechanism
must overcome these issues. It must be able to robustly
handle multi-cycle computations, and be able to recognize the
inherent differences between hardware and software. This way,
any possible errors on the design and potential vulnerabilities
can be readily detected. That is, we propose “fuzzing hardware
as hardware”.

VI. CONCLUSION

Fuzzing is becoming a promising field of research for
detecting hardware bugs. Some concessions are usually made
by hardware fuzzers due to limitations in simulation and
emulation models. This paper summarizes and analyzes the
drawbacks of existing typical hardware fuzzing approaches
RFuzz and HW-Fuzz. Research trends are given as handling
multi-cycle computations and eliminating the inherent differ-
ences between hardware and software.
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