
RTSEC: Automated RTL Code Augmentation for
Hardware Security Enhancement

Orlando Arias
University of Florida

Zhaoxiang Liu
Kansas State University

Xiaolong Guo
Kansas State University

Yier Jin
University of Florida

Shuo Wang
University of Florida

Abstract—Current hardware designs have increased in com-
plexity, resulting in a reduced ability to perform security checks
on them. Further, the addition of any security features to these
designs is still largely manual which further complicates the
design and integration process. In this paper, we address these
shortcomings by introducing RTSEC as a framework which is
capable of performing security analysis on designs as well as
integrating security features directly into the HDL code, a feature
that commercial EDA tools do not provide. RTSEC first breaks
down HDL code into an Abstract Syntax Tree which is then used
to infer the logic of the design. We demonstrate how RTSEC
can be utilized to automatically include security mechanisms in
RTL designs: watermarking and logic locking. We also compare
the efficacy of our analysis algorithms with state of the art tools,
demonstrating that RTSEC has capabilities equal or superior to
those of state of the art tools while also providing the means of
enhancing security features to the design.

I. INTRODUCTION

As the complexity of hardware designs increase, automatic
design checks become necessary. As such, EDA vendors have
introduced a series of tools to aid hardware designers in their
checks [1], [2]. However, these tools are unable to automate
the insertion of state of the art security features into designs.
This is left to the designer to perform manually.

For example, a designer may wish to watermark a finite
state machine (FSM) within a larger HDL IP core in order
to identify it. For this, the designer must find the FSM in
the IP core, then detect and modify both the transition and
output functions while ensuring that no syntax or logic errors
are introduced. The designer must ensure that the watermark
function introduced does not generate any conflicts with exist-
ing logic. Any auxiliary inputs and outputs to the watermarked
FSM need to be manually propagated through the module
hierarchy, while resolving signal conflicts if multiple instances
of the watermarked module are used. This process becomes
excruciating for large designs.

Another example is the obfuscation of logic within the HDL
design. The designer is tasked with introducing new unlock
signals and combinational logic around signals of interest,
changing their value lest the proper key is furnished. Perform-
ing this task manually involves not only the introduction of
these signals, and logic, but also the propagation of the signals
into the toplevel module resolving any conflicts in the module
dependency tree of the design. This proves to be cumbersome
and error-prone for large designs.

Despite that hardware security features such as watermarking
and logic locking have become critical features for circuit

designs, commercial EDA tools still focus on performance
optimization but leave the security feature insertions and verifi-
cation to the users, a gap leaving many of the hardware security
research outcomes not implemented in commercial designs.
To address these issues we introduce RTSEC as a framework
which can perform security analysis and integrate state of the
art security features directly in HDL code. RTSEC first breaks
down the provided HDL into an abstract syntax tree (AST)
and performs a series of inference checks in order to extract
features of interest in the design. RTSEC can then add user-
specified security enhancements to the design. It then regen-
erates new HDL code for the design with the enhancements
included without losing the original HDL code’s semantics.
While RTSEC can be used for different hardware security
feature insertion, in this paper, we mainly demonstrate how
RTSEC is able to fully recover finite state machines (FSMs)
in the design, including both the transition and output maps.
We then show how we can use the information to watermark
FSMs in the design. Moreover, we show how we can use
our framework to automatically perform logic locking in HDL
designs. We further compare RTSEC’s inference capabilities
to that of existing tools, showing that our inference algorithm
have capabilities equal or superior to existing tools (including
those commercial tools), while also providing the means to
automatically insert security features into the design.

II. METHODOLOGY FOR HDL ANALYSIS AND

INSTRUMENTATION

A. RTL Analysis Basics

The basis for our RTL analysis tools is the parsing of the
HDL source files into an Abstract Syntax Tree (AST). An AST
is a deterministic data structure with no loops which contains a
representation of the source file in terms of nodes. Each node
in the graph is representative of a token or series of tokens
in the source file. For proper parsing of source files, a lexer
and a parser are needed. The lexer converts the source file
into a stream of tokens. This stream serves as the input to
the parser which employs the rules of the grammar of the
language in order to generate an abstract representation of
the source code. Once the AST is generated, we are able to
traverse the graph using traditional graph navigation routines.
For example, to locate a particular node type, such as those
containing declarations, we can perform a breadth-first search
over the AST. This particular type of search is preferred since
declarations are often close to the root node of the AST.

596978-3-9819263-6-1/DATE22/ c©2022 EDAA

Authorized licensed use limited to: Kansas State University. Downloaded on September 30,2022 at 23:00:30 UTC from IEEE Xplore. Restrictions apply.

Using the AST we can further infer the scope for certain
operations, such as assignments. This is helpful when dealing
with tasks such as data-flow analysis. For this purpose, we can
search for locations where assignments to a certain l-value of
interest such as a signal take place. When performing the search
we also record if we have traversed any conditional statements.
This allows us to derive the commonly named ϕ-nodes when
representing assignments to variables/signals.

B. Flip-Flop Inference Rules

When representing flip-flops in Verilog and SystemVerilog
HDL, these are normally written as part of a procedural
block that is edge triggered on a clock. Flip-flops may have
a synchronous or asynchronous reset signals. In the latter
case, the reset signal is also added as an edge trigger to the
procedural block. The reset signal is checked for a level within
the procedural block. Within the procedural block, whenever
the signal reset signal is asserted, a zero constant is assigned
to a signal of type reg which serves as the storage element.
Enable signals, if used, are not added to the trigger list of the
procedural block. The signal is synchronously checked within
the procedural block for its active logic level. If asserted, a
non-constant assignment is made into storage element.

Algorithm 1 Flip-Flop inference algorithm. We iterate over
the AST finding procedural blocks that are edge triggered. We
examine all candidate blocks and check assignment.

1: procedure FF INFERENCE(ast)
2: P ← procedural blocks(ast)
3: F ← ∅

4: for p ∈ P do
5: if edge triggered(p) then
6: F ← F ∪ {p}
7: end if
8: end for
9: A ← get assigns(F)

10: F ← ∅

11: for a ∈ group targets(A) do
12: (res, set, en, q, d) ← infer data flow(a)
13: F ← F ∪ {(res, set, en, q, d)}
14: end for
15: return F
16: end procedure

We summarize the inference procedure in Algorithm 1. After
obtaining the AST of the module, we look for procedural blocks
that are edge triggered. We extract all assignments that occur
within the procedural blocks. We group all assignments based
on their target signal. We check the scope of the assignment.
If a signal level is necessary to store a constant value into the
target that signal is added as a reset if storing the value 0 or
set if storing a non-zero value. If a signal level is necessary to
store a non-constant value, that signal is treated as the enable
signal with the r-value as the data input terminal. The l-value
on the store is the output of the flip-flop.

C. Finite State Machine Inference Rules

A finite state machine (FSM) can be defined as the 6-tuple
(S, s0,Σ,Λ, T,G), where S is a finite set of states with s0 ∈
S being the initial state. The set Σ corresponds to the input
alphabet, that is, the symbols or values that serve as inputs to
the FSM. Λ is the output alphabet of the FSM, the symbols or
values that are returned by the FSM. T defines the transition
function of the FSM, with T : S × Σ → S. Lastly, G is the
output function of the FSM with G : S → Λ for a Moore FSM,
and T : S × Σ → Λ for a Mealy FSM.

1) Transition Functions in FSMs: The transition function T
of an FSM maps the Cartesian product of the set of inputs
and set of states to the set of states. That is, the expression
(si, σj) → sk where si, sk ∈ S and σj ∈ Σ is interpreted
as when the FSM is in state si and receives input σj , it will
transition to state sk. When translated to HDL, this implies
checking the current state of the FSM, and the input that is
being given to determine transitions to the next state.

When implementing an FSM in hardware, we necessitate
a storage for the current state of the FSM. This is normally
performed using a register. There are multiple ways transition
information can be encoded in HDL, however HDL synthesis
tools provide recommendations on how to write FSMs for the
purposes of aiding with the optimization of the logic [3], [4],
[5], [6]. The recommended procedure is by employing a case

statement over the state register, then selecting the new state
based on the input within a procedural block. Of importance is
that we have a data-flow loop with the state register and what
holds the next state. Synthesis tools may also accept a direct
assignment into the state register in the transition function, in
which case a clock-triggered always_ff block is used.

2) Output Functions in FSMs: The output function G has
one of two forms. A Moore FSM maps the current state directly
into an output, whereas a Mealy machine maps the output as a
combination of both the current state and input. Translation of
these equations into HDL imply checking the current state of
the FSM to generate an output in the case of a Moore machine,
or checking the current state of the FSM as well as the current
input of the FSM in the case of a Mealy machine. Synthesis
tools recommend a construct similar to that of a transition
function when defining this function.

3) FSM Inference Algorithm: We present an overview of
the method used to detect transition function candidates in
Algorithm 2. We start by generating the AST of the module
to be examined. We then infer all flip-flop candidates using
the rules described in Section II-B. The inferred flip-flops are
made into state register candidates. Then, for each procedural
block we check that it has some form of a select statement. We
check the dispatch variable for the select statement, recording
those that utilize signals in the inferred flip-flop list. We record
the compare values for the variable in the select statement are
matched against in the body of the statement.

At this point, we are ready to determine the candidates for the
transition function and the output function. For the transition
function we check for data-flow in the procedural blocks. If
all compare values are assigned to the state register candidate

Design, Automation and Test in Europe Conference (DATE 2022) 597

Authorized licensed use limited to: Kansas State University. Downloaded on September 30,2022 at 23:00:30 UTC from IEEE Xplore. Restrictions apply.

we record the procedural block as the transition function. In
the event where the state register is not directly assigned from
within the procedural block, we follow the signal which is the
target of the assignment and ensure that its value is eventually
stored in the state register candidate. We finish the process
by examining the conditions which are required to be met for
the compare values to be assigned to the state register. These
conditions become the possible input for the state machine.
To determine the output function, we look at the remaining
procedural blocks with select statements that use the state
register as dispatch variable. We check which signals are being
driven in the design within the procedural block. We ensure
that assignment to these signals are with respect to the state
register, and for Mealy machines with respect to the computed
input. Assignments to the signals in the procedural block are
recorded as the output of the state machine.

Algorithm 2 FSM transition function detection algorithm. The
algorithm returns the set M of transition function candidates.
The requirement that all case labels must be assigned to the
state register candidate can be loosened to account for unused
states/transitions.

1: procedure FSM INFERENCE(ast)
2: F ← ff candidates(ast)
3: P ← procedural blocks(ast)
4: M ← ∅

5: for (p, f) ∈ P × F do
6: S ← select statements(p)
7: if ∃s ∈ S ∧ select uses(s, f) then
8: L ← select labels(s)
9: if ∀l ∈ L, f ← l then

10: M ← M ∪ {(s, f)}
11: end if
12: end if
13: end for
14: return M
15: end procedure

We determine the reset state of the FSM by examining
the state register. From our flip-flop inference algorithm, we
determine the reset signal candidate as well as the reset value.
If the initial state for the FSM is a non-zero value, then the
flip-flop inference algorithm returns a set value instead. This is
used as the reset state candidate of the FSM. To ensure proper
inference, we check this value against the compare values for
the variable in the select statement. Matching one of the select
values verifies the validity of our candidate.

III. APPLICATION TOWARDS SECURITY

A. Towards Watermarking Finite State Machines

We extended our analysis framework to perform the auto-
matic watermarking of finite state machines [7]. In particular,
both our ability detecting finite state machines and performing
edits to the HDL through the abstract syntax tree of a module
gives us the power to automatically insert watermarks in a
design. Furthermore, for hierarchical designs we are able to

propagate the necessary signals driving the watermark of the
FSM into an arbitrary module automatically.

Algorithm 3 Watermarking algorithm. Using the ability of
RTSEC to detect FSMs and to edit RTL, we are able to
automatically generate and add a watermark to our design, as
well as to propagate any signals to a specific module.

1: procedure WATERMARK FSM(ast)
2: F ← fsm inference(ast)
3: if |F| > 1 then
4: f ← select fsm(F)
5: else
6: f ← F0

7: end if
8: T ← transition fn(f)
9: G ← output fn(f)

10: T ← T +
⋃

i,j,k [(wi, σj) → wk]
11: G ← G+

⋃
i,j,k [(wi, σj) → λk]

12: end procedure

We provide an overview of the watermarking process in
Algorithm 3. We start by inferring all the FSMs in the design. If
more than one FSM is found we select one, otherwise we utilize
the only FSM in the design. We obtain its transition function
as well as the output function. We utilize the user provided
constraints to generate an extension to the transition function
which become the watermark states. Then using the initial
state information we identify the node in the abstract syntax
tree which contains the select statement. This select statement
drives the initial set of transitions. We modify this node to
add a new transition to the watermarking state. Extending the
output function uses a slightly different process. If the output
function is that of a Moore FSM, we add a new node to the AST
of the module body which contains a new procedural block.
This procedural block implements the transition function of a
Mealy FSM which drives all of the watermark output signals.
We ensure that the original Moore procedural block contains a
default state for the original set of output signals, otherwise a
default statement will be added. If the original output function
is that of a Mealy FSM, we extend the select statement in
the procedural block for the output function to also include
watermarking states.

B. Towards Logic Locking

We further employ our framework to perform logic locking
on RTL designs [8]. We implement a traditional logic locking
scheme where combinational logic is added to signals internal
to the design. Our implementation propagates signals to the top
level module exposing them as part of the input.

We describe our methodology for signal obfuscation in
Algorithm 4. We start by obtaining a module dependency graph
by scanning the top level module for instances. We flag the
modules as the children, then proceed to scan the body of those
modules for module instances. Any modules found this way are
flagged as children of the respective children of the top level
module, then scanned for instances. This process is recursively
repeated until no more instances are found. We iterate over each

598 Design, Automation and Test in Europe Conference (DATE 2022)

Authorized licensed use limited to: Kansas State University. Downloaded on September 30,2022 at 23:00:30 UTC from IEEE Xplore. Restrictions apply.

Benchmark Quartus Vivado DC Yosys Pyverilog This Work
FSM Time FSM Time FSM Time FSM Time FSM Time FSM Time

aes128 6 s† 7 s† 0.13 s 0.91 s –‡ 0.392 s
apb2spi 7 s† 5 s† 0.13 s 0.09 s 2.5 s 0.012 s
crcahb 6 s† 5 s† 0.14 s 0.33 s 110.5 s 0.015 s
ima_adpc_enc 6 s† 5 s† 0.14 s 0.17 s –‡ 0.032 s
pid_ctrl 7 s† 5 s† 0.14 s 0.42 s –∗ 0.070 s
prep3_binary 7 s† 5 s† 0.13 s 0.80 s 2.2 s 0.003 s
prep3_onehot 6 s† 5 s† 0.13 s 0.08 s –∗ 0.003 s
prep4_binary 6 s† 5 s† 0.13 s 0.13 s 4.6 s 0.005 s
prep4_onehot 7 s† 5 s† 0.12 s 0.18 s –‡ 0.004 s
spi 6 s† 5 s† 0.14 s 0.13 s –‡ 0.012 s
uart 6 s† 5 s† 0.13 s 0.11 s –‡ 0.007 s
xtea 7 s† 5 s† 0.14 s 0.22 s 5.5 s 0.030 s

† time information mixed with all synthesis analysis; ‡ tool timed out in analysis; ∗ tool crashes on analysis

TABLE I: Finite state machine finding characteristics. We record the capabilities of a tool at inferring finite state machines and
how much information it can recover. Complete analysis is given by a , partial analysis by a , and no analysis by . Some
tools do not report the time spent on FSM analysis on its own and report an overall analysis time and are flagged as such.

Algorithm 4 Logic locking algorithm.

1: procedure LOGIC LOCK(ast)
2: T ← module tree(ast)
3: M ← modules(ast)
4: S ← signals(M)
5: for (m, s) ∈ Mi,Si do
6: k ← obfuscate(s)
7: m ← new input(k)
8: end for
9: percolate module io(T)

10: end procedure

module body finding signals of interests. Once located, we use
the ability to edit the AST node for the signal to expand it into
an xor or xnor operation depending on the desired key bits. We
add the newly introduced obfuscating signals to the module’s
input. When all modules have been explored, we propagate the
new input signals into the top level module using the module
tree, exposing the key signals as inputs.

IV. EXPERIMENTAL RESULTS

We evaluate RTSEC with respect to existing commercial
tools and state of the art open-source tools. Our evaluation ca-
pabilities are limited to testing whether or not the tools can infer
finite state machines. Note that all tools are capable of inferring
flip-flop candidates, thus we do not report those. We summarize
our findings in Table I. For testing we utilize Intel Quartus 20.1,
Xilinx Vivado v2020.2, Synopsys Design Compiler J-2014.09-
SP5-3, Yosys 0.9, and Pyverilog 1.3.0 when comparing them
against our tools. The benchmarks utilized in our testing were
obtained from OpenCores [9] and were selected for their broad
scope as components of modern System on Chips (SoCs).

We were unable to test other tools for their instrumentation
process, as available tools were not designed with that goal in
mind. We believe that RTSEC is the first tool of its class, which
is able to perform automatic analysis and logic enhancement
for security purposes directly on HDL code. In our experimen-
tation, RTSEC was capable of identifying and watermarking

any FSMs in the tested designs and generating test fixtures
capable of simulating the outputs of the FSMs.

V. CONCLUSION

In this work we presented RTSEC as an automated way
to perform analysis and add security features to designs at
HDL level. RTSEC uses the AST representation of the HDL
to perform inference of logic primitives. We showed how we
are able to use this inference to detect FSMs. We demonstrated
that our RTSEC’s FSM inference scheme has on-par or better
performance than that of existing tools. Using these capabilities
and the ability to edit the AST we implemented two security
mechanisms, watermarking and logic locking, which to our
knowledge no other tool is capable of doing. For future work,
we plan on extending RTSEC to cover more extraneous HDL
cases while including more security-related schemes.

ACKNOWLEDGEMENTS

This work was partially supported by National Science
Foundation (CNS-1801599, CCF-2019283, CCF-2019310), and
partially supported by KBR Inc.

REFERENCES

[1] Cadence, JasperGold Platform and Formal Property Verification App User
Guide, December 2020, version 2020.12.

[2] Synopsys, VC Formal Verification User Guide, December 2019, Version
P-2019.06-SP2.

[3] ——, Design Compiler Optimization Reference Manual, December 2011,
Version F-2011.09-SP2.

[4] ——, Design Compiler User Guide, December 2011, Version F-2011.09-
SP2.

[5] Intel, Intel Quartus Prime Pro Edition User Guide: Design Recommenda-
tions, June 2021, UG-20131.

[6] Xilinx, Vivado Design Suite User Guide: Synthesis, January 2021, UG901
v2020.2.

[7] A. Cui, C.-H. Chang, S. Tahar, and A. T. Abdel-Hamid, “A robust
fsm watermarking scheme for ip protection of sequential circuit design,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 30, no. 5, pp. 678–690, 2011.

[8] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and
O. Sinanoglu, “Provably-secure logic locking: From theory to practice,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 1601–1618.

[9] Various Contributors, “Opencores.org,” 2021.

Design, Automation and Test in Europe Conference (DATE 2022) 599

Authorized licensed use limited to: Kansas State University. Downloaded on September 30,2022 at 23:00:30 UTC from IEEE Xplore. Restrictions apply.

