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Abstract: In this paper, we present a rigorous derivation of a new kinetic equation
describing the limiting behavior of a classical system of particles with three particle
elastic instantaneous interactions, which are modeled using a non-symmetric version of
a ternary distance. The ternary collisional operator we derive can be seen as the first step
towards obtaining a toy model for a non-ideal gas where higher order interactions are
taken into account.
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1. Introduction

The Boltzmann equation [8–11] is the central equation of collisional kinetic theory. It is
a nonlinear integro-differential equation giving the statistical description of a dilute gas
in non-equilibrium in R

d , for d ≥ 2. It is given by

∂t f + v · ∇x f = Q2( f, f ), (t, x, v) ∈ (0,∞)× R
d × R

d , (1.1)

where the unknown function f : [0,∞) × R
d × R

d → R represents the probability
density of finding a molecule of the gas in position x ∈ R

d , with velocity v ∈ R
d , at

time t ≥ 0. The expression Q2( f, f ) on the right hand side of (1.1) is the collisional
operator which is an appropriate quadratic integral operator acting on f , taking into
account binary interactions of a pair of gas particles. Its exact form depends on the type
of interaction between particles. Since the gas is assumed to be very dilute, interactions
among three particles or higher order interactions are neglected due to much lower
probability of occurring compared to binary.
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However, when the gas is dense enough, higher order interactions are much more
likely to happen, therefore they produce a significant effect to the evolution of the gas and
one needs to take them into consideration. An example of such a situation is a colloid,
which is a homogeneous non-crystalline substance consisting of either large molecules
or ultramicroscopic particles of one substance dispersed through a second substance.
As pointed out in [29], multi-interactions among particles significantly contribute to the
grand potential of a colloidal gas and are modeled by a sum of higher order interaction
terms. A surprising but very important result of [29] is that interactions among three
particles actually depend on the sum of the distances between particles, as opposed
to depending on different geometric configurations among interacting particles. This
observation is apparently of invaluable computational importance since it significantly
simplifies numerical calculations on three particle interactions. The results of [29] have
been further verified experimentally e.g. [16] and numerically e.g. [25].

1.1. The program introduced and the goal of this paper. Motivated by the fact that the
Boltzmann equation is valid only for very dilute gases and by the observations of [29]
that multi-interactions among particles contribute to the colloidal gas (although in this
paper we do not model colloids), we aim to introduce and rigorously derive (from a
system of classical particles) a kinetic model which goes beyond binary interactions, by
incorporating a sum of higher order interaction terms in (1.1). Such an equation, which
could serve as a toy model for a non-ideal gas, would be of the form

∂t f + v · ∇x f =
m∑

k=2
Qk( f, f, · · · , f︸ ︷︷ ︸

k-times

), (t, x, v) ∈ (0,∞)× R
d × R

d , (1.2)

where for k = 1, . . . ,m, the expression Qk( f, f, . . . , f ) is the k-th order collisional
operator and m ∈ N is the accuracy of the approximation. Notice that for m = 2,
Eq. (1.2) reduces to the classical Boltzmann equation (1.1).

The task of rigorously deriving an equation of the form (1.2) from a classical many
particle system, even for the case m = 2, is a challenging problem that has been set-
tled for short times only in certain situations; for hard-sphere interactions, the analysis
was pioneered by Lanford [27] and recently completed by Gallagher, Saint-Raymond,
Texier [19], while for short-range potentials, it has been done in [19,26,28]. Up to our
knowledge, the case m = 3 i.e. derivation of the equation

∂t f + v · ∇x f = Q2( f, f ) + Q3( f, f, f ), (t, x, v) ∈ (0,∞)× R
d × R

d , (1.3)

has not been studied at all. We refer to (1.3) as the binary–ternary Boltzmann equation.
We mention that in a recent work with Gamba and Tasković [3] we proved global well-
posedness of (1.3) for small initial data near vacuum.

In addition to understanding binary interactions and interactions among three par-
ticles, derivation of (1.3) requires careful analysis of their mutual interactions. This
challenging task has been carried out in a subsequent work [4] since it requires a deep
understanding of interactions between three particles and their connection to binary in-
teractions. For this reason, in this paper, we focus on understanding interactions among
three particles and rigorously deriving a purely ternary equation, which itself brings a
lot of challenges due to combinatorial and configurational intricacies of evolving in time
interactions among three particles. We derive an equation of the form

∂t f + v · ∇x f = Q3( f, f, f ), (t, x, v) ∈ (0,∞)× R
d × R

d , (1.4)
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where Q3( f, f, f ) is the ternary collisional operator which is an integral operator of
cubic order in f . We refer to (1.4) as the ternary Boltzmann equation. Global well-
posedness for small initial data near vacuum holds as a special case of the results of
[3].

Let us mention that Maxwell models with multiple particle interactions have been
studied in [5,6] using Fourier transform methods.

Also, we note that attempts for generalization of the Boltzmann equation using for-
mal density expansions were made by physicists in the past, see e.g. [12,13,22,23,30],
but in a different context than ours. These attempts have not been further developed
since since the fourth and higher order collisions, terms as well as the virial expansion
of the solution, diverged as the number of particles increased. According to [14], the
divergences originate from the desire tomake a systematic expansion of themacroscopic
properties of a large system consisting of many particles in terms of the properties of
small (isolated) groups of 2, 3, 4 etc particles, i.e., from the basic idea of the virial ex-
pansion itself. This leads to formal expansions in terms of collision integrals containing
the dynamics of an increasing number of particles. These integrals diverge, however, in
general, due to long range dynamical correlations between successive collisions of these
particles, introduced by the possibility of unrestricted free motion of particles between
successive collisions.

1.2. Ternary interactions and their scaling. In a typical, dilute hard-sphere gas, the
probability of a simultaneous contact of three hard-spheres is very small compared to
e.g. the situation when one of the three particles is in simultaneous contact with the other
two particles. Motivated by this observation and the fact that in some physical situations,
such as when one considers colloids as in [29], interactions among three particles are
determined by the sum of the distances of the interacting particles, we introduce the
notion of an interaction of three particles based on a non-symmetric version of a ternary
distance. More precisely, we introduce the ternary distance:

d(x1; x2, x3) :=
√
|x1 − x2|2 + |x1 − x3|2, x1, x2, x3 ∈ R

d . (1.5)

Having defined the ternary distance, we introduce the notion of a ternary interaction. Let
ε > 0 and consider three particles i, j, k with positions and velocities (xi , vi ), (x j , v j ),

(xk, vk) ∈ R
2d . We say that the particles i, j, k are in (i; j, k) ternary ε-interaction1 if

the following geometric condition holds:

d2(xi ; x j , xk) = |xi − x j |2 + |xi − xk |2 = 2ε2. (1.6)

The parameter ε above is called interaction zone. The i-th particle is called the central
collisional particle, while the particles j, k are called adjacent collisional particles.

Heuristically speaking, an (i; j, k) interaction expresses the interaction of the central
particle i with the pair of the uncorrelated adjacent particles ( j, k) with respect to the
interaction zone ε. By uncorrelated, we mean that particles j, k are not directly affected
by each other. For example, Fig. 1 shows particles that are not in ternary interaction,
while Fig. 2 offers two examples of particles which are in ternary interaction.

Let us now describe how velocities instantaneously transform when a ternary in-
teraction happens. Consider an (i; j, k) ternary ε-interaction. Let v∗i , v∗j , v∗k denote the
velocities of the interacting particles after the interaction. Assuming the particles are

1 When not ambiguous, we will refer to (i; j, k) ternary ε-interaction as (i; j, k) interaction.
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of equal mass m = 1, we consider the interaction to be elastic i.e. the three particle
momentum-energy conservation system is satisfied:

v∗i + v∗j + v∗k = vi + v j + vk, (1.7)

|v∗i |2 + |v∗j |2 + |v∗k |2 = |vi |2 + |v j |2 + |vk |2. (1.8)

Now we introduce the relative positions re-scaled vectors (ω̃1, ω̃2) :=
(
x j−xi√

2ε
,
xk−xi√

2ε

)
.

Notice that (1.6) implies (ω̃1, ω̃2) ∈ S
2d−1
1 i.e. |ω̃1|2 + |ω̃2|2 = 1. We shall call the

vectors ω̃1, ω̃2 impact directions of the interaction. Since the i particle interacts with
the pair of uncorrelated particles ( j, k), we assume the velocities v j , vk transform with
respect to the impact directions unit vector i.e.

(
v∗j
v∗k

)
=
(

v j
vk

)
− c

(
ω̃1
ω̃2

)
, (1.9)

for some c ∈ R. We note that once we added condition2 (1.9) to the system (1.7)–(1.8),
the new system has a unique solution that algebraically characterizes the conserva-
tion of momentum and energy for the type of ternary interaction defined in (1.6). It is
straightforward to verify that (1.7)–(1.9) yield that v∗i , v∗j , v∗k are given by the collisional
formulas

2 We note that (1.9) is the ternary analogue of the condition that appears when one considers binary
interactions, see e.g. [19].
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v∗i = vi +
〈ω̃1, v j − vi 〉 + 〈ω̃2, vk − vi 〉

1 + 〈ω̃1, ω̃2〉 (ω̃1 + ω̃2),

v∗j = v j − 〈ω̃1, v j − vi 〉 + 〈ω̃2, vk − vi 〉
1 + 〈ω̃1, ω̃2〉 ω̃1,

v∗k = vk − 〈ω̃1, v j − vi 〉 + 〈ω̃2, vk − vi 〉
1 + 〈ω̃1, ω̃2〉 ω̃2.

(1.10)

1.3. Phase space and scaling of ternary interactions. Now we are ready to describe the
evolution of a system of N -particles of ε-interaction zone. Recall that in this paper we
pursue only ternary interactions analysis, thus the phase space will take into account
only those.

Definition 1.1. Let d ∈ N, with d ≥ 2, N ∈ N and ε > 0. The phase space of the
N -particle system of ε-interaction zone is defined as:

DN ,ε =
{
ZN = (XN , VN ) ∈ R

2dN : d2(xi ; x j , xk) ≥ 2ε2 ∀1 ≤ i < j < k ≤ N
}

,

(1.11)

where d2(xi ; x j , xk) = |xi − x j |2 + |xi − xk |2, and XN = (x1, . . . , xN ) ∈ R
dN , VN =

(v1, . . . , vN ) ∈ R
dN , represent the positions and velocities of the N -particles.

In terms of scaling, one could interpret an (i; j, k) of interaction zone ε as a special
hard sphere interaction of radius

√
2ε in R

2d , since expression (1.6) can be written as

|xi − x j,k|2d =
√
2ε,

where xi,i =
(
xi
xi

)
and x j,k =

(
x j
xk

)
. Then a 2d-particle with position xi,i would

span a volume of order ε2d−1 in a unit of time. In order to observe O(1) interaction per
unit of time, there are N 2 options for the 2d-particle positioned at x j,k. We obtain that
N 2ε2d−1 = O(1) or equivalently

Nεd−1/2 = O(1). (1.12)

This is the new scaling in which we will observe this kind of ternary interactions, see
Sect. 4 for the explicit appearance of this scaling in the calculations.

Remark 1.2. Thephase space (1.11)will produce the kinetic equation (1.15), inwhich the
tracked particle is always the central particle of the interactions occurring. Alternatively,
by working on the phase space

D̃N ,ε=
{
ZN =(XN , VN ) ∈ R

2dN : d2l (xi , x j , xk) ≥ 2ε2, ∀(i, j, k, l) ∈ ĨN }, (1.13)
where

ĨN ={(i, j, k, l) : (i, j, k) ∈ IN and l : {i, j, k} → {i, j, k} is a permutation},
dl(xi , x j , xk) =

√
|xli − xl j |2 + |xli − xlk |2,

and using similar arguments as in this paper, one can derive a symmetrized version of
(1.15), in which the tracked particle can be either central or adjacent. Moreover, it has
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been shown in [2], that the symmetrized ternary equation satisfies similar statistical and
entropy production properties as the classical Boltzmann equation. In particular, it has a
weak formulation which yields anH-Theorem and local conservation of mass, momen-
tum and energy. For simplicity, we opt to work with the phase space (1.11). However,
we would like to mention that all the intermediate results needed for the derivation of
the symmetrized ternary equation can be obtained after some minor changes, see [2] for
more details.

1.4. Global existence of a flow and the Liouville equation. Let us now describe the
evolution in time of a system of particles in the phase space (1.11). Consider an initial
configuration ZN ∈ DN ,ε . The motion is described as follows:

(I) Particles are assumed to perform rectilinear motion as long as there is no interaction
i.e.

ẋi = vi , v̇i = 0, ∀i ∈ {1, . . . , N }.
(II) Assume now that an initial configuration ZN = (XN , VN ) has evolved until time

t > 0, reaching ZN (t) = (XN (t), VN (t)), and there is an (i; j, k) interaction
at time t . Then the velocities (vi (t), v j (t), vk(t)) instantaneously transform to
(v∗i (t), v∗j (t), v∗k (t)).

We remark that it is not at all obvious that (I)–(II) produce a well defined dynamics,
since the evolution is not smooth in time, and the system can possibly run into patho-
logical configurations. In the case of binary interactions, the analogous result has been
established in the work of Alexander [1]. Our dynamics will be constructed in a similar
spirit to [1]. However a distinction between ternary precollisional and postcollisional
configurations as well as new geometric estimates are needed in order to control possible
emergence of pathological trajectories.

We informally state the first main result of this paper, for a rigorous statement see
Theorem 3.14.

Existence of a global flow: Let m ∈ N and 0 < σ << 1. There is a global in time
measure-preserving flow (� t

m)t∈R : Dm,σ → Dm,σ which preserves kinetic energy.
This flow is called the σ -interaction zone flow of m-particles or simply the interaction
flow.

The main difficulty in proving Theorem 3.14 is the elimination of configurations
following pathological trajectories in time. In particular, in order to go from local to
global in time flow we establish the following crucial fact—when an (i; j, k) interaction
happens, then the subsequent interaction cannot involve the same triplet of particles. This
observation enables us to develop ellipsoidal coverings and new geometric estimates to
control the measure of these pathological sets.

The global measure-preserving interaction flow established yields a Liouville equa-
tion (see (3.31)) for the evolution fN of an initial N -particle of ε-interaction zone
probability density fN ,0.

1.5. The ternary equation derived. Although Liouville’s equation is a linear transport
equation, efficiently solving it is almost impossible in case where the particle number
N is very large. This is why an accurate statistical description is welcome, and to obtain
it one wants to understand the limiting behavior of it as N → ∞ and ε → 0+, with
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the hope that qualitative properties will be revealed for a large but finite N . Letting the
number of particles N →∞ and the interaction zone ε → 0+ in the new scaling:

Nεd−1/2 = 21−d/2, (1.14)

we derive the ternary Boltzmann equation

∂t f + v · ∇x f = Q3( f, f, f ), (t, x, v) ∈ (0,∞)× R
d × R

d . (1.15)

The expression Q3( f, f, f ) is the ternary cubic order collisional operator, given by:

Q3( f, f, f ) =
∫

S
2d−1
1 ×R2d

b+(ω1, ω2, v1 − v, v2 − v)√
1 + 〈ω1, ω2〉

(
f ∗ f ∗1 f ∗2 − f f1 f2

)
dω1 dω2 dv1 dv2, (1.16)

where

b(ω1, ω2, v1 − v, v2 − v) := 〈ω1, v1 − v〉 + 〈ω2, v2 − v〉, b+ = max{b, 0},
f ∗ = f (t, x, v∗), f = f (x, t, v), f ∗i = f ∗i (t, x, v∗i ), fi = f (t, x, vi ) for i ∈ {1, 2}.

(1.17)

Remark 1.3. The ternary collisional operator could be written in a more general form
as:

Q3( f, f, f ) =
∫

S
2d−1
1 ×R2d

B(u,ω)
(
f ∗ f ∗1 f ∗2 − f f1 f2

)
dω1 dω2 dv1 dv2,

where u = (
v1−v
v2−v

) ∈ R
2d , ω = (

ω1
ω2

) ∈ S
2d−1
1 are the vectors of relative velocities and

scaled relative positions of the colliding particles. Of particular interest would be the
power law potentials:

B(u,ω) = |u|γ b̃(̂u · ω, 〈ω1, ω2〉),

where b̃ is the differential cross-section and û is the unit vector in the direction of u. In
this paper, we derive Eq. (1.15) for the case

γ = 1, b̃(̂u · ω, 〈ω1, ω2〉) = (̂u · ω)+√
1 + 〈ω1, ω2〉 .

For a study of the global well-posedness of (1.15) for power law potentials with γ ∈
(−2d + 1, 1], see [3].
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1.6. Strategy of the derivation and statement of the main result. Now the natural ques-
tion is: how do we pass from the N -particle dynamics to the kinetic equation (1.15)? We
implement the program pioneered by Lanford [27] and recently refined by Gallagher,
Saint-Raymond, Texier [19] for deriving, for short times, the classical Boltzmann equa-
tion (1.1) for hard-spheres in the Boltzmann-Grad [20,21] scaling Nεd−1 
 1. This
program has been implemented in the case of short range potentials too e.g. [19,26,28].
However, to the best of our knowledge, the program has not been explored outside of
the context of binary interactions. By generalizing the program to allow consideration
of ternary particle interactions, we illustrate that the program is universal enough. How-
ever to make it applicable to ternary interactions we follow evolution in time of ternary
particle interactions, that inform new mathematical arguments described below.

We first derive a finite two-step3 coupled hierarchy of equations for the marginals
densities of the solution to the Liouville equation, which we call the BBGKY4 hierarchy.
We then formally let N →∞ and ε → 0+ in the scaling (1.14) to obtain an infinite two-
step coupled hierarchy of equations, which we call the Boltzmann hierarchy. It can be
observed that for factorized initial data, the Boltzmann hierarchy reduces to the ternary
Boltzmann equation (1.15). This observation connects the Boltzmann hierarchy with the
ternary Boltzmann equation.

To make this argument rigorous, we first need to show that the BBGKY and Boltz-
mann hierarchy arewell-posed, at least for short times, and then that if theBBGKY initial
data converge to the Boltzmann hierarchy initial data, then this convergence propagates
in time in the scaling (1.14). Local well-posedness is shown in Sect. 5, see Theorems 5.5
and 5.8. Showing convergence is a very challenging task and is the heart of our contri-
bution. We informally state our main result here. For a rigorous statement of the result
see Theorem 6.9.
Statement of the main result: Let F0 be initial data for the Boltzmann hierarchy, and
FN ,0 be some BBGKY hierarchy initial data which “approximate” F0 as N → ∞,
ε → 0+ under the scaling (1.14). Let FN be the solution to the BBGKY hierarchy with
initial data FN ,0, and F the solution to the Boltzmann hierarchy, with initial data F0,
up to short time T > 0. Then FN converges in observables to F in [0, T ] as N →∞,
ε → 0+, under the scaling (1.14). In the case of Hölder continuous C0,γ ,γ ∈ (0, 1]
tensorized Boltzmann hierarchy initial data and approximation by conditioned BBGKY
hierarchy initial data, we obtain convergence to the solution of the ternary Boltzmann
equation (1.15) with a rate O(εr ) for any 0 < r < min{1/2, γ }.

The proof of this result is achieved by repeatedly using Duhamel’s formula for the
finite and infinite hierarchy respectively and comparing the corresponding series expan-
sions. However this a delicate point because of the divergence between the finite particle
flow and the free flow, due to the ternary interactions of particles in the finite particle
case. The problem of divergence is present in the derivation of the classical Boltzmann
equation as well, see [19,27], but our case is significantly harder due the complexity of
ternary interactions. To overcome this problem, we develop new geometric and combi-
natorial estimates, that help us extract small measure sets of initial data which lead to
these diverging trajectories. In particular the main difficulty is to control post-collisional
configurations and it requires completely new treatment. To achieve that, we need to ex-
plicitly calculate the Jacobian of ternary interactions with respect to impact directions,
and estimate the surface measure of sets of the form (Kd

ρ × R
d) ∩ S, where Kd

ρ is a

3 The two-step refers to the coupling between the k-th element of the hierarchy and the (k + 2)-th element
of the hierarchy.

4 Bogoliubov, Born, Green, Kirkwood, Yvon.
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d-dimensional solid cylinder of radius ρ and S is an appropriate ellipsoid in R
2d . These

results are thoroughly presented in Sect. 8.

1.7. Further discussion. While this paper models ternary interactions among particles
via a concept of a ternary distance (namely when (1.6) holds), we note that a more
physical way would be to employ a three-body potential of a small interaction zone. In
particular, one could consider 	 : R2d → R non-negative, smooth and supported in the
unit ball B2d

1 . Then one would work in the entire space with Newton’s equations

ẋi = vi v̇i = −1

ε

∑

i, j,k∈{1,...,N }
i �= j �=k

∇	

(
xi − x j

ε
,
xi − xk

ε

)
.

Although we did not pursue analysis of this model, we expect that the relevant scaling
(1.14) and the techniques introduced in this paper might be helpful in that context as
well.

1.8. Notation. For convenience, we introduce some basic notation which will be used
throughout the manuscript:

• We write x � y if there exists Cd > 0 with x ≤ Cd y.
• Given n ∈ N, ρ > 0 and w ∈ R

n , we write Bn
ρ (w) for the n-closed ball of radius

ρ > 0, centered at w ∈ R
n . In particular, we write Bn

ρ := Bn
ρ (0) for the ρ-ball

centered at the origin.
• Given n ∈ N and ρ > 0, we write S

n−1
ρ for the (n − 1)-sphere of radius ρ > 0.

• We write x << y, when x < cy for some number 0 < c < 1 small enough.

2. Collisional Transformation of Three Particles

In this section, we define the collisional transformation of three particles induced by a
pair of impact directions, and investigate its properties.

For convenience, given (ω1, ω2, v1, v2, v3) ∈ S
2d−1
1 × R

3d , let us write

cω1,ω2,v1,v2,v3 =
〈ω1, v2 − v1〉 + 〈ω2, v3 − v1〉

1 + 〈ω1, ω2〉 . (2.1)

Notice that cω1,ω2,v1,v2,v3 is well-defined for all (ω1, ω2, v1, v2, v3) ∈ S
2d−1
1 × R

3d ,
since

1 + 〈ω1, ω2〉 ≥ 1− |ω1||ω2| ≥ 1− 1

2

(
|ω1|2 + |ω2|2

)
= 1

2
. (2.2)

Definition 2.1. Consider impact directions (ω1, ω2) ∈ S
2d−1
1 . We define the collisional

transformation induced by (ω1, ω2) ∈ S
2d−1
1 as Tω1,ω2 : (v1, v2, v3) ∈ R

3d −→
(v∗1 , v∗2 , v∗3) ∈ R

3d , where
⎧
⎪⎨

⎪⎩

v∗1 = v1 + cω1,ω2,v1,v2,v3(ω1 + ω2),

v∗2 = v2 − cω1,ω2,v1,v2,v3ω1,

v∗3 = v3 − cω1,ω2,v1,v2,v3ω2,

(2.3)

and cω1,ω2,v1,v2,v3 is given by (2.1).
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In the following definition, we introduce the notion of the cross-section which will have
a prominent role in the rest of the paper.

Definition 2.2. We define the cross-section5 b : S2d−1
1 × R

2d → R as:

b(ω1, ω2, ν1, ν2) = 〈ω1, ν1〉 + 〈ω2, ν2〉, (ω1, ω2, ν1, ν2) ∈ S
2d−1
1 × R

2d . (2.4)

Notice that by (2.1), (2.4) we have

b(ω1, ω2, v2 − v1, v3 − v1) = (1 + 〈ω1, ω2〉) cω1,ω2,v1,v2,v3 . (2.5)

Direct algebraic calculations illustrate the main properties of the collisional tranforma-
tion.

Proposition 2.3. Consider a pair of impact directions (ω1, ω2) ∈ S
2d−1
1 . The induced

collisional transformation Tω1,ω2 has the following properties:

(i) Conservation of momentum

v∗1 + v∗2 + v∗3 = v1 + v2 + v3. (2.6)

(ii) Conservation of energy:

|v∗1 |2 + |v∗2 |2 + |v∗3 |2 = |v1|2 + |v2|2 + |v3|2. (2.7)

(iii) Conservation of relative velocities magnitude:

|v∗1 − v∗2 |2 + |v∗1 − v∗3 |2 + |v∗2 − v∗3 |2 = |v1 − v2|2 + |v1 − v3|2 + |v2 − v3|2.
(2.8)

(iv) Micro-reversibility of the cross-section:

b(ω1, ω2, v
∗
2 − v∗1 , v∗3 − v∗1) = −b(ω1, ω2, v2 − v1, v3 − v1). (2.9)

(v) Tω1,ω2 is a linear involution i.e. Tω1,ω2 is linear, T−1ω1,ω2
= Tω1,ω2 . In particular

| det Tω1,ω2 | = 1, thus Tω1,ω2 is measure-preserving.

Proof. (i) and (ii) are guaranteed by construction. (iii) comes immediately after com-
bining (i) and (ii). To prove (iv), we use (2.3) to obtain

v∗2 − v∗1 = v2 − v1 − 2cω1 − cω2, v∗3 − v∗1 = v3 − v1 − 2cω2 − cω1.

Using the fact that (ω1, ω2) ∈ S
2d−1
1 , and recalling (2.5), we get

b∗ = 〈ω1, v
∗
2 − v∗1〉 + 〈ω2, v

∗
3 − v∗1〉 = 〈ω1, v2 − v1〉 + 〈ω2, v3 − v1〉

− 2cω1,ω2,v1,v2,v3 (1 + 〈ω1, ω2〉) = −b,
wherewe use the notation b := b(ω1, ω2, v2−v1, v3−v1), b∗ := b(ω1, ω2, v

∗
2−v∗1 , v3−

v∗1). To prove (v), first notice that Tω1,ω2 is linear in velocities. Recalling notation from
(2.5), (iv) implies that c∗ = −c where c∗ := cω1,ω2,v

∗
1 ,v∗2 ,v∗3 , c := cω1,ω2,v1,v2,v3 . This

observation and (2.3) directly imply that T−1ω1,ω2
= Tω1,ω2 . Clearly

∣∣det Tω1,ω2

∣∣ = 1 and
Tω1,ω2 is measure-preserving. ��

5 We
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3. Dynamics of m-Particles

In this section we rigorously define the dynamics of m-particles of small interaction
zone 0 < σ << 1. Heuristically speaking particles perform free motion as long as they
are not interacting, and instantaneously transform velocities according to the collisional
transformation, defined in Sect. 2, when they interact. Intuitively, the dynamics is well-
defined as long as we have well-separated in time interactions, such that each of those
interactions involves only one triplet. Here, we show that a flow can be defined for almost
all initial configurations.

Throughout this section we consider m ∈ N and 0 < σ << 1. We assume m ≥ 3
unless stated.

3.1. Phase space definitions. Consider the setIm :=
{
(i, j, k)∈{1, . . . ,m}3 : i< j <k

}

of ordered triples in {1, . . . ,m}. We define the phase space of the m-particles of σ -
interaction zone as

Dm,σ :=
{
Zm = (Xm, Vm) ∈ R

2dm : d2(xi ; x j , xk) ≥ 2σ 2, ∀(i, j, k) ∈ Im
}

,

(3.1)

where Xm = (x1, . . . , xm) ∈ R
dm , Vm = (v1, . . . , vm) ∈ R

dm represent the positions
and velocities of the m-particles respectively, and

d(xi ; x j , xk) =
√
|xi − x j |2 + |xi − xk |2, (3.2)

is the distance in positions of the particles i, j, k. Finally, we also define D1,σ ≡ R
2d ,

DX
1,σ ≡ R

d . Elements of Dm,σ are called phase space configurations.
The phase space Dm,σ decomposes to the interior and the boundary:

D̊m,σ =
{
Zm = (Xm, Vm) ∈ R

2dm : d2(xi ; x j , xk) > 2σ 2, ∀(i, j, k) ∈ Im
}

,

(3.3)

∂Dm,σ =
⋃

(i, j,k)∈Im
�i jk, �i jk :=

{
Zm = (Xm, Vm) ∈ Dm,σ : d2(xi ; x j , xk) = 2σ 2

}
.

(3.4)

We further decompose the boundary to simple collisions and multiple collisions
respectively:

∂scDm,σ =
{
Zm = (Xm, Vm) ∈ ∂Dm,σ : there is unique (i, j, k) ∈ Im : Zm ∈ �i jk

}
,

(3.5)

∂mcDm,σ =
{
Zm = (Xm, Vm) ∈ ∂Dm,σ : there are (i, j, k)

�= (i ′, j ′, k′) ∈ Im : Zm ∈ �i jk ∩�i ′ j ′k′
}
. (3.6)

Notice that in the special case m = 3, we have ∂mcD3,σ = ∅ and ∂D3,σ = ∂scD3,σ , i.e.
there are no multiple collisions when we consider only three particles.
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Definition 3.1. Consider Zm ∈ ∂scDm,σ . Then there is a unique triplet (i, j, k) ∈ Im
such that Zm ∈ �i jk . In this case we will say that Zm is an (i; j, k) simple collision and
we will write

�sc
i jk :=

{
Zm = (Xm, Vm) ∈ ∂scDm,σ : Zm is (i; j, k) simple collision

}
. (3.7)

Remark 3.2. Notice that�sc
i jk∩�sc

i ′ j ′k′ = ∅, ∀(i, j, k) �= (i ′, j ′, k′) ∈ Im, and ∂scDm,σ

decomposes to ∂scDm,σ =⋃(i, j,k)∈Im �sc
i jk .

For the purposes of defining a global flow, throughout this sectionweuse the following
notation:

Definition 3.3. Let (i, j, k) ∈ Im and Zm ∈ �sc
i jk . We introduce

(ω̃1, ω̃2) := 1√
2σ

(
x j − xi , xk − xi

) ∈ S
2d−1
1 . (3.8)

Therefore, each (i; j, k) simple collision naturally induces impact directions (ω̃1, ω̃2) ∈
S
2d−1
1 , and a collisional transformation Tω̃1,ω̃2 .

We also give the following definition:

Definition 3.4. Let (i, j, k) ∈ Im and Zm = (Xm, Vm) ∈ �sc
i jk . We denote Z∗m =

(Xm, V ∗m), where

V ∗m = (v1, . . . , vi−1, v∗i , vi+1, . . . , v j−1, v∗j , v j+1, . . . , vk−1, v∗k , vk+1, . . . , vm),

and (v∗i , v∗j , v∗k ) = Tω̃1,ω̃2(vi , v j , vk), (ω̃1, ω̃2) ∈ S
2d−1
1 are given by (3.8).

3.2. Classification of simple collisions. Now, we classify simple collisions in order to
eliminate collisions which graze under time evolution. Informally speaking, a simple
collisional configuration will be precollisional when the three interacting particles have
the velocities which led them to the interaction and postcollisional when the velocities
have already changed by the collision according to the transformation (2.3). As we will
see in Lemma 3.7, a simple collisional configuration can be characterized by the sign of
the cross-section. More specifically, we introduce the following language:

Definition 3.5. Let (i, j, k) ∈ Im and Zm ∈ �sc
i jk . The configuration Zm is called:

(i) pre-collisional when b(ω̃1, ω̃2, v j − vi , vk − vi ) < 0,
(ii) post-collisional when b(ω̃1, ω̃2, v j − vi , vk − vi ) > 0,
(iii) grazing when b(ω̃1, ω̃2, v j − vi , vk − vi ) = 0, where (ω̃1, ω̃2) ∈ S

2d−1
1 is given by

(3.8) and b is given by (2.4).

Remark 3.6. Let (i, j, k) ∈ Im and Zm ∈ �sc
i jk . Using (2.9), we obtain the following:

(i) Zm is pre-collisional iff Z∗m is post-collisional.
(ii) Zm is post-collisional iff Z∗m is pre-collisional.
(iii) Zm = Z∗m iff Zm is grazing.

We consider the subset of the phase space: D∗m,σ = D̊m,σ ∪ ∂sc,ngDm,σ , where

∂sc,ngDm,σ =
{
Zm = (Xm, Vm) ∈ ∂scDm,σ : Zm is non-grazing

}
.

Notice that D∗m,σ is a full measure subset of Dm,σ and ∂sc,ngDm,σ is a full surface
measure subset of ∂Dm,σ .
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3.3. Construction of the local flow. Here, we show that each Zm ∈ D∗m,σ follows a
well-defined trajectory for short time. Next Lemma defines the flow for any initial con-
figuration in D∗m,σ up to the first collision time.

Lemma 3.7. Consider Zm = (Xm, Vm) ∈ D∗m,σ . Then there is a time τ 1Zm
∈ (0,∞]

such that defining Zm(·) : (0, τ 1Zm
] → R

2dm by:

Zm(t) = (Xm (t) , Vm (t))

:=
{

(Xm + tVm, Vm), if Zm is non-collisional or post-collisional,
(Xm + tV ∗m, V ∗m), if Zm is pre-collisional,

the following hold:

(i) Zm(t) ∈ D̊m,σ , ∀t ∈ (0, τ 1Zm
),

(ii) if τ 1Zm
<∞, then Zm(τ 1Zm

) ∈ ∂Dm,σ ,

(iii) If Zm ∈ �sc
i jk for some (i, j, k) ∈ Im, and τ 1Zm

<∞, then Zm(τ 1Zm
) /∈ �i jk ,

The time τ 1Zm
is called the first (forward) collision time of Zm. The first negative collision

time can be defined analogously.

Proof. Let us make the convention inf ∅ = +∞. We define

τ 1Zm
=
{
inf
{
t > 0 : Xm + tVm ∈ ∂Dm,σ

}
, if Zm is post-collisional,

inf
{
t > 0 : Xm + tV ∗m ∈ ∂Dm,σ

}
, if Zm is pre-collisional.

(3.9)

• Assume that Zm ∈ D̊m,σ . Since D̊m,σ is open and the free flow is continuous, we
obtain τ 1Zm

> 0, and claims (i)-(ii) follow immediately from (3.9).
• Assume now that Zm ∈ ∂sc,ngDm,σ , hence Zm is a simple non-grazing collision.
Therefore we may distinguish the following cases:

(I) Zm is an (i; j, k) post-collisional configuration: For any t > 0, we have

d2(xi +tvi ; x j +tv j , xk+tvk)≥2σ 2 + 2tb(x j − xi , xk − xi , v j − vi , vk − vi )>2σ 2,

(3.10)

since b(ω̃1, ω̃2, v j −vi , vk −vi ) > 0. This inequality and the fact that Zm is simple
collision imply that τ 1Zm

> 0, and claim (i) holds. Claim (ii) follows from (3.9) and
claim (iii) follows from (3.10).

(II) Zm is (i; j, k) pre-collisional: We use the same argument for Z∗m which is (i; j, k)
post-collisional. ��

Let usmake an elementary, but crucial remarkwhichwill turn of fundamental importance
when extending the flow globally in time.

Remark 3.8. For configurations with τ 1Zm
= ∞ the flow is globally defined as the free

flow. In the case where τ 1Zm
<∞ and Zm(τ 1Zm

) ∈ ∂sc,ngDm,σ , we may apply Lemma 3.7

once more, considering Zm(τ 1Zm
) as initial point, and extend the flow up to the second

collision time τ 2Zm
:= τ 1

Zm (τ 1Zm
)
. Moreover, if Zm(τ 1Zm

) ∈ �sc
i jk for some (i, j, k) ∈ Im ,

part (iii) of Lemma 3.7 implies that Zm(τ 2Zm
) /∈ �i jk .
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3.4. Extension to a global interaction flow. Now, we extract a null set from D∗m,σ such
that the flow is globally defined for positive times on the complement. For this purpose,
we consider truncation parameters in the scaling:

0 < δR << σ << 1 < R < ρ. (3.11)

We first assume initial positions are in Bdm
ρ and initial velocities in Bdm

R . We decom-

pose D∗m,σ ∩ (Bdm
ρ × Bdm

R ) as follows:

I f ree :=
{
Zm = (Xm, Vm) ∈ D∗m,σ ∩ (Bdm

ρ × Bdm
R ) : τ 1Zm

> δ
}

,

I 1sc,ng :=
{
Zm = (Xm, Vm) ∈ D∗m,σ ∩ (Bdm

ρ × Bdm
R ) : τ 1Zm

< δ,

Zm(τ 1Zm
) ∈ ∂sc,ngDm,σ , and τ 2Zm

> δ
}
,

I 1sc,g :=
{
Zm = (Xm, Vm) ∈ D∗m,σ ∩ (Bdm

ρ × Bdm
R ) : τ 1Zm

< δ,

Zm(τ 1Zm
) ∈ ∂scDm,σ , but Zm(τ 1Zm

) is grazing
}
,

I 1mc :=
{
Zm = (Xm, Vm) ∈ D∗m,σ ∩ (Bdm

ρ × Bdm
R ) : τ 1Zm

< δ,

Zm(τ 1Zm
) ∈ ∂mcDm,σ

}
,

I 2sc,ng :=
{
Zm = (Xm, Vm) ∈ D∗m,σ ∩ (Bdm

ρ × Bdm
R ) : τ 1Zm

< δ,

Zm(τ 1Zm
) ∈ ∂sc,ngDm,σ , but τ 2Zm

≤ δ
}
.

(3.12)

Notice that for Zm ∈ I f ree ∪ I 1sc,ng , thanks to Lemma 3.7, the flow is well defined up
to time δ, and there occurs at most one simple non-grazing collision in (0, δ).

3.4.1. Covering arguments Now, we make an ellipsoid shell covering of the set I 1mc ∪
I 2sc,ng in a way that we can estimate the measure of the coverings.

Lemma 3.9. For m = 3, there holds I 1mc = I 2sc,ng = ∅. For m ≥ 4, the following
inclusion holds:

I 2sc,ng ∪ I 1mc ⊆
⋃

(i, j,k) �=(i ′, j ′,k′)∈Im

(
Ui jk ∩Ui ′ j ′k′

)
, (3.13)

Ui jk :=
{
Zm = (Xm, Vm) ∈ Bdm

ρ × Bdm
R : 2σ 2 ≤ d2(xi ; x j , xk) ≤ (

√
2σ + 4δR)2

}
.

(3.14)

Proof. For m = 3, we have ∂mcD3,σ = ∅, thus I 1mc = ∅. Also, since m = 3, we obtain
I3 = {(1, 2, 3)}, hence Remark 3.8 implies that τ 2Zm

= ∞ i.e. there is no other collision

in the future, so I 2sc,ng = ∅.
Let m ≥ 4. We first assume that either Zm ∈ D̊m,σ or Zm is post-collisional. We first

prove the inclusion for I 2sc,ng . Assuming that Zm(τ 1Zm
) ∈ I 2sc,ng is an (i; j, k) non-grazing

collision, we have

d2
(
xi
(
τ 1Zm

)
; x j

(
τ 1Zm

)
, xk

(
τ 1Zm

))
= 2σ 2.
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Since there is free motion up to τ 1Zm
and τ 1Zm

≤ δ, triangle inequality implies

|xi − x j | ≤ |xi (τ 1Zm
)− x j (τ

1
Zm

)| + δ|vi − v j | ≤ |xi (τ 1Zm
)− x j (τ

1
Zm

)| + 2δR.(3.15)

Since there is collision at τ 1Zm
, we have

|xi (τ 1Zm
)− x j (τ

1
Zm

)|2 + |xi (τ 1Zm
)− xk(τ

1
Zm

)|2 = 2σ 2 ⇒ |xi (τ 1Zm
)− x j (τ

1
Zm

)| ≤ √2σ.

(3.16)

Combining (3.15)–(3.16), we obtain

|xi − x j |2 ≤ |xi (τ 1Zm
)− x j (τ

1
Zm

)|2 + 4
√
2σδR + 4δ2R2. (3.17)

Using the same argument for the pair (i, k), adding, and recalling the fact that there is
(i; j, k) simple collision at τ 1Zm

, we obtain

2σ 2 ≤ d2(xi ; x j , xk) ≤ 2σ 2 + 8
√
2σ Rδ + 8δR2 ≤ (

√
2σ + 4δR)2, (3.18)

where the lower inequality holds trivially since Zm ∈ Dm,σ . By (3.18), we obtain
Zm ∈ Ui jk .

Remark 3.8 guarantees that Zm(τ 2Zm
) /∈ �i jk . So Zm(τ 2Zm

) ∈ �i ′ j ′k′ for some

(i ′, j ′, k′) �= (i, j, k). Moreover, particles keep performing freemotion in [τ 1Zm
, τ 2Zm

) ex-
cept particles i, j, k whose velocities instantaneously transform because of the collision
at τ 1Zm

. Recall we wish to prove as well:

Zm ∈ Ui ′ j ′k′ ⇔ 2σ 2 ≤ d2(xi ′ ; x j ′ , xk′) ≤ (
√
2σ + 4δR)2. (3.19)

The lower inequality trivially holds because of the phase space so it suffices to prove
the upper inequality. Since (i, j, k) �= (i ′, j ′, k′), it suffices to distinguish the following
cases:

(I) i ′, j ′, k′ /∈ {i, j, k}: Since particles (i ′, j ′, k′) perform free motion up to τ 2Zm
, a

similar argument to the one we used to obtain (3.18) yields Zm ∈ Ui ′ j ′k′ . The only
difference is that we apply the argument up to time τ 2Zm

.
(II) At least one of i ′, j ′, k′ belongs to {i, j, k} but no more than two. The argument is

similar to (I), the only difference being that velocities of the recolliding particles
transform at τ 1Zm

. Since the argument is similar for all cases, let us provide the proof
in detail only for one case, for instance (i ′, j ′, k′) = (i, k, k′), for some k′ > k. The
fact that Vm ∈ Bdm

R , conservation of energy by the free flow and conservation of

energy by the collision (2.7) imply v∗i
(
τ 1Zm

)
, v∗j

(
τ 1Zm

)
, v∗k

(
τ 1Zm

)
∈ Bd

R . For the

pair (i, k), we have

xi (τ
2
Zm

) = xi (τ
1
Zm

) + (τ 2Zm
− τ 1Zm

)v∗i
(
τ 1Zm

)
= xi + τ 1Zm

vi + (τ 2Zm
− τ 1Zm

)v∗i
(
τ 1Zm

)
,

xk(τ
2
Zm

) = xk(τ
1
Zm

) + (τ 2Zm
− τ 1Zm

)v∗k
(
τ 1Zm

)
= xk + τ 1Zm

vk + (τ 2Zm
− τ 1Zm

)v∗k
(
τ 1Zm

)
.
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Therefore, triangle inequality implies

|xi − xk | ≤ |xi (τ 2Zm
)−xk(τ 2Zm

)|+τ 1Zm
|vi − vk |+(τ 2Zm

−τ 1Zm
)|v∗i

(
τ 1Zm

)
−v∗k

(
τ 1Zm

)
|

≤ |xi (τ 2Zm
)− xk(τ

2
Zm

)| + 2τ 1Zm
R + 2(τ 2Zm

− τ 1Zm
)R

≤ |xi (τ 2Zm
)− xk(τ

2
Zm

)| + 2δR.

Similarly, for the pair (i, k′), we obtain |xi − xk′ | ≤ |xi (τ 2Zm
)− xk′(τ 2Zm

)|+2δR. By
an argument similar to (3.18), inequality (3.19) follows. Inclusion (3.13) is proved
for I 2sc,ng . The inclusion for I 1mc follows similarly.

Assume now that Zm is pre-collisional. By Remark 3.6, Z∗m is post-collisional and by
(2.7) Z∗m ∈ Bdm

ρ × Bdm
R . By a similar argument to the post-collisional case, we obtain

the result. ��

3.4.2. Measure estimates Now we estimate the measure of I 1δ ∪ I 1sc,g ∪ I 1mc ∪ I 2sc,ng in
order to show that outside of a small measure set we have a well defined flow up to small
time δ. To estimate the measure of I 1mc ∪ I 2sc,ng , we will strongly rely on the shell-like
covering made in Lemma 3.9.

For this purpose, we first introduce some notation. Consider (i, j, k) ∈ Im , a permu-
tation π : {i, j, k} → {i, j, k} and (xπ j , xπk ) ∈ R

2d . We define the set

Sπi (xπ j , xπk ) = {xπi ∈ R
d : (xi , x j , xk) ∈ Ui jk}. (3.20)

Lemma 3.10. Let (i, j, k) ∈ Im, a permutationπ : {i, j, k} → {i, j, k}and (xπ j , xπk ) ∈
R
2d . Then

|Sπi (xπ j , xπk )|d ≤ Cd,Rδ. (3.21)

Proof. By symmetry, it suffices to prove (3.21) for the permutations π = (i, j, k) and
π = (k, i, j). For convenience, let us write σ0 =

√
2σ , δ0 = 4δR. Scaling (3.11) implies

0 < δ0 << σ0 << 1.
The proof for π = (k, i, j): Consider (xi , x j ) ∈ R

2d , and let us write α = |xi −
x j |. Recalling (3.20), we have Sk(xi , x j ) = {xk ∈ R

d : σ 2
0 − α2 ≤ |xi − xk |2 ≤

(σ0 + δ0)
2 − α2}. We distinguish the following cases:

• α > σ0: We have (σ0 + δ0) − α2 < (σ0 + δ0)
2 − σ 2

0 = δ0(2σ0 + δ0) < δ0,

since 0 < δ0 << σ0 << 1. Thus Sk(xi , x j ) ⊆
{
xk ∈ R

d : |xi − xk | ≤ √δ0
}
, so

|Sk(xi , x j )|d � δ
d/2
0 ≤ δ0 = 4Rδ, since δ0 < 1 and d ≥ 2.



810 I. Ampatzoglou, N. Pavlović

• α ≤ σ0: By (3.20), Sk(xi , x j ) = {xk ∈ R
d :

√
σ 2
0 − α2 ≤ |xi − xk |

≤ √(σ0 + δ0)2 − α2}. Therefore

|Sk(xi , x j )|d 

(√

(σ0 + δ0)2 − α2
)d −

(√
σ 2
0 − α2

)d

(3.22)

= δ0(2σ0 + δ0)
√

(σ0 + δ0)2 − α2 +
√

σ 2
0 − α2

d−1∑

m=0

(√
(σ0 + δ0)2 − α2

)d−1−m (√
σ 2
0 − α2

)m

≤ δ0
√

(σ0 + δ0)2 − α2 +
√

σ 2
0 − α2

(√
(σ0 + δ0)2 − α2 + (d − 1)

√
σ 2
0 − α2

)

(3.23)

≤ (d − 1)δ0 = 4(d − 1)Rδ, (3.24)

where to obtain (3.23) we use the fact that 0 < δ0 << σ0 << 1, and to obtain (3.24)
we use the fact that d ≥ 2. Estimate (3.21) is proved for the case (k, i, j).

The proof for π = (i, j, k): Consider (x j , xk) ∈ R
2d . Completing the square, one can

see that

Si (x j , xk) =
{
xi ∈ R

d : σ 2
0 − α2 ≤

∣∣∣xi − x j + xk
2

∣∣∣
2
≤ (σ + δ0)

2 − α2
}

,

where σ0 = σ, δ0 = 4δR√
2
, α = 1

2

√
2(|x j |2 + |xk |2)− |x j + xk |2. Scaling (3.11)

implies 0 < δ0 << σ0 << 1. The estimate follows by an argument identical to the the
previous case. ��
Lemma 3.11. The following measure estimate holds:

|I 1sc,g ∪ I 2sc,ng ∪ I 1mc|2dm ≤ Cm,d,Rρd(m−2)δ2.

Proof. First, we notice that I 1sc,g has measure zero since it is covered by codimension-2
submanifolds of the phase space. Form = 3, the result comes trivially from Lemma 3.9.
Assume m ≥ 4. By Lemma 3.9, it suffices to uniformly estimate the measure of Ui jk ∩
Ui ′ j ′k′ , for all (i, j, k) �= (i ′, j ′, k′) ∈ Im . Consider (i, j, k) �= (i ′, j ′, k′) ∈ Im , and
recall notation from (3.20). We will strongly rely on Lemma 3.10. We distinguish the
following cases:

(I) i ′, j ′, k′ /∈ {i, j, k}: Fubini’s Theorem and (3.21) imply

|Ui jk ∩Ui ′ j ′k′ |2dm � Rdmρd(m−6)
∫

B6d
ρ

1Sk (xi ,x j )∩Sk′ (xi ′ ,x j ′ ) dxi dx j dxk dxi ′ dx j ′ dxk′

≤ Rdmρd(m−6)
(∫

Bd
ρ×Bd

ρ

∫

Rd
1Sk (xi ,x j ) dxk dx j dxi

)

(∫

Bd
ρ×Bd

ρ

∫

Rd
1Sk′ (xi ′ ,x j ′ ) dx

′
k dx

′
j dx

′
i

)

≤ Cm,d,Rρd(m−2)δ2.
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(II) Exactly one of i ′, j ′, k′ belongs to {i, j, k}: Without loss of generality, we consider
the case i ′ = i, j ′ �= j, k �= k′. Fubini’s Theorem and (3.21) imply

|Ui jk ∩Ui j ′k′ |2dm � Rdmρd(m−5)
∫

B5d
ρ

1Sk (xi ,x j )∩Sk′ (xi ,x j ′ ) dxi dx j dxk dx j ′ dxk′

≤ Rdmρd(m−5)
∫

Bd
ρ

(∫

Bd
ρ

∫

Rd
1Sk (xi ,x j ) dxk dx j

)

(∫

Bd
ρ

∫

Rd
1Sk′ (xi ,x j ′ ) dxk′ dx j ′

)
dxi

≤ Cm,d,Rρd(m−2)δ2.

(III) Exactly two of i ′, j ′, k′ belong to {i, j, k}: Without loss of generality, we consider
the case i ′ = i, j ′ = j, k �= k′. Fubini’s Theorem and (3.21) imply

|Ui jk ∩Ui jk′ |2dm � Rdmρd(m−4)
∫

B4d
ρ

1Sk (xi ,x j )∩Sk′ (xi ,x j ′ ) dxi dx j dxk dxk′

≤ Rdmρd(m−4)
∫

Bd
ρ×Bd

ρ

(∫

Rd
1Sk (xi ,x j ) dxk

)(∫

Rd
1Sk′ (xi ,x j ) dxk′

)
dx j dxi

≤ Cm,d,Rρd(m−2)δ2.

��
Remark 3.12. For negative times, analogous results of Lemmas 3.9 and 3.11 follow
similarly.

3.4.3. The global interaction flow We inductively use Lemma 3.11 to define a global
flow which preserves energy for almost all configuration. For this purpose, given Zm =
(Xm, Vm) ∈ R

2dm , we define its kinetic energy as:

Em(Zm) := 1

2

m∑

i=1
|vi |2. (3.25)

For convenience, let us define the free flow of m-particles.

Definition 3.13. Letm ∈ N. We define the free flow ofm-particles as the family of maps
(	t

m)t∈R : R2dm → R
2dm , given by 	t

m Zm = 	t
m(Xm, Vm) := (Xm + tVm, Vm).

We establish the existence of σ -interaction zone flow of m-particles.

Theorem 3.14. (Existence of the interaction flow) Let m ∈ N and 0 < σ << 1. There
exists a full measure Gδ-subset �m,σ ⊆ D∗m,σ and a measure-preserving family of
diffeomorphisms (� t

m)t∈R : �m,σ → �m,σ such that

� t+s
m Zm = (� t

m ◦�s
m)(Zm) = (�s

m ◦� t
m)(Zm), ∀Zm ∈ �m,σ , ∀t, s ∈ R, (3.26)

Em
(
� t

m Zm
) = Em(Zm), ∀Zm ∈ �m,σ , ∀t ∈ R. (3.27)
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Moreover for m ≥ 3 the flow is defined a.e. on �m,σ ∩ ∂sc,ngDm,σ with respect to the
induced measure dσ and

� t
m Z
∗
m = � t

m Zm, σ − a.e. on �m,σ ∩ ∂sc,ngDm,σ , ∀t ∈ R. (3.28)

This family of maps is called the σ -interaction zone flow of m-particles. For m = 1, 2,
the flow coincides with the free flow.

Proof. Having established the bounds of Lemma 3.11, which are valid for both positive
and negative collision times (by Remark 3.12), existence of the set � and (3.26)–(3.27)
follow in the same spirit as in [1]. An outline of the proof can also be found in [19]. For
details of the proof, see [2].

It remains to prove that the flow is a.e. defined on �m,σ ∩ ∂sc,ngDm,σ and that (3.28)
holds. We use an argument similar to [31]. By the definition of the flow, (3.28) holds
on �m,σ ∩ ∂sc,ngDm,σ . Therefore, it suffices to prove Im,σ ∩ ∂sc,ngDm,σ is a null subset
of ∂sc,ngDm,σ , where Im,σ := D∗m,σ \�m,σ is the set of configurations which run into
pathological trajectories in finite time. Let Z ′m ∈ ∂sc,ngDm,σ . Then by Lemma 3.7, the
flow can be defined up to time τ 1Z ′m

> 0 and � t
m Z
′
m ∈ D̊m,σ for all 0 < t < τ 1Z ′m

. But
since Im,σ is of measure zero and �m,σ is invariant under the flow, we have

0=
∫

Im,σ∩D̊m,σ

dZm=
∫

Im,σ∩∂sc,ngDm,σ

∫ τ 1
Z ′m

0
dt dσ(Z ′m)=

∫

Im,σ∩∂sc,ngDm,σ

τ 1Z ′m dσ(Z ′m),

which implies that σ(Im,σ ∩ ∂sc,ngDm,σ ) = 0, since τ 1Z ′m
> 0. ��

3.5. The Liouville equation. We introduce the flow operators used throughout the paper,
and then derive the m-particle Liouville equation for m ≥ 3.

Definition 3.15. For t ∈ R, we define the σ -interaction zone flowofm-particles operator
T t
m : L∞(Dm,σ )→ L∞(Dm,σ ) as

T t
mgm(Zm) = gm(�−tm Zm). (3.29)

Definition 3.16. For t ∈ R and m ∈ N, we define the free flow of m-particles operator
Stm : L∞(R2dm)→ L∞(R2dm) as:

St̄mgm(Zm) = gm(	−tm Zm) = gm(Xm − tVm, Vm). (3.30)

Assume m ≥ 3. Given a symmetric with respect to the particles initial probability
density fm,0 supported inDm,σ , we define its evolution as fm(t, Zm) := T t

m fm,0. Clearly,
fm is symmetric and supported inDm,σ . Theorem 3.14 implies that fm formally satisfies
the m-particle Liouville equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ll∂t fm +
m∑

i=1
vi · ∇xi fm = 0, (t, Zm) ∈ (0,∞)× D̊m,σ ,

fm(t, Z∗m) = fm(t, Zm), (t, Zm) ∈ [0,∞)× ∂scDm,σ ,

fm(0, Zm) = fm,0(Zm), Zm ∈ D̊m,σ .

(3.31)
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4. BBGKY Hierarchy, Boltzmann Hierarchy and the Ternary Boltzmann
Equation

In this section we consider N -particles of ε-interaction zone, where N ≥ 3 and 0 <

ε << 1. We integrate the N -particle Liouville’s equation to formally obtain a lin-
ear hierarchy of integro-differential equations satified by the marginals of its solution
(BBGKY hierarchy). We then formally derive the limiting hierarchy (Boltzmann hierar-
chy) occuring under the appropriate scaling and formally show it reduces to a nonlinear
integro-differential equation (the new ternary Boltzmann equation) for chaotic initial
data.

4.1. The BBGKY hierarchy. Consider N -particles of interaction zone 0 < ε << 1,
where N ≥ 3. For s ∈ N, we define the s-marginal of a symmetric probability density
fN , supported in DN ,ε , as

f (s)
N (Zs) =

⎧
⎪⎪⎨

⎪⎪⎩

∫

R2d(N−s)
fN (ZN ) dxs+1 . . . dxN dvs+1 . . . dvN , 1 ≤ s < N ,

fN , s = N ,

0, s > N ,

(4.1)

where for Zs = (Xs, Vs) ∈ R
2ds , we write ZN = (Xs, xs+1, . . . , xN , Vs, vs+1, . . . , vN ).

It is straightforward that, for all 1 ≤ s ≤ N , themarginals f (s)
N are symmetric probability

densities, supported in Ds,ε .
Assume now that fN is formally the solution to the N -particle Liouville equation

(3.31) with initial data fN ,0. We seek to formally find a hierarchy of equations satisfied
by the marginals of fN . The answer is obvious for s ≥ N since by definition f (N )

N = fN
and f (s)

N = 0 for s > N .
Notice that ∂DN ,ε is equivalent up to surface measure zero to �X × R

dN , where
�X :=⋃(i, j,k)∈IN

�
sc,X
i jk , and �

sc,X
i jk are given by (3.7). Moreover, �X is a pairwise

disjoint union.
We proceed by integrating by parts the Liouville equation. Consider 1 ≤ s ≤ N −

1. The boundary and initial conditions can be easily recovered integrating Liouville’s
equation boundary and initial conditions respectively i.e.

{
ll f (s)

N (t, Z∗s ) = f (s)
N (t, Zs), (t, Zs) ∈ [0,∞)× ∂scDs,ε, s ≥ 3,

f (s)
N (0, Zs) = f (s)

N ,0(Zs), Zs ∈ D̊s,ε .
(4.2)

Notice that for s = 1, 2 there is no boundary condition, sinceDs,ε = R
2ds by definition.

Consider now a smooth test function φs compactly supported in (0,∞)×Ds,ε such
that whenever (i, j, k) ∈ IN with j ≤ s, the following holds:

φs(t, ps Z
∗
N ) = φs(t, ps ZN ) = φs(t, Zs), ∀(t, ZN ) ∈ (0,∞)×�sc

i jk, (4.3)

where ps(ZN ) := Zs is the natural projection in space and velocities.
Multiplying the Liouville equation by φs , and integrating , we obtain

∫

(0,∞)×DN ,ε

(
∂t fN (t, ZN ) +

N∑

i=1
vi · ∇xi fN (t, ZN )

)
φs(t, Zs) dXN dVN dt = 0.

(4.4)
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For the time derivative in (4.4), integration by parts in time, Fubini’s Theorem and then
again integration by parts in time imply

∫

(0,∞)×DN ,ε

∂t fN (t, ZN )φs(t, Zs) dXN dVN dt

=
∫

(0,∞)×Ds,ε

∂t f
(s)
N (t, Zs)φs(t, Zs) dXs dVs dt. (4.5)

For the material derivative term in (4.4), the Divergence Theorem implies

∫

DN ,ε

N∑

i=1
vi · ∇xi fN (t, ZN ) φs(t, Zs) dXN dVN

=
∫

DN ,ε

divXN [ fN (t, ZN ) VN ]φs(t, Zs) dXN dVN

= A1 + A2, (4.6)

A1 := −
∫

DN ,ε

VN · ∇XN φs(t, Zs) fN (t, ZN ) dXN dVN

A2 :=
∫

�X×RdN
n̂ (XN ) · VN fN (t, ZN ) φs (t, Zs) dVN dσ,

where n̂(XN ) is the outwards normal vector on �X at XN ∈ �X , dσ is the surface
measure on �X . Moreover, by the fact that fN is supported in DN ,ε , the Divergence
Theorem and the fact that φs is compactly supported, we obtain

A1 =
∫

R2dN
Vs · ∇Xsφs(t, Zs) fN (t, ZN ) dXN dVN

=
∫

R2ds
Vs · ∇Xsφs(t, Zs) f

(s)
N (t, Zs) dXs dVs

= −
∫

R2ds
divXs [ f (s)

N (t, Zs)Vs]φs(t, Zs) dXs dVs

= −
∫

Ds,ε

s∑

i=1
vi∇xi f

(s)
N (t, Zs)φs(t, Zs) dXs dVs, (4.7)

Combining (4.4)–(4.6), (4.7), we obtain

∫

(0,∞)×Ds,ε

(
∂t f

(s)
N (t, Zs) +

s∑

i=1
vi · ∇xi f

(s)
N (t, Zs)

)
φs (t, Zs) dXs dVs dt

=
∑

(i, j,k)∈IN

∫ ∞

0
Ci jk(t) dt, (4.8)

Ci jk(t) := −
∫

�
sc,X
i, j,k×RdN

n̂i jk (XN ) · VN fN (t, ZN ) φs (t, Zs) dVN dσi jk, (4.9)
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and n̂i jk(XN ) is the outwards normal vector on �
sc,X
i jk at XN ∈ �

sc,X
i jk , dσi jk is the

surface measure on �
sc,X
i jk . We easily calculate

− n̂i jk(XN ) · VN = (
√
2)−1

〈 x j−xi√
2ε

, v j − vi 〉 + 〈 xk−xi√
2ε

, vk − vi 〉
√
1 + 〈 x j−xi√

2ε
,
xk−xi√

2ε
〉

. (4.10)

Notice that since we are integrating over �
sc,X
i jk , we have

(
x j−xi√

2ε
,
xk−xi√

2ε

)
∈ S

2d−1
1 .

Making the change of variables (vi , v j , vk)→ (v∗i , v∗j , v∗k ), under the collisional trans-
formation induced by

(
x j−xi√

2ε
,
xk−xi√

2ε

)
, using (4.10), Proposition 2.3 parts (iv), (v) and

the boundary condition of (3.31), we obtain

Ci jk(t) =− (
√
2)−1

∫

�
sc,X
i jk RdN

〈 x j−xi√
2ε

, v j − vi 〉 + 〈 xk−xi√
2ε

, vk − vi 〉
√
1 + 〈 x j−xi√

2ε
,
xk−xi√

2ε
〉

fN (t, Z∗N )φs(t, πs Z
∗
N ) dVN dσi jk . (4.11)

Equations (4.9)–(4.11) and the test function condition (4.3) imply

Ci jk(t) = 0, ∀(i, j, k) /∈ ĨN , ∀t > 0,

where ĨN := {(i, j, k) ∈ IN : 1 ≤ i ≤ s < j < k ≤ N } . (4.12)

Notice we immediately observe that the (N−1)- marginal satisfies the (N−1)-Liouville
equation given in (3.31).

For 1 ≤ s ≤ N − 2 and (i, j, k) ∈ ĨN , the (dN − 1)-surface measure on �
sc,X
i jk

can be written as dσi jk(XN ) = dSxi (x j , xk)
∏N

�=1
� �= j,k

dx�, where, given xi ∈ R
d ,

dSxi is the surface measure on the sphere of center (xi , xi ) ∈ R
2d and radius

√
2ε.

By this decomposition and the symmetry assumption on fN we obtain Ci jk(t) =
Ci,s+1,s+2(t), ∀(i, j, k) ∈ ĨN , ∀t > 0. This observation and, (4.12) yield

∑

(i, j,k)∈IN

Ci jk(t) =
s∑

i=1

N−1∑

j=s+1

N∑

k= j+1

Ci,s+1,s+2(t)

=
s∑

i=1

N−1∑

j=s+1
(N − j)Ci,s+1,s+2(t) = (1 + 2 + . . . + N − s − 1)

s∑

i=1
Ci,s+1,s+2(t)

= 1

2
(N − s)(N − s − 1)

s∑

i=1
Ci,s+1,s+2(t), ∀t > 0. (4.13)

Fix i ∈ {1, . . . , s}. Substituting (ω1, ω2) =
(
xs+1−xi√

2ε
,
xs+2−xi√

2ε

)
, and recalling the nota-

tion from (2.4), we obtain thanks to (4.9)–(4.10), (4.1) and the fact that supp f (s+2)
N ⊆
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Ds+2,ε that
∫ ∞

0
Ci,s+1,s+2(t) dt =

∫

(0,∞)×Ds,ε

2d−1ε2d−1

∫

S
2d−1
1 ×R2d

b (ω1, ω2, vs+1 − vi , vs+2 − vi )√
1 + 〈ω1, ω2〉

× f (s+2)
N (t, Xs, xi +

√
2εω1, xi +

√
2εω2, Vs, vs+1, vs+2)

dω1 dω2 dvs+1 dvs+2 dXs dVs dt.

(4.14)

Splitting the cross-section to positive and negative parts, followed by an application
of the relevant boundary condition to the positive part, and substituting (ω1, ω2) →
(−ω1,−ω2) for the negative part, the right hand side of (4.14) becomes:

∫

(0,∞)×Ds,ε

2d−1ε2d−1
∫

S
2d−1
1 ×R2d

b+ (ω1, ω2, vs+1 − vi , vs+2 − vi )

×
(
f (s+2)
N (t, Zi∗

s+2,ε)− f (s+2)
N (t, Zi

s+2,ε)

)
dω1 dω2 dvs+1 dvs+2 dXs dVs dt,

(4.15)

where given i ∈ {1, . . . , s}, we denote
Zi
s+2,ε = (x1, . . . , xi , . . . , xs, xi −

√
2εω1, xi −

√
2

εω2, v1, . . . vi−1, vi , vi+1, . . . , vs, vs+1, vs+2),
Zi∗
s+2,ε = (x1, . . . , xi , . . . , xs, xi +

√
2εω1, xi +

√
2

εω2, v1, . . . vi−1, v∗i , vi+1, . . . , vs, v∗s+1, v∗s+2).

Finally, combining (4.8), (4.13)–(4.15), we formally obtain the BBGKY hierarchy for
s ∈ N:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t f
(s)
N +

s∑

i=1
vi · ∇xi f

(s)
N = CN

s,s+2 f
(s+2)
N , (t, Zs) ∈ (0,∞)× D̊s,ε,

f (s)
N (t, Z∗s ) = f (s)

N (t, Zs), (t, Zs) ∈ [0,∞)× ∂scDs,ε, whenever s ≥ 3,

f (s)
N (0, Zs) = f (s)

N ,0(Zs), Zs ∈ D̊s,ε,

(4.16)

where

CN
s,s+2 = CN ,+

s,s+2 − CN ,−
s,s+2, (4.17)

for 1 ≤ s ≤ N − 2 we denote

CN ,+
s,s+2 f

(s+2)
N (t, Zs) = AN ,ε,s

s∑

i=1

∫

S
2d−1
1 ×R2d

b+√
1 + 〈ω1, ω2〉

f (s+2)
N

(
t, Zi∗

s+2,ε ,
)
dω1 dω2 dvs+1 dvs+2,

(4.18)

CN ,−
s,s+2 f

(s+2)
N (t, Zs) = AN ,ε,s

s∑

i=1

∫

S
2d−1
1 ×R2d

b+√
1 + 〈ω1, ω2〉

f (s+2)
N

(
t, Zi

s+2,ε

)
dω1 dω2 dvs+1 dvs+2,

(4.19)
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and we use the notation

AN ,ε,s = 2d−2(N − s)(N − s − 1)ε2d−1,
b = b(ω1, ω2, vs+1 − vi , vs+2 − vi ), b+ = max{b, 0},

Zi
s+2,ε = (x1, . . . , xi , . . . , xs, xi −

√
2εω1, xi

−√2εω2, v1, . . . vi−1, vi , vi+1, . . . , vs, vs+1, vs+2),
Zi∗
s+2,ε = (x1, . . . , xi , . . . , xs, xi +

√
2εω1, xi

+
√
2εω2, v1, . . . vi−1, v∗i , vi+1, . . . , vs, v∗s+1, v∗s+2).

(4.20)

For s ≥ N − 1 we trivially define CN ,+
s,s+2 ≡ CN ,−

s,s+2 ≡ 0.
Duhamel’s formula implies that the BBGKY hierarchy can be written in mild form

as follows

f (s)
N (t, Zs) = T t

s f (s)
N ,0(Zs) +

∫ t

0
T t−τ
s CN

s,s+2 f
(s+2)
N (τ, Zs) dτ, s ∈ N, (4.21)

where T t
s is the ε-interaction zone flow of s-particles operator given in (3.29). See

Remark 5.3 for the validity of (4.21) in L∞.

4.2. The Boltzmann hierarchy. We will now derive the Boltzmann hierarchy as the
formal limit of the BBGKY hierarchy as N →∞ and ε → 0+ under the scaling

Nεd−1/2 = 21−d/2. (4.22)

This scaling guarantees that for a fixed s ∈ N, we have AN ,ε,s −→ 1, as N →∞ and
ε → 0+ in the scaling (4.22). Formally taking the limit under the scaling imposed we
may define the following collisional operator:

C∞s,s+2 = C∞,+
s,s+2 − C∞,−

s,s+2, (4.23)

C∞,+
s,s+2 f

(s+2)(t, Zs) =
s∑

i=1

∫

(S2d−11 ×R2d )

b+√
1 + 〈ω1, ω2〉 f

(s+2)

(
t, Zi∗

s+2

)
dω1 dω2 dvs+1 dvs+2, (4.24)

C∞,−
s,s+2 f

(s+2)(t, Zs) =
s∑

i=1

∫

(S2d−11 ×R2d )

b+√
1 + 〈ω1, ω2〉 × f (s+2)

(
t, Zi

s+2

)
dω1 dω2 dvs+1 dvs+2, (4.25)

and

b = b(ω1, ω2, vs+1 − vi , vs+2, vi ), b+ = max{b, 0},
Zi
s+2 = (x1, . . . , xi , . . . , xs, xi , xi , v1, . . . vi−1, vi , vi+1, . . . , vs, vs+1, vs+2),

Zi∗
s+2 = (x1, . . . , xi , . . . , xs, xi , xi , v1, . . . vi−1, v∗i , vi+1, . . . , vs, v∗s+1, v∗s+2).

(4.26)
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Now we are ready to introduce the Boltzmann hierarchy. More precisely, given an
initial data f (s)

0 , the Boltzmann hierarchy for s ∈ N is given by:
⎧
⎪⎨

⎪⎩
ll∂t f (s) +

s∑

i=1
vi∇xi f

(s) = C∞s,s+2 f (s+2), (t, Zs) ∈ (0,∞)× R
2ds,

f (s)(0, Zs) = f (s)
0 (Zs), ∀Zs ∈ R

2ds .

(4.27)

Duhamel’s formula implies that the Boltzmann hierarchy can be written in mild form
as follows

f (s)(t, Zs) = Sts f
(s)
0 (Zs) +

∫ t

0
St−τ
s C∞s,s+2 f (s+2)(τ, Zs) dτ, s ∈ N. (4.28)

where Sts denotes free flow of s-particles operator given in (3.30). See Remark 5.7 for
the validity of (4.28) in L∞.

4.3. The ternary Boltzmann equation. A situation of particular physical interest is when
particles are initially independently distributed. This translates to factorized Boltzmann
hierarchy initial data i.e.

f (s)
0 (Zs) = f ⊗s0 (Zs) =

s∏

i=1
f0(xi , vi ), s ∈ N, (4.29)

where f0 : R2d → R is a given function. One can easily verify that the anszatz

f (s)(t, Zs) = f ⊗s(t, Zs) =
s∏

i=1
f (t, xi , vi ), s ∈ N, (4.30)

solves theBoltzmannhierarchywith initial data givenby (4.29), if f : [0,∞)×R
2d → R

satisfies the ternary Boltzmann equation
{
ll∂t f + v · ∇x f = Q3( f, f, f ), (t, x, v) ∈ (0,∞)× R

2d ,

f (0, x, v) = f0(x, v), (x, v) ∈ R
2d ,

(4.31)

where, using the notation from (1.17), the ternary collisional operator Q3 is given by
(1.16)–(1.17). Duhamel’s formula implies the ternaryBoltzmann equation can bewritten
in mild form as follows

f (t, x, v) = St1 f0(x, v) +
∫ t

0
St−τ
1 Q3( f, f, f )(τ, x, v) dτ. (4.32)

See Remark 5.10 for the validity of (4.32) in L∞.

5. Local Well-Posedness

In this section we address local well-posedness (LWP) for the BBGKY and Boltzmann
hierarchies and the ternary Boltzmann equation. As expected, these well-posedness
proofs are closely related, and they rely on defining appropriate functional spaces and
establishing appropriate a-priori bounds. For this reason we provide the proofs only
for the BBGKY case (for more details see [2]). The functional spaces we introduce to
address well-posedness are inspired by the spaces used in [19,27].
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5.1. LWP for the BBGKY hierarchy. Consider (N , ε) in the scaling (4.22). For 1 ≤ s ≤
N and β > 0 we define the Banach spaces

XN ,β,s :=
{
gN ,s ∈ L∞(Ds,ε) : |gN ,s |N ,β,s := ess sup

Zs∈R2ds
|gN ,s(Zs)|eβEs (Zs ) <∞

}
,

where Es(Zs) is the kinetic energy of s-particles given by (3.25). For s > N we trivially
define XN ,β,s := {0} .

Consider μ ∈ R. We define the Banach space

XN ,β,μ :=
{
GN = (gN ,s)s∈N : gN ,s ∈ XN ,β,s, ∀s ∈ N and ‖GN‖N ,β,μ

:= sup
s∈N

eμs |gN ,s |N ,β,s <∞
}

.

Finally, given T > 0, β0 > 0, μ0 ∈ R and β,μ : [0, T ] → R decreasing functions of
time with β(0) = β0, β(T ) > 0, μ(0) = μ0, we define the Banach space

XN ,β,μ := C0 ([0, T ], XN ,β(t),μ(t)
)
, with norm |||GN |||N ,β,μ

= sup
t∈[0,T ]

‖GN (t)‖N ,β(t),μ(t).

Now, given m ∈ N, we prove an important continuity estimate for the operator CN
m,m+2.

Lemma 5.1. Let m ∈ N, β > 0 and gN ,m+2 ∈ XN ,m+2,β . Then, the following continuity
estimate holds for any

∣∣∣CN
m,m+2gN ,m+2(Zm)

∣∣∣ � β−d
(
mβ−1/2 +

m∑

i=1
|vi |

)
e−βEm (Zm )|gN ,m+2|N ,β,m+2,

∀Zm ∈ Dm,ε .

Proof. Let gN ,m+2 ∈ XN ,m+2,β and Zm = (Xm, Vm) ∈ N. If m ≥ N − 1 both sides
vanish, so we may assume that m ≤ N − 2. Notice that conservation of energy (2.7)
implies

Em+2(Z
i,∗
m+2,ε) = Em+2(Z

i
m+2,ε), ∀i = 1, . . . ,m. (5.1)

Moreover, (2.2), Cauchy–Schwarz inequality and triangle inequality yield

b+(ω1, ω2, v2 − v1, v3 − v1)√
1 + 〈ω1, ω2〉 ≤ 2

√
2 (|v1| + |v2| + |v3|) ,

∀(ω1, ω2, v1, v2, v3) ∈ S
2d−1
1 × R

3d . (5.2)

Therefore, by (5.1)–(5.2), the definition of the norm and scaling (4.22)
∣∣∣∣C

N
m,m+2gN ,m+2(Zm)

∣∣∣∣ � e−βEm (Zm)|gN ,m+2|N ,β,m+2

×
m∑

i=1

∫

R2d

(|vi | + |vm+1| + |vm+2|
)
e−

β
2 (|vm+1|2+|vm+2|2) dvm+1 dvm+2.
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Using Fubini’s theorem and the elementary integrals
∫ ∞

0
e−

β
2 x

2
dx 
 β−1/2,

∫ ∞

0
xe−

β
2 x

2
dx 
 β−1,

we obtain the required estimate. ��
Now we define a mild solution of the BBGKY hierarchy in the scaling (4.22) as

follows:

Definition 5.2. Consider T > 0, β0 > 0, μ0 ∈ R and the decreasing functions β,μ :
[0, T ] → R with β(0) = β0, β(T ) > 0, μ(0) = μ0. Consider also initial data GN ,0 =(
gN ,s,0

) ∈ XN ,β0,μ0 . A map GN =
(
gN ,s

)
s∈N ∈ XN ,β,μ is a mild solution of the

BBGKY hierarchy (4.16) in [0, T ] if it satisfies

GN (t) = T tGN ,0 +
∫ t

0
T t−τCNGN (τ ) dτ, (5.3)

where CNGN =
(
CN
s,s+2gN ,s+2

)

s∈N and T t = (T t
s )s∈N, where T t

s is given by (3.29).

Remark 5.3. We note that the above collision operators CN
s,s+2 are ill-defined on L∞

since they involve integration over a set of measure zero (the sphere S
d−1
1 ). However, by

filtering our BBGKY hierarchy by the flow T−ts , we may obtain a well defined operator
on XN ,β,μ . This is done in detail in the erratum of Chapter 5 of [19] and does not affect
the energy estimates or local well-posedness of the hierarchy. This filtering process can
be adapted to our context. Hence, we will abuse the notation and continue to work with
(5.3). See also [31] for a different approach which avoids this issue by working with
measures on the phase space.

We will address well-posedness of the BBGKY hierarchy by a fixed point argument.
For this purpose, we state an important estimate.

Lemma 5.4. Let β0 > 0, μ0 ∈ R, T > 0 and λ ∈ (0, β0/T ). Consider the functions
βλ,μλ : [0, T ] → R given by

βλ(t) = β0 − λt, μλ(t) = μ0 − λt. (5.4)

Then for any F(t) ⊆ [0, t] measurable, s ∈ N and GN =
(
gN ,s

)
s∈N ∈ XN ,βλ,μλ

the
following bound holds:

∣∣∣∣

∣∣∣∣

∣∣∣∣
∫

F(t)
T t−τCNGN (τ ) dτ

∣∣∣∣

∣∣∣∣

∣∣∣∣
N ,βλ,μλ

≤ C(d, β0, μ0, T, λ)|||GN |||N ,βλ,μλ
,

C(d, β0, μ0, T, λ) 
 λ−1e−2μ(T )βλ(T )−d
(
1 + βλ (T )−1/2

)
. (5.5)

Proof. Since energy is conserved by the flow and we have the continuity estimate of
Lemma 5.1 for the collisional operator, the proof follows similarly to the proof of Lemma
5.3.1. in [19]. ��
Choosing λ = β0/2T , and T = T (β0, μ0) small enough, Lemma 5.4 implies local
well-posedness of the BBGKY hierarchy via a fixed point argument.
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Theorem 5.5. Let β0 > 0 and μ0 ∈ R. Then there is T = T (d, β0, μ0) > 0 such that
for any initial datum FN ,0 = ( f (s)

N ,0)s∈N ∈ XN ,β0,μ0 there is unique mild solution FN ∈
XN ,β,μ of the BBGKY hierarchy (4.16) in [0, T ] for the functions β,μ : [0, T ] → R

given by

β(t) = β0 − β0

2T
t, μ(t) = μ0 − β0

2T
t. (5.6)

Moreover, for any F(t) ⊆ [0, t] measurable, the following bounds hold:
∣∣∣∣

∣∣∣∣

∣∣∣∣
∫

F(t)
T t−τCNGN (τ ) dτ

∣∣∣∣

∣∣∣∣

∣∣∣∣
N ,β,μ

≤ 1

8
|||GN |||N ,β,μ, ∀GN ∈ XN ,β,μ, (5.7)

|||FN |||N ,β,μ ≤ 2‖FN ,0‖N ,β0,μ0 . (5.8)

5.2. LWP for the Boltzmann hierarchy. For the Boltzmann hierarchy analogous esti-
mates follow in a similar manner as for the BBGKY hierarchy in the appropriate func-
tional spaces.

Given β > 0 and s ∈ N we define the Banach space

X∞,β,s :=
{
gs ∈ L∞(R2ds) : |gs |∞,β,s := ess sup

Zs∈R2ds
|gs(Zs)|eβEs (Zs ) <∞

}
.

Consider as well μ ∈ R. We define the Banach space

X∞,β,μ :=
{
G = (gs)s∈N : ‖G‖∞,β,μ := sup

s∈N
eμs |gs |∞,β,s <∞

}
.

Finally, for T > 0, β0 > 0, μ0 ∈ R and β,μ : [0, T ] → R decreasing functions of
time with β(T ) > 0 we define the Banach space

X∞,β,μ = C0 ([0, T ], X∞,β(t),μ(t)
)
, with norm |||G||| := sup

t∈[0,T ]
‖G(t)‖∞,β(t),μ(t).

We define a mild solution of the Boltzmann hierarchy as follows.

Definition 5.6. Consider T > 0, β0 > 0, μ0 ∈ R and the decreasing functions β,μ :
[0, T ] → R with β(0) = β0, β(T ) > 0, μ(0) = μ0. Consider also initial data G0 =(
gs,0

) ∈ X∞,β0,μ0 . A map G = (gs)s∈N ∈ X∞,β,μ is a mild solution of the Boltzmann
hierarchy (4.27) in [0, T ], with initial data G0, if it satisfies:

G(t) = S tG0 +
∫ t

0
S t−τC∞G(τ ) dτ, (5.9)

where C∞G =
(
C∞s,s+2gs+2

)

s∈N , and S tG = (Stsgs)s∈N, where Sts is given by (3.30).

Remark 5.7. As noted in Remark 5.3, the operators C∞s,s+2 are ill defined on L∞ due to

the integration over the lower dimension manifold S
d−1
1 . As in the BBGKY case, one

can filter the infinite hierarchy by S−ts to obtain a well defined mild formulation of the
hierarchy. However, for simplicity, we will abuse notation and continue to use (5.9)

Now we state the well-posedness result for the Boltzmann hierarchy.
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Theorem 5.8. Let β0 > 0 and μ0 ∈ R. Then there is6 T = T (d, β0, μ0) > 0 such that
for any initial datum F0 = ( f (s)

0 )s∈N ∈ X∞,β0,μ0 there is unique mild solution F ∈
X∞,β,μ of the Boltzmann hierarchy (4.27) in [0, T ] for the functions β,μ : [0, T ] → R

given by (5.6).
Moreover, for any F(t) ⊆ [0, t] measurable, the following estimates hold:
∣∣∣∣

∣∣∣∣

∣∣∣∣
∫

F(t)
S t−τC∞G(τ ) dτ

∣∣∣∣

∣∣∣∣

∣∣∣∣
∞,β,μ

≤ 1

8
|||G|||∞,β,μ, ∀G ∈ X∞,β,μ, (5.10)

|||F|||∞,β,μ ≤ 2‖F0‖∞,β0,μ0 . (5.11)

5.3. LWP for the ternary Boltzmann equation and propagation of chaos. Here, we first
present local well-posedness for the ternary Boltzmann equation. The proofs are nonlin-
ear analogues of the arguments used in the BBGKY case (for details see [2]). Further-
more, we show that for chaotic initial data their tensorized product produces the unique
mild solution of the Boltzmann hierarchy, hence chaos is propagated.

For β > 0 let us define the Banach space

Xβ,μ :=
{
g ∈ L∞(R2d) : |g|β,μ := ess sup

(x,v)∈R2d
|g(x, v)|eμ+ β

2 |v|2 <∞
}

.

Consider β0 > 0, μ0 ∈ R, T > 0 and β,μ : [0, T ] → R decreasing functions of time
with β(0) = β0, β(T ) > 0 and μ(0) = μ0. We define the Banach space

Xβ,μ := C0 ([0, T ], Xβ(t),μ(t)
)
, with norm ‖g‖β,μ = ess sup

t∈[0,T ]
|g(t)|β(t),μ(t).

We define mild solutions to the ternary Boltzmann equation as follows:

Definition 5.9. Consider T > 0, β0 > 0, μ0 ∈ R and β,μ : [0, T ] → R decreasing
functions of time, with β(0) = β0, β(T ) > 0, μ(0) = μ0. Consider also initial data
g0 ∈ Xβ0,μ0 . A map g ∈ Xβ,μ is a mild solution of the ternary Boltzmann equation
(4.31) in [0, T ], with initial data g0 ∈ Xβ0,μ0 , if it satisfies

g(t) = St1g0 +
∫ t

0
St−τ
1 Q3(g, g, g)(τ ) dτ. (5.12)

where St1 denotes the free flow of 1-particle given in (3.30).

Remark 5.10. As in Remarks 5.3 and 5.7, the operators Q3 can be filtered by the free
flow S−t1 in order to define the above equation on L∞. Hence, we will abuse notation
and continue to work with (5.12).

Let us write BXβ,μ
for the unit ball of Xβ,μ. Then the followingwell-posedness result

holds

Theorem 5.11. Let β0 > 0 and μ0 ∈ R. Then there is7 T = T (d, β0, μ0) > 0 such
that for any initial data f0 ∈ Xβ0,μ0 , with | f0|β0,μ0 ≤ 1

2 , there is a unique mild solution
f ∈ BXβ,μ

to the ternary Boltzmann equation in [0, T ] with initial data f0, where
β,μ : [0, T ] → R are the functions given by (5.6).

6 The time of existence is the same as in Theorem 5.5.
7 The time of existence is the same as in Theorem 5.5.
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Remark 5.12. The smallness assumption on the initial data is needed in order to produce a
solution up to the time of existence of solutions to the BBGKY and Boltzmann hierarchy
obtained in Theorems 5.5 and 5.8 respectively. One can produce a solution for general
initial data, as was done for the Boltzmann equation in [27], but the time of existence
would be smaller due to the nonlinearity of (4.31).

We can now prove that chaos is propagated by the Boltzmann hierarchy.

Theorem 5.13. (Propagation of chaos) Let β0 > 0, μ0 ∈ R, T > 0 the time obtained
by Theorem 5.11 and β,μ : [0, T ] → R the functions defined by (5.6). Consider
f0 ∈ Xβ0,μ0 with | f0|β0,μ0 ≤ 1

2 . Assume f ∈ BXβ,μ
is the corresponding mild solution

of the ternary Boltzmann equation in [0, T ], with initial data f0 given by Theorem 5.11.
Then the following hold:

(i) F0 = ( f ⊗s0 )s∈N ∈ X∞,β0,μ0 .
(ii) F = ( f⊗s)s∈N ∈ X∞,β,μ.
(iii) F is the unique mild solution of the Boltzmann hierarchy in [0, T ], with initial data

F0.

Proof. (i) is verified by the bound on the initial data and the definition of the norms. By
the the same bound again, wemay apply Theorem 5.11 to obtain the uniquemild solution
f ∈ BXβ,μ

of the corresponding ternary Boltzmann equation. Since ‖ f ‖β,μ ≤ 1, the
definition of the norms directly imply (ii). It is also staightforward to verify that F is a
mild solution of the Boltzmann hierarchy in [0, T ], with initial data F0. Uniqueness of
the mild solution to the Boltzmann hierarchy, obtained by Theorem 5.8, implies that F
is the unique mild solution. ��

6. Convergence Statement

In this section, we define an appropriate notion of convergence, namely convergence in
observables, and we state the main result of this paper. While our convergence result
is valid for a general type of Boltzmann initial data and approximation by BBGKY
hierarchy initial data (see Definition 6.1), we also provide a rate of convergence in the
case of chaotic Boltzmann initial data and initial approximation by conditioned BBGKY
hierarchy initial data (introduced in Definition 6.4).

Throughout this section, we consider (N , ε) in the scaling (4.22).Wewill also use the
phase space Dm,ε of m-particles of ε-interaction zone given by (3.1) and the functional
spaces of Sect. 5.

6.1. Approximation of Boltzmann initial data. This Subsection focuses on introducing
relevant types of initial data. First, we define the general notion of BBGKY hierarchy
sequences approximating Boltzmann hierarchy initial data. Then we show that chaotic
initial data produced by tensorized probability densities are approximated by conditioned
BBGKY hierarchy sequences in the scaling (4.22).

Definition 6.1. Let β0 > 0, μ0 ∈ R and G0 = (gs,0)s∈N ∈ X∞,β0,μ0 . A sequence
GN ,0 = (gN ,s,0)s∈N ∈ XN ,β0,μ0 is called a BBGKY hierarchy sequence approximating
G0 if the following conditions hold:

(i) supN∈N ‖GN ,0‖N ,β0,μ0 <∞.

(ii) For any s ∈ N there holds limN→∞ ‖gN ,s,0 − gs,0‖L∞(Ds,ε ) = 0.
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Remark 6.2. EveryG0 = (gs,0)s∈N ∈ X∞,β0,μ0 has a BBGKY hierarchy approximating
sequence. Indeed, it is straightforward to verify that the sequence GN ,0 = (gN ,s,0)s∈N
given by gN ,s,0 = 1Ds,ε gs,0 satisfies the properties stated above in the scaling (4.22).

Especially meaningful initial data, corresponding to initial independence between par-
ticles, are given below:

Remark 6.3. Let g0 ∈ Xβ0,μ0+1 be a positive probability density i.e. g0 > 0 a.e. and∫
R2d g0(x, v) dx dv = 1 and assume that ‖g0‖β0,μ0+1 ≤ 1. Then one can easily see that
the chaotic configurationG0 = (g⊗s0 )s∈N ∈ X∞,β0,μ0+1 ⊆ X∞,β0,μ0 . This type of initial
data, corresponding to tensorized initial measures, will lead to the ternary Boltzmann
equation (4.31). In fact, we will see that one can approximate tensorized initial data
in the scaling (4.22) by conditioned BBGKY hierarchy initial data which are defined
below.

Definition 6.4. Let g0 ∈ Xβ0,μ0+1 be a positive probability density and denote G0 =
(g⊗s0 )s∈N ∈ X∞,β0,μ0+1.Wedefine the conditionedBBGKYhierarchy sequenceGN ,0 =
(g(s)

N ,0)s∈N of G0 as:

g(s)
N ,0(Xs, Vs) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z−1N

∫

R2d(N−s)
1DN ,ε

g⊗N0 (Xs, xs+1, . . . , xN , Vs, vs+1, . . . , vN )

dxs+1 dvs+1 . . . dxN dvN , 1 ≤ s < N
Z−1N 1DN ,ε

g⊗N0 (ZN ), s = N ,

0, s > N .

(6.1)

where the normalization is preserved by the introduction of the partition function:

Zm =
∫

R2dm
1Dm,ε

g⊗m0 (Xm, Vm) dXm dVm, m ∈ N.

Notice that since g0 is a.e. positive and integrates to 1, we have 0 < Zm < 1 for all
m ∈ N.

Let us now prove that the conditioned BBGKY hierarchy sequence of tensorized
initial data is an approximating sequence (according to Definition 6.1). This will be
a crucial tool to obtain rate of convergence to the solution of the ternary Boltzmann
equation (4.31) (seeCorollary 6.11 formore details).Wewill need the following auxiliary
estimate on the partition functions.

Lemma 6.5. Let β0 > 0, μ0 ∈ R and g0 ∈ L∞x L1
v(R

2d) be a positive probability
density. Then for all (N , ε) in the scaling (4.22) with 2Cdε

1/2‖g0‖L∞x L1
v

< 1, where Cd

is a positive constant, and all m ∈ N with m < N, there holds

1 ≤ Z−1N ZN−m ≤ (1− Cd‖g0‖L∞x L1
v
ε1/2)−m,

for some constant Cd > 0.

Proof. The left hand side inequality is immediate from the definition of the phase space
(3.1). To prove the right hand side consider k ∈ N with k ≤ N . Notice that for any
Zk+1 = (Xk+1, Vk+1) ∈ R

2d(k+1), we have

1Dk+1,ε (Xk+1, Vk+1) ≥ 1Dk,ε (Xk, Vk)
k∏

i=1
1|xi−xk+1|>

√
2ε(xi ),
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by the definition of the phase space (3.1). Let us note that the above inequality applies
specifically to the ternary interactions we consider. Then we can proceed in a similar
manner as in the proof of Lemma 6.1.2 in [19], using the ternary scaling (4.22) instead.
More specifically, the previous inequality and Fubini’s Theorem imply

Zk+1 =
∫

R2d(k+1)
1Dk+1,ε g

⊗(k+1)
0 (Xk+1, Vk+1) dXk+1 dVk+1

≥
∫

R2dk

(∫

R2d

k∏

i=1
1|xi−x |>

√
2ε(xi )g0(x, v) dx dv

)

1Dk,ε (Xk, Vk)g
⊗m
0 (Xk, Vk) dXk dVk .

But since g0 integrates to 1, we have

∫

R2d

k∏

i=1
1|xi−x |>

√
2ε(xi )g0(x, v) dx dv ≥ 1

−
k∑

i=1

∫

R2d
1|xi−x |≤

√
2ε(xi )g0(x, v) dx dv ≥ 1− kCd‖g0‖L∞x L1

v
εd ,

upon integrating on a d-ball of radius
√
2ε. Hence

Zk+1 ≥ (1− kCd‖g0‖L∞x L1
v
εd)Zk ≥ (1− NCd‖g0‖L∞x L1

v
εd)

Zk 
 (1− Cd‖g0‖L∞x L1
v
ε1/2)Zk, (6.2)

due to scaling (4.22). For 2Cd‖g0‖L∞x L1
v
ε1/2 < 1, we may apply inductively (6.2) for

k = m, . . . , N − 1, and the claim follows. ��
Proposition 6.6. Let g0 ∈ Xβ0,μ0+1 beapositive probability densitywith |g0|β0,μ0+1 ≤ 1

and G0 = (g⊗s0 )s∈N ∈ X∞,β0,μ0+1 ⊆ X∞,β0,μ0 . Let GN ,0 = (g(s)
N ,0)s∈N be the condi-

tioned BBGKY hierarchy sequence of the tensorized initial data G0 given in Defini-
tion 6.4. Then GN ,0 is a BBGKY hierarchy sequence approximating G0 (in the sense
of Definition 6.1) in the scaling (4.22). In particular for all (N , ε) in the scaling (4.22)
with N large enough (or equivalently ε small enough), there holds the estimate

‖g(s)
N ,0 − g⊗s0 ‖L∞(Ds,ε ) ≤ Cd,s,β0,μ0ε

1/2‖G0‖∞,β0,μ0 . (6.3)

Proof. By definition of the phase space (3.1), for any s ∈ N, with s < N and ZN ∈ DN ,ε

we can write

1DN ,ε
(ZN ) =1Ds,ε (Zs)

∏

1≤i< j≤s<k≤N
1|xi−x j |2+|xi−xk |2>2ε2(xi , x j , xk)

∏

1≤i≤s< j<k≤N
1|xi−x j |2+|xi−xk |2>2ε2(xi , x j , xk)

∏

s+1≤i< j<k≤N
1|xi−x j |2+|xi−xk |2>2ε2(xi , x j , xk).
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Again this decomposition of the phase space is due to the ternary interactionswe consider
and is necessary to track all the cases arising from ternary interactions. Moreover, by
symmetry, for s < N we can also write

ZN−s =
∫

R2d(N−s)

∏

s+1≤�1<�2<�3≤N
1|x�1−x�2 |2+|x�1−x�3 |2>2ε2(x�1 , x�2 , x�3)

N∏

�=s+1
g0(x�, v�) dZ(s+1,N ),

where dZ(s+1,N ) := dxs+1 . . . dxN dvs+1 . . . dvN . Therefore, given Zs ∈ R
2ds , an

elementary calculation gives

g(s)
N ,0(Zs) = Z−1N 1Ds,ε (Zs)g

⊗s
0 (Zs)

(
ZN−s −Rs+1,N (Zs)

)
, (6.4)

where the error termRs+1,N (Zs) > 0 is given by

Rs+1,N (Zs)

=
∫

R2d(N−s)

⎛

⎝1−
∏

1≤i< j≤s<k≤N
1|xi−x j |2+|xi−xk |2>2ε2(xk)

∏

1≤i≤s< j<k≤N
1|xi−x j |2+|xi−xk |2>2ε2(x j , xk)

⎞

⎠

∏

s+1≤�1<�2<�3≤N
1|x�1−x�2 |2+|x�1−x�3 |2>2ε2(x�1 , x�2 , x�3)

N∏

�=s+1
g0(x�, v�) dZ(s+1,N )

≤
∫

R2d(N−s)

⎛

⎝
∑

1≤i< j≤s<k≤N
1|xi−x j |2+|xi−xk |2≤2ε2(xk)

+
∑

1≤i≤s< j<k≤N

∫

R2d
1|xi−x j |2+|xi−xk |2≤2ε2(x j , xk)

⎞

⎠

∏

s+1≤�1<�2<�3≤N
1|x�1−x�2 |2+|x�1−x�3 |2>2ε2(x�1 , x�2 , x�3)

N∏

�=s+1
g0(x�, v�) dZ(s+1,N )

:= I1 + I2. (6.5)

By (6.4), and the fact that ZN−s ≤ 1 since g0 integrates to 1, by definition of the norms,
we have

‖GN ,0‖N ,β0,μ0 ≤ Z−1N ‖G0‖∞,β0,μ0 <∞,

so GN ,0 ∈ XN ,β0,μ0 for all N ∈ N. Moreover, since

‖g0‖L∞x L1
v
≤ Cdβ

−1/2e−μ0 |g0|β0,μ0 <∞, (6.6)
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for 2Cdε
1/2‖g0‖L∞x L1v < 1 (or equivalently for N large enough), Lemma 6.5 gives

g(s)
N ,0(Zs) ≤ (1−Cd‖g0‖L∞x L1

v
ε1/2)−sg⊗s0 (Zs)≤e2sCd‖g0‖L∞x L1v

ε1/2

g⊗s0 (Zs)≤esg⊗s0 (Zs),

where we used the inequality 2x − ln(1− x) ≥ 0, x ∈ [0, 1/2]. This clearly implies

‖GN ,0‖N ,β0,μ0 ≤ ‖G0‖∞,β0,μ0+1 <∞,

for N large enough, thus supN∈N ‖GN ,0‖N ,β0,μ0 <∞.

To prove convergence, by (6.4) and the definition of the norms we take
∣∣∣1Ds,ε (g

⊗s
0 − g(s)

N ,0)(Zs)

∣∣∣ ≤
( ∣∣∣1−Z−1N ZN−s

∣∣∣+Z−1N Rs+1,N (Zs)

)
e−sμ0‖G0‖∞,β0,μ0 .

(6.7)

Let us estimate each term on (6.7) separately. By Lemma 6.5 and the inequality 2x −
ln(1− x) ≥ 0, x ∈ [0, 1/2], for 2ε1/2Cd‖g0‖L∞x L1

v
< 1, we have

|1− Z−1N ZN−s | ≤ e
2sε1/2Cd‖g0‖L∞x L1v − 1 ≤ 2esε1/2Cd‖g0‖L∞x L1

v
, (6.8)

by the Mean Value Theorem.
For the term Z−1N Rs+1,N , we estimate each of the terms I1, I2 in (6.5). For the term

I1, fix 1 ≤ i < j ≤ s < k ≤ N . Notice the inequality

1|xi−x j |2+|xi−xk |2≤2ε2(xk) ≤ 1|xi−xk |≤
√
2ε(xk).

Then, by symmetry, the term corresponding to i, j, k is estimated by
∫

R2d(N−s−1)

(∫

R2d
1|xi−xs+1|<

√
2ε(xs+1)g0(xs+1, vs+1) dxs+1 dvs+1

)

∏

s+2≤�1<�2<�3≤N
1|x�1−x�2 |2+|x�1−x�3 |2>2ε2(x�1 , x�2 , x�3)

N∏

�=s+2
g0(x�, v�) dZ(s+2,N )

≤ Cd‖g0‖L∞x L1
v
εdZN−s−1,

after integrating in a d-ball of radius
√
2ε centered at xi . Adding for 1 ≤ i < j ≤ s <

k ≤ N we obtain

I1 ≤ s2NCd‖g0‖L∞x L1
v
εdZN−s−1 
 Cds

2ε1/2‖g0‖L∞x L1
v
ZN−s−1, (6.9)

due to (4.22). For the term I2, fix 1 ≤ 1 ≤ s < j < k ≤ N . By symmetry again the
corresponding term is estimated by
∫

R2d(N−s−2)

(∫

R2d
1|xi−xs+1|2+|xi−xs+2|2≤2ε2(xs+1, xs+2)

g0(xs+1, vs+1)g0(xs+2, vs+2) dxs+1 dxs+2 dvs+1 dvs+2)

∏

s+3≤�1<�2<�3≤N
1|x�1−x�2 |2+|x�1−x�3 |2>2ε2(x�1 , x�2 , x�3)

N∏

�=s+3
g0(x�, v�) dZ(s+3,N )

≤ Cd‖g0‖2L∞x L1
v
ε2dZN−s−2.
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after integrating in a 2d-ball of radius ε centered at
(xi
xi

)
. Adding for 1 ≤ i ≤ s < j <

k ≤ N we obtain

I2 ≤ sN 2Cd‖g0‖2L∞x L1
v
ε2dZN−s−2 
 sCd‖g0‖2L∞x L1

v
εZN−s−2, (6.10)

Using (6.5)–(6.10) and Lemma 6.5 (applied for m = s + 1 and m = s + 2, we obtain

Z−1N Rs+1,N (Zs) � s2Cd‖g0‖L∞x L1
v
ε1/2(1− Cd‖g0‖L∞x L1

v
ε1/2)−(s+1)

+ sCd‖g0‖2L∞x L1
v
ε(1− Cd‖g0‖L∞x L1

v
ε1/2)−(s+2)

� Cd,s‖g0‖L∞x L1
v
ε1/2, (6.11)

since 2Cdε
1/2‖g0‖L∞x L1

v
< 1. Combining (6.7)–(6.8), (6.11), and (6.6), we obtain esti-

mate (6.3) and the required convergence follows. ��

6.2. Convergence in observables. Now,wedefine the convergence in observables.Given
s ∈ N, we use the space of test continuous and compactly supported functions in veloc-
ities Cc(R

ds).

Definition 6.7. Consider T > 0, s ∈ N and gs ∈ C0
([0, T ], L∞ (R2ds

))
. Given a

test function φs ∈ Cc(R
ds), we define the s-observable functional as: Iφs gs(t)(Xs) =∫

Rds
φs(Vs)gs(t, Xs, Vs) dVs .

Before giving the definition of convergence in observables, we start with some defi-
nitions on the configurations we are using. Given m ∈ N and σ > 0, we define the set
of well-separated spatial configurations

�X
m(σ ) = {X̃m ∈ R

dm : |̃xi − x̃ j |>σ, ∀1≤ i < j ≤ m}, m ≥ 2, �X
1 (σ ) = R

2d ,

(6.12)

and the set of well separated configurations

�m(σ ) = �X
m(σ )× R

dm . (6.13)

Definition 6.8. Let T > 0. For each N ∈ N, consider GN = (gN ,s)s∈N ∈ ∏∞s=1 C0
([0, T ], L∞ (R2ds

))
and G = (gs)s∈N ∈∏∞s=1 C0

([0, T ], L∞ (R2ds
))
. We say that the

sequence (GN )N∈N converges in observables to G, and write

GN
∼−→ G,

if for any σ > 0, s ∈ N, and φs ∈ Cc(R
ds), we have

lim
N→∞‖Iφs gN ,s(t)− Iφs gs(t)‖L∞(�X

s (σ )) = 0, uniformly in [0, T ].
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6.3. Statement of the main result. We are now in the position to state our main result.

Theorem 6.9. (Convergence) Let β0 > 0, μ0 ∈ R and consider Boltzmann hierarchy
initial data F0 = ( f (s)

0 )s∈N ∈ X∞,β0,μ0 . Let
(
FN ,0

)
N∈N beaBBGKYhierarchy sequence

approximating F0 . Assume that:

• For each N, FN ∈ XN ,β,μ is the mild solution of the BBGKY hierarchy (4.16) with
initial data FN ,0 in [0, T ].
• F ∈ X∞,β,μ is the mild solution of the Boltzmann hierarchy (4.27) with initial data
F0 in [0, T ].
• F0 satisfies the following uniform continuity condition: There exists C > 0 such
that, for any ζ > 0, there is q = q(ζ ) > 0 such that for all s ∈ N, and for all
Zs, Z ′s ∈ R

2ds with |Zs − Z ′s | < q, we have

| f (s)
0 (Zs)− f (s)

0 (Z ′s)| < Cs−1ζ. (6.14)

Then FN
∼−→ F.

Remark 6.10. To prove Theorem 6.9 it suffices to prove

‖I Ns (t)− I∞s (t)‖L∞(�X
s (σ ))

N→∞−→ 0, uniformly in [0, T ],
for any s ∈ N, φs ∈ Cc(R

ds) and σ > 0, where

I Ns (t)(Xs) := Iφs f
(s)
N (t)(Xs) =

∫

Rds
φs(Vs) f

(s)
N (t, Xs, Vs) dVs, (6.15)

I∞s (t)(Xs) := Iφs f
(s)(t)(Xs) =

∫

Rds
φs(Vs) f

(s)(t, Xs, Vs) dVs . (6.16)

The following Corollary of Theorem 6.9 justifies the derivation of our ternary Boltz-
mann equation from finitely many particle systems.

Corollary 6.11. Let β0 > 0, μ0 ∈ R and f0 ∈ Xβ0,μ0+1 be a Hölder continuous C0,γ ,
γ ∈ (0, 1] probability density with | f0|β0,μ0+1 ≤ 1/2. Let us write F0 = ( f ⊗s0 )s∈N ∈
X∞,β0,μ0+1 and let FN ,0 = ( f (s)

N ,0)s∈N be the conditioned BBGKY hierarchy sequence
given in Definition 6.4 approximating the tensorized data F0. Then for any σ > 0, s ∈ N

and φs ∈ Cc(R
ds), we have the rate of convergence

‖Iφs f (s)
N (t)− Iφs f

⊗s(t)‖L∞(�X
s (σ )) = O(εr ), uniformly in [0, T ], (6.17)

for any 0 < r < min{1/2, γ }, where FN = ( f (s)
N )s∈N ∈ XN,β,μ is the mild solution of

the BBGKY hierarchy (4.16) in [0, T ] with initial data FN ,0 and f is the mild solution
to the ternary Boltzmann equation (4.31) in [0, T ], with initial data f0.

7. Reduction to Term by Term Convergence

Now, we reduce the proof of Theorem 6.9 to term by term convergence by truncating the
observables. Throughout this section, we considerβ0 > 0,μ0 ∈ R, T = T (d, β0, μ0) >

0 be the time given by Theorems 5.5 and 5.8, the functions β,μ : [0, T ] → R defined
by (5.6), (N , ε) in the scaling (4.22) and initial data FN ,0 ∈ XN ,β0,μ0 , F0 ∈ X∞,β0,μ0 .
Let FN ∈ XN ,β,μ, F ∈ X∞,β,μ be the mild solutions of the corresponding BBGKY
hierarchy and Boltzmann hierarchy in [0, T ], given by Theorems 5.5 and 5.8.
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7.1. Series expansion. Let us fix s ∈ N. Using iteratively the Duhamel’s formula for the
mild solution of the BBGKY hierarchy, given by (5.3), we get the following expansion:

f (s)
N (t, Zs) =

n∑

k=0
f (s,k)
N (Zs) + R(n+1)

N (t, Zs), (7.1)

where for k ∈ N, we define

f (s,k)
N (t, Zs) :=

∫ t

0

∫ t1

0
. . .

∫ tk−1

0
T t−t1
s CN

s,s+2T
t1−t2
s+2 . . . T tk−1−tk

s+2k−2

CN
s+2k−2,s+2kT

tk
s+2k f

(s+2k)
N ,0 (Zs) dtk . . . dt1, (7.2)

for k = 0, we define f (s,0)
N (t, Zs) := T t

s f (s)
N ,0(Zs), and for the remainder we write

R(s,n+1)
N (t, Zs) :=

∫ t

0

∫ t1

0
. . .

∫ tn

0
T t−t1
s CN

s,s+2T
t1−t2
s+2 . . . T tn−1−tn

s+2n−2

CN
s+2n−2,s+2nT

tn−tn+1
s+2n f (s+2n+2)

N (tn+1, Zs)

dtn+1 . . . dt1.

(7.3)

Similarly, using iteratively Duhamel’s formula for the solution of the Boltzmann
hierarchy, one gets

f (s)(t, Zs) =
n∑

k=0
f (s,k)(Zs) + R(n+1)(t, Zs) (7.4)

where for k ∈ N, we define

f (s,k)(t, Zs) :=
∫ t

0

∫ t1

0
. . .

∫ tk−1

0
St−t1s C∞s,s+2S

t1−t2
s+2 . . . Stk−1−tks+2k−2

C∞s+2k−2,s+2k S
tk
s+2k f

(s+2k)
0 (Zs) dtk . . . dt1, (7.5)

for k = 0, we define f (s,0)(t, Zs) := Sts f
(s)
0 (Zs), and for the remainder we write

R(s,n+1)(t, Zs) :=
∫ t

0

∫ t1

0
. . .

∫ tn

0
St−t1s C∞s,s+2S

t1−t2
s+2 . . . Stn−1−tns+2n−2

C∞s+2n−2,s+2n S
tn−tn+1
s+2n f (s+2n+2)(tn+1, Zs)

dtn+1 . . . dt1.

(7.6)

7.2. Reduction to term by term convergence. Here we reduce the convergence proof to
term by term convergence of bounded energy and separated collision times observables.

Recalling (3.25), given R > 0, � ∈ N, we define the energy truncated operators

CN ,R
�,�+2gN ,�+2 := CN

�,�+2

(
gN ,�+21[E�+2≤R2]

)
, C∞,R

�,�+2g�+2 := C∞�,�+2
(
g�+21[E�+2≤R2]

)
.

(7.7)



Rigorous Derivation of a Ternary Boltzmann Equation… 831

Consider δ > 0. Given t ≥ 0 and k ∈ N, we define the separated collision times

Tk,δ(t) := {(t1, . . . , tk) ∈ Tk(t) : 0≤ ti+1 ≤ ti − δ, d∀i ∈ [0, k]} , tk+1 :=0, t0 := t.

(7.8)

For the BBGKY hierarchy, we define for k ∈ N:

f (s,k)
N ,R,δ(t, Zs) :=

∫

Tk,δ(t)
T t−t1
s CN ,R

s,s+2T
t1−t2
s+2 . . . T tk−1−tk

s+2k−2

CN ,R
s+2k−2,s+2kT

tk
s+2k f

(s+2k)
N ,0 (Zs) dtk . . . dt1, (7.9)

and for k = 0, we define f (s,0)
N ,R,δ(t, Zs) := T t

s

(
fN ,01[Es≤R2]

)
(Zs).

For the Boltzmann hierarchy, we define for k ∈ N:

f (s,k)
R,δ (t, Zs) :=

∫

Tk,δ(t)
St−t1s C∞,R

s,s+2S
t1−t2
s+2 . . . Stk−1−tks+2k−2

C∞,R
s+2k−2,s+2k S

tm
s+2k f

(s+2k)
0 (Zs) dtk . . . dt1, (7.10)

and for k = 0, we define f (s,0)
R,δ (t, Zs) := Sts

(
f01[Es≤R2]

)
(Zs).

Given φs ∈ Cc(R
ds) and k ∈ N ∪ {0}, let us write

I Ns,k,R,δ(t)(Xs) := Iφs f
(s,k)
N ,R,δ(t)(Xs) =

∫

Bds
R

φs(Vs) f
(s,k)
N ,R,δ(t, Xs, Vs) dVs, (7.11)

I∞s,k,R,δ(t)(Xs) := Iφs f
(s,k)
R,δ (t)(Xs) =

∫

Bds
R

φs(Vs) f
(s,k)
R,δ (t, Xs, Vs) dVs . (7.12)

Recalling the observables I Ns , I∞s defined in (6.15)–(6.16), the following estimates
hold

Proposition 7.1. For any s, n ∈ N, R > 1, δ > 0 and t ∈ [0, T ], the following estimates
hold:

‖I Ns (t)−
n∑

k=0
I Ns,k,R,δ(t)‖L∞Xs ≤ Cs,β0,μ0,T ‖φs‖L∞Vs

(
2−n + e−

β0
3 R2

+ δCn
d,s,β0,μ0,T

)

‖FN ,0‖N ,β0,μ0 ,

‖I∞s (t)−
n∑

k=0
I∞s,k,R,δ(t)‖L∞Xs ≤ Cs,β0,μ0,T ‖φs‖L∞Vs

(
2−n + e−

β0
3 R2

+ δCn
d,s,β0,μ0,T

)

‖F0‖∞,β0,μ0 .

Proof. For the proof, one needs to successively perform the reductions described above
using the a-priori bounds of Sect. 5 and connect them through the triangle inequality.
For the reduction to finitely many terms and for the energy truncation see Propositions
7.1.1., 7.2.1. in [19], and for the time separation part see [2]. ��
Proposition 7.1 and triangle inequality imply that the convergence proof reduces to con-
trolling the differences I Ns,k,R,δ(t)−I∞s,k,R,δ(t). However obtaining such a control requires
some delicate analysis because of possible recollisions of the backwards interaction flow.
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8. Geometric Estimates

In this sectionweprovide the crucial geometric estimates,manyof themnovel,whichwill
be of fundamental importance in eliminating recollisions of the backwards interaction
flow in Sects. 9 and 10.

Let us introduce some notation which we will be using from now on. For w ∈ R
d ,

y ∈ R
d\{0} and ρ > 0, we write Kd

ρ (w, y) for the closed d-dimensional cylinder of
center w, direction y and radius ρ. In case we do not need to specify the center and
direction we will just be writing Kd

ρ for convenience.

8.1. Spherical estimates. Here, we derive the spherical estimates which will enable us
to control pre-collisional configurations.Wewill strongly rely on the following estimate,
see Lemma 4 in [15] for the proof.

Lemma 8.1. Given ρ, r > 0 the following estimate holds for the d-spherical measure
of radius r > 0:

∣∣∣Sd−1
r ∩ Kd

ρ

∣∣∣
S
d−1
r

� rd−1 min

{
1,
(ρ

r

) d−1
2
}

.

Integrating this estimate we obtain the following result, which will be used in Sect. 9:

Proposition 8.2. Given 0 < ρ ≤ 1 ≤ R, the following estimate holds:

|Bd
R ∩ Kd

ρ |d � Rdρ
d−1
2 .

Proof. Using Lemma 8.1, we obtain

|Bd
R ∩ Kd

ρ |d 

∫ R

0
|Sd−1

r ∩ Kd
ρ |Sd−1r

dr �
∫ R

0
rd−1 min

{
1, (

ρ

r
)
d−1
2

}
dr

≤
∫ ρ

0
rd−1 dr + ρ

d−1
2

∫ R

0
r

d−1
2 dr 
 ρd + ρ

d−1
2 R

d+1
2 , since d ≥ 2

≤ Rdρ
d−1
2 , since 0 < ρ ≤ 1 ≤ R.

(8.1)

��
We now obtain new geometric estimates which will be essential to derive the ellip-
soidal estimates, enabling us to control post-collisional configurations. To achieve those
estimates we strongly rely on the following representation of S

2d−1
1 :

S
2d−1
1 =

{
(ω1, ω2) ∈ R

d × Bd
1 : ω1 ∈ S

d−1√
1−|ω2|2

}
. (8.2)

Lemma 8.3. For any r, ρ > 0, the following estimates hold for the (2d − 1)-spherical
measure
∣∣∣S2d−1

r ∩
(
Kd

ρ × R
d
)∣∣∣

S
2d−1
r

,

∣∣∣S2d−1
r ∩

(
R
d × Kd

ρ

)∣∣∣
S
2d−1
r

� r2d−1 min
{
1, (

ρ

r
)
d−1
2

}
.
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Proof. By symmetry it suffices to prove the estimate when intersecting the sphere with
Kd

ρ×R
d . Also, after rescaling wemay assume r = 1. The idea is to integrate Lemma 8.1

using the representation (8.2). In particular by (8.2) and Lemma 8.1, we have

∣∣∣S2d−1
1 ∩

(
Kd

ρ × R
d
)∣∣∣

S
2d−1
1

=
∫

Bd
1

∣∣∣∣S
d−1√

1−|ω2|2
∩ Kd

ρ

∣∣∣∣
S
d−1√

1−|ω2 |2

dω2

�
∫

Bd
1

(1− |ω2|2) d−1
2 min

⎧
⎨

⎩1,
(

ρ√
1− |ω2|2

) d−1
2

⎫
⎬

⎭ dω2

�
∫ 1

0
sd−1(1− s2)

d−1
2 min

{
1,

(
ρ√

1− s2

) d−1
2
}

ds. (8.3)

Let us write I (ρ) :=
∫ 1

0
sd−1(1 − s2)

d−1
2 min

{
1,

(
ρ√

1− s2

) d−1
2
}

ds. In the case

where ρ ≥ 1, we have

I (ρ) �
∫ 1

0
sd−1(1− s2)

d−1
2 ds 
 1. (8.4)

Assume now 0 < ρ < 1. Then, we may decompose I (ρ) as follows:

I (ρ) =
∫ √1−ρ2

0
sd−1(1− s2)

d−1
2

(
ρ√

1− s2

) d−1
2

ds

+
∫ 1

√
1−ρ2

sd−1(1− s2)
d−1
2 ds. (8.5)

Performing the change of variables u = 1− s2, equation (8.5) can be written as:

I (ρ) = 1

2
ρ

d−1
2

∫ 1

ρ2
(1− u)

d−2
2 u

d−1
4 du +

1

2

∫ ρ2

0
(1− u)

d−2
2 u

d−1
2 du

(d≥2)
� ρ

d−1
2

∫ 1

ρ2
u

d−1
4 du +

∫ ρ2

0
u

d−1
2 du 
 ρ

d−1
2

(
1− ρ

d+3
2

)
+ ρd+1 � ρ

d−1
2 ,

(8.6)

since ρ < 1. Combining (8.3)–(8.4) and (8.6), we obtain the result. ��
In the same spirit as in Lemma 8.3, we obtain the following estimate for the intersection
of S

2d−1
1 with the strip:

W 2d
ρ,μ,λ := {(ω1, ω2) ∈ R

2d : |μω1 − λω2| ≤ ρ}, where μ, λ �= 0. (8.7)

Lemma 8.4. For any r, ρ > 0 the following estimate holds for the (2d − 1)-spherical
measure:

∣∣∣S2d−1
r ∩W 2d

ρ,μ,λ

∣∣∣
S
2d−1
r

� r2d−1 min

{
1,

(
ρ

|μ|r
) d−1

2

,

(
ρ

|λ|r
) d−1

2
}

.
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Proof. The proof follows the same steps as the proof of Lemma 8.3 after noticing that

W 2d
ρ,μ,λ = {(ω1, ω2) ∈ R

2d : ω1 ∈ Bd
ρ/|μ|(λμ−1ω2)}

⊆ {(ω1, ω2) ∈ R
2d : ω1 ∈ Kd

ρ/|μ|(λμ−1ω2)},
W 2d

ρ,μ,λ = {(ω1, ω2) ∈ R
2d : ω1 ∈ Bd

ρ/|μ|(μλ−1ω2)}
⊆ {(ω1, ω2) ∈ R

2d : ω1 ∈ Kd
ρ/|λ|(μλ−1ω2)},

where given ω2 ∈ R
d , Kd

ρ/|μ|(λμ−1ω2), Kd
ρ/|λ|(μλ−1ω2) are any cylinders of radius

ρ/|μ|, ρ/|λ| centered at λμ−1ω2, μλ−1ω2 respectively. ��

8.2. The transition map. Now, we construct a transition map which will allow us to
control post-collisional configurations using some appropriate ellipsoidal estimates de-
veloped in Sect. 8.3. We first introduce some notation. Given v1, v2, v3 ∈ R

2d , we
define

� = {ω = (ω1, ω2) ∈ R
2d : |ω1|2 + |ω2|2 <

3

2
and b(ω1, ω2, v2 − v1, v3 − v1) > 0},

where b(ω1, ω2, v2 − v1, v3 − v1) is the cross-section given in (2.4), and

S+
v1,v2,v3

:= S
2d−1
1 ∩� = {ω = (ω1, ω2) ∈ S

2d−1
1 : b(ω1, ω2, v2 − v1, v3 − v1) > 0}.

(8.8)

We also define the smooth map �(ν1, ν2) = |ν1|2 + |ν2|2 + |ν1 − ν2|2 and the (2d − 1)-
ellipsoid

E
2d−1
1 := [� = 1] =

{
(ν1, ν2) ∈ R

2d : |ν1|2 + |ν2|2 + |ν1 − ν2|2 = 1
}

. (8.9)

Proposition 8.5. Consider v1, v2, v3 ∈ R
d and r > 0 such that

|v1 − v2|2 + |v1 − v3|2 + |v2 − v3|2 = r2. (8.10)

We define the transition map Jv1,v2,v3 : �→ R
2d\

{
r−1

(
v1 − v2
v1 − v3

)}
by8

ν =
(

ν1
ν2

)
= Jv1,v2,v3(ω) := 1

r

(
v∗1 − v∗2
v∗1 − v∗3

)
, ω = (ω1, ω2) ∈ �. (8.11)

(i) Jv1,v2,v3 is smooth in � with bounded derivative uniformly in r i.e.

‖DJv1,v2,v3(ω)‖∞ ≤ Cd , ∀ω ∈ �. (8.12)

8 By a small abuse of notation we extend the collisional operator Tω1,ω2 for (ω1, ω2) ∈ �, see Sect. 2.
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(ii) The Jacobian of Jv1,v2,v3 is given by:

Jac(Jv1,v2,v3)(ω) 
 r−2d b
2d(ω1, ω2, v2 − v1, v3 − v1)

(1 + 〈ω1, ω2〉)2d+1 > 0,

∀ω = (ω1, ω2) ∈ �. (8.13)

Moreover, for any ω = (ω1, ω2) ∈ �, there holds the estimate:

Jac(Jv1,v2,v3)(ω) ≈ r−2db2d(ω1, ω2, v2 − v1, v3, v1). (8.14)

(iii) The map Jv1,v2,v3 : S+
v1,v2,v3

→ E
2d−1
1 \

{
r−1

(
v1 − v2
v1 − v3

)}
is bijective. Morever,

there holds

S+
v1,v2,v3

= [� ◦ Jv1,v2,v3 = 1]. (8.15)

(iv) For any measurable g : R2d → [0 +∞], there holds the estimate
∫

S+
v1,v2,v3

(g ◦ Jv1,v2,v3)(ω)| JacJv1,v2,v3(ω)| dω �
∫

E
2d−1
1

g(ν) dν. (8.16)

Proof. For convenience, let us use the notation9:

ν =
(

ν1
ν2

)
, v =

(
v1 − v2
v1 − v3

)
, ω =

(
ω1
ω2

)
,

π(ω) = 〈ω1, ω2〉, c : − 〈ω, v〉
1 + π(ω)

. (8.17)

By (8.11) and (2.3), we have

Jv1,v2,v3(ω) = r−1 (v + cAω) , where A =
(
2Id Id
Id 2Id

)
. (8.18)

Notice that Jv1,v2,v3 maps in R
2d\{r−1v}. Indeed, assume that Jv1,v2,v3(ω) = r−1v for

some ω ∈ �. Since A is invertible and ω �= 0, (8.18) implies c = 0 ⇒ 〈ω, v〉 = 0,
which is a contradiction, since ω ∈ �.

(i): Let us calculate the derivative of Jv1,v2,v3 . Using (8.18), we obtain

DJv1,v2,v3(ω) = r−1A
(
cI2d + ω∇T

ω c
)

. (8.19)

Using notation from (8.17), we obtain

∇ωc = − v

1 + π(ω)
+
〈ω, v〉Qω

(1 + π(ω))2
, (8.20)

where ω̃ := ∇ωπ(ω) =
(

ω2
ω1

)
. Combining (8.19)–(8.20), we obtain

DJv1,v2,v3(ω) = r−1
(
− 〈ω, v〉A
1 + π(ω)

− AωvT

1 + π(ω)
+
〈ω, v〉Aωω̃T

(1 + π(ω))2

)
. (8.21)

9 By a small abuse of notation we write 〈· , ·〉 for the inner product in R
2d as well.
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Recall we have assumed ω ∈ �⇒ |ω1|2 + |ω2|2 <
3

2
, so Cauchy–Schwartz inequality

implies

1

4
< 1 + π(ω) <

7

4
, (8.22)

therefore Jv1,v2,v3 is differentiable in �. It is clear from (8.21)–(8.22) that Jv1,v2,v3 is in
fact smooth. Moreover using (8.21), bound (8.12) follows after using Cauchy–Schwartz
inequality, the fact that ω ∈ �, (8.10), (8.22) and (8.10).

(ii): To calculate the Jacobian, we use (8.19) and apply LemmaA.1 (see “Appendix”),
to obtain

Jac(Jv1,v2,v3)(ω) = det(r−1A) det(cI2d + ω∇T
ω c) 
 r−2dc2d

(
1 + c−1〈ω,∇ωc〉

)
.

(8.23)

Recalling ω̃ = ∇ωπ(ω) =
(

ω2
ω1

)
, we obtain c−1〈ω,∇ωc〉 =

(
1− 2π(ω)

1 + π(ω)

)
. Hence

(8.23) and (2.5) imply (8.13). To obtain (8.14), we combine (8.13) and estimate (8.22).
(iii): Let us first show thatJv1,v2,v3 : S+

v1,v2,v3
→ E

2d−1
1 \{r−1v}. Fixω = (ω1, ω2) ∈

S+
v1,v2,v3

. Using conservation of relative velocities (2.8) and (8.10), we get

|ν1|2 + |ν2|2 + |ν1 − ν2|2 = |v
∗
1 − v∗2 |2 + |v∗1 − v∗3 |2 + |v∗2 − v∗3 |2

r2
= 1,

thus Jv1,v2,v3 : S+
v1,v2,v3

→ E
2d−1
1 \{r−1v}. To prove injectivity, let ω,ω′ ∈ S+

v1,v2,v3

withJv1,v2,v3(ω) = Jv1,v2,v3(ω
′). Since A is invertible, (8.18) implies cω = c′ω′ where

c′ = cω′1,ω′2,v1,v2,v3 . Since ω,ω′ ∈ �, we have c, c′ �= 0 thus ω = c−1c′ω′. Since
ω,ω ∈ S+

v1,v1,v3
, we obtain c = c′, thus ω = ω′.

To prove surjectivity, consider ν ∈ E
2d−1
1 \{r−1v}. and define

ω := − sgn(〈A−1(v − rν), v〉)√
〈A−1(v − rν), v〉 − 〈A−11 (v − rν), A−12 (v − rν)〉

A−1(v − rν).

By (8.10) and the fact that ν ∈ E
2d−1
1 \{r−1v}, we have that ω ∈ S+

v1,v2,v3
is the unique

solution in � of Jv1,v2,v3(ω) = ν. Relation (8.15) follows from the fact Jv1,v2,v3 : �→
R
2d\{r−1v} and the previous consideration.

(iv):We easily calculate 4�(ν) ≤ |∇�(ν)|2 ≤ 16�(ν), for all ν ∈ R
2d , so∇�(ν) �= 0,

for all ν ∈ [ 12 < � < 3
2 ]. To prove the estimate we will rely on Lemma A.2 (see

Appendix). We have
∫

S+
v1,v2,v3

(g ◦ Jv1,v2,v3)(ω)| JacJv1,v2,v3(ω)| |∇�(Jv1,v2,v3(ω))|
|∇(� ◦ Jv1,v2,v3)(ω)| dω

=
∫

[�◦Jv1,v2,v3=1]
(g ◦ Jv1,v2,v3)(ω)| JacJv1,v2,v3(ω)| |∇�(Jv1,v2,v3(ω))|

|∇(� ◦ Jv1,v2,v3)(ω)| dω

(8.24)

=
∫

[�=1]
g(ν)NJv1,v2,v3

(ν, [� ◦ Jv1,v2,v3 = 1]) dν (8.25)

=
∫

E
2d−1
1

g(ν)NJv1,v2,v3
(ν,S+

v1,v2,v3
) dν, (8.26)
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where to obtain (8.24) we use (8.15), to obtain (8.25) we use Lemma A.2, to obtain
(8.26) we use (8.9) and (8.15). Moreover, by the chain rule and (8.12), we obtain

|∇(� ◦ Jv1,v2,v3)(ω)|
|∇�(Jv1,v2,v3(ω))| =

|DTJv1,v2,v3(ω)∇�(Jv1,v2,v3(ω))|
|∇�(Jv1,v2,v3(ω))|

= Cd‖DJv1,v2,v3(ω)‖∞ ≤ Cd ,

and (8.16) follows, since g ≥ 0. ��

8.3. Ellipsoidal estimates. Now, we derive the ellipsoidal estimates which will enable
us to control post-collisional configurations.

Lemma 8.6. Let v1, v2, v3 ∈ R
d and r > 0 satisfying |v1−v2|2+|v1−v3|2+|v2−v3|2 =

r2. Denoting (ν1, ν2) = Jv1,v2,v3(ω1, ω2) and considering ρ > 0, the following holds:
(

v∗1
v∗2

)
∈ Kρ ⇔

(
ν1
ν2

)
∈ S−1

12 K̄ρ/r ,

(
v∗1
v∗3

)
∈ Kρ ⇔

(
ν1
ν2

)
∈ S13

−1 K̄ρ/r ,

S12 =
(

Id Id
−2Id Id

)
, S13 =

(
Id Id
Id −2Id

)
, (8.27)

and Kρ is either of the form Kd
ρ × R

d or R
d × Kd

ρ while K̄ρ/r is either of the form

K̄ d
ρ/r × R

d or R
d × K̄ d

ρ/r respectively, and Kd
ρ , K̄

d
ρ/r are d-cylinders or radius ρ and

ρ/r respectively.

Proof. Using (8.11) to eliminate cω1, cω2 from (2.3), we obtain

v∗1 =
v1 + v2 + v3

3
+
r

3
(ν1 + ν2),

v∗2 =
v1 + v2 + v3

3
+
r

3
(−2ν1 + ν2),

v∗3 =
v1 + v2 + v3

3
+
r

3
(ν1 − 2ν2).

The conclusion is immediate after a translation and a dilation. ��
RecallingE

2d−1
1 from (8.9), one can see that S12(E

2d−1
1 ) = S13(E

2d−1
1 ). We will denote

S := S12(E
2d−1
1 ) = S13(E

2d−1
1 )

=
{
(y1, y2) ∈ R

2d : |y1|2 + |y2|2 + 〈y1, y2〉 = 3

2

}
. (8.28)

The following resultwill allowus to derive the ellipsoidal estimates from the spherical
estimates.

Lemma 8.7. There exist linear bijections T1, T2, P1, P2 : R2d → R
2d and c > 0, with

the following properties:

(i) T1(S) = S
2d−1
1 and for any ρ > 0, there holds T1(K̄ d

ρ × R
d) ⊆ K̃ d

cρ × R
d ,

(ii) T2(S) = S
2d−1
1 and for any ρ > 0, there holds: T2(Rd × K̄ d

ρ ) ⊆ K̃ d
cρ × R

d ,

(iii) P1(E
2d−1
1 ) = S

2d−1
1 and for any ρ > 0, there holds: P1(K̄ d

ρ × R
d) ⊆ K̃ d

cρ × R
d ,
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(iv) P2(E
2d−1
1 ) = S

2d−1
1 and for any ρ > 0, there holds: P2(Rd × K̄ d

ρ ) ⊆ K̃ d
cρ × R

d ,

where K̄ d
ρ is any d-cylinder of radius ρ and K̃ d

cρ is a d-cylinder of radius cρ and same

direction as K̄ d
ρ .

Proof. A direct algebraic calculation shows that the maps given by:

T1=
⎛

⎜⎝
−
√
2
2 Id 0

√
6
6 Id

√
6
3 Id

⎞

⎟⎠ , T2 =
⎛

⎜⎝
0 −

√
2
2 Id

√
6
3 Id

√
6
6 Id

⎞

⎟⎠ , P1 =
⎛

⎜⎝

√
6
2 Id 0

−
√
2
2 Id

√
2Id

⎞

⎟⎠ , P2 =
⎛

⎜⎝
0

√
6
2 Id

√
2Id −

√
2
2 Id

⎞

⎟⎠ ,

(8.29)

satisfy the properties listed above. ��
Now we are ready to apply the results of Sect. 8.1 to obtain ellipsoidal estimates.

Recalling from (8.7) the strip W 2d
ρ,1,1, we obtain the following ellipsoidal estimates:

Proposition 8.8. For any r, ρ > 0, the following estimates hold:

(i)
∣∣∣S ∩

(
K̄ d

ρ/r × R
d
)∣∣∣

S
� min

{
1,
(ρ

r

) d−1
2
}
.

(ii)
∣∣∣S ∩

(
R
d × K̄ d

ρ/r

)∣∣∣
S

� min

{
1,
(ρ

r

) d−1
2
}
.

(iii)
∣∣∣E2d−1

1 ∩
(
Bd

ρ/r × R
d
)∣∣∣

E
2d−1
1

� min

{
1,
(ρ

r

) d−1
2
}
.

(iv)
∣∣∣E2d−1

1 ∩
(
R
d × Bd

ρ/r

)∣∣∣
E
2d−1
1

� min

{
1,
(ρ

r

) d−1
2
}
.

(v)
∣∣∣E2d−1

1 ∩W 2d
ρ/r,1,1

∣∣∣
E
2d−1
1

� min

{
1,
(ρ

r

) d−1
2
}
.

Proof. Let us first provide the proof of (i). Lemma 8.7 asserts T1 : S → S
2d−1
1 is a

linear bijection such that T1(K̄ d
ρ/r ×R

d) ⊆ K̃cρ/r ×R
d , thus substituting θ = T1ω, we

have
∫

S
1K̄ d

ρ/r×Rd (ω) dω =
∫

S
1T1(K̄ d

ρ/r×Rd )(T1ω) dω 

∫

S
2d−1
1

1T1(K̄ d
ρ/r×Rd )(θ) dθ

�
∫

S
2d−1
1

1K̃ d
cρ/r×Rd (θ) dθ � min

{
1, (

ρ

r
)
d−1
2

}
,

by Lemma 8.3. The proof for (ii) is identical using bijection T2 instead. For estimates
(iii) and (iv)we use in a similar way bijections P1, P2 and the fact that ball Bd

ρ/r embeds

in a cylinder of the form K̄ d
ρ/r . For estimate (v), recalling notation from (8.7), notice

that P1(W 2d
η/r,1,1) = W 2d

η/r,μ,λ, for μ = (3
√
2 +
√
6)/6 and λ = −√6/3. Then the claim

comes with a similar argument using Lemma 8.4 instead of Lemma 8.3. ��

9. Good Configurations and Stability

In this section we define good configurations and study their stability properties under
the adjunction of a collisional pair of particles. Heuristically speaking, given m ∈ N,
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a configuration Zm ∈ R
2dm is called good configuration if the backwards interaction

flow coincides with the backwards free flow. The aim of this section is to investigate
conditions under which a given good configuration Zm remains a good configuration
after adding a pair of particles. This is possible on the complement of a small measure set
of particles which is constructed in Proposition 9.2. Proposition 9.4 uses the geometric
tools developed in Sect. 8 to derive a measure estimate for this pathological set.

This section is the heart of our contribution, since we will strongly rely on Proposi-
tions 9.2 and 9.4 when we use them inductively to control the differences of the BBGKY
hierarchy truncated observable, given in (7.11), and the Boltzmann hierarchy truncated
observable, given in (7.12).

We recall the cylinder notation introduced at the beginning of Sect. 8.

9.1. Adjunction of new particles. We start with some definitions on the configurations
we are using. Givenm ∈ N and σ > 0, recall from (6.12)–(6.13) the set ofwell-separated
spatial configurations

�X
m(σ ) = {X̃m ∈ R

dm : |̃xi − x̃ j | > σ, ∀1 ≤ i < j ≤ m}, m ≥ 2, �X
1 (σ ) = R

2d ,

and the set of well separated configurations

�m(σ ) = �X
m(σ )× R

dm .

Given σ > 0, t0 > 0, we define the set of good configurations as:

Gm(σ, t0) =
{
Zm = (Xm, Vm) ∈ R

2dm : Zm(t) ∈ �m(σ ), ∀t ≥ t0
}

, (9.1)

where Zm(t) = (Xm − tVm, Vm) denotes the backwards in time free flow of Zm =
(Xm, Vm). From now on, we consider parameters R >> 1 and 0 < δ, η, ε0, α << 1
satisfying:

α << ε0 << ηδ, Rα << ηε0. (9.2)

For convenience we choose the parameters in (9.2) in the very end of the paper, see
(11.21).

The following result, see Lemma 12.2.1 in [19] for the proof, is useful for the ad-
junction of particles to a given configuration.

Lemma 9.1. Consider parameters α, ε0, R, η, δ as in (9.2) and ε << α. Let ȳ1, ȳ2 ∈
R
d , with |ȳ1− ȳ2| > ε0 and v1 ∈ Bd

R. Then there is a d-cylinder K
d
η ⊆ R

d , such that for

any Z2 = (y1, y2, v1, v2) with y1 ∈ Bd
α (ȳ1), y2 ∈ Bd

α (ȳ2) and v2 ∈ Bd
R\Kd

η , we have

Z2 ∈ G2(
√
2ε, 0) ∩ G2(ε0, δ).

9.2. Stability of good configurations under adjunction of collisional pair. We prove a
statement and a measure estimate regarding the stability of good configurations under
the adjunction of a collisional pair of particles to any of the initial configurations.

Recalling the cross-section b given in (2.4), given v ∈ R
d , we denote

(
S
2d−1
1 × B2d

R

)+
(v) = {(ω1, ω2, v1, v2) ∈ S

2d−1
1

×B2d
R : b(ω1, ω2, v1 − v, v2 − v) > 0

}
. (9.3)
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We prove the following Proposition, which will be the inductive step of the conver-
gence proof. We then provide the corresponding measure estimate.

Recall that given m ∈ N and Zm ∈ R
2dm we denote as Zm(t) = (Xm (t) , Vm (t)) =

(Xm − tVm, Vm) the backwards evolution in time of Zm . In particular, Zm(0) = Zm .
Recall also the notation from (3.3)

D̊m+2,ε =
{
Zm+2 = (Xm+2, Vm+2) ∈ R

2d(m+2) : d2(xi ; x j , xk) > 2ε2,

∀i < j < k ∈ {1, . . . ,m + 2}} .

Proposition 9.2. Consider parameters α, ε0, R, η, δ as in (9.2) and ε << α. Let m ∈ N,
Z̄m = (X̄m, V̄m) ∈ Gm(ε0, 0), � ∈ {1, . . . ,m} and Xm ∈ Bdm

α/2(X̄m). Then there is a

subset B�(Z̄m) ⊆ (S2d−1
1 × B2d

R )+(v̄�) such that:

(i) For any (ω1, ω2, vm+1, vm+2) ∈ (S2d−1
1 × B2d

R )+(v̄�)\B�(Z̄m), one has:

Zm+2(t) ∈ D̊m+2,ε, ∀t ≥ 0, (9.4)

Zm+2 ∈ Gm+2(ε0/2, δ), (9.5)

Z̄m+2 ∈ Gm+2(ε0, δ), (9.6)

where

Zm+2 = (x1, . . . , x�, . . . , xm, xm+1, xm+2, v̄1, . . . , v̄�, . . . , v̄m, vm+1, vm+2),

xm+1 = x� −
√
2εω1, xm+2 = x� −

√
2εω2,

Z̄m+2 = (x̄1, . . . , x̄�, . . . , x̄m, x̄�, x̄�, v̄1, . . . , v̄�, . . . , v̄m, vm+1, vm+2).

(9.7)

(ii) For any (ω1, ω2, vm+1, vm+2) ∈ (S2d−1
1 × B2d

R )+(v̄�)\B�(Z̄m), one has:

Z∗m+2(t) ∈ D̊m+2,ε, ∀t ≥ 0, (9.8)

Z∗m+2 ∈ Gm+2(ε0/2, δ), (9.9)

Z̄∗m+2 ∈ Gm+2(ε0, δ), (9.10)

where

Z∗m+2 = (x1, . . . , x�, . . . , xm, xm+1, xm+2, v̄1, . . . , v̄
∗
� , . . . , v̄m, v∗m+1, v

∗
m+2),

xm+1 = x� +
√
2εω1, xm+2 = x� +

√
2εω2,

Z̄∗m+2 = (x̄1, . . . , x̄�, . . . , x̄m, x̄�, x̄�, v̄1, . . . , v̄
∗
� , . . . , v̄m, v∗m+1, v

∗
m+2),

(v̄∗� , v∗m+1, v
∗
m+2) = Tω1,ω2(v̄�, vm+1, vm+2).

(9.11)

Proof. By symmetry, we may assume without loss of generality that � = m. For conve-
nience, let us define the set of indices:

Fm+2 = {(i, j) ∈ {1, . . . ,m + 2} × {1, . . . ,m + 2} : i < min { j,m}} .
Proof of (i) Hereweuse the notation from (9.7).We start by formulating the following

claim, which will imply (9.4).
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Lemma 9.3. Under the hypothesis of Proposition 9.2, there is a setB0,−
m (Z̄m) ⊆ S

2d−1
1 ×

B2d
R such that for any (ω1, ω2, vm+1, vm+2) ∈

(
S
2d−1
1 × B2d

R

)+
(v̄m)\B0,−

m (Z̄m), there

holds:

|xi (t)− x j (t)| >
√
2ε, ∀t ≥ 0, ∀(i, j) ∈ Fm+2, (9.12)

d2 (xm (t) ; xm+1 (t) , xm+2 (t)) > 2ε2, ∀t ≥ 0. (9.13)

We observe that (9.12)–(9.13) imply (9.4).

Proof of Lemma 9.3. Step 1—the proof of (9.12): Fix (i, j) ∈ Fm+2. We distinguish the
following cases:

• j ≤ m: Since Z̄m ∈ Gm(ε0, 0) and i < j ≤ m, we have |x̄i − x̄ j − t (v̄i − v̄ j )| > ε0
for all t ≥ 0. Hence, triangle inequality implies

|xi (t)− x j (t)| = |xi − x j − t (v̄i − v̄ j )| ≥ |x̄i − x̄ j − t (v̄i − v̄ j )|
− α ≥ ε0 − α ≥ ε0

2
>
√
2ε,

(9.14)

since ε << α << ε0. Therefore, (9.12) holds for any (ω1, ω2, vm+1, vm+2) ∈
S
2d−1
1 × B2d

R .
• j = m + 1: Since (i, j) ∈ Fm+2 we have i ≤ m − 1. Then for Z̄m ∈ Gm(ε0, 0) and
Xm ∈ Bdm

α/2(X̄m), we conclude

|x̄i − x̄m | > ε0, |xm+1 − x̄m | ≤ |xm − x̄m | + |xm+1 − xm | ≤ α

2
+
√
2ε|ω1|

≤ α

2
+
√
2ε < α.

Applying part (i) of Lemma 9.1 with ȳ1 = x̄i , ȳ2 = x̄m , y1 = xi , y2 = xm+1, we can
find a cylinder Kd,i

η such that for any vm+1 ∈ Bd
R\Kd,i

η we have: |xi (t)− xm+1(t)| >√
2ε, for all t ≥ 0. Hence (9.12) holds for any (ω1, ω2, vm+1, vm+2) ∈ (S2d−1

1 ×
B2d
R )\Ui

m+1, where

Ui
m+1 = S

2d−1
1 × Kd,i

η × R
d . (9.15)

• j = m + 2 : Since (i, j) ∈ Fm+2, we obtain i < m. Hence, a similar argument to
the previous case yields that (9.12) holds for any (ω1, ω2, vm+1, vm+2) ∈ (S2d−1

1 ×
B2d
R )\Ui

m+2, where

Ui
m+2 = S

2d−1
1 × R

d × Kd,i
η . (9.16)

We conclude that (9.12) holds for any (ω1, ω2, vm+1, vm+2) ∈ (S2d−1
1 × B2d

R )\⋃m−1
i=1 (Ui

m+1 ∪Ui
m+2).

Step 2—the proof of (9.13): Let us recall notation from (9.3). Fixing t ≥ 0 and

considering (ω1, ω2, vm+1, vm+2) ∈
(
S
2d−1
1 × B2d

R

)+
(v̄m), we have

d2 (xm (t) ; xm+1 (t) , xm+2 (t))

= |√2εω1 + t (vm+1 − v̄m)|2 + |√2εω2 + t (vm+2 − v̄m)|2
≥ 2ε2(|ω1|2 + |ω2|2) + 2

√
2εtb(ω1, ω2, vm+1 − v̄m, vm+2 − v̄m)

> 2ε2, (9.17)
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where to obtain (9.17)weuse the fact that (ω1, ω2, vm+1, vm+2) ∈ (S2d−1
1 ×B2d

R )+(v̄m).

Defining the set B0,−
m (Z̄m) =⋃m−1

i=1 (Ui
m+1 ∪Ui

m+2), Lemma 9.3 is proved, and (9.4)
follows.
Let us now find a set Bδ,−

m (Z̄m) ⊆ S
2d−1
1 × B2d

R such that (9.5) holds in the comple-
ment. We distinguish the following cases
• (i, j) ∈ Fm+2, j ≤ m: We use the same argument as in (9.14) to obtain the lower
bound ε0/2.
• (i, j) ∈ Fm+2, j ∈ {m + 1,m + 2}: (9.5) holds for (ω1, ω2, vm+1, vm+2)

∈
(
S
2d−1
1 × B2d

R

)
\B0,−

m (Z̄m), using part (ii) of Lemma 9.1 and similar arguments

to the corresponding cases in the proof of Lemma 9.3. Let us note that the lower
bound is in fact ε0.
• (i, j) = (m,m+1): Triangle inequality implies that for t ≥ δ and (ω1, ω2,vm+1,vm+2)

∈ S
2d−1
1 × B2d

R , such that |vm+1 − v̄m | > η, we have

|xm(t)− xm+1(t)| = |
√
2εω1 − t (v̄m − vm+1)| ≥ |v̄m − vm+1|t −

√
2ε|ω1|

≥ |v̄m − vm+1|δ −
√
2ε > ηδ −√2ε > ε0, (9.18)

where to obtain (9.18) we use the fact that ε << ε0 << ηδ. Let us note that
the lower bound is in fact ε0. Therefore, (9.5) holds for (ω1, ω2, vm+1, vm+2) ∈
(S2d−1

1 × B2d
R )\Vm,m+1, where

Vm,m+1 = S
2d−1
1 × Bd

η (v̄m)× R
d . (9.19)

• (i, j) = (m,m + 2): Same arguments as in the case (i, j) = (m,m + 1) yield that
(9.5) holds for (ω1, ω2, vm+1, vm+2) ∈ (S2d−1

1 × B2d
R )\Vm,m+2, where

Vm,m+2 = S
2d−1
1 × R

d × Bd
η (v̄m) . (9.20)

The lower bound is in fact ε0.
• (i, j) = (m + 1,m + 2). Triangle inequality implies that for t ≥ δ and
(ω1, ω2, vm+1, vm+2) ∈ S

2d−1
1 × B2d

R , such that |vm+1 − vm+2| > η, we have

|xm+1(t)− xm+2(t)| = |
√
2ε(ω2 − ω1)− t (vm+1 − vm+2)|

≥ |vm+1 − vm+2|t −
√
2ε|ω1 − ω2|

≥ |vm+1 − vm+2|δ −
√
2ε(|ω1| + |ω2|)

≥ |vm+1 − vm+2|δ − 2
√
2ε

> ηδ − 2
√
2ε > ε0, (9.21)

where to obtain (9.21) we use the fact that ε << ε0 << ηδ. Recalling from (8.7) the
2d-strip

W 2d
η,1,1 = {(w1, w2) ∈ R

2d : |w1 − w2| ≤ η}, (9.22)

we obtain that (9.5) holds for (ω1, ω2, vm+1, vm+2) ∈ (S2d−1
1 × B2d

R )\Um+1,m+2,
where

Um+1,m+2 = S
2d−1
1 ×W 2d

η,1,1. (9.23)

Notice that the lower bound is in fact ε0 again.
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Defining

Bδ,−
m (Z̄m) = B0,−

m (Z̄m) ∪ Vm,m+1 ∪ Vm,m+2 ∪Um+1,m+2, (9.24)

we conclude that (9.5) holds for (ω1, ω2, vm+1, vm+2) ∈ (S2d−1
1 × B2d

R )\Bδ,−
m (Z̄m).

Let us note that the only case which prevents Zm+2 ∈ Gm+2(ε0, δ) is the case 1 ≤
i < j ≤ m, where we obtain a lower bound of ε0/2. In all other cases we can obtain
lower bound ε0.

A similar argument shows that, for (ω1, ω2, vm+1, vm+2) ∈ (S2d−1
1 ×B2d

R )\Bδ,−
m (Z̄m),

(9.6) holds for all 1 ≤ i < j ≤ m + 2 except the case 1 ≤ i < j ≤ m. However in this
case, for any 1 ≤ i < j ≤ m, we have |x̄i (t)− x̄ j (t)| = |x̄i− x̄ j−t (v̄i−v̄ j )| > ε0, since
Z̄m ∈ Gm(ε0, 0). This observation shows that (9.6) holds for (ω1, ω2, vm+1, vm+2) ∈
(S2d−1

1 × B2d
R )\Bδ,−

m (Z̄m), as well.
We conclude that the set

B−m (Z̄m) = (S2d−1
1 × B2d

R )+(v̄m) ∩ [Vm,m+1 ∪ Vm,m+2

∪Um+1,m+2 ∪
m−1⋃

i=1
(Ui

m+1 ∪Ui
m+2)

]
, (9.25)

is the set we need for the pre-collisional case.
Proof of (ii) Here we use the notation from (9.11). The proof follows the steps of the

pre-collisional case, but we replace the velocities (v̄m, vm+1, vm+2) by the transformed
velocities (v̄∗m, v∗m+1, v

∗
m+2) and then pull-back. For details see [2]. It is worth mention-

ing that the m-particle needs special treatment since its velocity is transformed to v̄∗m .
Following similar arguments to the precollisional case, we conclude that the appropriate
set for the postcollisional case is given by

B+
m(Z̄m) =(S2d−1

1 × B2d
R )+(v̄m) ∩ [V ∗m,m+1 ∪ V ∗m,m+2 ∪U∗m+1,m+2∪

m−1⋃

i=1
(V i,∗

m ∪Ui,∗
m+1 ∪Ui,∗

m+2)

]
,

(9.26)

where

V i,∗
m =

{
(ω1, ω2, vm+1, vm+2) ∈ S

2d−1
1 × R

2d : v̄∗m ∈ Kd,i
η

}
,

Ui,∗
m+1 =

{
(ω1, ω2, vm+1, vm+2) ∈ S

2d−1
1 × R

2d : v∗m+1 ∈ Kd,i
η

}
,

Ui,∗
m+2 =

{
(ω1, ω2, vm+1, vm+2) ∈ S

2d−1
1 × R

2d : v∗m+2 ∈ Kd,i
η

}
,

V ∗m,m+1 =
{
(ω1, ω2, vm+1, vm+2) ∈ S

2d−1
1 × R

2d : (v∗m, v∗m+1) ∈ W 2d
η,1,1

}
,

V ∗m,m+2 =
{
(ω1, ω2, vm+1, vm+2) ∈ S

2d−1
1 × R

2d : (v∗m, v∗m+2) ∈ W 2d
η,1,1

}
,

U∗m+1,m+2 =
{
(ω1, ω2, vm+1, vm+2) ∈ S

2d−1
1 × R

2d : (v∗m+1, v
∗
m+2) ∈ W 2d

η,1,1

}
.

(9.27)

Therefore, the set we need is

Bm(Z̄m) = B−m (Z̄m) ∪ B+
m(Z̄m). (9.28)

��
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We now use the results of Sect. 8 to estimate the measure of this set, up to the
parameters chosen.

Proposition 9.4. Consider parameters α, ε0, R, η, δ as in (9.2) and ε << α. Let m ∈
N, Z̄m ∈ Gm(ε0, 0), � ∈ {1, . . . ,m} and B�(Z̄m) the set given in the statement of
Proposition 9.2. Denoting by | · | the product measure on S

2d−1
1 × B2d

R , the following
estimate holds:

∣∣B�(Z̄m)
∣∣ � mR2dη

d−1
4d+2 .

Proof. Without loss of generality, we may assume that � = m.
Estimate of B−m (Z̄m). We recall (9.25).

• Estimate of the terms corresponding to Vm,m+1, Vm,m+2,Um+1,m+2: Recalling (9.19)
, we have Vm,m+1 = S

2d−1
1 ×Bd

η (v̄m)×R
d .Wehave (S2d−1

1 ×B2d
R )+(v̄m)∩Vm,m+1 ⊆

S
2d−1
1 ×

(
Bd
R ∩ Bd

η (v̄m)
)
× Bd

R, so

|(S2d−1
1 × B2d

R )+(v̄m) ∩ Vm,m+1| ≤ |S2d−1
1 |

S
2d−1
1
|Bd

R ∩ Bd
η (v̄m)|d |Bd

R |d � Rdηd .

(9.29)

In a similar way, we obtain

|(S2d−1
1 × B2d

R )+(v̄m) ∩ Vm,m+2| � Rdηd . (9.30)

Recalling (9.23), we have Um+1,m+2 = S
2d−1
1 ×W 2d

η,1,1, thus (S2d−1
1 × B2d

R )+(v̄m)∩
Um+1,m+2 ⊆ S

2d−1
1 ×

[(
Bd
R × Bd

R

) ∩W 2d
η,1,1

]
, hence

|(S2d−1
1 × B2d

R )+(v̄m) ∩Um+1,m+2| ≤ |S2d−1
1 |

S
2d−1
1
|(Bd

R × Bd
R) ∩W 2d

η,1,1|2d
�
∫

Bd
R

∫

Bd
R

1Bd
η (vm+1)

(vm+2) dvm+2 dvm+1

� Rdηd .

(9.31)

• Estimate of the terms corresponding to Ui
m+1, U

i
m+2 , i ∈ {1, . . . ,m − 1}: Fix

i ∈ {1, . . . ,m − 1}. Recalling the set Ui
m+1 = S

2d−1
1 × Kd,i

η × R
d , from (9.15),

we have (S2d−1
1 × B2d

R )+(v̄m) ∩ Ui
m+1 ⊆ S

2d−1
1 ×

[
B2d
R ∩

(
Kd,i

η × R
d
)]

. Since

η << 1 << R, Proposition 8.2 implies that

|(S2d−1
1 × B2d

R )+ ∩Ui
m+1| ≤ |S2d−1

1 |
S
2d−1
1
|B2d

R ∩
(
Kd,i

η × R
d
)
|2d

� |
(
Bd
R ∩ Kd,i

η

)
× Bd

R |2d � R2dη
d−1
2 . (9.32)

In a similar way, we obtain

|(S2d−1
1 × B2d

R )+ ∩Ui
m+2| � R2dη

d−1
2 . (9.33)

Therefore, recalling (9.25), using estimates (9.29)–(9.33) and the facts that s ≥ 1,
η << 1 << R, sub-additivity implies

|B−m (Z̄m)| � mR2dη
d−1
2 < mR2dη

d−1
4d+2 , since η << 1. (9.34)
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Estimate of B+
m(Z̄m): We recall (9.26). To estimate the measure of B+

m(Z̄m), we will
strongly rely on the properties of the transition map defined in Proposition 8.5.

Let us define 	v̄m : R2d → R by 	v̄m (vm+1, vm+2) = |vm+1− v̄m |2 + |vm+2− v̄m |2 +
|vm+1 − vm+2|2. We can easily see that given r > 0 and (vm+1, vm+2) ∈ 	−1v̄m

({r2}), we
have

2r ≤ |∇	v̄m (vm+1, vm+2)| ≤ 4r. (9.35)

Let also define the setG2d
R (v̄m) := [0 ≤ 	v̄m ≤ 16R2].Notice that by triangle inequality

and the fact that v̄m ∈ Bd
R , we have

B2d
R ⊆ G2d

R (v̄m). (9.36)

Recall from (8.8) the set S+
v̄m ,vm+1,vm+2

. Then, Fubini’s Theorem and the co-area formula
yield

|B+
m(Z̄m)| =

∫

(S2d−11 ×B2d
R )+(v̄m)

1B+
m (Z̄m) dω1 dω2 dvm+1 dvm+2

≤
∫

G2d
R (v̄m)

∫

S+
v̄m ,vm+1,vm+2

1B+
m (Z̄m ) dω1 dω2 dvm+1 dvm+2 (9.37)

=
∫ 16R2

0

∫

	−1v̄m
({s})
|∇	v̄m (vm+1, vm+2)|−1

∫

S+
v̄m ,vm+1,vm+2

1B+
m (Z̄m ) dω1 dω2 dvm+1 dvm+2 ds

=
∫ 4R

0
2r
∫

	−1v̄m
({r2})

|∇	v̄m (vm+1, vm+2)|−1
∫

S+
v̄m ,vm+1,vm+2

1B+
m (Z̄m ) dω1 dω2 dvm+1 dvm+2 dr

�
∫ 4R

0

∫

	−1v̄m
({r2})

∫

S+
v̄m ,vm+1,vm+2

1B+
m (Z̄m )(ω1, ω2) dω1 dω2 dvm+1 dvm+2 dr, (9.38)

where to obtain (9.37), we use (9.36), and to obtain (9.38) we use the lower bound of
(9.35).

We estimate the integral
∫

S+
v̄m ,vm+1,vm+2

1B+
m (Z̄m)(ω1, ω2) dω1 dω2, for fixed 0 < r ≤ 4R

and (vm+1, vm+2) ∈ 	−1v̄m
({r2}). Let us introduce a parameter 0 < β < 1, which will be

chosen later in terms of η. Writing

ω = (ω1, ω2), v = (vm+1 − v̄m, vm+2 − v̄m), (9.39)

we have b(ω, v) = 〈ω, v〉. Inspired in part by [15] (Proposition 1), we decompose

S+
v̄m ,vm+1,vm+2

= S1,+
v̄m ,vm+1,vm+2

∪ S2,+
v̄m ,vm+1,vm+2

,
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where

S1,+
v̄m ,vm+1,vm+2

= {ω ∈ S+
v̄m ,vm+1,vm+2

: 〈ω, v〉 > β|v|} , (9.40)

S2,+
v̄m ,vm+1,vm+2

= {ω ∈ S+
v̄m ,vm+1,vm+2

: 0 < 〈ω, v〉 ≤ β|v|} . (9.41)

Notice that S2,+
v̄m ,vm+1,vm+2

is the union of two unit (2d − 1)-spherical caps of angle
π/2− arccosβ. Thus integrating in spherical coordinates, we have

∫

S2,+
v̄m ,vm+1,vm+2

1B+
m (Z̄m )(ω1, ω2) dω1 dω2 � π

2
− arccosβ = arcsin β. (9.42)

Let us estimate the terms corresponding to S1,+
v̄m ,vm+1,vm+2

. Our purpose is to change
variables under the transition map Jv̄m ,vm+1,vm+2 , and use part (iv) of Proposition 8.5.

Notice that for ω ∈ S1,+
v̄m ,vm+1,vm+2

, the lower estimate of (8.14) and (9.40) imply

Jac−1(Jv̄m ,vm+1,vm+2)(ω) � r2db−2d(ω, v) ≤ r2dβ−2d |v|−2d � β−2d , (9.43)

since by triangle inequality and Young’s inequality, we have

r2 = |v̄m − vm+1|2 + |v̄m − vm+2|2 + |vm+1 − vm+2|2
≤ 3(|v̄m − vm+1|2 + |v̄m − vm+2|2) = 3|v|2.

• Estimate of V ∗m,m+1, V
∗
m,m+2, U

∗
m+1,m+2 terms: By recalling (9.27)

V ∗m,m+1 =
{
(ω1, ω2, vm+1, vm+2) ∈ S

2d−1
1 × B2d

R : v̄∗m − v∗m+1 ∈ Bd
η

}
,

and (8.11), given ω = (ω1, ω2) ∈ S1,+
v̄m ,vm+1,vm+2

, we have

v̄∗m − v∗m+1 ∈ Bd
η ⇔ ν = (ν1, ν2) ∈ Bd

η/r × R
d . (9.44)

Therefore, we obtain
∫

S1,+
v̄m ,vm+1,vm+2

1V ∗m,m+1
(ω) dω =

∫

S1,+
v̄m ,vm+1,vm+2

(1Bd
η/r×Rd ◦ Jv̄m ,vm+1,vm+2)(ω) dω

� β−2d
∫

S1,+
v̄m ,vm+1,vm+2

(1Bd
η/r×Rd ◦ Jv̄m ,vm+1,vm+2)(ω) JacJvm ,vm+1,vm+2(ω) dω (9.45)

� β−2d
∫

E
2d−1
1

1Bd
η/r×Rd (ν) dν � β−2d min

{
1,
(η

r

) d−1
2
}

, (9.46)

where to obtain (9.45) we use (9.43), to obtain (9.46) we use part (iv) of Proposition 8.5
and part (iii) of Proposition 8.8. Thus

∫

S1,+
v̄m ,vm+1,vm+2

1V ∗m,m+1
(ω1, ω2) dω1 dω2 � β−2d min

{
1,
(η

r

) d−1
2
}

. (9.47)

In a similar manner, recalling from (9.27) the sets V ∗m,m+2,U
∗
m+1,m+2 respectively, and

parts (iv), (v) of Proposition 8.8 respectively, we obtain the corresponding estimates.
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• Estimate of V i,∗
m ,Ui,∗

m+1,U
i,∗
m+2, i ∈ {1, . . . ,m−1} terms: Consider i ∈ {1, . . . ,m−1}.

By recalling (9.27), the set V i,∗
m can be equivalently written as

V i,∗
m = {(ω1, ω2, vm+1, vm+2) ∈ S

2d−1
1 × B2d

R : (v̄∗m, v∗m+1) ∈ Kd,i
η × R

d}.
Recalling also the operator S12 defined in (8.27), Lemma 8.6 implies

(v̄∗m, v∗m+1) ∈ Kd,i
η × R

d ⇔ (
S12 ◦ Jv̄m ,vm+1,vm+2

)
(ω1, ω2) ∈ K̄ d,i

η/r × R
d , (9.48)

where Kd,i
η is a d-cylinder of radius η and K̄ d,i

η/r is a d-cylinder of radius η/r . Recalling

S = S12(E
2d−1
1 ) from (8.28), and using the same reasoning to change variables under

Jv̄m ,vm+1,vm+2 as in the estimate for V ∗m,m+1, we have

∫

S1,+
v̄m ,vm+1,vm+2

1V i,∗
m

(ω1, ω2) dω1 dω2

=
∫

S1,+
v̄m ,vm+1,vm+2

1
(v̄∗m ,v∗m+1)∈Kd,i

η ×Rd (ω1, ω2) dω1 dω2

=
∫

S1,+
v̄m ,vm+1,vm+2

(1K̄ d,i
η/r×Rd ◦ S12 ◦ Jv̄m ,vm+1,vm+2)(ω1, ω2) dω1 dω2 (9.49)

� β−2d
∫

E
2d−1
1

(1K̄ d,i
η/r×Rd ◦ S12)(ν1, ν2) dν1 dν2 (9.50)

� β−2d
∫

S
1K̄ d,i

η/r×Rd (θ1, θ2) dθ1 dθ2 (9.51)

� β−2d min

{
1,
(η

r

) d−1
2
}

, (9.52)

where to obtain (9.49) we use (9.48), to obtain (9.50) we use estimate (9.43) and part
(iv) of Proposition 8.5, to obtain (9.51) we make the linear transformation (θ1, θ2) =
S12(ν1, ν2) and use the fact that S = S12(E

2d−1
1 ), and to obtain (9.52) we use part (i) of

Proposition 8.8.
RecallingUi,∗

m+1,U
i,∗
m+2 from(9.27), andusing respectively themap S12 fromLemma8.6

and estimate (ii) from Proposition 8.8, the map S13 from Lemma 8.6 and estimate (ii)
from Proposition 8.8, we obtain the corresponding estimates in a similar way.

We conclude that
∫

S1,+
v̄m ,vm+1,vm+2

1B+
m (Z̄m )(ω1, ω2) dω1 dω2 � mβ−2d min

{
1,
(η

r

) d−1
2
}

(9.53)

Therefore, recallingS+
v̄m ,vm+1,vm+2

= S1+
v̄m ,vm+1,vm+2

∪S2+
v̄m ,vm+1,vm+2

, and using estimates
(9.42), (9.53), we obtain the estimate:

∫

S+
v̄m ,vm+1,vm+2

1B+
m (Z̄m )(ω1, ω2) dω1 dω2 � arcsin β + mβ−2d min

{
1,
(η

r

) d−1
2
}

.

(9.54)
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Hence, (9.38) yields

|B+
m(Z̄m)| �

∫ 4R

0

∫

	−1v̄m
({r2})

(
arcsin β + mβ−2d min

{
1,
(η

r

) d−1
2
})

dvm+1 dvm+2 dr

�
∫ 4R

0
r2d−1

(
arcsin β + mβ−2d min

{
1,
(η

r

) d−1
2
})

dr

� mR2d
(
arcsin β + β−2dη

d−1
2

)

� mR2d
(
β + β−2dη

d−1
2

)
,

(9.55)

after using an estimate similar to (8.1) and the fact that m ≥ 1, β << 1. Choosing

β = η
d−1
4d+2 << 1, since d ≥ 2, we obtain

|B+
m(Z̄m)| � mR2dη

d−1
4d+2 . (9.56)

Combining (9.28), (9.34), (9.56), we obtain the required estimate. ��

10. Elimination of Recollisions

In this section we reduce the convergence proof to comparing truncated elementary
observables. We first restrict to good configurations and then inductively reduce the
convergence proof to truncated elementary observables, which will be comparable in
the scaled limit.

10.1. Restriction to good configurations. Throughout this subsection, we consider β0 >

0, μ0 ∈ R, T > 0 given in Theorems 5.5 and 5.8, the functions β,μ : [0, T ] → R

defined by (5.6), (N , ε) in the scaling (4.22) and initial data FN ,0 ∈ XN ,β0,μ0 , F0 ∈
X∞,β0,μ0 . Let FN ∈ XN ,β,μ, F ∈ X∞,β,μ be the mild solutions of the corresponding
BBGKY and Boltzmann hierarchies in [0, T ], given by Theorems 5.5 and 5.8 respec-
tively.

For the convenience of a reader we recall the notation from Sect. 9. Specifically, given
m ∈ N, σ > 0 and t0 > 0, we denote

�X
m(σ ) = {X̃m ∈ R

dm : |̃xi − x̃ j | > σ, ∀1 ≤ i < j ≤ m}, m ≥ 2, �1(σ ) = R
d ,

�m(σ ) = �X
m(σ )× R

dm,

Gm(σ, t0) =
{
Zm = (Xm, Vm) ∈ R

2dm : Zm(t) ∈ �m(σ ), ∀t ≥ t0
}

,

where Zm(t) denotes the backwards free flow, given by: Zm(t) = (Xm − tVm, Vm), for
t ≥ 0. Given ε, ε0 > 0 with ε << ε0 and δ > 0, we define the new set

Gm(ε, ε0, δ) := Gm(ε, 0) ∩ Gm(ε0, δ). (10.1)

Inductively using Lemma 9.1 and Proposition 8.2, we obtain the following result. For
more details on the proof see [2].
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Proposition 10.1. Let s ∈ N, α, ε0, R, η, δ be parameters as in (9.2) and ε << α. Then
for any Xs ∈ �X

s (ε0), there is a subset of velocities Ms(Xs) ⊆ Bds
R of measure

|Ms (Xs)|ds ≤ Cd,s R
dsη

d−1
2 , (10.2)

such that Zs = (Xs, Vs) ∈ Gs(ε, ε0, δ), for all Vs ∈ Bds
R \Ms(Xs).

Consider s, n ∈ N, parameters α, ε0, R, η, δ as in (9.2), (N , ε) in the scaling (4.22)
with ε << α, 0 ≤ k ≤ n and t ∈ [0, T ]. Let us recall the observables I Ns,k,R,δ(t),
I∞s,k,R,δ(t) defined in (7.11)–(7.12). We restrict the domain of integration to velocities

giving good configurations. For convenience, given Xs ∈ �X
s (ε0), we writeMc

s(Xs) =
Bds
R \Ms(Xs). We define

Ĩ Ns,k,R,δ(t)(Xs) =
∫

Mc
s (Xs )

φs(Vs) f
(s,k)
N ,R,δ(t, Xs, Vs) dVs, (10.3)

Ĩ∞s,k,R,δ(t)(Xs) =
∫

Mc
s (Xs )

φs(Vs) f
(s,k)
R,δ (t, Xs, Vs) dVs . (10.4)

We now apply Proposition 10.1 and the a-priori estimates of Sect. 5 to restrict to
initially good configurations.

Proposition 10.2. Let s, n ∈ N, α, ε0, R, η, δ be parameters as in (9.2), (N , ε) in the
scaling (4.22) with ε << α, and t ∈ [0, T ]. Then, the following estimates hold:

n∑

k=0
‖I Ns,k,R,δ(t)− Ĩ Ns,k,R,δ(t)‖L∞(�X

s (ε0)) ≤ Cd,s,μ0,T R
dsη

d−1
2 ‖FN ,0‖N ,β0,μ0 ,

n∑

k=0
‖I∞s,k,R,δ(t)− Ĩ∞s,k,R,δ(t)‖L∞(�X

s (ε0)) ≤ Cd,s,μ0,T R
dsη

d−1
2 ‖F0‖∞,β0,μ0 .

Remark 10.3. Under the assumptions of Proposition 10.2, given Xs ∈ �X
s (ε0), the defi-

nition ofMs(Xs) implies that Ĩ Ns,0,R,δ(t)(Xs) = Ĩ∞s,0,R,δ(t)(Xs) for all t ∈ [0, T ].There-
fore, Proposition 10.2 reduces the convergence to controlling the differences Ĩ Ns,k,R,δ(t)−
Ĩ∞s,k,R,δ(t), for k = 1, . . . , n, in the scaled limit.

10.2. Reduction to elementary observables. Here, given s, n ∈ N, parameters α,

ε0, R, η, δ as in (9.2) 1 ≤ k ≤ n, (N , ε) in the scaling (4.22) with ε << α, and
t ∈ [0, T ], inspired by notation used in [19,27], we expand Ĩ Ns,k,R,δ(t) and Ĩ∞s,k,R,δ(t),
defined in (10.3)–(10.4), in terms of elementary observables.

For this purpose, given �, N ∈ N with � < N , R > 1, we decompose the truncated
BBGKY hierarchy collisional operator (given in (4.17)–(4.20)) in the following way:

CN ,R
�,�+2 =

�∑

i=1
CN ,R,+,i

�,�+2 −
�∑

i=1
CN ,R,−,i

�,�+2 ,

CN ,R,+,i
�,�+2 g�+2(Z�) := AN ,ε,�

∫

S
2d−1
1 ×B2d

R

b+(ω�+1, ω�+2, v�+1 − vi , v�+2 − vi )
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×g�+21[E�+2≤R2](Zi∗
�+2,ε) dω�+1 dω�+2 dv�+1 dv�+2,

CN ,R,−,i
�,�+2 g�+2(Z�) := AN ,ε,�

∫

S
2d−1
1 ×B2d

R

b+(ω�+1, ω�+2, v�+1 − vi , v�+2 − vi )

×g�+21[E�+2≤R2](Zi
�+2,ε) dω�+1 dω�+2 dv�+1 dv�+2.

For s ∈ N and k ∈ N, let us denote Us,k = As,k × Bs,k , where

As,k : =
{
J = ( j1, . . . , jk) ∈ N

k : ji ∈ {−1, 1} , ∀i ∈ {1, . . . , k}
}

, (10.5)

Bs,k : =
{
M = (m1, . . . ,mk) ∈ N

k : mi ∈ {1, . . . , s + 2i − 2} , ∀i ∈ {1, . . . , k}
}

.

(10.6)

Under this notation, given s, n ∈ N, parameters α, ε0, R, η, δ as in (9.2), 1 ≤ k ≤ n,
(N , ε) in the scaling (4.22) with ε << α, and t ∈ [0, T ], the BBGKY hierarchy
observable functional Ĩ Ns,k,R,δ(t) (given in (10.3)) can be expressed as a superposition of
elementary observables

Ĩ Ns,k,R,δ(t)(Xs) =
∑

(J,M)∈Us,k

(
k∏

i=1
ji

)
Ĩ Ns,k,R,δ(t, J, M)(Xs), (10.7)

Ĩ Ns,k,R,δ(t, J, M)(Xs) :=
∫

Mc
s (Xs )

φs(Vs)
∫

Tk,δ(t)
T t−t1
s CN ,R, j1,m1

s,s+2 T t1−t2
s+2 . . .

CN ,R, jk ,mk
s+2k−2,s+2kT

tm
s+2k f

(s+2k)
0 (Zs) dtk . . . dt1dVs . (10.8)

Similarly, given �, N ∈ N with � < N , R > 1, we decompose the truncated Boltz-
mann hierarchy collisional operator (given in (4.23)–(4.26)) as:

C∞,R
�,�+2 =

�∑

i=1
C∞,R,+,i

�,�+2 −
�∑

i=1
C∞,R,−,i

�,�+2 ,

C∞,R,+,i
�,�+2 g�+2(Z�) :=

∫

S
2d−1
1 ×B2d

R

b+(ω�+1, ω�+2, v�+1 − vi , v�+2 − vi )

g�+21[E�+2≤R2](Zi∗
�+2) dω�+1 dω�+2 dv�+1 dv�+2,

C∞,R,−,i
�,�+2 g�+2(Z�) :=

∫

S
2d−1
1 ×B2d

R

b+(ω�+1, ω�+2, v�+1 − vi , v�+2 − vi )

g�+21[E�+2≤R2](Zi
�+2) dω�+1 dω�+2 dv�+1 dv�+2.

Under this notation, given s, n ∈ N, t ∈ [0, T ], parameters α, ε0, R, η, δ as in (9.2),
1 ≤ k ≤ n, and t ∈ [0, T ], the Boltzmann hierarchy observable functional Ĩ∞s,k,R,δ(t)
(given in (10.4)) can be expressed as a superposition of elementary observables

Ĩ∞s,k,R,δ(t)(Xs) =
∑

(J,M)∈Us,k

(
k∏

i=1
ji

)
Ĩ∞s,k,R,δ(t, J, M)(Xs), (10.9)

Ĩ∞s,k,R,δ(t, J, M)(Xs) :=
∫

Mc
s (Xs )

φs(Vs)
∫

Tk,δ(t)
St−t1s C∞,R, j1,m1

s,s+2 St1−t2s+2 . . .

C∞,R, jk ,mk
s+2k−2,s+2k S

tm
s+2k f

(s+2k)
0 (Zs) dtk . . . dt1dVs . (10.10)
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10.3. Boltzmann pseudo-trajectories. In this subsection, we introduce an explicit dis-
crete backwards in time construction of so called Boltzmann pseudo-trajectory, which
lets us keep track of the collisions. Similar constructions, although continuous in time,
can be found in [15,19,27]. Let s ∈ N, Zs = (Xs, Vs) ∈ R

2ds , k ∈ N and t ∈ [0, T ].
Given δ > 0, let us recall from (7.8) the set Tk,δ(t).

Consider (t1, . . . , tk) ∈ Tk,δ(t), J = ( j1, . . . , jk), M = (m1, . . . ,mk), (J, M) ∈
Us,k , and for each i = 1, . . . , k, we consider (ωs+2i−1, ωs+2i , vs+2i−1, vs+2i ) ∈ S

2d−1
1 ×

R
2d . We inductively define the Boltzmann pseudo-trajectory of Zs . Roughly speaking,

the Boltzmann pseudo-trajectory is formulated as follows:
Assumewe are given a configuration Zs = (Xs, Vs) ∈ R

2ds at time t0 = t . Zs evolves
under backwards freeflowuntil the time t1 whenapair of particles (ωs+1, ωs+2, vs+1, vs+2)

is added to the m1-particle, the adjunction being pre-collisional if j1 = −1 and post-
collisional if j1 = 1. We then form an (s + 2)-configuration and continue this process
inductively until time tk+1 = 0. More precisely, given Zs = (Xs, Vs) ∈ R

2ds :
Time t0 = t : We initially define

Z∞s (t−0 ) = (x∞1 (t−0 ), . . . , x∞s (t−0 ), v∞1 (t−0 ), . . . , v∞s (t−0 )
) := Zs .

Time ti , i ∈ {1, . . . , k}: Consider i ∈ {1, . . . , k}, and assume we know

Z∞s+2i−2(t
−
i−1) =

(
x∞1 (t−i−1), . . . , x

∞
s+2i−2(t

−
i−1), v

∞
1 (t−i−1), . . . , v

∞
s+2i−2(t

−
i−1)

)
.

We define Z∞s+2i−2(t+i ) = (x∞1 (t+i ), . . . , x∞s+2i−2(t+i ), v∞1 (t+i ), . . . , v∞s+2i−2(t+i )
)
as:

Z∞s+2i−2(t+i ) := (X∞s+2i−2
(
t−i−1

)− (ti−1 − ti ) V
∞
s+2i−2

(
t−i−1

)
, V∞s+2i−2

(
t−i−1

))
.

We also define Z∞s+2i (t
−
i ) = (x∞1 (t−i ), . . . , x∞s+2i (t

−
i ), v∞1 (t−i ), . . . , v∞s+2i (t

−
i )
)
as:

(
x∞j (t−i ), v∞j (t−i )

)
:=
(
x∞j (t+i ), v∞j (t+i )

)
∀ j ∈ {1, . . . , s + 2i − 2}\ {mi } ,

and if ji = −1:
(
x∞mi

(t−i ), v∞mi
(t−i )

) := (x∞mi
(t+i ), v∞mi

(t+i )
)
,

(
x∞s+2i−1(t

−
i ), v∞s+2i−1(t

−
i )
) := (x∞mi

(t+i ), vs+2i−1
)
,

(
x∞s+2i (t

−
i ), v∞s+2i (t

−
i )
) := (x∞mi

(t+i ), vs+2i
)
,

while if ji = 1:
(
x∞mi

(t−i ), v∞mi
(t−i )

) := (x∞mi
(t+i ), v∞∗mi

(t+i )
)
,

(
x∞s+2i−1(t

−
i ), v∞s+2i−1(t

−
i )
) := (x∞mi

(t+i ), v∗s+2i−1
)
,

(
x∞s+2i (t

−
i ), v∞s+2i (t

−
i )
) := (x∞mi

(t+i ), v∗s+2i
)
,

(v∞∗mi
(t−i ), v∗s+2i−1, v∗s+2i ) = Tωs+2i−1,ωs+2i

(
v∞mi

(t+i ), vs+2i−1, vs+2i
)
.

Time tk+1 = 0: We finally obtain

Z∞s+2k(0+) = Z∞s+2k(t+k+1) =
(
X∞s+2k

(
t−k
)− tkV

∞
s+2k

(
t−k
)
, V∞s+2k

(
t−k
))

.

The sequence Z∞s+2i (t+i ), i = 0, . . . , k + 1 is called Boltzmann pseudo-trajectory of
Zs .

The construction process is illustrated in Fig. 3 (to be read horizontally and from
right to left):
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10.4. Reduction to truncated elementary observables. Wenowuse theBoltzmannpseudo-
trajectory to define the truncated observables for the BBGKY hierarchy and Boltzmann
hierarchy. The proof will then be reduced to the convergence of the corresponding trun-
cated elementary observables. Given � ∈ N, parameters α, ε0, R, η, δ as in (9.2) and
ε << α, recall the set G�(ε, ε0, δ) from (10.1).

Let s ∈ N, Xs ∈ �X
s (ε0), 1 ≤ k ≤ n, (J, M) ∈ Us,k and t ∈ [0, T ] and

(t1, . . . , tk) ∈ Tk,δ(t), where we recall from (7.8) the set Tk,δ(t). By Proposition 10.1,
for any Vs ∈Mc

s(Xs), we have Zs = (Xs, Vs) ∈ Gs(ε, ε0, δ). Since t0 − t1 ≥ δ, we
obtain Z∞s (t+1 ) ∈ Gs(ε0, 0). Recalling notation from (9.3), Proposition 9.2 (see (9.6)
for the pre-collisional case or (9.10) for the post-collisional case) yields there is a set
Bm1

(
Z∞s

(
t+1
)) ⊆ (S2d−1

1 × B2d
R )+

(
v∞m1

(
t+1
))

such that

Z∞s+2(t+2 ) ∈ Gs+2(ε0, 0), ∀(ωs+1, ωs+2, vs+1, vs+2) ∈ Bc
m1

(
Z∞s

(
t+1
))

.

Clearly this process can be iterated. In particular, given i ∈ {2, . . . , k}, we have
Z∞s+2i−2(t+i ) ∈ Gs+2i−2(ε0, 0), so there exists a set Bmi

(
Z∞s+2i−2

(
t+i
)) ⊆ (S2d−1

1 ×
B2d
R )+

(
v∞mi

(
t+1
))

such that:

Z∞s+2i (t+i+1) ∈ Gs+2i (ε0, 0), ∀(ωs+2i−1, ωs+2i , vs+2i−1, vs+2i ) ∈ Bc
mi

(
Z∞s+2i−2

(
t+i
))

.

(10.11)

We finally obtain Z∞s+2k(0+) ∈ Gs+2k(ε0, 0).
Let us nowdefine the truncated elementary observables.Heuristicallywewill truncate

the domains of adjusted particles in the definition of the observables Ĩ Ns,k,R,δ , Ĩ
∞
s,k,R,δ (see

(10.3)–(10.4)).
More precisely, let s, n ∈ N, α, ε0, R, η, δ be parameters as in (9.2), (N , ε) in the

scaling (4.22) with ε << α, 1 ≤ k ≤ n, (J, M) ∈ Us,k and t ∈ [0, T ]. For Xs ∈
�X

s (ε0), Proposition 10.1 implies there is a set of velocities Ms(Xs) ⊆ B2d
R such that

Zs = (Xs, Vs) ∈ Gs(ε, ε0, δ), for all Vs ∈ Mc
s(Xs). Following the reasoning above,

we define the BBGKY hierarchy truncated observables as:

J N
s,k,R,δ(t, J, M)(Xs) :=

∫

Mc
s (Xs )

φs(Vs)
∫

Tk,δ(t)
T t−t1
s C̃N ,R, j1,m1

s,s+2 T t1−t2
s+2 . . .

C̃N ,R, jk ,mk
s+2k−2,s+2kT

tm
s+2k f

(s+2k)
0 (Zs) dtk, . . . dt1dVs, (10.12)

where C̃N ,R, ji ,mi
s+2i−2,s+2i gN ,s+2i := CN ,R, ji ,mi

s+2i−2,s+2i[
gN ,s+2i1(ωs+2i−1,ωs+2i ,vs+2i−1,vs+2i )∈Bc

mi

(
Z∞s+2i−2(t+i )

)
]
.

In the same spirit, for Xs ∈ �X
s (ε0), we define the Boltzmann hierarchy truncated

elementary observables as:

J∞s,k,R,δ(t, J, M)(Xs) :=
∫

Mc
s (Xs )

φs(Vs)
∫

Tk,δ(t)
St−t1s C̃∞,R, j1,m1

s,s+2 St1−t2s+2 . . .

C̃∞,R, jk ,mk
s+2k−2,s+2k S

tm
s+2k f

(s+2k)
0 (Zs) dtk, . . . dt1dVs, (10.13)

where C̃∞,R, ji ,mi
s+2i−2,s+2i gs+2i := C∞,R, ji ,mi

s+2i−2,s+2i
[
gs+2i1(ωs+2i−1,ωs+2i ,vs+2i−1,vs+2i )∈Bc

mi

(
Z∞s+2i−2(t+i )

)
]
.

Recalling the observables Ĩ Ns,k,R,δ , Ĩ
∞
s,k,R,δ from (10.8), (10.10) and using Proposi-

tion 9.4 (since we integrate at least in one of the bad sets), we obtain:
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Proposition 10.4. Let s, n ∈ N, α, ε0, R, η, δ be parameters as in (9.2), (N , ε) in the
scaling (4.22) with ε << α and t ∈ [0, T ]. Then the following estimates hold uniformly
in N:

n∑

k=1

∑

(J,M)∈Us,k

‖ Ĩ Ns,k,R,δ(t, J, M)− J N
s,k,R,δ(t, J, M)‖L∞(�X

s (ε0))

≤ Cn
d,s,μ0,T ‖φs‖L∞Vs R

d(s+3n)η
d−1
4d+2 ‖FN ,0‖N ,β0,μ0 ,

n∑

k=1

∑

(J,M)∈Us,k

‖ Ĩ∞s,k,R,δ(t, J, M)− J∞s,k,R,δ(t, J, M)‖L∞(�X
s (ε0))

≤ Cn
d,s,μ0,T ‖φs‖L∞Vs R

d(s+3n)η
d−1
4d+2 ‖F0‖∞,β0,μ0 .

Proof. As usual, it suffices to prove the estimate for the BBGKY hierarchy case and the
Boltzmann hierarchy case follows similarly. Fix k ∈ {1, . . . , n} and (J, M) ∈ Us,k . We
first estimate the difference:

Ĩ Ns,k,R,δ(t, J, M)(Xs)− J N
s,k,R,δ(t, J, M)(Xs). (10.14)

Triangle and Cauchy-Scwhartz inequalities yield
∣∣b(ω1, ω2, v1 − v, v2 − v)

∣∣ ≤ 4R, ∀(ω1, ω2) ∈ S
2d−1
1 , ∀v, v1, v2 ∈ Bd

R,

(10.15)

so ∫

S
2d−1
1 ×B2d

R

|b(ω1, ω2, v1 − v, v2 − v2)| dω1 dω2 dv1 dv2

≤ Cd R
2d+1 ≤ Cd R

3d , ∀v ∈ Bd
R . (10.16)

But in order to estimate the difference (10.14), we integrate at least once over
Bmi

(
Z∞s+2i−2

(
t+i
))

for some i ∈ {1, . . . , k}. Proposition 9.4 and the expression (10.15)
yield the estimate:
∫

Bmi

(
Z∞s+2i−2(t+i )

) |b(ω1, ω2, v1−v, v2−v)| dω1 dω2 dv1 dv2≤Cd(s + 2i−2)R2d+1η
d−1
4d+2

≤ Cd(s + 2k)R3dη
d−1
4d+2 , ∀v ∈ Bd

R . (10.17)

Moreover, we have the elementary inequalities:

‖ f (s+2k)
N ,0 ‖L∞ ≤ e−(s+2k)μ0‖FN ,0‖N ,β0,μ0 , (10.18)

∫

Tk,δ(t)
dt1 . . . dtk ≤

∫ t

0

∫ t1

0
. . .

∫ tk−1

0
dt1 . . . dtk ≤ T k

k! . (10.19)

Therefore, (10.16)–(10.19) imply
∣∣ Ĩ Ns,k,R,δ(t, J, M)(Xs)− J N

s,k,R,δ(t, J, M)(Xs)
∣∣ ≤

≤ ‖φs‖L∞Vs e
−(s+2k)μ0‖FN ,0‖N ,β0,μ0Cd R

dsCk−1
d R3d(k−1)(s + 2k)Cd R

3dη
d−1
4d+2

T k

k!
≤ Ck

d,s,μ0,T ‖φs‖L∞Vs
(s + 2k)

k! Rd(s+3k)η
d−1
4d+2 ‖FN ,0‖N ,β0,μ0 .
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Adding for all (J, M) ∈ Us,k , we get 2ks(s + 2) . . . (s + 2k − 2) contributions, thus
∑

(J,M)∈Us,k

‖ Ĩ Ns,k,R,δ(t, J, M)− J N
s,k,R,δ(t, J, M)‖L∞(�X

s (ε0))

≤ Ck
d,s,μ0,T ‖φs‖L∞Vs R

d(s+3k) (s + 2k)k+1

k! η
d−1
4d+2 ‖FN ,0‖N ,β0,μ0

≤ Ck
d,s,μ0,T ‖φs‖L∞Vs R

d(s+3k)η
d−1
4d+2 ‖FN ,0‖N ,β0,μ0 ,

(10.20)

since
(s + 2k)k+1

k! = (s + 2k)(s + 2k)k

k! ≤ Ck
s , Summing over k = 1, . . . , n, we obtain

the required estimate. ��

11. Convergence Proof

In Sect. 10.4, given s, n ∈ N, parameters α, ε0, R, η, δ as in (9.2), (N , ε) in the scaling
(4.22) with ε << α and t ∈ [0, T ], we have reduced the convergence proof to con-
trolling the differences J N

s,k,R,δ(t, J, M) − J∞s,k,R,δ(t, J, M) for given 1 ≤ k ≤ n and

(J, M) ∈ Us,k , where J N
s,k,R,δ(t, J, M), J∞s,k,R,δ(t, J, M) are given by (10.12)–(10.13),

respectively. Throughout this section s ∈ N will be fixed. We also consider β0 > 0,
μ0 ∈ R, T > 0 and F0 ∈ X∞,β0,μ0 as in the statement of Theorem 6.9.

11.1. BBGKY pseudo-trajectories and proximity to the Boltzmann pseudo-trajectories.
Consider s ∈ N, (N , ε) in the scaling (4.22), k ∈ N and t ∈ [0, T ]. Given δ > 0
recall from (7.8) the set Tk,δ(t). Let Zs = (Xs, Vs) ∈ R

2ds , (t1, . . . , tk) ∈ Tk(t),
J = ( j1, . . . , jk), M = (m1, . . . ,mk), (J, M) ∈ Us,k , and for each i = 1, . . . , k, we
consider (ωs+2i−1, ωs+2i , vs+2i−1, vs+2i ) ∈ S

2d−1
1 × B2d

R .

In the same spirit as in Sect. 10.3 where we introduced the Boltzmann pseudo-
trajectory, we define the BBGKY pseudo-trajectory, the main difference being that we
take into account the interaction zone of the adjusted particles in each step. More pre-
cisely, given Zs = (Xs, Vs) ∈ R

2ds :
Time t0 = t : We initially define

ZN
s (t−0 ) =

(
xN1 (t−0 ), . . . , xNs (t−0 ), vN

1 (t−0 ), . . . , vN
s (t−0 )

)
:= Zs .

Time ti , i ∈ {1, . . . , k}: Consider i ∈ {2, . . . , k}, and assume we know

ZN
s+2i−2(t

−
i−1) =

(
xN1 (t−i−1), . . . , x

N
s+2i−2(t

−
i−1), v

N
1 (t−i−1), . . . , v

N
s+2i−2(t

−
i−1)

)
.

We define ZN
s+2i−2(t+i ) = (xN1 (t+i ), . . . , xNs+2i−2(t+i ), vN

1 (t+i ), . . . , vN
s+2i−2(t+i )

)
as:

ZN
s+2i−2(t

+
i ) :=

(
XN
s+2i−2

(
t−i−1

)− (ti−1 − ti ) V
N
s+2i−2

(
t−i−1

)
, V N

s+2i−2
(
t−i−1

))
.

We also define ZN
s+2i (t

−
i ) = (xN1 (t−i ), . . . , xNs+2i (t

−
i ), vN

1 (t−i ), . . . , vN
s+2i (t

−
i )
)
as:

(
xNj (t−i ), vN

j (t−i )
)
:=
(
xNj (t+i ), vN

j (t+i )
)

, ∀ j ∈ {1, . . . , s + 2i − 2}\ {mi } ,
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and if ji = −1:
(
xNmi

(t−i ), vN
mi

(t−i )
)
:=
(
xNmi

(t+i ), vN
mi

(t+i )
)

,
(
xNs+2i−1(t

−
i ), vN

s+2i−1(t
−
i )
)
:=
(
xNmi

(t+i )−√2εωs+2i−1, vs+2i−1
)

,
(
xNs+2i (t

−
i ), vN

s+2i (t
−
i )
)
:=
(
xNmi

(t+i )−√2εωs+2i , vs+2i

)
,

while if ji = 1:

(
xNmi

(t−i ), vN
mi

(t−i )
)
:=
(
xNmi

(t+i ), vN∗
mi

(t+i )
)

,
(
xNs+2i−1(t

−
i ), vN

s+2i−1(t
−
i )
)
:=
(
xNmi

(t+i ) +
√
2εωs+2i−1, v∗s+2i−1

)
,

(
xNs+2i (t

−
i ), vN

s+2i (t
−
i )
)
:=
(
xNmi

(t+i ) +
√
2εωs+2i , v

∗
s+2i

)
,

(vN∗
mi

(t−i ), v∗s+2i−1, v∗s+2i ) = Tωs+2i−1,ωs+2i

(
vN
mi

(t+i ), vs+2i−1, vs+2i
)

.

Time tk+1 = 0: We finally obtain

ZN
s+2k(0

+) = ZN
s+2k(t

+
k+1) =

(
XN
s+2k

(
t−k
)− tkV

N
s+2k

(
t−k
)
, V N

s+2k

(
t−k
))

.

The sequence ZN
s+2i (t

+
i ), i = 0, . . . , k + 1 is called BBGKY pseudo-trajectory of Zs .

The construction can be illustrated by an analogous diagram to Figure 3.
We now state a proximity result for the corresponding BBGKY and Boltzmann

pseudo-trajectories. The proof of this result follows inductively from the definition of
the pseudo-trajectories, for more details see [2].

Lemma 11.1. Let s, n ∈ N, (N , ε) in the scaling (4.22), 1 ≤ k ≤ n, (J, M) ∈ Us,k ,
t ∈ [0, T ] and (t1, . . . , tk) ∈ Tk(t). Fix Zs = (Xs, Vs) ∈ R

2ds . For each i = 1, . . . , k,
consider (ωs+2i−1, ωs+2i , vs+2i−1, vs+2i ) ∈ S

2d−1
1 × R

2d . Then for all i = 1, . . . , k + 1
and � = 1, . . . , s + 2i − 2, we have

|xN� (t+i )− x∞� (t+i )| ≤ √2ε(i − 1), vN
� (t+i ) = v∞� (t+i ). (11.1)

In particular, if s < n, there holds:

∣∣∣XN
s+2i−2(t

+
i )− X∞s+2i−2(t+i )

∣∣∣ ≤
√
6n3/2ε, ∀i = 1, . . . , k + 1. (11.2)

11.2. Reformulation in terms of pseudo-trajectories. We will now re-write the Boltz-
mann hierarchy truncated elementary observables, defined in (10.13), and the BBGKY
hierarchy truncated elementary observables, defined in (10.12), in terms of pseudo-
trajectories.

Let s, n ∈ N with s < n, parameters α, ε0, R, η, δ as in (9.2). For the Boltzmann
hierarchy case, there is always free flow between the collision times. Therefore, for
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Xs ∈ �X
s (ε0), 1 ≤ k ≤ n, (J, M) ∈ Us,k and t ∈ [0, T ], the Boltzmann hierarchy

truncated elementary observable can be written

J∞s,k,R,δ(t, J, M)(Xs) =
∫

Mc
s (Xs )

φs(Vs)
∫

Tk,δ(t)

∫

Bc
m1(Z

∞
s (t+1 ))

. . .

∫

Bc
mk

(
Z∞s+2k−2(t+k )

)

k∏

i=1
b+
(
ωs+2i−1, ωs+2i , vs+2i−1 − v∞mi

(
t+i
)
, vs+2i − v∞mi

(
t+i
))

f (s+2k)
0

(
Z∞s+2k

(
0+
))

×
k∏

i=1
( dωs+2i−1 dωs+2i dvs+2i−1 dvs+2i ) dtk . . . dt1 dVs .

(11.3)

It is not immediate to obtain a comparable expansion at the BBGKY level because
of the recollisions. However, thanks to Proposition 9.2 and Lemma 11.1, this is possible
for N large enough.

More precisely, fix Xs ∈ �X
s (ε0), 1 ≤ k ≤ n, (J, M) ∈ Us,k , t ∈ [0, T ] and

(t1, . . . , tk) ∈ Tk,δ(t). Consider (N , ε) in the scaling (4.22) with N large enough
such that n3/2ε << α. By Proposition 10.1, given Vs ∈ Mc

s(Xs), we have Zs =
(Xs, Vs) ∈ Gs(ε, ε0, δ). By the definition of the set Gs(ε, ε0, δ), see (10.1), we have
Zs ∈ Gs(ε, ε0, δ)⇒ Zs(τ ) ∈ D̊s,ε, for all τ ≥ 0, thus

�τ−t0
s Z N

s

(
t−0
) = 	τ−t0

s Z N
s

(
t−0
)
, ∀τ ∈ [t1, t0], (11.4)

where �s , given in (3.29), denotes the ε-interaction zone flow of s-particles and 	s ,
given in (3.30), denotes the free flow of s-particles. We also have Zs = (Xs, Vs) ∈
Gs(ε, ε0, δ) ⇒ Z∞s (t+1 ) ∈ Gs(ε0, 0). Moreover, for all i ∈ {1, . . . , k}, we have seen
that for all (ωs+2i−1, ωs+2i , vs+2i−1, vs+2i ) ∈ Bc

mi
(Z∞s+2i−2(t+i ))

Z∞s+2i (t+i+1) ∈ Gs+2i (ε0, 0). (11.5)

Since s < n and n3/2ε << α, (11.2) from Lemma 11.1 implies
∣∣∣XN

s+2i−2(t
+
i )− X∞s+2i−2(t+i )

∣∣∣ ≤ α

2
, ∀i = 1, . . . , k.

Then, Proposition 9.2 yields that for any i = 1, . . . , k, we have

�
τ−ti
s+2i Z

N
s+2i

(
t−i
) = 	

τ−ti
s+2i Z

N
s+2i

(
t−i
)
, ∀τ ∈ [ti+1, ti ]. (11.6)

Moreover, Lemma 11.1 also implies that vN
mi

(t+i ) = v∞mi
(t+i ), for all i = 1, . . . , k.

Therefore, for N large enough such that n3/2ε << α, (11.4), (11.6) yield the expansion

J N
s,k,R,δ(t, J, M)(Xs)= As,k

N,ε

∫

Mc
s (Xs )

φs(Vs)
∫

Tk,δ(t)

∫

Bc
m1(Z

∞
s (t+1 ))

. . .

∫

Bc
mk

(
Z∞s+2k−2(t+k )

)

k∏

i=1
b+
(
ωs+2i−1, ωs+2i , vs+2i−1−v∞mi

(
t+i
)
, vs+2i−v∞mi

(
t+i
))

f (s+2k)
N ,0

(
ZN
s+2k

(
0+
))

×
k∏

i=1
( dωs+2i−1 dωs+2i dvs+2i−1 dvs+2i ) dtk . . . dt1 dVs,

(11.7)
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where, recalling (4.20), we denote

As,k
N,ε
:=

k∏

i=1
AN ,ε,s+2i−2 = 2k(d−2)εk(2d−1)

k∏

i=1
(N − s − 2i + 2)(N − s − 2i + 1).

(11.8)

Remark 11.2. Notice that for fixed s, k ∈ N, (N , ε) in the scaling (4.22), there holds the
estimate

0 < 1− As,k
N,ε
≤ 2

d+1
2 εd−1/2k(s + 2k − 1). (11.9)

In particular As,k
N,ε
↗ 1, as N →∞ and ε → 0 in the scaling (4.22).

Let us approximate the BBGKY hierarchy initial data by Boltzmann hierarchy initial
data defining some auxiliary functionals. Let s ∈ N and Xs ∈ �X

s (ε0). For 1 ≤ k ≤ n,
(J, M) ∈ Us,k and t ∈ [0, T ], we define the auxiliary functional Ĵ N

s,k,R,δ(t, J, M) which

differs from J N
s,k,R,δ(t, J, M) by the absence of the scaling factor As,k

N,ε
and the use of

Boltzmann hierarchy initial data:

Ĵ N
s,k,R,δ(t, J, M)(Xs) :=

∫

Mc
s (Xs )

φs(Vs)
∫

Tk,δ(t)

∫

Bc
m1(Z

∞
s (t+1 ))

. . .

∫

Bc
mk

(
Z∞s+2k−2(t+k )

)

k∏

i=1
b+
(
ωs+2i−1, ωs+2i , vs+2i−1 − v∞mi

(
t+i
)
, vs+2i − v∞mi

(
t+i
))

f (s+2k)
0

(
ZN
s+2k

(
0+
))

×
k∏

i=1
( dωs+2i−1 dωs+2i dvs+2i−1 dvs+2i ) dtk . . . dt1 dVs .

(11.10)

Due to the scaling (4.22) and convergence of the initial data, we conclude that the aux-
iliary functionals approximate the BBGKY hierarchy truncated elementary observables
J N
s,k,R,δ , defined in (11.7).

Proposition 11.3. Let s, n ∈ N, with s < n, α, ε0, R, η, δ be parameters as in (9.2), and
t ∈ [0, T ]. Then for any ζ > 0, there is N∗ = N∗(ζ ) ∈ N, such that for all (N , ε) in
the scaling (4.22) with N > N∗, there holds:

n∑

k=1

∑

(J,M)∈Us,k

‖J N
s,k,R,δ(t, J, M)− Ĵ N

s,k,R,δ(t, J, M)‖L∞(�X
s (ε0))

≤ Cn
d,s,μ0,T ‖φs‖L∞Vs R

d(s+3n)ζ 2. (11.11)

In the case of tensorized initial data and approximation by conditioned BBGKY initial
data (see Proposition 6.6), the estimate can be improved to

n∑

k=1

∑

(J,M)∈Us,k

‖J N
s,k,R,δ(t, J, M)− Ĵ N

s,k,R,δ(t, J, M)‖L∞(�X
s (ε0))

≤ Cn
d,s,β0,μ0,T ‖φs‖L∞Vs R

d(s+3n)ε1/2, (11.12)

for all (N , ε) in the scaling (4.22) with N large enough.
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Proof. Fix 1 ≤ k ≤ n and (J, M) ∈ Us,k . Consider (N , ε) in the scaling (4.22) with
N large enough such that n3/2ε << α. Triangle inequality and the fact that �X

s (ε0) ⊆
�X

s (ε0/2) yield

‖J N
s,k,R,δ(t, J, M)− Ĵ N

s,k,R,δ(t, J, M)‖L∞(�X
s (ε0))

≤ ‖J N
s,k,R,δ(t, J, M)− As,k

N,ε
Ĵ N
s,k,R,δ(t, J, M)‖L∞(�X

s (ε0/2))

+ (1− As,k
N,ε

)‖ Ĵ N
s,k,R,δ(t, J, M)‖L∞(�X

s (ε0)). (11.13)

We estimate each of the terms in (11.13). For the first term, let us fix (t1, . . . , tk) ∈
Tk,δ(t). Applying (11.5) for i = k − 1, we obtain Z∞s+2k−2(t+k ) ∈ Gs+2k−2(ε0, 0). Since
s < n and n3/2ε << α, (11.2), applied for i = k, implies |XN

s+2k−2(t+k )−X∞s+2k−2(t+k )| ≤
α
2 . Therefore, Proposition 9.2 (precisely expression (9.5) for the pre-collisional case,
(9.9) for the post-collisional case) implies ZN

s+2k(0
+) ∈ Gs+2k(ε0/2, 0) ⊆ �s+2k(ε0/2).

Thus (10.16), (10.18)–(10.19), (11.7)–(11.10) imply

‖J N
s,k,R,δ(t, J, M)− As,k

N,ε
Ĵ N
s,k,R,δ(t, J, M)‖L∞(�X

s (ε0/2))

≤ Ck
d,s,T

k! ‖φs‖L∞Vs R
d(s+3k)‖ f (s+2k)

N ,0 − f (s+2k)
0 ‖L∞(�s+2k (ε0/2))

≤ Ck
d,s,T

k! ‖φs‖L∞Vs R
d(s+3k)‖ f (s+2k)

N ,0 − f (s+2k)
0 ‖L∞(Ds+2k,ε ),

(11.14)

as long as ε < ε0/2
√
2 (i.e. N large enough) so that �s+2k(ε0/2) ⊆ Ds+2k,ε . For the

second term, using (10.16) we obtain

‖ Ĵ N
s,k,R,δ(t, J, M)‖L∞(�X

s (ε0)) ≤
Ck
d,s,μ0,T

k! ‖φs‖L∞Vs R
d(s+3k)‖F0‖∞,β0,μ0 .

(11.15)

Adding over all (J, M) ∈ Us,k , k = 1, . . . , n, using (11.13)–(11.15), (11.9) and an
argument similar to (10.20) to control the summation over k = 1, . . . , n , for N large
enough, we obtain the estimate

n∑

k=1

∑

(J,M)∈Us,k

‖J N
s,k,R,δ(t, J, M)− Ĵ N

s,k,R,δ(t, J, M)‖L∞(�X
s (ε0))

≤ Cn
d,s,μ0,T ‖φs‖L∞Vs R

d(s+3n)

×
(

sup
k∈{1,...,n}

‖( f (s+2k)
N ,0 − f (s+2k)

0 )‖L∞(Ds+2k,ε ) + ‖F0‖∞,β0,μ0ε
d−1/2

)
.

Since n is fixed, the result follows from convergence in the level of initial data and the
scaling estimate (11.9).

In the case of tensorized initial data and approximation by conditioned BBGKY
initial data, the estimate can be improved to (11.12) using (6.3). ��
Due to the proximity Lemma 11.1 and the uniform continuity assumption (6.14) on the
Boltzmann hierarchy initial data, we also obtain the following
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Proposition 11.4. Let s, n ∈ N with s < n, α, ε0, R, η, δ be parameters as in (9.2) and
t ∈ [0, T ]. Then for any ζ > 0, there is N∗ = N∗(ζ ) ∈ N, such that for all (N , ε) in
the scaling (4.22) with N > N∗, there holds

n∑

k=1

∑

(J,M)∈Us,k

‖ Ĵ N
s,k,R,δ(t, J, M)− J∞s,k,R,δ(t, J, M)‖L∞(�X

s (ε0))

≤ Cn
d,s,μ0,T ‖φs‖L∞Vs R

d(s+3n)ζ 2. (11.16)

In the case of Hölder continuous C0,γ , γ ∈ (0, 1] tensorized initial data (see Re-
mark 6.3), the estimate can be improved to

n∑

k=1

∑

(J,M)∈Us,k

‖ Ĵ N
s,k,R,δ(t, J, M)− J∞s,k,R,δ(t, J, M)‖L∞(�X

s (ε0))

≤ Cn
d,s,μ0,T ‖φs‖L∞Vs R

d(s+3n)εγ , (11.17)

for all (N , ε) in the scaling (4.22).

Proof. Let ζ > 0. Fix 1 ≤ k ≤ n and (J, M) ∈ Us,k . Since s < n, Lemma 11.1 yields

|ZN
s+2k(0

+)− Z∞s+2k(0+)| ≤
√
6n3/2ε, ∀Zs ∈ R

2ds . (11.18)

Thus the continuity assumption (6.14) on F0, (11.18) and the scaling (4.22) imply that
there exists N∗ = N∗(ζ ) ∈ N, such that for all N > N∗, we have

| f (s+2k)
0 (ZN

s+2k(0
+))− f (s+2k)

0 (Z∞s+2k(0+))| ≤ Cs+2k−1ζ 2, ∀Zs ∈ R
2ds .

(11.19)

In the same spirit as in the proof of Proposition 11.3, using (11.19), (10.16), (10.19),
and summing over (J, M) ∈ Us,k , k = 1, . . . , n, we obtain estimate (11.16).

In the case of tensorized C0,γ data, one can easily see by induction that for any
Zs+2k, Z ′s+2k ∈ R

2d(s+2k), we have

| f ⊗(s+2k)
0 (Zs+2k)− f ⊗(s+2k)

0 (Z ′s+2k)| ≤ ‖ f0‖s+2k−1L∞ [ f0]C0,γ

√
2d(s + 2k)|Zs+2k − Z ′s+2k |γ

≤ Cs+2k−1|Zs+2k − Z ′s+2k |γ .

Thus by (11.18) we have

| f (s+2k)
0 (ZN

s+2k(0
+))− f (s+2k)

0 (Z∞s+2k(0+))| ≤ Cs+2k−1εγ ,

and the estimate (11.17) follows in a similar manner as estimate (11.16). ��
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11.3. Proof of Theorem 6.9. We are now in the position to prove Theorem 6.9. Fix
σ > 0, s ∈ N, φs ∈ Cc(R

ds) and t ∈ [0, T ]. Consider n ∈ N with s < n, and
parameters α, ε0, R, η, δ satisfying (9.2). Let ζ > 0 small enough. Triangle inequality,
Propositions 7.1, 10.2, 10.4, Remark 10.3, estimates (11.11), (11.16) and part (i) of
Definition 6.1, yield that there is N∗(ζ ) ∈ N such that for all N > N∗, we have

‖I Ns (t)− I∞s (t)‖L∞(�X
s (ε0)) ≤ C

(
2−n + e−

β0
3 R2

+ δCn
)

+ CnR4dnη
d−1
4d+2 + CnR4dnζ 2,

(11.20)

where C > 1 is an appropriate constant.
We now choose parameters satisfying (9.2), depending only on ζ , such that the right

hand side of (11.20) becomes less than ζ .
Choice of parameters: For ζ sufficiently small, we choose n ∈ N and the parameters

δ, η, R, ε0, α in the following order:

max
{
s, log2(Cζ−1)

}
<< n, δ << ζC−(n+1),

max
{
1,
√
3β−1/20 ln1/2(Cζ−1)

}
<< R << ζ−1/4dnC−1/4d ,

η << ζ
8d+4
d−1 , ε0 << min{σ, ηδ}, α << ε0 min{1, R−1η}. (11.21)

Relations (11.21) imply the parameters chosen satisfy (9.2) and depend only on ζ . Then,
(11.20)–(11.21) imply that wemay find N0(ζ ) ∈ N, such that for all (N , ε) in the scaling
(4.22) with N > N0, there holds

‖I Ns (t)− I∞s (t)‖L∞(�X
s (σ ))

ε0<σ≤ ‖I Ns (t)− I∞s (t)‖L∞(�X
s (ε0)) < ζ,

and Theorem 6.9 is proved.

Proof of Corollary 6.11. By Theorem 5.13 we have that F = ( f ⊗s)s∈N, where f is the
mild solution of the ternary Boltzmann equation. Therefore, in the same spirit as before
(using estimates (11.12), (11.17) instead of (11.11), (11.16)), for N large enough we
have

‖Iφs f (s)
N (t)− Iφs f

⊗s(t)‖L∞(�X
s (ε0))

≤ C
(
2−n + e−

β0
3 R2

+ δCn
)
+ CnR4dnη

d−1
4d+2 + CnR4dnεγ∗ , (11.22)

where γ∗ = min{1/2, γ } ∈ (0, 1
2 ] and γ is the Hölder regularity of f0. Consider

0 < r < γ∗.
Choice of parameters: For N large enough (or equivalently for ε small enough), we

choose n ∈ N and the parameters δ, η, R, ε0, α in the following order:

max
{
s, log2(Cεγ∗)

}
<< n, δ << εγ∗C−(n+1),

max
{
1,
√
3β−1/20 ln1/2(Cε−γ∗)

}
<< R << ε

r−γ∗
4dn C−1/4d ,

η << ε
4d+2)
d−1 γ∗ , ε0 << min{σ, ηδ}, α << ε0 min{1, R−1η}. (11.23)

Then by (11.22), for N large enough, we take

‖Iφs f (s)
N (t)− Iφs f

⊗s(t)‖L∞(�X
s (σ ))

ε0<σ≤ ‖Iφs f (s)
N (t)− Iφs f

⊗s(t)‖L∞(�X
s (ε0))

< εr ,

and Corollary 6.11 is proved. ��
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Appendix A. Auxiliary Results

In this appendix, we state two auxiliary results. For the proofs, see [2].

Lemma A.1. Let n ∈ N, λ �= 0 andw, u ∈ R
n. Denoting by In the n×n identity matrix,

we have

det(λIn + wuT ) = λn(1 + λ−1〈w, u〉).
Lemma A.2. Let n ∈ N, � : R

n → R be a C1 function and γ ∈ R. Assume there is
δ > 0 with ∇�(ω) �= 0 for ω ∈ [γ − δ < � < γ + δ]. Let � ⊆ R

n be a domain and
consider a C1 map F : �→ R

n of non-zero Jacobian in �. Then for any measurable
g : Rn → [0,+∞] or g : Rn → [−∞,+∞] integrable

∫

[�=γ ]
g(ν)NF (ν, [� ◦ F = γ ]) dσ(ν)

=
∫

[�◦F=γ ]
(g ◦ F)(ω)| Jac F(ω)| |∇�(F(ω))|

|∇(� ◦ F)(ω)| dσ(ω), (A.1)

where given ν ∈ R
n and A ⊆ �, NF (ν, A) := card({ω ∈ A : F(ω) = ν}) is the

Banach indicatrix of A.
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