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Abstract: In this paper, we present a rigorous derivation of a new Kkinetic equation
describing the limiting behavior of a classical system of particles with three particle
elastic instantaneous interactions, which are modeled using a non-symmetric version of
a ternary distance. The ternary collisional operator we derive can be seen as the first step
towards obtaining a toy model for a non-ideal gas where higher order interactions are
taken into account.
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1. Introduction

The Boltzmann equation [8—11] is the central equation of collisional kinetic theory. It is
a nonlinear integro-differential equation giving the statistical description of a dilute gas
in non-equilibrium in R?, for 4 > 2. It is given by

f+v-Vof =0a(f, ), (t,x,v) € (0,00) x R? x R?, (1.1)

where the unknown function f : [0, 00) x R? x R? — R represents the probability
density of finding a molecule of the gas in position x € RY, with velocity v € R?, at
time r > 0. The expression Q2 (f, f) on the right hand side of (1.1) is the collisional
operator which is an appropriate quadratic integral operator acting on f, taking into
account binary interactions of a pair of gas particles. Its exact form depends on the type
of interaction between particles. Since the gas is assumed to be very dilute, interactions
among three particles or higher order interactions are neglected due to much lower
probability of occurring compared to binary.
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However, when the gas is dense enough, higher order interactions are much more
likely to happen, therefore they produce a significant effect to the evolution of the gas and
one needs to take them into consideration. An example of such a situation is a colloid,
which is a homogeneous non-crystalline substance consisting of either large molecules
or ultramicroscopic particles of one substance dispersed through a second substance.
As pointed out in [29], multi-interactions among particles significantly contribute to the
grand potential of a colloidal gas and are modeled by a sum of higher order interaction
terms. A surprising but very important result of [29] is that interactions among three
particles actually depend on the sum of the distances between particles, as opposed
to depending on different geometric configurations among interacting particles. This
observation is apparently of invaluable computational importance since it significantly
simplifies numerical calculations on three particle interactions. The results of [29] have
been further verified experimentally e.g. [16] and numerically e.g. [25].

1.1. The program introduced and the goal of this paper. Motivated by the fact that the
Boltzmann equation is valid only for very dilute gases and by the observations of [29]
that multi-interactions among particles contribute to the colloidal gas (although in this
paper we do not model colloids), we aim to introduce and rigorously derive (from a
system of classical particles) a kinetic model which goes beyond binary interactions, by
incorporating a sum of higher order interaction terms in (1.1). Such an equation, which
could serve as a toy model for a non-ideal gas, would be of the form

Of+v-Vof =Y O(fi forr . f), (t.x,v) € (0,00 xR xR, (1.2)
—

k=2 k-times

where for k = 1, ..., m, the expression Qr(f, f,..., f) is the k-th order collisional
operator and m € N is the accuracy of the approximation. Notice that for m = 2,
Eq. (1.2) reduces to the classical Boltzmann equation (1.1).

The task of rigorously deriving an equation of the form (1.2) from a classical many
particle system, even for the case m = 2, is a challenging problem that has been set-
tled for short times only in certain situations; for hard-sphere interactions, the analysis
was pioneered by Lanford [27] and recently completed by Gallagher, Saint-Raymond,
Texier [19], while for short-range potentials, it has been done in [19,26,28]. Up to our
knowledge, the case m = 3 i.e. derivation of the equation

Wf+v-Vof = 0o(f /)+03(f. £, )y (t,x,v) € (0,00) x RY x RY, (1.3)

has not been studied at all. We refer to (1.3) as the binary—ternary Boltzmann equation.
We mention that in a recent work with Gamba and Taskovi¢ [3] we proved global well-
posedness of (1.3) for small initial data near vacuum.

In addition to understanding binary interactions and interactions among three par-
ticles, derivation of (1.3) requires careful analysis of their mutual interactions. This
challenging task has been carried out in a subsequent work [4] since it requires a deep
understanding of interactions between three particles and their connection to binary in-
teractions. For this reason, in this paper, we focus on understanding interactions among
three particles and rigorously deriving a purely ternary equation, which itself brings a
lot of challenges due to combinatorial and configurational intricacies of evolving in time
interactions among three particles. We derive an equation of the form

Wf+v-Vof =03(f f, f), (@t x,v) € (0,00) xR x RY, (1.4)
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where Q3(f, f, f) is the ternary collisional operator which is an integral operator of
cubic order in f. We refer to (1.4) as the ternary Boltzmann equation. Global well-
posedness for small initial data near vacuum holds as a special case of the results of
[3].

Let us mention that Maxwell models with multiple particle interactions have been
studied in [5,6] using Fourier transform methods.

Also, we note that attempts for generalization of the Boltzmann equation using for-
mal density expansions were made by physicists in the past, see e.g. [12,13,22,23,30],
but in a different context than ours. These attempts have not been further developed
since since the fourth and higher order collisions, terms as well as the virial expansion
of the solution, diverged as the number of particles increased. According to [14], the
divergences originate from the desire to make a systematic expansion of the macroscopic
properties of a large system consisting of many particles in terms of the properties of
small (isolated) groups of 2, 3, 4 etc particles, i.e., from the basic idea of the virial ex-
pansion itself. This leads to formal expansions in terms of collision integrals containing
the dynamics of an increasing number of particles. These integrals diverge, however, in
general, due to long range dynamical correlations between successive collisions of these
particles, introduced by the possibility of unrestricted free motion of particles between
successive collisions.

1.2. Ternary interactions and their scaling. In a typical, dilute hard-sphere gas, the
probability of a simultaneous contact of three hard-spheres is very small compared to
e.g. the situation when one of the three particles is in simultaneous contact with the other
two particles. Motivated by this observation and the fact that in some physical situations,
such as when one considers colloids as in [29], interactions among three particles are
determined by the sum of the distances of the interacting particles, we introduce the
notion of an interaction of three particles based on a non-symmetric version of a ternary
distance. More precisely, we introduce the ternary distance:

. ) d
d(x1; x2,x3) 1= V/|x1 — xa2 + [x1 — x32,  x1,x2, x3 € RY, (1.5)

Having defined the ternary distance, we introduce the notion of a ternary interaction. Let
€ > 0 and consider three particles i, j, k with positions and velocities (x;, v;), (x;, v;),
(xx, ) € R??. We say that the particles i, j, k are in (i; j, k) ternary e-interaction! if
the following geometric condition holds:

4> (xi; xj, x0) = i — X7 + 1 — xl* = 267, (1.6)

The parameter € above is called interaction zone. The i-th particle is called the central
collisional particle, while the particles j, k are called adjacent collisional particles.

Heuristically speaking, an (i; j, k) interaction expresses the interaction of the central
particle i with the pair of the uncorrelated adjacent particles (j, k) with respect to the
interaction zone €. By uncorrelated, we mean that particles j, k are not directly affected
by each other. For example, Fig. 1 shows particles that are not in ternary interaction,
while Fig. 2 offers two examples of particles which are in ternary interaction.

Let us now describe how velocities instantaneously transform when a ternary in-
teraction happens. Consider an (i; j, k) ternary e-interaction. Let v}, v;’.‘, v denote the
velocities of the interacting particles after the interaction. Assuming the particles are

1 When not ambiguous, we will refer to (i; j, k) ternary e-interaction as (i; j, k) interaction.



Rigorous Derivation of a Ternary Boltzmann Equation... 797

T

2¢

2¢
xZ; X

Fig. 1. No ternary interaction

Tk
Lk

V6
26

¢ ?
T ——— T T;

€

Ly
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of equal mass m = 1, we consider the interaction to be elastic i.e. the three particle
momentum-energy conservation system is satisfied:

* * *
Vi F U U =0+ V) + g (L.7)

2 2 2 2 2 2
[0 17+ 10717 + Jog 17 = v | + o] = + Juel * (1.8)

Now we introduce the relative positions re-scaled vectors (@1, @;) 1= (xf/i:l , xf/_izi) .
Notice that (1.6) implies (@}, @») € S%d_l ie. |@1]? + |@2|> = 1. We shall call the
vectors @i, wy impact directions of the interaction. Since the i particle interacts with
the pair of uncorrelated particles (j, k), we assume the velocities v, vy transform with
respect to the impact directions unit vector i.e.

v Vi 6~z)1
(9)-()+(2)

for some ¢ € R. We note that once we added condition® (1.9) to the system (1.7)—(1.8),
the new system has a unique solution that algebraically characterizes the conserva-
tion of momentum and energy for the type of ternary interaction defined in (1.6). It is
straightforward to verify that (1.7)—=(1.9) yield that v, v}‘f , vf are given by the collisional
formulas

2 We note that (1.9) is the ternary analogue of the condition that appears when one considers binary
interactions, see e.g. [19].
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(@1, v — v;) + (@2, vk — V;)

v = v + ——— (@1 + @),

I+ (w1, w2)

(@1,v; —vi) + (@2, vk — Vi) -

v =v; — UL Lo, (1.10)
: 1+ (wy, w2)
N (01, v —v;) + {2, vk — Vi) o
v = Uk — = 2.

1+ {(wy, w2)

1.3. Phase space and scaling of ternary interactions. Now we are ready to describe the
evolution of a system of N-particles of e-interaction zone. Recall that in this paper we
pursue only ternary interactions analysis, thus the phase space will take into account
only those.

Definition 1.1. Let d € N, withd > 2, N € N and € > 0. The phase space of the

N-particle system of e-interaction zone is defined as:

Dy = {ZN = (X, VN) € R¥N . P(xiixj. ) 2262 Vi<i<j<k< N},
(1.11)

Wheredz(xi; Xj, xp) = |x; —xj|2+|x,~ —xk|2, and Xy = (x1,...,XxN) € RIN vy =
(vi,...,VN) € R4V, represent the positions and velocities of the N-particles.

In terms of scaling, one could interpret an (i; j, k) of interaction zone € as a special
hard sphere interaction of radius V2e in R since expression (1.6) can be written as

i — X} kl2a = V2,

Xi Xj . . ..
where x; ; = | ') and x; x = (/). Then a 2d-particle with position x; ; would
b xl .]’ .Xk b
span a volume of order €2~ in a unit of time. In order to observe O (1) interaction per
unit of time, there are N2 options for the 2d-particle positioned at x j,k- We obtain that

N?e24=1 = 0(1) or equivalently
Ned=12 = o(1). (1.12)

This is the new scaling in which we will observe this kind of ternary interactions, see
Sect. 4 for the explicit appearance of this scaling in the calculations.

Remark 1.2. The phase space (1.11) will produce the kinetic equation (1.15), in which the
tracked particle is always the central particle of the interactions occurring. Alternatively,
by working on the phase space

Dy.e={Zn=(Xn, Vy) € R¥V . dP(xi, x;, xx) = 262, V(i, j, k, 1) € Ty}, (1.13)
where

sz{(i, Jok, D) (i, j,k)yeZyandl :{i, j k} — {i,Jj, k} is a permutation},

di(xi, xj, x) = \/|xli — x| + |xg; = x 2,

and using similar arguments as in this paper, one can derive a symmetrized version of
(1.15), in which the tracked particle can be either central or adjacent. Moreover, it has
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been shown in [2], that the symmetrized ternary equation satisfies similar statistical and
entropy production properties as the classical Boltzmann equation. In particular, it has a
weak formulation which yields an H-Theorem and local conservation of mass, momen-
tum and energy. For simplicity, we opt to work with the phase space (1.11). However,
we would like to mention that all the intermediate results needed for the derivation of
the symmetrized ternary equation can be obtained after some minor changes, see [2] for
more details.

1.4. Global existence of a flow and the Liouville equation. Let us now describe the
evolution in time of a system of particles in the phase space (1.11). Consider an initial
configuration Zy € Dy .. The motion is described as follows:

(D) Particles are assumed to perform rectilinear motion as long as there is no interaction
ie.

% =vj, v =0, Vie{l,...,N}

(II) Assume now that an initial configuration Zy = (X, Vi) has evolved until time
t > 0, reaching Zy(t) = (Xy(t), Vn(t)), and there is an (i; j, k) interaction
at time 7. Then the velocities (v;(¢), v;(¢), vx(¢)) instantaneously transform to
WF (1), Vi), V().

We remark that it is not at all obvious that (I)—(II) produce a well defined dynamics,
since the evolution is not smooth in time, and the system can possibly run into patho-
logical configurations. In the case of binary interactions, the analogous result has been
established in the work of Alexander [1]. Our dynamics will be constructed in a similar
spirit to [1]. However a distinction between ternary precollisional and postcollisional
configurations as well as new geometric estimates are needed in order to control possible
emergence of pathological trajectories.

We informally state the first main result of this paper, for a rigorous statement see
Theorem 3.14.

Existence of a global flow: Let m € N and 0 < o0 << 1. There is a global in time
measure-preserving flow (W! ),er : Do — Dm.o Which preserves kinetic energy.
This flow is called the o -interaction zone flow of m-particles or simply the interaction
flow.

The main difficulty in proving Theorem 3.14 is the elimination of configurations
following pathological trajectories in time. In particular, in order to go from local to
global in time flow we establish the following crucial fact—when an (i; j, k) interaction
happens, then the subsequent interaction cannot involve the same triplet of particles. This
observation enables us to develop ellipsoidal coverings and new geometric estimates to
control the measure of these pathological sets.

The global measure-preserving interaction flow established yields a Liouville equa-
tion (see (3.31)) for the evolution fy of an initial N-particle of e-interaction zone
probability density fu 0.

1.5. The ternary equation derived. Although Liouville’s equation is a linear transport
equation, efficiently solving it is almost impossible in case where the particle number
N is very large. This is why an accurate statistical description is welcome, and to obtain
it one wants to understand the limiting behavior of it as N — oo and € — 0%, with
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the hope that qualitative properties will be revealed for a large but finite N. Letting the
number of particles N — oo and the interaction zone € — 0% in the new scaling:

Ned=1/2 = p1=d/2 (1.14)
we derive the ternary Boltzmann equation
of +v-Vif = Q3(f £ ), (tx,v) € (0,00 x RT xR (1.15)

The expression Q3 (f, f, f) is the ternary cubic order collisional operator, given by:

_ by(w1, w2, v1 —v, V2 — V)
Os3(f. f. ) = /S%d_lxﬂw o o)
(S ST 15 = fh 1) doy doy dvy dv, (1.16)

where

b(wi, w2, v1 — v, v2 — V) = (w1, V] — V) + (w2, v2 — V), by =max{b,0},

fF=f,x v, f=fx, ), 5= £ x0)), fi= f, x,v)fori €({l,2}.
(1.17)

Remark 1.3. The ternary collisional operator could be written in a more general form
as:

0s(f, f. f) = /

S0 2

B, ) (f*f1 15 = ffif2) doy der dvi dvy,

where u = (Z;:g) eR¥ o= (g;) € S%d_l are the vectors of relative velocities and

scaled relative positions of the colliding particles. Of particular interest would be the
power law potentials:

B(u, ®) = |u|"b(@ - o, (01, »2)),

where b is the differential cross-section and  is the unit vector in the direction of . In
this paper, we derive Eq. (1.15) for the case

@ - w);
VT+ (o, o)

y=1, b(@-w,(w,wm) =

For a study of the global well-posedness of (1.15) for power law potentials with y €
(—2d + 1, 1], see [3].
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1.6. Strategy of the derivation and statement of the main result. Now the natural ques-
tion is: how do we pass from the N-particle dynamics to the kinetic equation (1.15)? We
implement the program pioneered by Lanford [27] and recently refined by Gallagher,
Saint-Raymond, Texier [19] for deriving, for short times, the classical Boltzmann equa-
tion (1.1) for hard-spheres in the Boltzmann-Grad [20,21] scaling N ¢d=1 ~ 1. This
program has been implemented in the case of short range potentials too e.g. [19,26,28].
However, to the best of our knowledge, the program has not been explored outside of
the context of binary interactions. By generalizing the program to allow consideration
of ternary particle interactions, we illustrate that the program is universal enough. How-
ever to make it applicable to ternary interactions we follow evolution in time of ternary
particle interactions, that inform new mathematical arguments described below.

We first derive a finite two-step® coupled hierarchy of equations for the marginals
densities of the solution to the Liouville equation, which we call the BBGKY* hierarchy.
We then formally let N — oo and € — 0" in the scaling (1.14) to obtain an infinite two-
step coupled hierarchy of equations, which we call the Boltzmann hierarchy. It can be
observed that for factorized initial data, the Boltzmann hierarchy reduces to the ternary
Boltzmann equation (1.15). This observation connects the Boltzmann hierarchy with the
ternary Boltzmann equation.

To make this argument rigorous, we first need to show that the BBGKY and Boltz-

mann hierarchy are well-posed, at least for short times, and then that if the BBGKY initial
data converge to the Boltzmann hierarchy initial data, then this convergence propagates
in time in the scaling (1.14). Local well-posedness is shown in Sect. 5, see Theorems 5.5
and 5.8. Showing convergence is a very challenging task and is the heart of our contri-
bution. We informally state our main result here. For a rigorous statement of the result
see Theorem 6.9.
Statement of the main result: Let F{ be initial data for the Boltzmann hierarchy, and
Fn o be some BBGKY hierarchy initial data which “approximate” Fp as N — oo,
€ — 07 under the scaling (1.14). Let Fy be the solution to the BBGKY hierarchy with
initial data Fyy o, and F the solution to the Boltzmann hierarchy, with initial data Fy,
up to short time 7 > 0. Then Fy converges in observables to F in [0, T] as N — oo,
€ — 0%, under the scaling (1.14). In the case of Holder continuous C%",y € (0, 1]
tensorized Boltzmann hierarchy initial data and approximation by conditioned BBGKY
hierarchy initial data, we obtain convergence to the solution of the ternary Boltzmann
equation (1.15) with a rate O(€") for any 0 < r < min{1/2, y}.

The proof of this result is achieved by repeatedly using Duhamel’s formula for the
finite and infinite hierarchy respectively and comparing the corresponding series expan-
sions. However this a delicate point because of the divergence between the finite particle
flow and the free flow, due to the ternary interactions of particles in the finite particle
case. The problem of divergence is present in the derivation of the classical Boltzmann
equation as well, see [19,27], but our case is significantly harder due the complexity of
ternary interactions. To overcome this problem, we develop new geometric and combi-
natorial estimates, that help us extract small measure sets of initial data which lead to
these diverging trajectories. In particular the main difficulty is to control post-collisional
configurations and it requires completely new treatment. To achieve that, we need to ex-
plicitly calculate the Jacobian of ternary interactions with respect to impact directions,
and estimate the surface measure of sets of the form (K g x R NS, where K g isa

3 The two-step refers to the coupling between the k-th element of the hierarchy and the (k + 2)-th element
of the hierarchy.

4 Bogoliubov, Born, Green, Kirkwood, Yvon.
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d-dimensional solid cylinder of radius p and S is an appropriate ellipsoid in R??. These
results are thoroughly presented in Sect. 8.

1.7. Further discussion. While this paper models ternary interactions among particles
via a concept of a ternary distance (namely when (1.6) holds), we note that a more
physical way would be to employ a three-body potential of a small interaction zone. In
particular, one could consider ® : R?? — R non-negative, smooth and supported in the
unit ball Blz‘i. Then one would work in the entire space with Newton’s equations

).Cizvi l)i=—— Z V@(u,u>.
€ .. € €
i,j,kefl,...,N}
i#j#k
Although we did not pursue analysis of this model, we expect that the relevant scaling
(1.14) and the techniques introduced in this paper might be helpful in that context as
well.

1.8. Notation. For convenience, we introduce some basic notation which will be used
throughout the manuscript:

e We write x < y if there exists Cy > 0 with x < Cyy.

e Givenn € N, p > 0and w € R", we write Bz(w) for the n-closed ball of radius
p > 0, centered at w € R”". In particular, we write B;} = Bz (0) for the p-ball
centered at the origin.

e Givenn € Nand p > 0, we write SZ_I for the (n — 1)-sphere of radius p > 0.

e We write x << y, when x < cy for some number 0 < ¢ < 1 small enough.

2. Collisional Transformation of Three Particles

In this section, we define the collisional transformation of three particles induced by a
pair of impact directions, and investigate its properties.

For convenience, given (w1, w2, v1, V2, V3) € S%d_l x R34 let us write

(w1, v2 — V1) + (w2, V3 — V1)

Coy,mp,v1,02,03 = 1+ (1. ) . 2.1

Notice that c¢g;, w),v1,v0,v3 1S Well-defined for all (w1, w2, v1, v2,v3) € Sf‘lil x R34,
since

1 1
L+ (@102) = 1= [orllo2l = 1= 3 (jo1 + jeal’) = 5. (2.2)

Definition 2.1. Consider impact directions (w1, @) € S%df] . We define the collisional
transformation induced by (wi, w2) € S%d_l as Ty 0 © (V1,v2,03) € R34
(vi,v3,v3) € R34 where

V] = V1 + Coyp,wn,v1,02,03 (@1 + @2),
Uy = V2 — Coy,w;,v1,v2,03P1 (2.3)

U3 = U3 — Cop.,v1,02,03025

and Coy s, v1,00,v; 18 given by (2.1).



Rigorous Derivation of a Ternary Boltzmann Equation... 803
In the following definition, we introduce the notion of the cross-section which will have
a prominent role in the rest of the paper.

Definition 2.2. We define the cross-section® b : S%dfl x R?4 — R as:

b(wi, w2, vi, 12) = (@1, V1) + (@2, 12), (@1, w2, v1,12) €SP x R¥M. (2.4)
Notice that by (2.1), (2.4) we have

b(a)l, w2, V2 — V1, V3 — U]) = (1 + (a)lv (1)2)) Cwy,wy,v1,02,03+ (25)

Direct algebraic calculations illustrate the main properties of the collisional tranforma-
tion.

Proposition 2.3. Consider a pair of impact directions (w1, @;) € S%d_l. The induced
collisional transformation T, ., has the following properties:

(i) Conservation of momentum
VI 4+ U3+ U3 = v+ v+ 03, (2.6)
(ii) Conservation of energy:

2 2 2 2 2 2
o7 |7 + 037 + [v3]7 = [v1]” + Jva]” + |3 2.7

(iii) Conservation of relative velocities magnitude:

2 P 2 2 2 2
ol — 3|7+ o] —v3|7 + [v3 — V3|7 = v — v2|” + v — V3|7 + v — w3l

(2.8)

(iv) Micro-reversibility of the cross-section:
b(wi, w2, v3 — vj,v3 —v]) = —b(wi, wa, v2 — V1, V3 — V1). (2.9)
(V) Tw,.w, is a linear involution i.e. Ty, o, is linear, Twﬂwz = Tu,.wy- In particular

|det Ty w, | = 1, thus Ty, o, Is measure-preserving.

Proof. (i) and (ii) are guaranteed by construction. (iii) comes immediately after com-
bining (i) and (ii). To prove (iv), we use (2.3) to obtain
vy — v = v — v — 2cw) — cwp, V3 — U] =3 — v — 2cwp — coj.

Using the fact that (w1, wp) € S%d_l, and recalling (2.5), we get

b* = (w1, v5 — v]) + (w2, v3 — V) = (w1, v2 — V1) + (@2, V3 — V1)

= 2¢o1,00,01,00.03 (1 + (01, @2)) = =b,

where we use the notation b := b(w1, w2, v2—v1, V3—1),b* 1= b(w|, w2, V; =V}, V3—
vi‘). To prove (v), first notice that 7,,, ., is linear in velocities. Recalling notation from

(2.5), (iv) implies that ¢* = —c where ¢* := Conwp, vt 05,050 € 7= Copmr,v,02,03- This
observz}tion and (2.3) diref:tly imply that 7, }wz = Ty,,0,- Clearly |det T, ,| = 1 and
Ty, 1S measure-preserving. O

5 We
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3. Dynamics of m-Particles

In this section we rigorously define the dynamics of m-particles of small interaction
zone 0 < o0 << 1. Heuristically speaking particles perform free motion as long as they
are not interacting, and instantaneously transform velocities according to the collisional
transformation, defined in Sect. 2, when they interact. Intuitively, the dynamics is well-
defined as long as we have well-separated in time interactions, such that each of those
interactions involves only one triplet. Here, we show that a flow can be defined for almost
all initial configurations.

Throughout this section we consider m € Nand 0 < 0 << 1. We assume m > 3
unless stated.

3.1. Phase space definitions. Consider the setZ, :={(i, j,kell, ..., m}3 i< <k}
of ordered triples in {1, ..., m}. We define the phase space of the m-particles of o-
interaction zone as

Do i= | Zin = (X, V) € R¥™ (i3 ;200 2 202, (G, oK) € T}

(3.1)
where X, = (X1, ..., %m) € R V., = (v,...,v,) € RIM represent the positions
and velocities of the m-particles respectively, and

d(xi§xjaxk):\/|xi_xj|2+|xi_xk|21 (3.2)

is the distance in positions of the particles i, j, k. Finally, we also define Dy , = R2d,
Df o = R?. Elements of Dy, are called phase space configurations.
The phase space D,, » decomposes to the interior and the boundary:

o

Do = [zm = (X, Vi) € R 2 g2 (x;1 xj. x0) > 202, Vi, j. k) € Im},

(3.3)

0Dy o = U Yijk, Lijk = {Zm = (Xm, Vi) € Do :d2(x,~; Xj, X)) = 202} .
(i, j.k)€Dn

(3.4)

We further decompose the boundary to simple collisions and multiple collisions
respectively:

05¢Dm.oc = {Zm = (Xm, Vin) € 0Dy, : there is unique (I, j, k) € L, : Z € E,-jk},
(3.5

OmeDmo = {Zm = X, Vin) € 0Dp,o : there are (i, j, k)
£ j k) €Dy Zy € Sipg NSy jur} (3.6)

Notice that in the special case m = 3, we have 9,,,D3 » = ¥ and 0D3 5 = 95.D3 5, 1.€.
there are no multiple collisions when we consider only three particles.



Rigorous Derivation of a Ternary Boltzmann Equation... 805

Definition 3.1. Consider Z,, € d5.D . Then there is a unique triplet (i, j, k) € Z,
such that Z,, € Z;ji. In this case we will say that Z,, is an (i; j, k) simple collision and
we will write

fj‘k = {Zm = (Xm, Vi) € 95¢Dm.oc : Zn is (i; j, k) simple collision} . (37

Remark 3.2. Notice that Effkﬁfoj,k, =0, VU, j k) #G,j,k)eLy,, and 3Dy o
decomposes to dsc D6 = U(i,j,k)eIm Effk.

For the purposes of defining a global flow, throughout this section we use the following
notation:

Definition 3.3. Let (i, j, k) € Z,, and Z,, € El.s]?k. We introduce

1
«/Ea

Therefore, each (i; j, k) simple collision naturally induces impact directions (@1, @2) €
S%d_l , and a collisional transformation 77, ,.

(@1, @) = (xj — xi,x6 — x;) €SP (3.8)

We also give the following definition:

Definition 3.4. Let (i, j,k) € Z,, and Z,, = (X, Vi) € Effk. We denote Z) =
(Xm, V), where

* * * *k
Vm = (Ula ey Ui, Uj > Vigly « oo vj—lv vjv Uj+], cees Uk—1, Uk, Uk+1s +++» Um),

and (v, v}, vp) = T35, (vi, vj, v), (@1, @2) € S%d_l are given by (3.8).

3.2. Classification of simple collisions. Now, we classify simple collisions in order to
eliminate collisions which graze under time evolution. Informally speaking, a simple
collisional configuration will be precollisional when the three interacting particles have
the velocities which led them to the interaction and postcollisional when the velocities
have already changed by the collision according to the transformation (2.3). As we will
see in Lemma 3.7, a simple collisional configuration can be characterized by the sign of
the cross-section. More specifically, we introduce the following language:

Definition 3.5. Let (i, j, k) € Z,, and Z,,, € ij”k. The configuration Z,, is called:
(i) pre-collisional when b (@, @2, vj — v;, vk — v;) < 0,
(ii) post-collisional when b(@1, @2, v; — v;, vk — v;) > 0,
(iii) grazing when b(@1, @2, vj — v;, vy — v;) = 0, where (@1, @) € S%d_l is given by
(3.8) and b is given by (2.4).
Remark 3.6. Let (i, j, k) € Z,,, and Z,, € Ef]?k. Using (2.9), we obtain the following:

(i) Z,, is pre-collisional iff Z7, is post-collisional.
(ii) Z,, is post-collisional iff Z is pre-collisional.
(iii) Z,, = Z}}, iff Z,,, is grazing.

We consider the subset of the phase space: D:‘n’ﬂ = om‘g U 0s¢,ng Dm,o» Where
asc,ngDm,o = {Zm = (Xm, V) € 8scDm,U 2 Zy 1 non-grazing} .

Notice that D,’j“, is a full measure subset of Dy, » and ds¢,ngDm,o 18 a full surface

measure subset of 0Dy, 5.
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3.3. Construction of the local flow. Here, we show that each Z,, € Dy, , follows a
well-defined trajectory for short time. Next Lemma defines the flow for any initial con-
figuration in Dy, . up to the first collision time.

Lemma 3.7. Consider Z,, = (X,,, V;u) € D¥ _. Then there is a time r%m € (0, o0]

m,o*

such that defining Z,,(-) : (0, r%m] —> R2dm by:

Zin(@) = (X (), Vi ()
N Xm +tVi, Vi), if Zp is non-collisional or post-collisional,
T X +tVEVE), if Zyy is pre-collisional,

the following hold:

(i) Zn(t) € Dug, Vi€ 0,17),
(ii) if Ty < 00, then Zy(ty ) € Dp.o,

(iii) If Zyy € T3¢

ik for some (i, j, k) € Z,,,, and r%m < 00, then Zm(rém) ¢ Zijk,

The time ‘L’%m is called the first (forward) collision time of Z,,. The first negative collision

time can be defined analogously.

Proof. Let us make the convention inf § = +00. We define

1 inf {t >0: X, +1Vyy € 0Dp,c}, if Zy is post-collisional,

= 3.9
inf {t >0:X,+tV} e E)Dmﬁ} , if Z,, is pre-collisional. (3-9)

T, =

e Assume that Z,, € Dm,, Since ﬁm,g is open and the free flow is continuous, we
obtain rém > 0, and claims (7)-(ii) follow immediately from (3.9).
e Assume now that Z, € OscngDm,o, hence Z,, is a simple non-grazing collision.

Therefore we may distinguish the following cases:

(D Z,, is an (i; j, k) post-collisional configuration: For any r > 0, we have

d2(x,-+tvi;xj+tvj,xk+tvk)2202+2tb(xj — Xi, Xk — Xj, Vj — Vi, Uk — v,-)>202,
(3.10)

since b(1, @3, vj —v;, vp —v;) > 0. This inequality and the fact that Z,, is simple
collision imply that tém > 0, and claim (i) holds. Claim (ii) follows from (3.9) and
claim (iii) follows from (3.10).

(IT) Z,, is (i; j, k) pre-collisional: We use the same argument for Z which is (i; j, k)
post-collisional. O

Let us make an elementary, but crucial remark which will turn of fundamental importance
when extending the flow globally in time.

Remark 3.8. For configurations with ‘L’ém = oo the flow is globally defined as the free
flow. In the case where ‘L’ém < ooand Z,, (rém) € 0y¢,ng Dm0 » we may apply Lemma 3.7

once more, considering Z,, (r%m) as initial point, and extend the flow up to the second

2 1
=T .
Zm Zm (Tém )

part (iii) of Lemma 3.7 implies that Z,, (‘C%m) ¢ Zijk-

collision time T Moreover, if Z,, (r%m) € Eisfk for some (i, j, k) € I,
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3.4. Extension to a global interaction flow. Now, we extract a null set from Dj, , such
that the flow is globally defined for positive times on the complement. For this purpose,
we consider truncation parameters in the scaling:

0<déR<<o<<l<R<p. (3.11)

We first assume initial positions are in Bg’” and initial velocities in B%m. We decom-
pose Dy, . N (B/’fm X Bfl{”) as follows:

Ifree = {Zm = (Xm, V) € Dy, ; N (Bg’" X B%’") : Tém > 8] ,

L g = {Zm = Xn, Vi) € Djs , 0 (BA" x BY") : 7} <6,
Zm(fém) € 8sc,ngDm,av and T%m > 8}’
Islc,g . {Zm =X, Vi) € D::z,a N (Bg’" X B;iem) : 'Cém < §6,
Zn(t},) € 05 Dmg, but Zy (ty, ) is grazing}, (3.12)

o= {zm = (X, Vi) € Dy O (BI™ x BI™) 1t} <6,

Zn(ty )€ amcDm,a},
12 e = Zn = X, Vi) € D}, N (Bgm x Bd™) z}m <8,

1 2
Zm(fzm) € asc,ngDm,oa but TZm < 8}

Notice that for Z,;, € Ifree U I S]C’n . thanks to Lemma 3.7, the flow is well defined up
to time &, and there occurs at most one simple non-grazing collision in (0, §).

3.4.1. Covering arguments Now, we make an ellipsoid shell covering of the set I,}i U
2. in a way that we can estimate the measure of the coverings.

sc,ng
Lemma 3.9. For m = 3, there holds Inlw = Iszc’ng = (). For m > 4, the following
inclusion holds:

IS2¢f,ng Ul,. < U (Uijk N Ui jir) (3.13)

(. J KA KTy
Uiji := {zm = (Xm. Vi) € BI™ x BE" : 207 < d*(x;; xj,x0) < (V20 +48R)2} .
(3.14)

Proof. For m = 3, we have 0, D3, = ¥, thus I,,lw = (. Also, since m = 3, we obtain
I3 = {(1, 2, 3)}, hence Remark 3.8 implies that ‘L’%m = oo i.e. there is no other collision
=0.

Let m > 4. We first assume that either Z,, € Zo)m,g or Z,, is post-collisional. We first

prove the inclusion for . Assuming that Z,, (‘L’%m) € isan (i; j, k) non-grazing
collision, we have

: 2
in the future, so I, ,,,

2 2
Isc,ng Isc,ng

d* (x,- (tém> X (r%m) s Xk (rém» =207
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Since there is free motion up to . and Tz, = 8, triangle inequality implies
1 1 1 1
i — x| < Ixi(eh ) = xj(eh )+ 8lv — vj] < |xi(eh ) — xj(t) )] +28R.(3.15)
Since there is collision at rém, we have

xi(ty ) — xj(ty P+ Ixi(ry ) — xe(ty )P =207 = |xi(1) ) — x;(15 )| < V20.
(3.16)

Combining (3.15)—(3.16), we obtain

i — ;1% < |xi(ry, ) — x;(1) )1* +4v/208R +48° R?. (3.17)

m

Using the same argument for the pair (i, k), adding, and recalling the fact that there is
(i; j, k) simple collision at rém , we obtain

202 < d*(xi; xj, xx) < 20% +8vV20 RS +88R? < (v20 +45R)*,  (3.18)

where the lower inequality holds trivially since Z,, € D, ,. By (3.18), we obtain
Zm € Uijjk.

Remark 3.8 guarantees that Zm(r%m) ¢ Zijk. So Zm(t%m) € Xy jn for some
@', j', k') # (i, j, k). Moreover, particles keep performing free motion in [rém, r% ) ex-

m

cept particles i, j, k whose velocities instantaneously transform because of the collision
at r%m. Recall we wish to prove as well:

Zm € Upji & 207 < d>(xirs xjr, xp0) < (V20 +48R)™. (3.19)

The lower inequality trivially holds because of the phase space so it suffices to prove
the upper inequality. Since (i, j, k) # (i’, j/, k'), it suffices to distinguish the following
cases:

@M i, j', k" ¢ {i, j, k}: Since particles (i’, j', k") perform free motion up to r%m, a
similar argument to the one we used to obtain (3.18) yields Z,, € U;sj/. The only
difference is that we apply the argument up to time r%m.

(I) At least one of i’, j’, k' belongs to {i, j, k} but no more than two. The argument is
similar to (I), the only difference being that velocities of the recolliding particles
transform at r}m. Since the argument is similar for all cases, let us provide the proof

in detail only for one case, for instance (i’, j', k') = (i, k, k'), for some k' > k. The
fact that V,, € B%m, conservation of energy by the free flow and conservation of

energy by the collision (2.7) imply v} (‘L’ém> U] (rém) LU (r%) € Bl‘é. For the
pair (i, k), we have
xi(tz ) =xi(ty )+ (17 — 1y JF (tém> =xi+1y v+ (17 — Ty )V} (rém) .

2 1 2 1 1 1 2 1 1
xk(ty,) = xx(tz )+ (17 — 17 IU; (TZ,,,> =xp+17 v+ (17, — Tz UL (sz> .
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Therefore, triangle inequality implies

2 2 1 2 1 1 1
xi = %l = (23, ) —xe (e DI+t o — wl+(3, — 23 )lvf (ch, ) —vi (<4, )
2 2 1 2 1
< |xi(rzm) — xk(rzm)| + 2erR + 2(7,'Zm — th)R

< |xi(x ) — xi(z7 )| +28R.

Similarly, for the pair (i, k'), we obtain |x; — xp/| < |x; (rZ )—xk/(rZ )|+28R. By
an a.rgument similar to (3.18), inequality (3.19) follows. Inclusion 3. 13) is proved

for 12, .ng- The inclusion for 7, ! _follows similarly.

Assume now that Z,, is pre-collisional. By Remark 3.6, Z7, is post-collisional and by
27N Z;, e Bgm X B;‘gm. By a similar argument to the post-collisional case, we obtain
the result. o

3.4.2. Measure estimates Now we estimate the measure of 1. s Ul ! ¢ Yl L U2 g I

order to show that outside of a small measure set we have a well deﬁned ﬂow up to small
time 8. To estimate the measure of I} U 12, .ng» We will strongly rely on the shell-like
covering made in Lemma 3.9.

For this purpose, we first introduce some notation. Consider (i, j, k) € Z,,, a permu-
tation 7 : {i, j, k} — {i, j, k} and (xz;, xz,) € R%¢. We define the set

S, (X, X)) = {xr, € RY 2 (47, xj, x0) € Ui} (3.20)

Lemma 3.10. Let (i, j, k) € Z,,,, apermutationn : {i, j, k} — {i, j, k}and(xnj,xﬂk) €
R24. Then

|Sn,-(x71jsxnk)|a’ S Cd,RS' (321)

Proof. By symmetry, it suffices to prove (3.21) for the permutations = = (i, j, k) and
m = (k, i, j).For convenience, let us write oy = V20,80 = 48R. Scaling (3.11) implies
0<dyg<<og=<<l.

The proof for = = (k, i, j): Consider (x;, x;) € R%4, and let us write & = |x; —
xj|. Recalling (3.20), we have Si(x;, x;) = {x; € R : 002 —a? < |x —x)? <
(00 + 80)> — ). We distinguish the following cases:

e o > 0p: We have (09 + 80) — a? < (00 + 80)> — 0§ = 80200 + 89) < o,
since 0 < 89 << 0p << 1. Thus Si(x;, xj) € {xx € R? : |x; — x| < Vo). so
1Sk, x)a S 8077 < 89 = 4R$, since 89 < 1 and d > 2.
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e o < op: By (3.20), Si(x;,xj) = {x € R? - 002—052 < |xi — xx|

< \/m}. Therefore
d d
152Gt 2)la = (Voo + 507 — o) — ( ol -az) (3.22)

d—1 m
8020 + 6 d—1-
= 0(2a0 + o) ) (\/ (00 +80)% — az) " ( og — a2>
V(00 +80)2 — a2 +,/0f — a2 m=0

30 ( / 2 2 2 2)

< (o0+680)> —ar+(d—1),/oy —«
\/(O’()+8())2—052+,/O'g—052 ’

(3.23)

< (d —1)dp =4(d — RS, (3.24)

where to obtain (3.23) we use the fact that 0 < §9 << o0p << 1, and to obtain (3.24)
we use the fact that 4 > 2. Estimate (3.21) is proved for the case (k, i, j).

The proof for 7 = (i, j, k): Consider (x;, xz) € R, Completing the square, one can
see that

L Xj+x 2
2

d. 2 2
Si(xj,xk)z{x,-eR toy —a” < |x;

s(a+so>2—a2},

where 0y = 0, 8 = 4%3 o = %\/2(|xj|2 + |xk2) — |xj +xg|2. Scaling (3.11)
implies 0 < §p << o9 << 1. The estimate follows by an argument identical to the the
previous case. O

Lemma 3.11. The following measure estimate holds:

L UI2 UL Jagm < Cpa rp?™ 282

sc, g sc,ng

Proof. First, we notice that ISIC’ ¢ has measure zero since it is covered by codimension-2
submanifolds of the phase space. For m = 3, the result comes trivially from Lemma 3.9.
Assume m > 4. By Lemma 3.9, it suffices to uniformly estimate the measure of U jx N
Uy ji, for all (i, j, k) # (i, j', k") € T,. Consider (i, j, k) # (i, j', k') € L, and
recall notation from (3.20). We will strongly rely on Lemma 3.10. We distinguish the
following cases:

@ ', j', k" ¢ {i, j, k}: Fubini’s Theorem and (3.21) imply

d d(m—
|Uijk N Ui’j’k/|2dm 5 R m,O (m 6),/;;6d ﬂSk(Xf,Xj)ﬂSk/(xi/,xj/) dx; dx]' dxy dx; dxj/ dxy
P

< Ra’mpd(m—6) / / ]lSk(xi,x/) dxpdxjdx;
Bdx B4 JR? '

s, (e, x.0dx, dx’; dx!
(/nggg /Rd S Cirotj) CR SR S

< Ca.rp"" P8
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(I1) Exactly one of i’, j/, k' belongs to {i, j, k}: Without loss of generality, we consider
the case i’ =i, j' # j, k # k’. Fubini’s Theorem and (3.21) imply

\Uijk N Usjrieloam < R p?m =) / o sk Gy dxi doxj doxicdicjr doxge
B
P

< Rdmpd(me)/d /d /d ]lSk(x,-,x]-)dxk dx;
Bd \JBd JRr
(/Bg /Rd Lsy (xioxjr) d X dxj’) dx;

< Cparp?" 8%

(IIT) Exactly two of i’, j/, k' belong to {i, j, k}: Without loss of generality, we consider
the case i’ =i, j/ = j, k # k’. Fubini’s Theorem and (3.21) imply

\Uijk O Usjilaam S R pd =4 /M L (xix NSy (xix ) A dxj doxg dxge
B
P

< Rd’"pd(’"_4)/ (/ ]lSk(x,-,x]-)dxk> </ ]lSk/(x,-,xj)dxk/> dxj dx;
BdxBd \JR4 R4

< Cp.a.rp? ™82

O
Remark 3.12. For negative times, analogous results of Lemmas 3.9 and 3.11 follow

similarly.

3.4.3. The global interaction flow We inductively use Lemma 3.11 to define a global
flow which preserves energy for almost all configuration. For this purpose, given Z,, =
(X, Vi) € RM’”, we define its kinetic energy as:

1 m
En(Zp) =5 ) luil® (3.25)
i=1

For convenience, let us define the free flow of m-particles.

Definition 3.13. Let m € N. We define the free flow of m-particles as the family of maps
(D!)rer : R2M — R2M given by @, Z,, = ® (Xn, Vi) 1= (X + 1 Vi, Vin).

We establish the existence of o-interaction zone flow of m-particles.

Theorem 3.14. (Existence of the interaction flow) Let m € Nand 0 < o << 1. There

exists a full measure Gg-subset I'y, o < D} . and a measure-preserving family of

diffeomorphisms (V! );er : Tm.o — Tim.o such that

W7, = (W oW N (Zy) = (Y3, oW\ (Zw), VYZpy € Ty, Vi,s €R, (3.26)
En (Y5, Zn) = En(Zpn), VYZy €Tpo, VieR. (3.27)
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Moreover for m > 3 the flow is defined a.e. on 'y, ¢ N Os¢ ngDm,o With respect to the
induced measure do and

W zZr =V Z,, o—ae onTyeNosengDmo, VteER. (3.28)

This family of maps is called the o -interaction zone flow of m-particles. Form = 1,2,
the flow coincides with the free flow.

Proof. Having established the bounds of Lemma 3.11, which are valid for both positive
and negative collision times (by Remark 3.12), existence of the set I" and (3.26)—(3.27)
follow in the same spirit as in [1]. An outline of the proof can also be found in [19]. For
details of the proof, see [2].

It remains to prove that the flow is a.e. defined on I'; ¢ M 95¢,ng Din,» and that (3.28)
holds. We use an argument similar to [31]. By the definition of the flow, (3.28) holds
on Iy 6 M O5¢,ng Dim, o - Therefore, it suffices to prove I o N dsc,ngDm,o is a null subset
of Os¢,ngDm,o» Where Iy o = D,’,"l’g\l"mﬁ is the set of configurations which run into
pathological trajectories in finite time. Let Z/, € 9s¢,ngDm,o - Then by Lemma 3.7, the

flow can be defined up to time r%, > 0and V) Z € Do forall 0 <t < r%, . But

m

since I, » is of measure zero and I,  is invariant under the flow, we have

'L'l
Z,’ 1
0:/ ] dZW,:/ / " dtdo(Z,%):/ 7 do(Z,,),
Iln,ﬂ'mDm,U Im,ﬁnas(?,ngpm.ﬁ O I}}l,dmasc,)1gD)}1,G

which implies that o (1,0 N 95¢,ngPm,o) = 0, since 1:%/ > 0. O

3.5. The Liouville equation. We introduce the flow operators used throughout the paper,
and then derive the m-particle Liouville equation for m > 3.

Definition 3.15. For¢ € R, we define the o -interaction zone flow of m-particles operator
T : L®°(Dyo) = L®(Dy ) as

Ty;gm(zm) = gm(\II’;lZm)_ (3.29)

Definition 3.16. For t € R and m € N, we define the free flow of m-particles operator
St o L®(R2m) — LoO(R2M) as:

St em(Zm) = gm (P Zun) = gm Xow — Vi, Vin). (3.30)

Assume m > 3. Given a symmetric with respect to the particles initial probability
density fy, 0 supportedin Dy, », we define its evolution as f;, (t, Zy) := T}, fm.0. Clearly,
Jm 18 symmetric and supported in Dy, . Theorem 3.14 implies that f,,, formally satisfies
the m-particle Liouville equation

m
U3 fn+ Y 0i - Vs fn =0, (t, Z) € (0,00) X Dy o,

P (3.31)
fm(ty Z;,k,) = fm(ts Zm)v (t, Zm) € [07 OO) X ascDm,aa

fm(oa Zm) = fm,O(Zm)v Zm € 20)"1,0-
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4. BBGKY Hierarchy, Boltzmann Hierarchy and the Ternary Boltzmann
Equation

In this section we consider N-particles of e-interaction zone, where N > 3 and 0 <
€ << 1. We integrate the N-particle Liouville’s equation to formally obtain a lin-
ear hierarchy of integro-differential equations satified by the marginals of its solution
(BBGKY hierarchy). We then formally derive the limiting hierarchy (Boltzmann hierar-
chy) occuring under the appropriate scaling and formally show it reduces to a nonlinear
integro-differential equation (the new ternary Boltzmann equation) for chaotic initial
data.

4.1. The BBGKY hierarchy. Consider N-particles of interaction zone 0 < ¢ << 1,
where N > 3. For s € N, we define the s-marginal of a symmetric probability density
fn, supported in Dy , as

/MN : IN(ZN)dxgs1 ... dxydvgyy ... doy, 1 <s <N,
R -5

fjsls)(zs) =\ fy. s =N, 4.1
0, s >N,
where for Z; = (X, Vi) € R2 wewrite Zy = (Xy, Xs41s - -+ XN+ Vi, Usals - - s UN).

Itis straightforward that, forall 1 < s < N, the marginals f’ IS,S ) are symmetric probability
densities, supported in D ¢.

Assume now that f is formally the solution to the N-particle Liouville equation
(3.31) with initial data fxy 0. We seek to formally find a hierarchy of equations satisfied

by the marginals of fy. The answer is obvious for s > N since by definition f 1$/N) = fn
and f]ff) =0fors > N.

Notice that 8Dy . is equivalent up to surface measure zero to £X x RN, where
=X g ey Efj.cléx, and Eij,;X are given by (3.7). Moreover, £¥ is a pairwise
disjoint union.

We proceed by integrating by parts the Liouville equation. Consider 1 < s < N —

1. The boundary and initial conditions can be easily recovered integrating Liouville’s
equation boundary and initial conditions respectively i.e.

WO, 25) = £, Zg), (1. Zs) €[0,00) X d5cDyer s > 3, w
V0. Z) = £50(Zs), Z, € Dy.e.

Notice that for s = 1, 2 there is no boundary condition, since D; = R2ds by definition.
Consider now a smooth test function ¢, compactly supported in (0, 00) x D; ¢ such
that whenever (i, j, k) € Zy with j < s, the following holds:

bs(t, psZy) = @5 (t, psZn) = §s5(t. Z), V(t, Zy) € (0,00) x Tj5,  (4.3)

where ps(Zy) := Z; is the natural projection in space and velocities.
Multiplying the Liouville equation by ¢, and integrating , we obtain

N
/ <3th (t, ZN) + ) vi - Vo fn (&, Z) >¢x(t, Zs)dXydVydt =0.
(O,OO)X’DNYG

i=1

(4.4)
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For the time derivative in (4.4), integration by parts in time, Fubini’s Theorem and then
again integration by parts in time imply

/ W IN, ZN)ps(t, Zg)dX y dVy dt
(0 o<3)><DN €
= / 0, Z) s (1, Z) d X, dVy di. 4.5)
(0,00)x Dy, e

For the material derivative term in (4.4), the Divergence Theorem implies

/D S U o i (1 Z) (02 Z0) d Xy Vi

N j=1

_ /D divy [fiv (1. Zn) Vil s (2, Zs) d Xy dVy
N.,e

= A| + Ay, (4.6)

Ay = —fD VN - Vxy@s(t, Zg) fn(t, Zn) dX N d VN
N.e
A 1=/ A(XN) - Vnfn (t, ZN) ¢s (t, Zs) dVy do,
EXdeN

where 7(Xy) is the outwards normal vector on =% at X € XX, do is the surface
measure on £ X, Moreover, by the fact that fyy is supported in Dy e, the Divergence
Theorem and the fact that ¢; is compactly supported, we obtain

R2IN
= /RM -V, ¢s(1, Z, )f(Y)(t, Z) dX;dVs

__ / divy, [FC) (1, Zo)Vilds (1, Zo) d X dV,
R2

/ Z ViV, [t Z)gs (8, Zs) d X d Vs, 4.7
D

Sél'l

Combining (4.4)—(4.6), (4.7), we obtain
s
/ dfy (0 Z)+ Y v Ve ) (1 Zs) | s (1, Zy) dXdVidt
(0,00)x Dy e P

- ¥ / Cij(t)dt, 4.8)

(i,j,k)eIn

Ciji(t) == —/ . nijk (XN) - VNN (8, ZN) @5 (2, Zs) dVy dojji,  (4.9)
B3 K xRN
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and 7;; (X ) is the outwards normal vector on Efjk at Xy € Ez]k , dojj is the
surface measure on El- ; k . We easily calculate
(L5tvj = vi) + (B2 e — vy)
o — 2
— (X y) - Vi = (V2) Tl Y2 . (410)

\/1+ X} - Xk xz)

Xj—Xi  Xp—Xj 2d—1
, we have [ =L== M) S .
e ( Ve’ e ) €

Making the change of variables (v;, v s Vk) — (v , *.‘, v*), under the collisional trans-

Notice that since we are integrating over =¥

Xj=Xi  Xg—=Xi

formation induced by (ﬁ e
the boundary condition of (3.31), we obtain

) using (4.10), Proposition 2.3 parts (iv), (v) and

(S5 vj —vi) + (B2 v — ;)
— 2 2
Czjk(t)=—(\/§) l/ . V2e f€

N pyr=re

N, Z3) s (t, ms Zy) AV doji. (4.11)
Equations (4.9)—(4.11) and the test function condition (4.3) imply

Cijk(1) =0, Y(, j, k) ¢ Iy, ¥t >0,
whereIN ={G,j,k)eIn:1<i<s<j<k<N}. 4.12)

Notice we immediately observe that the (N — 1)- marginal satisfies the (N — 1)-Liouville
equation given in (3.31).

For1 <s < N—2and (i, j, k) € Zy, the (dN — 1)-surface measure on £°5%

ijk

can be written as dojjx(Xy) = dSy, (xj,xk)]_[ v—1 dx¢, where, given x; € R4,
O£k

dS,, is the surface measure on the sphere of center (x;, x;) € R24 and radius +/2¢.

By this decomposition and the symmetry assumption on fy we obtain Cjj(t) =

Cis+1.5+2(t), Y@, j, k) e fN, Vt > 0. This observation and, (4.12) yield

s N-1 N
Z Cijk(t):Z Z Z Cis+1,542(1)

(i,j,k)eLn i=1 j=s+1k=j+1
s N-—1
=Y > (N = NCigrsna@® =1 +2+...+N—s—1)
i=1 j=s+l
S
Z Ci,s+1,s+2(t)
i=1
l s
=S IN=$)(N =5 =1} Cissn(®), V>0  (413)
i=1
Fix i € {1, ..., s}. Substituting (w;, w7) = (% x?’:zf—;”) , and recalling the nota-

tion from (2.4), we obtain thanks to (4.9)—(4.10), (4.1) and the fact that supp f]f,s +2) -
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DS+2,€ that

o0
/ Cis+1.5+2(t)dt :/ gd—12d~1
0 (0,00)x Dy e

/ b (w1, w2, Vg1 — Vj, Vgq2 — V;)
521

T+ (o1, @2) (4.14)

X ,ff+2)(t, X, x; +v2ewi, xi +2€wn, Vs, vge1, V542)
dwi dw)y dvgy dvger d X dV dt.

Splitting the cross-section to positive and negative parts, followed by an application
of the relevant boundary condition to the positive part, and substituting (w1, w2) —
(—w1, —wy) for the negative part, the right hand side of (4.14) becomes:

d—1 _2d—1
/ 297 e /M . by (w1, @2, Vg4 — Vi, Uss2 — V;)
(0,00)x Dy, ST xR
e ! 4.15)

x ( NPzl 0 - P ez >) dw) dan dvsa dvgsy dX, dVydt,

s+2,€ s+2,€
where given i € {1, ..., s}, we denote

Z;'Jrzy6 = (X0yeees Xiyonon, Xg, X —\/Eea)l,xi -2

€W, V1, + .- Vi1, Vi, Vitls - -+ 5 Us, Usl, Us2)s
j
126 = (XLy ooy Xy ooy Xy X +\/§ea)1,xi +2
* * *
€w, V], ... Vi1, vi > Vitly -+ Us, vs+]9 vs+2)'

Finally, combining (4.8), (4.13)—(4.15), we formally obtain the BBGKY hierarchy for
s eN:

N
o 2 o
o fy Y v Ve fy) =CN P (1. Zy) € (0, 00) x D,
1

i= (4.16)
(s) xy _ p(8)
N (ta Zs) — JN (ta ZS)a (tv ZS) € [07 OO) X aS()DS,Ea WheneVerS 2 37
]&Y)(Oa Zy) = f[&ls,)()(zs), Zs € DS,G?
where
N N, N,—
Cs,s+2 = Cs,s:——2 - CS,S+2’ (4.17)
for1 <s < N — 2 we denote
: b
Cln i) = Aves Y [ e
s,s+2J N s L€, ; Sfd_l «R2d 1+ (0)1» wz) (4.18)
]ff+2) (t, §12,€,) dwi dwy dvgy1 dusyo,
S b
Cla P Z) = Aw, / —_—
s,s+2J N N JE,S ,Z:; S%d_l «R2d 1+ <601, 0)2) (4.19)

,E,Hz) (t, Z! ) dwy dwy dvgi dvgyo,

s+2,€
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and we use the notation

Ancs =2972(N —s)(N — s — D)X,
b = b(w1, w2, Vg+1 — Vi, Vg2 — Vi), by = max{b, 0},

Z§+2’e=(xl,...,xi,...,xs,x,-—\/Eea)l,xl- 490
- «/zea)z, Uly oo Ui—1, Vi, Vigls - -+ s Ug,y Ugtl, Usa2), (4.20)
Ziiz,e = (X1 ooy Xy Xg, Xi + V261, X;
+2ewr, vy, ... Vi1, VX, Vigds oo vy Us, Usys Unga)-

Fors > N — 1 we trivially define C\;7, = €1, = 0.
Duhamel’s formula implies that the BBGKY hierarchy can be written in mild form

as follows
®) ®) ' (5+2)
S S —_ S
fN (t, Zs) = TglfNy()(Zs) +/ Tst rCSZYs+2fN (r,Zg)dr, seN, (4.21)
0

where T} is the e-interaction zone flow of s-particles operator given in (3.29). See

Remark 5.3 for the validity of (4.21) in L.

4.2. The Boltzmann hierarchy. We will now derive the Boltzmann hierarchy as the
formal limit of the BBGKY hierarchy as N — oo and € — 0* under the scaling

Ned=1/2 = 1-d/2, (4.22)
This scaling guarantees that for a fixed s € N, we have Ay s —> 1,as N — oo and
€ — 0% in the scaling (4.22). Formally taking the limit under the scaling imposed we

may define the following collisional operator:

o0 oo+ oo~ (4.23)

S,842 T V542 T V5420

N
b,
o f(s+2) (t, Zy) = / —f(S+2)
$,5+2 s ; (S%d—lXde) m

(t, z;'jz) dwy dwy dves; dvgss, (4.24)
> b
Co° 7 £5+2) t.Z) = / e R )
s,x+2f ( s) ; (S%d’lxRZd) T+ (a)]’ 602) f
(1. Zi.s) dor den gy dugeo, (4.25)
and
b=b(0)1,a)2,v_y+1 — Vi, Us42, 'Ui), b+ :max{b’ 0}’
Z;+2 = (xlv cees Xiy ey Xgy Xjy Xjy ULy oo o Uj—15 Uiy Uil - o5 Us, Ustl, vS+2)1(4~26)

i* * * *
Zx+2 = (x17"’7'xi7"'7'xS’xi’xi’v17"‘viflﬂviﬂvl""]’"’7v57vx+17vs+2)'
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Now we are ready to introduce the Boltzmann hierarchy. More precisely, given an
initial data f, ) the Boltzmann hierarchy for s € N is given by:

N
03, fO+Y vV O =CX 0 Y, (1, Zy) € (0, 00) x R¥, wa

i=1
F90,20) = £, VZ, € R,
Duhamel’s formula implies that the Boltzmann hierarchy can be written in mild form
as follows

t
O,z =S £z, + /0 SITTCX L fOP (T, Zy)dT, s e N, (4.28)

where S denotes free flow of s-particles operator given in (3.30). See Remark 5.7 for
the validity of (4.28) in L*°.

4.3. The ternary Boltzmann equation. A situation of particular physical interest is when
particles are initially independently distributed. This translates to factorized Boltzmann
hierarchy initial data i.e.

772 = 1752 =] foxi,v), s €N, (4.29)

i=1

where fj : R* — R is a given function. One can easily verify that the anszatz

Oz = 120, z) = [ ft.xi,v), s €N, (4.30)

i=1

solves the Boltzmann hierarchy with initial data given by (4.29),if f : [0, c0)xR?*? — R
satisfies the ternary Boltzmann equation

Ud f+v-Vef =Q3(f, f. ), (t,x,v) € (0,00) x R*,
[0, x,v) = folx,v), (x,v) € R¥,
where, using the notation from (1.17), the ternary collisional operator Q3 is given by

(1.16)—(1.17). Duhamel’s formula implies the ternary Boltzmann equation can be written
in mild form as follows

(4.31)

t
ft,x,v) =S folx,v) +/0 Si_T Os3(f, f, )z, x,v)dr. (4.32)

See Remark 5.10 for the validity of (4.32) in L°°.

5. Local Well-Posedness

In this section we address local well-posedness (LWP) for the BBGKY and Boltzmann
hierarchies and the ternary Boltzmann equation. As expected, these well-posedness
proofs are closely related, and they rely on defining appropriate functional spaces and
establishing appropriate a-priori bounds. For this reason we provide the proofs only
for the BBGKY case (for more details see [2]). The functional spaces we introduce to
address well-posedness are inspired by the spaces used in [19,27].
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5.1. LWP for the BBGKY hierarchy. Consider (N, €) in the scaling (4.22). For 1 <s <
N and B > 0 we define the Banach spaces

XNgys = {gN,s € LOO(DS,E) Dlgn,sln,g,s = esssup |gN,s(Zs)|eﬂEX(ZS) <0¢,

Zs cR2ds

where E;(Zy) is the kinetic energy of s-particles given by (3.25). For s > N we trivially
define Xy g5 := {0}.
Consider i € R. We define the Banach space

XN.pu=1{GN = (gN.s)seN : gN.s € Xn.ps. Vs € Nand |G |In,p.u

LS
sup e’ |gn sIn.gs < oo} .
seN

Finally, given T > 0, 8o > 0, uo € Rand B, u : [0, T] — R decreasing functions of
time with B(0) = By, B(T) > 0, u(0) = 1o, we define the Banach space

Xngp=Cl10,T1, XN gay.u)) » Withnorm |[|Gn|lly g pu

= sup [IGNOIN.B1),pn0r)-
t€[0,7T]

Now, given m € N, we prove an important continuity estimate for the operator C,'X o

Lemma 5.1. Letm € N, 8 > 0and gy m+2 € XN, m+2,8- Then, the following continuity
estimate holds for any

m

Cfnv,m+zg1v,m+z<zm>] <p (mﬂ—”2 +> v |> e PEnZm) | gn maa| N pms2s
i=1

VZy € Dye-

Proof. Let gy m+2 € XN ma2,p and Zy, = (X, Vi) € N.If m > N — 1 both sides
vanish, so we may assume that m < N — 2. Notice that conservation of energy (2.7)
implies

Ena(Z%y ) = Ema(Zh 0. Vi=1,....m. (5.1)
Moreover, (2.2), Cauchy—Schwarz inequality and triangle inequality yield

by(w1, w2, v2 — vy, V3 — V1)
< 2V2 (Jvi] + [va| + [v3])

1+ {wr, w2)
Y(wi, wa, v, V2, V3) € S%d_l x R34, (5.2)

Therefore, by (5.1)—(5.2), the definition of the norm and scaling (4.22)

—BEy(Zm
C,/,,V,m+ng,m+2(Zm) 56‘ PEm( )|gN,m+2|N,,B,m+2

m
_B 2 2
x Z/zd (|Ui| + [ Um+1] + |vm+2|)€ 2 (et P +vms| )dvm+1 dvp).
. R
i=1
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Using Fubini’s theorem and the elementary integrals

o0 o0
_B,2 _ _B.2 _
/ e2xdx:,31/2,/ xe 2 dx ~ g1,
0

0
we obtain the required estimate. O

Now we define a mild solution of the BBGKY hierarchy in the scaling (4.22) as
follows:

Definition 5.2. Consider T > 0, 89 > 0, o € R and the decreasing functions 8, i :
[0, T] — R with (0) = Bo, B(T) > 0, u(0) = po. Consider also initial data Gy o =
(&N.5.0) € XN.poo- Amap Gy = (gn.s) .y € X w8, is a mild solution of the
BBGKY hierarchy (4.16) in [0, T'] if it satisfies

'
Gy (1) =TIGN’()+‘/\ TI_ICNGN(‘L’)dT, (5.3)
0

where CyGy = (CAvang,Hz) N and 7" = (T})sen, where T/ is given by (3.29).
> se

Remark 5.3. We note that the above collision operators C;Y 42 are ill-defined on L

since they involve integration over a set of measure zero (the sphere Sf_l). However, by
filtering our BBGKY hierarchy by the flow T,~’, we may obtain a well defined operator
on Xy gy - This is done in detail in the erratum of Chapter 5 of [19] and does not affect
the energy estimates or local well-posedness of the hierarchy. This filtering process can
be adapted to our context. Hence, we will abuse the notation and continue to work with
(5.3). See also [31] for a different approach which avoids this issue by working with
measures on the phase space.

We will address well-posedness of the BBGKY hierarchy by a fixed point argument.
For this purpose, we state an important estimate.

Lemma 5.4. Let fp > 0, po € R, T > 0 and & € (0, Bo/T). Consider the functions
B,y [0, T] — R given by

By (t) = Po—At, m, () = po — At (5.4)

Then for any F(t) C [0, t] measurable, s € N and Gy = (gN’S)seN € XN,ﬂ,\,M the
following bound holds:

T "CnNGy (1) dt < Cd, Bo, 10, T, WIIGNlIn g, 1,

N,B. 1,
C(d. o po. T.2) = 27 e D, ()~ (148, (1)), (5.5)

1.

Proof. Since energy is conserved by the flow and we have the continuity estimate of
Lemma 5.1 for the collisional operator, the proof follows similarly to the proof of Lemma
5.3.1.in [19]. |

Choosing & = Bo/2T, and T = T (Bo, ;o) small enough, Lemma 5.4 implies local
well-posedness of the BBGKY hierarchy via a fixed point argument.
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Theorem 5.5. Let By > 0 and o € R. Then there is T = T (d, Bo, ito) > 0 such that
for any initial datum Fy o = (-flif,)())SEN € XN, gy, there is unique mild solution Fy €
X g.u of the BBGKY hierarchy (4.16) in [0, T] for the functions B, u : [0, T] — R
given by

) e Po
B() = o 5 w(t) = po Tk (5.6)

Moreover, for any F(t) C [0, t] measurable, the following bounds hold:

1
‘H/}_()TI—rCNGN(T)dT < SIGNlIN g YGN € Xypue  (57)
t

N.B.p
HIENIIN B = 20FN.0lIN. o110 (5.8)

5.2. LWP for the Boltzmann hierarchy. For the Boltzmann hierarchy analogous esti-
mates follow in a similar manner as for the BBGKY hierarchy in the appropriate func-
tional spaces.

Given 8 > 0 and s € N we define the Banach space

Xoo,B,s = {gs € LOO(RZdS) : |gs|oo,ﬁ,s ‘= esssup |gs(Zs)|eﬂES(Zx) < OO} .
ZSERZd.v

Consider as well u € R. We define the Banach space
Xoopou = {G = (85)seN : |G lloo,B.u = sup e’ |gsloc,p.s < 00} :
seN

Finally, for T > 0, Bo > 0, up € Rand B, u : [0, T] — R decreasing functions of
time with 8(T) > 0 we define the Banach space

Xoopop = c’ (o, 11, Xoo, B0y, u(r)) » With norm [||G|[| := sgp 1G@lloo,Bt), )
1e[0,T]

We define a mild solution of the Boltzmann hierarchy as follows.

Definition 5.6. Consider 7' > 0, fo > 0, o € R and the decreasing functions 8, u :
[0, T] — R with B(0) = Bo, B(T) > 0, u(0) = pp. Consider also initial data Gy =
(gs,o) € Xoo,By.p0- Amap G = (gy)sen € X oo, g, 18 @ mild solution of the Boltzmann
hierarchy (4.27) in [0, T'], with initial data G, if it satisfies:

t
G(t):S’G0+/ S TCo0G(1) d, (5.9)
0

where Coo G = (Cf";+2gs+2> N and §'G = (S!gs)sen, where S! is given by (3.30).

se
Remark 5.7. As noted in Remark 5.3, the operators C;’g + are ill defined on L due to

the integration over the lower dimension manifold S”li_l. As in the BBGKY case, one
can filter the infinite hierarchy by S; ' to obtain a well defined mild formulation of the
hierarchy. However, for simplicity, we will abuse notation and continue to use (5.9)

Now we state the well-posedness result for the Boltzmann hierarchy.
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Theorem 5.8. Let By > 0 and g € R. Then there is® T = T(d, Bo, j0) > 0 such that
for any initial datum Fy = (f()(S))seN € Xoo,fy,uo there is unique mild solution F €
X 00,8, p Of the Boltzmann hierarchy (4.27) in [0, T for the functions B, p : [0, T] — R
given by (5.6).

Moreover, for any F(t) C [0, t] measurable, the following estimates hold:

_ 1
ST CG(r) dT = glGHlsopu: VG € Xoopp: (5.10)

‘H .7:(1) ’oo,ﬂ’u

HTF 00,81 < 211 Folloo,Bo. 1o (.11

5.3. LWP for the ternary Boltzmann equation and propagation of chaos. Here, we first
present local well-posedness for the ternary Boltzmann equation. The proofs are nonlin-
ear analogues of the arguments used in the BBGKY case (for details see [2]). Further-
more, we show that for chaotic initial data their tensorized product produces the unique
mild solution of the Boltzmann hierarchy, hence chaos is propagated.

For 8 > 0 let us define the Banach space

Sl

Xpu = !g € L®(R*) : glp,. := esssup |g(x, v)|e"* <00y .

(x,v)eR2

Consider By > 0, up € R, T > 0 and B, p : [0, T] — R decreasing functions of time
with B(0) = By, B(T) > 0 and u(0) = . We define the Banach space

Xgu = c? ([0, T1, Xﬂ(l),;L(t)) , with norm || gllg,u = esssup |g()Ig ), ur)-
t€[0,T]

We define mild solutions to the ternary Boltzmann equation as follows:

Definition 5.9. Consider 7 > 0, 8o > 0, uo € Rand B, x : [0, T] — R decreasing
functions of time, with 8(0) = Bo, B(T) > 0, w(0) = 1o. Consider also initial data
80 € Xpyuo- Amap g € Xg , is a mild solution of the ternary Boltzmann equation
(4.31)in [0, T'], with initial data go € Xpg, ., if it satisfies

t
g(1) = Sigo +/0 S " 03(g. 8. &) () dr. (5.12)

where S| denotes the free flow of 1-particle given in (3.30).

Remark 5.10. As in Remarks 5.3 and 5.7, the operators Q3 can be filtered by the free
flow S, ! in order to define the above equation on L*°. Hence, we will abuse notation
and continue to work with (5.12).

Letus write By, , for the unit ball of X g . Then the following well-posedness result
holds

Theorem 5.11. Let By > 0 and o € R. Then there is’ T = T(d, Bo, ;o) > 0 such
that for any initial data fo € X gy, o With | folgg, 1o < %, there is a unique mild solution
f € By, to the ternary Boltzmann equation in [0, T with initial data fo, where
B, u: [0, T] — R are the functions given by (5.6).

6 The time of existence is the same as in Theorem 5.5.
7 The time of existence is the same as in Theorem 5.5.
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Remark 5.12. The smallness assumption on the initial data is needed in order to produce a
solution up to the time of existence of solutions to the BBGKY and Boltzmann hierarchy
obtained in Theorems 5.5 and 5.8 respectively. One can produce a solution for general
initial data, as was done for the Boltzmann equation in [27], but the time of existence
would be smaller due to the nonlinearity of (4.31).

We can now prove that chaos is propagated by the Boltzmann hierarchy.

Theorem 5.13. (Propagation of chaos) Let By > 0, o € R, T > 0 the time obtained
by Theorem 5.11 and B, : [0,T] — R the functions defined by (5.6). Consider
Jo € Xpo,uo With | folgo, o < 3 L Assume f € By, , is the corresponding mild solution
of the ternary Boltzmann equatlon in [0, T, with initial data fy given by Theorem 5.11.
Then the following hold:

(i) Fo = (fy"")seN € Xoo,po.uo-
(i) F = (f®)sen € Xoo g
(iii) F is the unique mild solution of the Boltzmann hierarchy in [0, T], with initial data
Fo.

Proof. (i) is verified by the bound on the initial data and the definition of the norms. By
the the same bound again, we may apply Theorem 5.11 to obtain the unique mild solution
f € Bx, of the corresponding ternary Boltzmann equation. Since || f|lg,, < 1, the
definition of the norms directly imply (ii). It is also staightforward to verify that F is a
mild solution of the Boltzmann hierarchy in [0, 7'], with initial data F. Uniqueness of
the mild solution to the Boltzmann hierarchy, obtained by Theorem 5.8, implies that F
is the unique mild solution. O

6. Convergence Statement

In this section, we define an appropriate notion of convergence, namely convergence in
observables, and we state the main result of this paper. While our convergence result
is valid for a general type of Boltzmann initial data and approximation by BBGKY
hierarchy initial data (see Definition 6.1), we also provide a rate of convergence in the
case of chaotic Boltzmann initial data and initial approximation by conditioned BBGKY
hierarchy initial data (introduced in Definition 6.4).

Throughout this section, we consider (N, €) in the scaling (4.22). We will also use the
phase space Dy, ¢ of m-particles of e-interaction zone given by (3.1) and the functional
spaces of Sect. 5.

6.1. Approximation of Boltzmann initial data. This Subsection focuses on introducing
relevant types of initial data. First, we define the general notion of BBGKY hierarchy
sequences approximating Boltzmann hierarchy initial data. Then we show that chaotic
initial data produced by tensorized probability densities are approximated by conditioned
BBGKY hierarchy sequences in the scaling (4.22).

Definition 6.1. Let By > 0, o € R and Gy = (g5,0)seN € Xoo,B.0- A S€quence
GnN,0 = (gN,5,0)5eN € XN, gy, 10 18 called a BBGKY hierarchy sequence approximating
Gy if the following conditions hold:

() supyen 1GN0llN, By, 10 < OO
(ii) For any s € N there holds limy o [gn.5.0 — 5.0/l LD, ) = 0.
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Remark 6.2. Every Go = (g5,0)seN € Xco, o, 1o has a BBGKY hierarchy approximating
sequence. Indeed, it is straightforward to verify that the sequence Gy 0 = (gn.5.0)seN
given by gy 5,0 = Ip,  gs,0 satisfies the properties stated above in the scaling (4.22).

Especially meaningful initial data, corresponding to initial independence between par-
ticles, are given below:

Remark 6.3. Let g0 € Xp,,uo+1 be a positive probability density i.e. go > 0 a.e. and
fde go(x,v)dx dv =1 and assume that | goll gy, s0+1 < 1. Then one can easily see that
the chaotic configuration Gy = (ggz)s)seN € Xoo, o, uo+1 S Xoo, By, uo- This type of initial
data, corresponding to tensorized initial measures, will lead to the ternary Boltzmann
equation (4.31). In fact, we will see that one can approximate tensorized initial data
in the scaling (4.22) by conditioned BBGKY hierarchy initial data which are defined
below.

Definition 6.4. Let go € Xg, .0+1 be a positive probability density and denote Go =
(g(?s)seN € Xoo, By, uo+1- We define the conditioned BBGKY hierarchy sequence Gy o =

(gﬁé?o)seN of Gy as:

Z}\_]l / ]]'DN’Eg(()@N(XS’xS+17 <o XN, VS: Ustly -« UN)
R2d(N—s)
855)0(Xs’ Vi) = dxsi1dvgyy ... dxydoy, 1<s<N (6.1)
’ Z 'y 8§ (Zx), s =N,
0, s> N.

where the normalization is preserved by the introduction of the partition function:
Zy = /M 1D, 88" (Xm. Vi) dXp dViy, m € N.
R m

Notice that since gg is a.e. positive and integrates to 1, we have 0 < Z,, < 1 for all
m € N.

Let us now prove that the conditioned BBGKY hierarchy sequence of tensorized
initial data is an approximating sequence (according to Definition 6.1). This will be
a crucial tool to obtain rate of convergence to the solution of the ternary Boltzmann
equation (4.31) (see Corollary 6.11 for more details). We will need the following auxiliary
estimate on the partition functions.

Lemma 6.5. Let o > 0, o € R and gy € L?LL(RM) be a positive probability
density. Then for all (N, €) in the scaling (4.22) with 2Ca€'/?||go || o1 < 1, where Cq
is a positive constant, and allm € N withm < N, there holds

—1 1/2+—
1< 2y 2y m < (1= Callgollpep1) ™,
for some constant Cy > 0.

Proof. The left hand side inequality is immediate from the definition of the phase space
(3.1). To prove the right hand side consider k € N with k < N. Notice that for any
Zie1 = (Xpe1, Viw1) € R2ED [we have

k

1D e Xir1s Virr) = Ip,  (Xi, Vi) H]llxi—xmbﬁe (xi),
i=1
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by the definition of the phase space (3.1). Let us note that the above inequality applies
specifically to the ternary interactions we consider. Then we can proceed in a similar
manner as in the proof of Lemma 6.1.2 in [19], using the ternary scaling (4.22) instead.
More specifically, the previous inequality and Fubini’s Theorem imply

k+1
Zry1 = / 1Dk+1,€g8§( D (Xpat, Vier) dXpr1 d Vs
R2d(k+1)

k
=/ (AZdEnlxix>ﬁé<xi>go<x, v)dxdv)
1p, . (X, Vi) g™ (Xi, Vi) d Xy d Vi.

But since g integrates to 1, we have

k
./RN H1|xi—x\>ﬁe(xi)30(x’ v)dxdv > 1
i=1

k
_ Z/de L —rj<vae (Xidgo(x, v)dxdv > 1 — kcd||30||L;°L,56d,
i=1

upon integrating on a d-ball of radius /2¢. Hence

Zpt = (1= kCallgollpoep1€) 2k = (1 = NCallgollpep1€%)
Zi = (1 = Callgoll ey 2k, (6.2)

due to scaling (4.22). For 2Cy ||g0||L§oL1|Jel/2 < 1, we may apply inductively (6.2) for
k=m,..., N — 1, and the claim follows. m]

Proposition 6.6. Let gy € X g, .,+1 be apositive probability density with | gol gy, juo+1 < 1

and Gy = (ggbs)seN € Xoo fo,10+1 S Xoo o, Let Gy o = (gS?O)SGN be the condi-
tioned BBGKY hierarchy sequence of the tensorized initial data G given in Defini-
tion 6.4. Then G o is a BBGKY hierarchy sequence approximating Gy (in the sense
of Definition 6.1) in the scaling (4.22). In particular for all (N, €) in the scaling (4.22)
with N large enough (or equivalently € small enough), there holds the estimate

g0 — &8 LD, ) < Caus.ponsio€*1Golloo,o.suo- 6.3)

Proof. By definition of the phase space (3.1), forany s € N, withs < Nand Zy € Dy
we can write

1DN,E (Zn) Z]ID.v,e (Zs) 1_[ ]l\x,-ij-\2+|x,~ka|2>252 (xi, Xjs» Xk)
1<i<j<s<k<N

1_[ ]l\xi—x]-\z+|x,-—xk|2>252 (i s Xjs Xk)
I<i<s<j<k<N

l_[ ]llxl.ij|2+|xi7xk|2>2€2(X[,.Xj,Xk).
s+l<i<j<k<N
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Again this decomposition of the phase space is due to the ternary interactions we consider
and is necessary to track all the cases arising from ternary interactions. Moreover, by
symmetry, for s < N we can also write

ZN—s = /RZd(N—s) 1_[ ]l|x£lfx42|2+\xgl —x512>2€2 (Xe;, Xty Xey)
s+1<ly<lr<tl3<N
N
H go(xe, ve) dZ(s+1,N),
{=s+1
where dZ(s41.n) = dXsi1... dxy dvses ... dvoy. Therefore, given Z; € R, an

elementary calculation gives
gg\i?o(zs) = Zl;l]l'D&6 (Zx)g(‘)gs(zs) (ZNfs - Rs+1,N (Zs)) s 6.4)
where the error term Ry41 n(Zs) > 0 is given by

Rov1,N(Zs)

1<i<j<s<k<N

l_[ L) Pty i 2262 (X5 Xk)

1<i<s<j<k<N

N
l_[ ]l\xi,] =X, [24|xe) —xg5 2> 262 (Yers Yoz Xe) 1_[ go(xe, ve) dZs+1, Ny
s+l<t;<lr<l3<N t=s+1
= / Z ]l|xi—xj|2+|xi—xk|2§252 (%)
R2d(N—9) A
I<i<j<s<k<N
+ Z _[Zd L a2 <262 (X5 %)
I<i<s<j<k<N
N
l_[ Ly, —xey Pl —xey P2e2 (X1 o X43) 1_[ g0(xe, Vo) dZs41,N)
s+l<l)<ly<l3<N t=s+l
=1L+ D. (6.5)

By (6.4), and the fact that Zy_s < 1 since gg integrates to 1, by definition of the norms,
we have

-1
”GN,O”N,ﬂQ,pLo < ZN ”GO”OO,ﬂQ,pLo < 00,

s0 Gn,0 € XN gy,uo forall N € N. Moreover, since

lgoll gt < CaB™"e ™ Ig0l g 0 < 00, (6.6)
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for 2Cq€'/?||goll oo r1, < 1 (or equivalently for N large enough), Lemma 6.5 gives

- 2 !
ol 085 (70) <% (Z),

gN0(Zs) < (1=Caligollep1€/) ™88 (Zs) <e
where we used the inequality 2x — In(1 — x) > 0, x € [0, 1/2]. This clearly implies
G N 0lIN. o0 = 1Go0lloo, o, o1 < OO,

for N large enough, thus supycn IGN,0llN, 6o, 10 < OO
To prove convergence, by (6.4) and the definition of the norms we take

Ip, . (85" — g\ o) (Zs)

< (\1—Z;IZN_S +Z;1R5+1,N(zs>>eS“°||Go||oo,ﬂo,ﬂo.
(6.7)
Let us estimate each term on (6.7) separately. By Lemma 6.5 and the inequality 2x —
In(1 — x) >0, x € [0, 1/2], for 261/2cd||g0||L30L1.J < 1, we have
12
1= 25 2yl <™ Il 1 <2ese 2Cylgollers. (68)

by the Mean Value Theorem.

For the term ZQIRH 1.N, we estimate each of the terms /1, /> in (6.5). For the term
I, fix1 <i < j<s <k < N.Notice the inequality

Ly <22 Ok = Ly < 3 ()

Then, by symmetry, the term corresponding to i, j, k is estimated by

fzd(N N </ iy ]lm_xm|<ﬁ€(xs+1)go(xs+1, V1) dXg41 dvs+l>
R2d(N—s~ R :

N
l_[ ]l\xgl —Xey \2+|)cg1 —Xe3 |2>2¢2 (le s Xty x€3) l_[ go(xe, ve) dZ(s+2,N)
s+2<li<lp<l3<N l=5+2

d
= Cd||80||LgOL1IJ€ ZN_s5-1,

after integrating in a d-ball of radius ~/2¢ centered at x;. Adding for 1 <i < j <s <
k < N we obtain

I < s*NCallgoll 1€’ Zn—s1 = Cas?ePlgollpoer1 Zvs1, (6.9)

due to (4.22). For the term I, fix 1 < 1 < s < j < k < N. By symmetry again the
corresponding term is estimated by

/I‘QZd(N—s—Z) (/]RM Lyt Ppri—xsaa P <2¢2 (X1 X542)

80 (X541, Vs41)80 (X542, Vs42) dXgy1 dxsin dvgy dvgyn)

N
l_[ Ly, —xey Pl —xey P>2e2 (X1 Xep5 Xe5) l_[ go(xe, ve) dZ(543,N)
s+3<l)1<lr<l3<N =543

2 2d
= (:d”g()”L;oLll)6 ZN—S—2~
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after integrating in a 2d-ball of radius € centered at (ﬁi) Addingfor1 <i <s < j <
k < N we obtain

I < sN*CalIgoll 7oy 1€ Zn—s—2 = 5Call 0117 1€ ZN -2, (6.10)
Using (6.5)—(6.10) and Lemma 6.5 (applied for m = s + 1 and m = s + 2, we obtain

Z/;LRSH,N(ZS) S 52Cd||go||L§oL{Y€1/2(1 — Cd”gOHLi’CL,ﬂél/z)_(ﬁ—l)
+5Callgoll} 1€ (1 = Callgoll o€/
< Caligoll ey, o

since 2Cq€'/?||goll o1 < 1. Combining (6.7)~(6.8), (6.11), and (6.6), we obtain esti-
mate (6.3) and the requfred convergence follows. O

6.2. Convergence in observables. Now, we define the convergence in observables. Given
s € N, we use the space of test continuous and compactly supported functions in veloc-
ities C.(R9%).

Definition 6.7. Consider 7 > 0, s € N and g, € C°([0, T], L (R*%)). Given a
test function ¢ € C.(R%), we define the s-observable functional as: Iy, gs()(Xy5) =

f s (Vs)gs(t, Xs, Vi) dVs.
Rds

Before giving the definition of convergence in observables, we start with some defi-
nitions on the configurations we are using. Given m € N and o0 > 0, we define the set

of well-separated spatial configurations

AX(o) = {Xp eR™ X, =Xj|>0, Vi<i<j<m), m=>2, Af()=R¥,
(6.12)

and the set of well separated configurations

Am(0) = AX (o) x RI™, (6.13)

Definition 6.8. Let 7 > 0. For each N € N, consider Gy = (gn.s)seN € ]_[;x:’1 o
([0, 71, L> (R?¥)) and G = (g;)sen € [[5o, C° ([0, T1, L™ (R??%)). We say that the
sequence (G ) neN converges in observables to G, and write

Gy — G,
if forany o > 0, s € N, and ¢; € C.(R%), we have

lim |1y, gn,s(t) — Ip,85s ()l o (aX (o)) = 0, uniformly in [0, T'].
N—o0 S
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6.3. Statement of the main result. We are now in the position to state our main result.

Theorem 6.9. (Convergence) Let By > 0, o € R and consider Boltzmann hierarchy
initial data Fo = (fo(s))seN € Xoo, o, uo- Let (FN’O)NEN be a BBGKY hierarchy sequence
approximating Fy . Assume that:
e Foreach N, Fy € Xy gy is the mild solution of the BBGKY hierarchy (4.16) with
initial data Fy o in [0, T'].
o F € X g, is the mild solution of the Boltzmann hierarchy (4.27) with initial data
Foinl0,T].
o [y satisfies the following uniform continuity condition: There exists C > 0 such
that, for any ¢ > 0, there is ¢ = q(¢) > 0 such that for all s € N, and for all
Zs, Z), € R4S vith | Zs — Z}| < q, we have

116”2 = £3"Z)1 < ¢l (6.14)

Then Fy —> F.

Remark 6.10. To prove Theorem 6.9 it suffices to prove
”IS[V (t) — ISOO (t)||Lm(A5((a)) N1>>O O, uniformly in [O, T],

forany s € N, ¢y € C.(R%) and ¢ > 0, where

LY (O(Xy) 1= Iy, [} (D(X) = f LB VS (X V) Vs, (6.15)
Rx

IZ(0)(Xo) = Ig, fO()(Xs) = f S (V) f e, X5, Vi) d V. (6.16)
Rds

The following Corollary of Theorem 6.9 justifies the derivation of our ternary Boltz-
mann equation from finitely many particle systems.

Corollary 6.11. Let By > 0, o € Rand fo € Xgy, uo+1 be a Holder continuous co,
v € (0, 1] probability density with | folg,,uo+1 < 1/2. Let us write Fy = (f(fg’s)seN €

Xoo, By, o+l and let Fy o = (flif’)())seN be the conditioned BBGKY hierarchy sequence
given in Definition 6.4 approximating the tensorized data Fy. Then foranyo > 0,s € N
and ¢; € C.(R%), we have the rate of convergence

i, £ (1) = I, FE Ol ok o)) = O(€"). uniformly in [0, T],  (6.17)

forany0 < r < min{1/2, y}, where Fy = (f\)sen € X, g,y is the mild solution of
the BBGKY hierarchy (4.16) in [0, T] with initial data Fy o and f is the mild solution
to the ternary Boltzmann equation (4.31) in [0, T], with initial data fj.

7. Reduction to Term by Term Convergence

Now, we reduce the proof of Theorem 6.9 to term by term convergence by truncating the
observables. Throughout this section, we consider By > 0, ug € R, T = T (d, Bo, Lo) >
0 be the time given by Theorems 5.5 and 5.8, the functions 8, u : [0, T] — R defined
by (5.6), (N, €) in the scaling (4.22) and initial data Fy .0 € Xy 8y,10> F0 € Xoo,Bo.u0-
Let Fy € Xy g > F € Xoo g, be the mild solutions of the corresponding BBGKY
hierarchy and Boltzmann hierarchy in [0, T'], given by Theorems 5.5 and 5.8.
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7.1. Series expansion. Letus fix s € N. Using iteratively the Duhamel’s formula for the
mild solution of the BBGKY hierarchy, given by (5.3), we get the following expansion:

@z = Z 0z + RV @ Z0), (7.1)

where for k € N, we define
etz [ [ e e
CN ozt T F e (Zo) dry .. dn, (7.2)
for k = 0, we define f 6O 70y = T! fy (S) 0(Zy), and for the remainder we write

1 n—1"tn
R(Y " )([ Zs) _f / f Tt llcs s+2TvZ-i-2t2 . 'Tsl+2rlz—l2

c N e Z4)

s+2n—2,5+2n 3+2n

(7.3)

dty, ... dty.

Similarly, using iteratively Duhamel’s formula for the solution of the Boltzmann
hierarchy, one gets

Oz =) 902z + RV, Z4) (7.4)

k=0

where for k € N, we define
reuzy= [ [T et st
o p(s+2Kk)
Com—z.seauSssan o (Zo)dty ... dny, (7.5)
for k = 0, we define f©0(, Z,) = =S fo () (Zy), and for the remainder we write

RO D (¢ 7 —/ / / ST SIS S

In*11+| (s4+2n+2)
S+2n 2,5+2n s+2n' f (tn+1 Z)

dtyer ... dH.

(7.6)

7.2. Reduction to term by term convergence. Here we reduce the convergence proof to
term by term convergence of bounded energy and separated collision times observables.
Recalling (3.25), given R > 0, £ € N, we define the energy truncated operators

N,R ._ N oo, R N Io'e)
Cz,z+2gN,€+2 =Cpom (8N,€+2HIE5+25R21) ) Cz,z+2g€+2 = Cri (g€+2]1[E4+2§R21) :
(7.7)
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Consider § > 0. Given t > 0 and k € N, we define the separated collision times

Tes@) :={(t1,....0) € k() : 0<t;41 <1; =6, dVi € [0, k]}, tks1:=0, fo:=t.

(7.8)
For the BBGKY hierarchy, we define for k € N:
.k _ ) _ L
f]g;,R?B(t’ ZS) = / Tst tlcs{\,leZTSt-i-Z " ce TSZ-I:-ZIIC—[ZI{
Ti 5 (1)
N,R 1 (s+2k)
ComassanToaufyo  (Zo)di... dn, (7.9)
.0
and for k = 0, we deﬁne? flf]s’R?S(t, Zg) =T/ (fN,O]l[EszZ]) (Zy).
For the Boltzmann hierarchy, we define for k € N:
k - R ot — 1=
I(es,a 1, Zy) = / Sgh C§+2S§1+2t2 e S;]lzlk—ts
Ti,5(1)
oo, R tn p(s+2k)
Conk—assauSsian o (Zo)dty... dhy, (7.10)

and for k = 0, we define flgs’;so)(t, Zy) = St (folig, <r2y) (Zs).

Given ¢ € C.(R%) and k € N U {0}, let us write

1Y g sO(X0) 1= Iy f s (D(Xs) = / s (V) [y Rt Xs, V) d Vs, (T1D)
By ’

195 g sOX,) = Iy, f3 (D(X,) = / (VISR (€ X5 V) Vs (112)
BY

Recalling the observables ISN , I defined in (6.15)—(6.16), the following estimates
hold

Proposition 7.1. Foranys,n € N, R > 1,8 > Oandt € [0, T], the following estimates
hold:

n
Bo p2
N N - —=3R
YO = 3 1N ks @l = Copopnrldslligs (27 +e I 45Ch 40 1)
k=0

| En.ollv, oo
n
00 00 —n —’S—OR2 n
115°@) = D135 ksl < Copono.rldsllige (27" +e™ 3K +8Ch g or
k=0

”F()lloo,ﬁ(),pt()-

Proof. For the proof, one needs to successively perform the reductions described above
using the a-priori bounds of Sect. 5 and connect them through the triangle inequality.
For the reduction to finitely many terms and for the energy truncation see Propositions
7.1.1.,7.2.1. in [19], and for the time separation part see [2]. O

Proposition 7.1 and triangle inequality imply that the convergence proof reduces to con-

trolling the differences / st rs®—I>% ¢ (). However obtaining such a control requires
some delicate analysis because of possible recollisions of the backwards interaction flow.
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8. Geometric Estimates

In this section we provide the crucial geometric estimates, many of them novel, which will
be of fundamental importance in eliminating recollisions of the backwards interaction
flow in Sects. 9 and 10.

Let us introduce some notation which we will be using from now on. For w € R?,
y € R4\{0} and p > 0, we write Kg(w, y) for the closed d-dimensional cylinder of
center w, direction y and radius p. In case we do not need to specify the center and
direction we will just be writing K g for convenience.

8.1. Spherical estimates. Here, we derive the spherical estimates which will enable us
to control pre-collisional configurations. We will strongly rely on the following estimate,
see Lemma 4 in [15] for the proof.

Lemma 8.1. Given p,r > 0 the following estimate holds for the d-spherical measure

of radius r > 0:
d—1
o grd_lmin{l, (B) : }
Sy r

Integrating this estimate we obtain the following result, which will be used in Sect. 9:

541 0 K

Proposition 8.2. Given 0 < p < 1 < R, the following estimate holds:
B4 MK SR

Proof. Using Lemma 8.1, we obtain

R R

Bénky~ [ 189 nKk)rdr < [ rmin{1, )5 a

B N Kpla =~ IS~ N p|S;H rs r“”" min ,(r) r
0 0

p a1 R 4 d—1 _d+l . 8.1
S/ rd=! dr+pT/ r T dr~p?+p T RT, smcedzZ( )
0 0

< de%, since0 < p<1<R.
O

We now obtain new geometric estimates which will be essential to derive the ellip-
soidal estimates, enabling us to control post-collisional configurations. To achieve those
estimates we strongly rely on the following representation of S%dflz

2d—1 d d . d—1
Sl :{(a)l,a)z)GR x B .a)leSm}. (8.2)

Lemma 8.3. For any r, p > 0, the following estimates hold for the (2d — 1)-spherical
measure

41 0 (1 )

41 0 (R x k)

1—1
< 2d—1 - B d—1
g1 g1 Sr min 1,(r) 7t



Rigorous Derivation of a Ternary Boltzmann Equation... 833

Proof. By symmetry it suffices to prove the estimate when intersecting the sphere with
K ;d) x R4, Also, after rescaling we may assume r = 1. The idea is to integrate Lemma 8.1
using the representation (8.2). In particular by (8.2) and Lemma 8.1, we have

2d—1 d d —
s34 n (k¢ xR)S%dl_/Bd S
1
d—1

2
1 i
,sf (1 = an®) T min { 1, <—> dey
B V1 —|w?

1 ] a1
5/0 sd_l(l—sz)dgmin{l,<\/%_s2> }ds. (8.3)

d—1

Let ite 1(p) /1 d=1(1 — 2T min |1 < P )2 ds. Tn th
¢t us write p) = S — S min s | Y/— S. In € case
0 V1 =52

d—1 d

1—|w? Plga-1

1-|wp |2

da)2

where p > 1, we have

1 —
I(p)§/ s =) T ds > 1. (8.4)
0

Assume now 0 < p < 1. Then, we may decompose I (p) as follows:

d-1

VI 2,451 p :
o= [T e () T e
1

+/ s41(1 = s2)T ds. (8.5)
1=p2

Performing the change of variables u = 1 — 52, equation (8.5) can be written as:

1(p) = f(l—u) u4du+ / (l—u) u2du
@=2) p?
< p%f = du+/ du:pd2l<1 p2>+pd+l<p2’
p? 0
(8.6)
since p < 1. Combining (8.3)—(8.4) and (8.6), we obtain the result. |

In the same spirit as in Lemma 8.3, we obtain the following estimate for the intersection
of S%d_l with the strip:

W2 = (1. ) € R* ¢ |uw; — han| < p}, where p, A £0. (8.7

Lemma 8.4. For any r, p > 0 the following estimate holds for the (2d — 1)-spherical
measure:

d—1 d—1
2 2
saw | s min |, () (2 :
Prorls? |palr |Alr
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Proof. The proof follows the same steps as the proof of Lemma 8.3 after noticing that

W =l ) e R* 1wy € BY ), (™ w2))

€ (@1, 0) € R*: 01 € Ky, 0™ len)),
Ws =@, 0) e R twy € By, (uh™ w2))

S {(wr,0) R 10 € KZ/IM(W»_lwz)},

d

p/lul
1

where given w, € R4, K¢, (Au~'wy), K"f/‘/u(u)»_la)z) are any cylinders of radius

p/lil, p/Ix| centered at Ap ™ ws, uA ™ ws respectively. |

8.2. The transition map. Now, we construct a transition map which will allow us to
control post-collisional configurations using some appropriate ellipsoidal estimates de-
veloped in Sect. 8.3. We first introduce some notation. Given vy, v, v3 € R we
define

3
Q= {w= (w1, ) € R¥ : |0 |* +|wn|* < 5 and b(@1, @, v2 = vi,v3 = v1) > 0},

where b(w1, wz, v2 — v1, v3 — v1) is the cross-section given in (2.4), and

S;‘l,vz,l& = g%d_l NQ={w=(w,w) € S%d_l :b(wy, w2, v2 — V1, v3 — V1) > 0}.
(8.8)

We also define the smooth map W (v, 10) = |v] |2 + |v2|2 + v — vzl2 and the (2d — 1)-
ellipsoid

B = v =1]= {(m, 1) € R¥ 1 [+ |up* + v — 1) = 1} . (89

Proposition 8.5. Consider vy, vz, v3 € RY and r > 0 such that

2 2 22
v —v2|” +|vr —v3|" + v — V3" =77 (8.10)

We define the transition map Jy, vy vy @ 2 — R4\ {rl (Zi : Zi)} by®

1 * ok
v = <z;> = jul,vz,v3((0) = ; (U}k - Uz) , ®=(w,w) € Q. (8.11)

*
VY3
(1) Jvy,v,v IS smooth in Q with bounded derivative uniformly inr i.e.

||Du7v1,v2,v3 (@)oo < Ca, Yo € Q. (8.12)

8 By a small abuse of notation we extend the collisional operator Ty, o, for (w1, @) € 2, see Sect. 2.
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(ii) The Jacobian of Jy, v, v, is given by:

2
oy b (w1, @2, v2 — vy, v3 — V1)

Jac(jvl,vz,v3)(w) =r 1+ (wh Cl)2>)2d+1 > 0,
Yo = (w1, @) € Q. (8.13)
Moreover, for any @ = (w1, w2) € R, there holds the estimate:
Jac(Tyy 00.03) (@) = 12 D> (01, w3, v2 — v1, v3, 01). (8.14)
(iii) The map Jy, vs.v3 : S:)rl,vz,vs — E%d_l\ {r_l (Zi : zz)} is bijective. Morever,
there holds \
S;’l’vz’% =[Vo Ty = 11 (8.15)

(iv) For any measurable g : R* — [0 + 00], there holds the estimate

/ (8 © Tvy v2.03) (@) Jac Ty vy 03 (@) [ d@ S /Zd (g dv.  (8.16)
St 24~

V1,03

Proof. For convenience, let us use the notation”:

v v — v w
V2 vy — U3 w2

(@, v)

T(w) = (w, w), ¢c:———. (8.17)
1+7(w)
By (8.11) and (2.3), we have
_ 21 I
Torns (@) =77 (v+cAw), where A = <1dd 2}2) ) (8.18)

Notice that Jy, 1,.v; maps in R2\ {r~'v}. Indeed, assume that Jy,, ,,.v; (@) = r~'v for
some @ € Q. Since A is invertible and @ # 0, (8.18) implies ¢ = 0 = (w, v) = 0,
which is a contradiction, since @ € 2.

(i): Let us calculate the derivative of 7y, 1,,v;. Using (8.18), we obtain

DTy, vy (@) =114 (cIZd + wvgc) . (8.19)

Using notation from (8.17), we obtain

v (w, V)&

p— + s
l+m(@)  (1+7(w)?

Ve = (8.20)

where @ 1= V7 (@) = <ZT> Combining (8.19)—(8.20), we obtain

e (w, V)A Awv? (@, v)Awé)T
DFur s @) =1 ( l+n(w) 1+7(®) " (1+7)?* |’ (8:21)

9 By a small abuse of notation we write (- , -) for the inner product in R24 a5 well.
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3
Recall we have assumed @ € Q = |w;|* + |w2|* < o so Cauchy—Schwartz inequality

implies
! 1+ n(w) ! (8.22)
- < T(w) < —, .
4 4

therefore Jy,,v,,v; 18 differentiable in €2. It is clear from (8.21)—(8.22) that [Jy, 1,,v; 1S in
fact smooth. Moreover using (8.21), bound (8.12) follows after using Cauchy—Schwartz
inequality, the fact that w € €, (8.10), (8.22) and (8.10).

(ii): To calculate the Jacobian, we use (8.19) and apply Lemma A.1 (see “Appendix”),
to obtain

Jac( Ty vp.03) (@) = det(r "' A) det(clhg + @V ) ~ r=24c% (1 +c Yo, v,,,c>) )
(8.23)

27 (w)
— ——— ). Hence
1+ 7 (w)
(8.23) and (2.5) imply (8.13). To obtain (8.14), we combine (8.13) and estimate (8.22).
(iii): Let us first show that Ty, vy 03 © Sy, 05 = Efd_l\{r_lv}. Fixw = (w1, w2) €
Using conservation of relative velocities (2.8) and (8.10), we get

Recalling @ = V,7(w) = <2T>, we obtain ¢~ (w, V) = (1

.
Svl,vzyl@'

2 2
[v] — V3|7 + [v] — V3]
2

+ vy — v}

2
2 2 2 |
[Vil= + 2" + vy —»2]” = " =1,

. Q+ 2d—1 -1 e iantivi / +
th}lS Torv,vs + Sy = E .\{r v}. To prove 1nJect1Ylty, l.et w0 €8, .
With Ty, 09,03 (@) = Ty 00,05 (@'). Since A is invertible, (8.18) implies cow = ¢’w’ where
¢ = ol whvy 0y SiNCE ©, 0" € Q, we have ¢, ¢’ # 0 thus w = ¢/, Since

w, @S, ., weobtainc = ¢/, thusw = @'.

To prove surjectivity, consider v € E%d_l \{r~'v}. and define
—sgn({(A”' (@ —rv), v))
® =
\/(Afl(v —rv),v) — (Al_l(v —rv), Az_l(v —rv))

Ail(v —rv).

By (8.10) and the fact that v € E%d_] \{r~'v}, we have that w € S;IsUZalB is the unique
solution in 2 of Jy, v,,v; (@) = v. Relation (8.15) follows from the fact Jy, 5,05 : 2 —

R4\ {r~v} and the previous consideration.

(iv): We easily calculate 4¥ (v) < |[VW(»)|> < 16W (), forallv € R%?, so VW (v) # 0,
forall v € [% <V < %]. To prove the estimate we will rely on Lemma A.2 (see
Appendix). We have

|V\IJ(«7U1 02,03 (®))]
V(W o Ty v5,03)(@)]
VU (Tvy 05,03 (@)

V(¥ o jvl ,vz,v3)(w)|
(8.24)

- /[ EONG 1y 01 Ty = 1Dy (8.25)
o ;

s (g0jvl,vz,v3)(w)|Jaij|,v2,v3(‘0)|

+
vl,v,03

= / (g0jvl,vz,v3)(w)|Jacjvl,UZ,v3(w)|
[\I/Ojvl,vz,v3:1

= /EM?I §ON7, 0,85, ) dv, (8.26)
1



Rigorous Derivation of a Ternary Boltzmann Equation... 837

where to obtain (8.24) we use (8.15), to obtain (8.25) we use Lemma A.2, to obtain
(8.26) we use (8.9) and (8.15). Moreover, by the chain rule and (8.12), we obtain

VY © Tuy,u,0)@)] DT Juy, 09,05 (@) V¥ (Toy 03,05 (@)

|V“I"(x7v|,v2,v3(w))| |V\y(jv1,vz,v3 (@))]
= Cd||DL7v1,v2,v3(w)”oo < Cy,

and (8.16) follows, since g > 0. O

8.3. Ellipsoidal estimates. Now, we derive the ellipsoidal estimates which will enable
us to control post-collisional configurations.

Lemma 8.6. Let vy, v2, v3 € R andr > 0satisfying |vi — vz |>+|vi —v3 > +|va—13]2 =
r2. Denoting (v, v2) = Jv;, 00,03 (@1, w2) and considering p > 0, the following holds:

v} Vi 15 v} Vi 1z
<v%) €K, < <v2> €S, Kp/r, (vi“) €K, & (vz) €Sz Ky,
_f la la _(la 1u
Si2 = <_2Id Id) , S = (Id _2]d) , (8.27)

and K is either of the form Kg x RY or R4 x Kg while I_(p/r is either of the form
Eg/erdoerxkd d

o/r respectively, and Kl‘f, IZW
p/r respectively.

are d-cylinders or radius p and

Proof. Using (8.11) to eliminate cw1, cw> from (2.3), we obtain

% V1 +Uv+v3 r
v = —————+ = (v +12),
3 3
V1 +v2+ U3 r
vZ‘ = ——— + —(—2v1 + 1),
3 3
V1 +v+v3 r
vg“ = —— + —(v; — 21).
3 3
The conclusion is immediate after a translation and a dilation. m]

Recalling ]E%d_1 from (8.9), one can see that S1» (]E%d_l) = S13 (E%d_l). We will denote

S =SB = §13(EF )

3
= {(yl, y2) € R |y 2+ ml? + (1, »2) = 5} : (8.28)

The following result will allow us to derive the ellipsoidal estimates from the spherical
estimates.

Lemma 8.7. There exist linear bijections Ty, T, P1, P» : R* — R*? and ¢ > 0, with
the following properties:
(i) T1(S) = S%d_l and for any p > 0, there holds Tl(Kg X R_d) - Egp x R4,
(ii) T5(S) = S1*"" and for any p > 0, there holds: Ty(R? x K¢) € K&, x RY,
(iii) Py (E?‘lil) = S%dfl and for any p > 0, there holds: Pl(leg x RY) C I?fp x R4,
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(iv) Pz(E%dfl) = S%dq and for any p > 0, there holds: Py(RY x Kd) - Kd x R,

where 12;5 is any d-cylinder of radius p and K gp is a d-cylinder of radius cp and same
direction as Kg.

Proof. A direct algebraic calculation shows that the maps given by:

(\éi]d 0 ) ( 0 \éi]d) ( éld 0 ) ( 0 \/éld )
= T = , P = . P ,
o, ey, o, oy, 21y V2l Vil -

(8.29)

satisfy the properties listed above. O

Now we are ready to apply the results of Sect. 8.1 to obtain ellipsoidal estimates.
Recalling from (8.7) the strip W “.1» we obtain the following ellipsoidal estimates:

Proposition 8.8. For any r, p > 0, the following estimates hold:
d=1
. d d . P\ 7
(i) Sﬂ(Kp/er)‘ngln{l,(7> }

<min{1,(§>[12}.

X Rd>

(i) |s n (Rd x K/‘f/r)

2d—1 d
(iii) |Eq N (Bp/r

(iv) [E} "0 (RO < BY,)| L,

d—1
. AN
g1 Smln{l, (;) }

Proof. Let us first provide the proof of (i). Lemma 8.7 asserts 77 : & — S%d_l isa
linear bijection such that 77 (12;1/, X Rd) C Kepjr X Rd, thus substituting § = T(w, we
have

Lﬂk;}/"de((l}) dw = /:SILTI(IEZNXR{I)(TIG)) dw ~ /;%dl ILTI(KZ/rXRd)(o) de

2d—1 A yy2d
(v) |Ey OWoi

. o d=1
< ~ < =
N/S%d_angp/erd(o)daNmm[l,(r) ; }

by Lemma 8.3. The proof for (ii) is identical using bijection 7> instead. For estimates
(iii) and (iv) we use in a similar way bijections P;, P> and the fact that ball Bg /r embeds

in a cylinder of the form K4 o/r For estimate (v), recalling notation from (8.7), notice

that P; (W24 by D= /ru 5 for p = (32 + \/6)/6 and A = —«/5/3. Then the claim
comes with a similar argument using Lemma 8.4 instead of Lemma 8.3. O

9. Good Configurations and Stability

In this section we define good configurations and study their stability properties under
the adjunction of a collisional pair of particles. Heuristically speaking, given m € N,
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a configuration Z,, € R is called good configuration if the backwards interaction
flow coincides with the backwards free flow. The aim of this section is to investigate
conditions under which a given good configuration Z,, remains a good configuration
after adding a pair of particles. This is possible on the complement of a small measure set
of particles which is constructed in Proposition 9.2. Proposition 9.4 uses the geometric
tools developed in Sect. 8 to derive a measure estimate for this pathological set.

This section is the heart of our contribution, since we will strongly rely on Proposi-
tions 9.2 and 9.4 when we use them inductively to control the differences of the BBGKY
hierarchy truncated observable, given in (7.11), and the Boltzmann hierarchy truncated
observable, given in (7.12).

We recall the cylinder notation introduced at the beginning of Sect. 8.

9.1. Adjunction of new particles. We start with some definitions on the configurations
we are using. Givenm € Nando > 0, recall from (6.12)—(6.13) the set of well-separated
spatial configurations

AX@@) = (X €eRM™ % —Fj| >0, Vi<i<j<m), m=>2, Af()=R*,
and the set of well separated configurations
Am(o) = AX (o) x RI™,

Given o > 0, tp > 0, we define the set of good configurations as:
G (@,10) = | Zn = X, Vi) € R 2 Z,,(1) € A(0). Vi z 10}, O

where Z,,(t) = (X,;, — tV,,, V) denotes the backwards in time free flow of Z,, =
(Xm, Vin). From now on, we consider parameters R >> 1 and 0 < §,7n,€p, ¢ << 1
satisfying:

o <<€y <<nd, Rua<<ne. (9.2)

For convenience we choose the parameters in (9.2) in the very end of the paper, see
(11.21).

The following result, see Lemma 12.2.1 in [19] for the proof, is useful for the ad-
junction of particles to a given configuration.

Lemma 9.1. Consider parameters o, €g, R, 1,8 as in (9.2) and € << «. Let y1, y» €
RY, with |[y1 — 2| > €gand v € Bl‘é. Then there is a d-cylinder K,‘f C RY, such that for
any Zy = (y1. y2. v1, v2) with y1 € B(31), y2 € BI(52) and vy € BE\KY, we have
Z € G2(v/2¢,0) N Ga(eo, ).

9.2. Stability of good configurations under adjunction of collisional pair. We prove a

statement and a measure estimate regarding the stability of good configurations under

the adjunction of a collisional pair of particles to any of the initial configurations.
Recalling the cross-section b given in (2.4), given v € R?, we denote

+
(< 82 0= o 52

xBlzgd :b(wy, wy, v — v, V) — V) > O}. (9.3)
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We prove the following Proposition, which will be the inductive step of the conver-
gence proof. We then provide the corresponding measure estimate.

Recall that given m € N and Z,, € R?¥™ we denote as Z,,,(t) = (X, (1), Vyu (1)) =
(Xm — tVi, Vi) the backwards evolution in time of Z,,. In particular, Z,,(0) = Z,,.
Recall also the notation from (3.3)

RZd (m+2)

Disae = {Zm+2 = (Xm+2, Vins2) € Ld®(x x g, xe) > 267,

Vi<j<kefl,...,m+2}}.

Proposmon 9.2. Conszderparametersa €, R,n,§asin(9. 2) ande << «a.Letm € N,
Zm = Xom, Vi) € Gl 0), £ € {1,...,m}and X,, € Ba/z(xm) Then there is a

subset By(Zy,) C (S%d Iy Blzed)+(l}() such that:

(i) For any (1, @2, Ums1, Ums2) € (S371 x BEYH(5)\Be(Zpn), one has:

Zmi2(t) € Dyize, ¥t 20, 9.4)
Zms2 € Gpaa(€0/2,6), 9.5)
Zms2 € Gmaa(€0, ), 9.6)
where
Zina2 = (X1 o ooy X0y ey Xy Xrntls Ximna2s Uls « oo Vs v« s Ums Ut ls Um42)s
Xm+l = X¢ — «/Eea)l, Xm+2 = X¢ — \/_60)2, (9.7)
Zm+2 = (321, ey )Eg, xm, xg, xg, v1, ey vg ey 1_)m, Um+1» vm+2).

(ii) For any (o1, ®2, Uns1, Ums2) € (S x B2 (0)\B(Zn), one has:

Z} (1) € Dyyae, V120, 9.8)
zZ* a2 € Gmi2(€0/2,6), (9.9)
Z* s € Gmaa(€o, 8), (9.10)
where
:1+2 = (x19 .. 1-xes ... ’xmvxm+17-xm+27 Els ey l_)z: ceey Ems v;;.;.l» v;;+2)s
Xmal = Xg + \/Eean, Xm+2 = Xg + «/Eea)z, ©.11)
iz+z=(i1,...,zze, X RO X0 DL U U Vg1 Vi)
(va m+1° m+2) a)1 wz(vé, Um+1, vm+2)

Proof. By symmetry, we may assume without loss of generality that £ = m. For conve-
nience, let us define the set of indices:

Fpiz =G, ) ell, .. om+2) x {1,....m+2}: i <min{j,m}}.

Proof of (i) Here we use the notation from (9.7). We start by formulating the following
claim, which will imply (9.4).
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Lemma 9.3. Under the hypothesis of Proposition 9.2, there is a set B,?,’ “(Zp) C S%‘FI X

Blzed such that for any (w1, w2, V1, Uns2) € (S%‘Fl X Blzed)Jr (ﬁm)\BS{_(Zm), there
holds:
i (1) —x; ()| > V2e, Vi >0, Y, )€ Fnsa, 9.12)
d? (tm (1) 5 Xme1 (1) 5 Xmao (1)) > 2€%, Vi > 0. (9.13)
We observe that (9.12)—(9.13) imply (9.4).

Proof of Lemma 9.3. Step 1—the proof of (9.12): Fix (i, j) € Fu+2. We distinguish the
following cases:

e j <m:Since Z,, € Gp(€o,0)andi < j < m, we have |X; —Xx;j—t(v; —v;)| > €

for all + > 0. Hence, triangle inequality implies

lx; (@) —x; (D] = |xi —x; —t(v; —v;)| > |x; —Xx; —t(v; —v;)|

9.14

—azeo—az%o>\/§e, ( )

since € << «a << €g. Therefore, (9.12) holds for any (w1, w2, V1, Ums2) €
S%d_l X Blzed.

e j =m+1:Since (i, j) € Fpso wehave i < m — 1. Then for Z,, € G, (e, 0) and
Xm € Bd%(Xm) we conclude

_ _ _ _ (07 \/_
|X; — Xm| > €0, [Xmr1 — Xm| < [Xm — X | + X1 — X | < §+ 2¢|wn |
o
< §+\/§e < a.

Applying part (i) of Lemma 9.1 with y1 = X;, Y2 = Xi, Y1 = Xi, Y2 = Xjm+1, WE Can
find a cylinder K¢/ such that for any v, € Bg\K&" we have: |x; (1) — Xp41 (1)| >
V2, for all + > 0. Hence (9.12) holds for any (w1, @2, Um+1, Um+2) € (S%d_l X

BXH\U! .|, where

=S{7 x KT x RY. 9.15)

m+1 -
e j=m+2:Since (i, j) € Fu+2, we obtain i < m. Hence, a similar argument to

the previous case yields that (9.12) holds for any (w1, w2, Un+1, Um+2) € (S%d_1 X

B2)\U! ,, where
Uhir =Si7 xR x K 9.16)
We conclude that (9.12) holds for any (w1, 2, Vm+1, Um+2) € (S%d_1 X B,zed)\

U (Ul m+1 Uz, +2)
Step 2—the proof of (9.13): Let us recall notation from (9.3). Fixing t+ > 0 and

n
considering (w1, W2, Um+1, Umt2) € (Sfdﬁ] X Blzed) (vm), we have

d* (X (8) 5 Xt (1) Xima2 ()

= |V 2ewi +t(Ume1 — Om)|* + |V 262 + t (Va2 — D) |*

> 262 (w1 |? + [wa]?) + 23/2etb(w1, w2, Ums1 — Vs Ums2 — )

> 2¢2, (9.17)
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where to obtain (9.17) we use the fact that (w1, w2, Vn+1, Ums2) € (S%”If1 xB,zed)Jr(ﬁm).
Defining the set By, (Z,,) = U, (Ul ., UU! .,), Lemma 9.3 is proved, and (9.4)
follows.
Let us now find a set Bf,,’_ (Zn) € S%d_l X Blzed such that (9.5) holds in the comple-
ment. We distinguish the following cases

o (i, j) € Fus2, j < m: We use the same argument as in (9.14) to obtain the lower
bound €(/2.

e (i,j) € Fu+2, j € {m+ 1,m + 2}: (9.5 holds for (w1, w2, Vin+1, Um+2)

€ (S%dfl X Bl%d) \B,(Z,’*(Zm), using part (ii) of Lemma 9.1 and similar arguments
to the corresponding cases in the proof of Lemma 9.3. Let us note that the lower
bound is in fact €.
e (i, j) = (m, m+1): Triangle inequality implies that for# > § and (w1, w2,Vu+1,Vm+2)
€ S%d_l X Blzed, such that |vy,+1 — U] > 1, we have
1% (1) = X1 (D] = V2601 = 1B = V)] = [0 = Vst |1 = V2¢| w1
> [T — U1 |8 — V26 > 18 — /2 > €, (9.18)

where to obtain (9.18) we use the fact that ¢ << €y << nd. Let us note that
the lower bound is in fact €y. Therefore, (9.5) holds for (w1, Wy, Viy+1, Vms2) €
(S%d*] X Blzed)\Vm,mH, where
Vst = 797" x BY (0) x RY. (9.19)
e (i, j) = (m, m +2): Same arguments as in the case (i, j) = (m, m + 1) yield that
(9.5) holds for (@1, ®2, Vm+1, Ums2) € (S7971 x B2)\V,y 42, Where
Vimiz = S797 x RY x BY (). (9.20)

The lower bound is in fact €.
e (i,j) = (m + 1,m + 2). Triangle inequality implies that for + > § and
(@1, @2, Va1, Ums2) € ST71 x B2, such that |vy41 — Ups2| > 1, e have
|xm+l(t) - xm+2(t)| = |\/§E(C‘)2 — 1) — t(Upe1 — Um+2)|
> U1 — Ums2lt — NV 2¢|w) — an
> [Ume1 — Vma2l8 — V2e(Jo1| + w2])
> [Une1 — Ume2l8 — 2v/2€
> 18 — 23/2¢ > €0, 9.21)

where to obtain (9.21) we use the fact that € << €y << né. Recalling from (8.7) the
2d-strip

W%,l = {(wi, w2) € R¥ : |w; — wy| <n}, (9.22)
we obtain that (9.5) holds for (w1, @2, U1, Ums2) € (SI971 x BEO\Upit ms2s
where

Unstme2 =S40 x W24 . (9.23)
Notice that the lower bound is in fact €( again.



Rigorous Derivation of a Ternary Boltzmann Equation... 843

Defining
nyi_(zm) = B?p{_(zm) U Vm,m+1 U Vm,m+2 U Um+1,m+2’ (924)

we conclude that (9.5) holds for (w1, w2, Viy+1, Ums2) € (S%d_l X B,zed)\Bf,;_(Zm).

Let us note that the only case which prevents Z,,42 € G,42(€p, §) is the case 1 <
i < j < m, where we obtain a lower bound of €p/2. In all other cases we can obtain
lower bound €.

A similar argument shows that, for (w1, w2, V1, Umt2) € (S%d_1 X Blzed)\Bfn’_ (Zm),
(9.6) holds forall 1 <i < j <m+2exceptthecase ]l <i < j < m.However in this
case,forany 1 <i < j <m,wehave |x;(t)—x;(t)| = |X; —X; —t(v; —v;)| > €0, since
Zm € G (€0, 0). This observation shows that (9.6) holds for (w;, w2, V41, Ums2) €
(2471 x BEWBY ™ (Zyn), as well.

We conclude that the set

Bn:(zm) = (S%d_l X szed)+(ﬁm) N [Vm,m+1 U Vm,m+2

m—1
UUmstme2 U | (U, U U:,Hz)} : (9.25)

i=1

is the set we need for the pre-collisional case.

Proof of (ii) Here we use the notation from (9.11). The proof follows the steps of the
pre-collisional case, but we replace the velocities (U, Vim+1, Um+2) by the transformed
velocities (vyy,, V) .1, V) ,,) and then pull-back. For details see [2]. It is worth mention-
ing that the m-particle needs special treatment since its velocity is transformed to v};,.
Following similar arguments to the precollisional case, we conclude that the appropriate
set for the postcollisional case is given by

B+ (Zm) —(S2d ! X B ) (UWI) N [ m,m+1 U Vr:;,m+2 U U m+1, m+2U

) Vi*y Ut yuht ©:20
U( m m+1 m+2) ’
where
Vl * {(wla w2, Um+1, vm+2) € S%d_l X RZd : l_];:l € Kg’l} )
2d—1 2d . d,i
m+1 {(wlv @2, Un+l, Um+2) € Sl X R . v:;-;.] € K77 l} )
2d—1 2d . d,i
m+2 {(wl’ W2, Um+l, Um+2) € Sl x R™ U:H.z € Kn'l} s
2d—1 2d 2d ©.27)
mm+ {(wlawzvvm+lavm+2)€S] B XR :(v;kn7v::l+]) € er’lal}’
2d—1 2d .
mm+ {(wlv w27Um+lva+2) €S1 XR . (U;:p m+2) e ’]]1
2d—1 2d .
m+l m+2 {((,01, @2, Un+1s Um+2) € Sl x R (v, Vsl s m+2) € VV]7 1. 1}
Therefore, the set we need is
Bu(Zw) = B, (Zw) U B (Z). (9.28)
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We now use the results of Sect. 8 to estimate the measure of this set, up to the
parameters chosen.

Proposition 9.4. Consider parameters a, €g, R, 1,8 as in (9.2) and € << a. Letm €
N, Z, € Gu(€0,0), £ € {1,...,m} and Be(Zy,) the set given in the statement of
Proposition 9.2. Denoting by | - | the product measure on S%d_l X Blzed, the following
estimate holds:

|Be(Zn)| < mR piisn

Proof. Without loss of generality, we may assume that £ = m.
Estimate of B,,(Z,,). We recall (9.25).

e Estimate of the terms corresponding to Vi, ym+1, Vie.m+2, Um+1,m+2: Recalling (9.19)
,wehave V41 = S%d_l X Bf]’ () x R?. We have (S%”l_1 X Blzed)J’(ﬁm) NVim+1 S

S (B N B (5)) x B s0
|S171 x BED* @) N Vinmet | < 18197 a1 1B 1 By (0)la| Bgla S RYn.
(9.29)
In a similar way, we obtain
ST % BEDY 0n) N Vinmaa| S RO (9.30)
Recalling (9.23), we have Upy41 ms2 = S%d_l X Widl’l, thus (Sfd_1 X Blzed)"(ﬁm) N
Ups1,m+2 € S%d_l X [(B,dg X B;‘;) N Wrid]’]] , hence

2d—1 2, = 2d—1 2
ST % BED (0m) 0 Ut maal < 157" |2a-1[(Bg x BR) N W4 11aa

5/(1 /a’ 13#(”m+1)(vm+2)dUm+2dUm(9.31)
Bk J Bg

< Ry,
e Estimate of the terms corresponding to U,’;L+1, U,’;l+2 ,i e {l,...,m — 1}: Fix
i € {l,...,m — 1}. Recalling the set U,"nJrl = S%d_l X K,‘f’i x R4, from 9.15),

we have (S%d_l X Bf?d)+(t_)m) N U;iz+1 C S%d_l X [Blzi,d N (K,‘Vi”‘ X Rd)]. Since
n << 1 << R, Proposition 8.2 implies that

(S % BEY N U < 187 gt B 0 (K x RY) g
. d—1
< (B;'g n Kfj»’) x Blhy < RMpT. (9.32)
In a similar way, we obtain

(821 % B N Ui | < R¥y'T 9.33)

Therefore, recalling (9.25), using estimates (9.29)—(9.33) and the facts that s > 1,
n << 1 << R, sub-additivity implies

IB;(Zm)| < mRZdn% < mder/%, since n << 1. (9.34)
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Estimate of 55, (Zm): We recall (9.26). To estimate the measure of B, (Zm), we will
strongly rely on the properties of the transition map defined in Proposition 8.5.

Let us define @, : R2 — Rby @5, (Vms1, Um+2) = [Vmet — Om | + Vs — O[> +
[ Vsl — vm+2|2. We can easily see that given r > 0 and (vj;+1, Um+2) € @5’: ({rz}), we
have

2r < V@3, (Vnt1, vms2)| < 4r. (9.35)

Let also define the set G%{l (V) =10 <Py, < 16R?]. Notice that by triangle inequality
and the fact that v,,, € Bﬁ, we have

B C G¥ (i) (9.36)
Recall from (8.8) the set Sg Vel U Then, Fubini’s Theorem and the co-area formula

yield
1B (Zm)| = /(S2d1><32d)+(5 )]lB;,(Zm)dwl dwy dvpsy dvpe

< / / 18* (Zm) da)l da)z dvm+1 dvm+2 (9.37)
G2d(v ) m

LWl Um+1-Ym+2

16R2 .
= / / |V<D17m (Vm+1, Uma2) |~
0 @3l (sh

. ]IBTH(Zm) da)l da)z dvm+1 dvm+2 ds
U Va1 U2

4R ]
= / 2}’/ V@3, (Vimn+1, Um+2)| ™
0 @l (r?)

]18" (Z ) da)1 da)z dvm+1 dvm+2 dr

"m Um+1-Ym+2

4R
/ / ) / ]lB" (Zm)(a)l’ CUZ) da)1 da)2 dvm+1 dvm+2 dr, (9.38)
w2y Jsp, "

U Va1 > Vn+2

where to obtain (9.37), we use (9.36), and to obtain (9.38) we use the lower bound of
(9.35).

We estimate the integral / 14 z )(wl, wy)dwi dw,, for fixed ) < r < 4R
+ m\=m

Um V41>V 42
and (Vi+1, Um42) € P ({rz}) Let us introduce a parameter 0 < 8 < 1, which will be
chosen later in terms ofn n. Writing

® = (w1, ®2), V= nt1 — U, V2 — Um), (9.39)

we have b(w, v) = (w, v). Inspired in part by [15] (Proposition 1), we decompose

+ _ ol+ 2.+
Upy Uma15Um+2 - Uy Ut 1 U2 U, Um+1,Um+2”



846 I. Ampatzoglou, N. Pavlovi¢

where

Skt [we St Hw,v) > Blvl}, (9.40)

U s U+ 1> U2 Um > Um+1,Vm+2

S>* wes: 10 < (@, v) < Blv]}. 9.41)

U s U+ 1> U +2 Um»>VUm+1,Vm+2

Notice that S§’+v . is the union of two unit (2d — 1)-spherical caps of angle

/2 — arccos ,Bm Thus 1ntegrating in spherical coordinates, we have

2,+
VmVm+1-Vm+2

T
L (7, (@1, ®2) dojdwy < 7~ arccos B = arcsin 8. (9.42)

o+ :
ety OUI purpose is to change

Umsl.umsa» a0d use part (iv) of Proposition 8.5.
, the lower estimate of (8.14) and (9.40) imply

Let us estimate the terms corresponding to S;I
variables under the transition map J3,,

Notice that for w € S$’+

m s Um+1>Um+2
-1 2d 3, —2d 2d p—2d, —2d —2d
Jac™ (Tip vmst come) (@) ST07 U@, 0) < r= 7|70 S BT, (9.43)

since by triangle inequality and Young’s inequality, we have
2 - 2, = 2 2
7= U — Vst |7 + U — Vma2|” + [Vt — V2|
- 2,05 2 2
< 3(|Um — Va1 |7+ [Om — vma2]?) = 30|

e Estimate of V* Uppi1.ms2 terms: By recalling (9.27)

%
m,m+1° "m,m+2°> “m

2d—1 2d . = d
y:;’m-{-l = {(6017 @2, U1, Um+2) € S) X By : Uy — Ut € Br; } )
. o 1,+
and (8.11), given ® = (w1, w2) € Sam,v,,m,vmﬂ’ we have
- d d d
Uy — Upy1 € By & v=(v1, 1) € By, x R". (9.44)

Therefore, we obtain

1+ ]lvrz,mﬂ (C()) do = 1,4+ (]lB;]/rXRd ° jﬁm’vm” ’vm+2)(w) de
Uy V1> Vm+2 Um s V41 -Vm+2
—2d
S ﬂ 1,+ (]13571/" xRd © k77~_)m>vm+1 ,Um+2)(w) Jac jvm,vmﬂ S Um+2 ((l)) dw (945)
Um s V41 -Vm+2
A
—2d —-2d _ -
<B /M_. Lpi L pa)dv < B mm{l, (—) } (9.46)
E? n/r r

where to obtain (9.45) we use (9.43), to obtain (9.46) we use part (iv) of Proposition 8.5
and part (iii) of Proposition 8.8. Thus

d—1
1 Ly (01, 0)dop doy S min{l, (ﬁ) 2 } (9.47)
1+ m,m+ r
UmsVm+1-Um+2

In a similar manner, recalling from (9.27) the sets Vr;lk,m 2 Ur L2 respectively, and

parts (iv), (v) of Proposition 8.8 respectively, we obtain the corresponding estimates.
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e Estimate of V,;*, U*  UD*

m+1° = m+2°
By recalling (9.27), the set V,;* can be equivalently written as

ief{l,...,m—1}terms: Consideri € {1,...,m—1}.

Vit = {(@1, 02, Vmet, Ume2) € ST x BRL 1 (0, v,0) € KO x RYY
Recalling also the operator S12 defined in (8.27), Lemma 8.6 implies

@5 V1) € KT X RY & (8120 Ty varmnn) (@1, 02) € Kt x RY,(9.48)

where K ,‘71 ! is a d-cylinder of radius 1 and K ;i/’r is a d-cylinder of radius n/r. Recalling

S = Slz(IE%dfl) from (8.28), and using the same reasoning to change variables under

_ H H *
T, vms1,vmsz @S 10 the estimate for V', we have

]lvi,* (w1, wp) dwi dwy

1.+
Um>Vm+1>Ym+2

= 1. di pa(@1, 2) doydan

1+ (5,05, ek
Um sV 1-Vm+2
= /,1* (]llg;;')z;‘de 0 812 © Tijy vps1,vmsn) (@1, @2) dwi dw) (9.49)
Um U1 Vm+2
~2d
SA /E%dl (A gdi g © S12)(V1, v2) dvi dvy (9.50)
<p f Lz a6, 02) d61 dy (9.51)
s fwr
N
< % min {1, (—) 2 } , (9.52)
r

where to obtain (9.49) we use (9.48), to obtain (9.50) we use estimate (9.43) and part
(iv) of Proposition 8.5, to obtain (9.51) we make the linear transformation (61, ) =
S12(v1, v2) and use the fact that S = SIZ(E%d_l), and to obtain (9.52) we use part (i) of
Proposition 8.8.

Recalling U'% |, U, from (9.27), and using respectively the map Sy2 from Lemma 8.6
and estimate (ii) from Proposition 8.8, the map S13 from Lemma 8.6 and estimate (ii)
from Proposition 8.8, we obtain the corresponding estimates in a similar way.

We conclude that

d—1
_2d - m 7
g 5 (@1, @) doy dwy S mp~> min {1, (%) } (9.53)
]4+ m m r
Um s V41> Vm+2
; + — Ql+ 2+ ; ;
Therefore, recalling Sﬁm, Vel Umss = Sﬁm, Vst sz D Bmet Umsa® and using estimates

(9.42), (9.53), we obtain the estimate:

d-1
. _ . n\ 7

X ]lB,t,(Z,,,)(“)l’ @) dw) day < arcsin 8 + mp 24 min {1, (;) } .

Um V41U +2

(9.54)
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Hence, (9.38) yields

4R
1B (Zn)| < / / <arcsin,3 +mpB "> min {1, (
0o Jogldrp

4R 7
< / r2d=1 (arcsin,B +mpB 2 min {1, (—
0 r
d—1
< mR* (arcsinﬂ + ,3_2dnT>

SmRY (B+p707),

d—1

)T }) AV dvme dr

(9.55)

S|

S———"
g
—
S—
QU
=N

after using an estimate similar to (8.1) and the fact that m > 1, 8 << 1. Choosing
d—1 . .
B = n4+2 << 1, since d > 2, we obtain

B (Z)| < mR¥piass. (9.56)

Combining (9.28), (9.34), (9.56), we obtain the required estimate. |

10. Elimination of Recollisions

In this section we reduce the convergence proof to comparing truncated elementary
observables. We first restrict to good configurations and then inductively reduce the
convergence proof to truncated elementary observables, which will be comparable in
the scaled limit.

10.1. Restriction to good configurations. Throughout this subsection, we consider 8y >
0, uo € R, T > 0 given in Theorems 5.5 and 5.8, the functions 8, x : [0,7T] — R
defined by (5.6), (N, €) in the scaling (4.22) and initial data F 0 € Xn gy, 0> F0 €
Xoo.po.po- Let Fy € Xy gy, F € X g,y be the mild solutions of the corresponding
BBGKY and Boltzmann hierarchies in [0, T'], given by Theorems 5.5 and 5.8 respec-
tively.

For the convenience of a reader we recall the notation from Sect. 9. Specifically, given
m €N, o > 0and tg > 0, we denote

AX(@) = (X €eR™: |3, =Xl >0, VIi<i<j<m), m=>2 Ao)=R
Am(0) = AX (o) x RI™,

Gn(@,10) = | Zin = (Xon, Vi) € R Z,,(1) € Anlo), V1 = 10},

where Z,, (t) denotes the backwards free flow, given by: Z,,(t) = (X, — tVin, Vi), for
t > 0. Given €, ¢y > 0 with € << €y and § > 0, we define the new set

G (e, €9, 68) == Gp(e, 0) NGy (e, 6). (10.1)

Inductively using Lemma 9.1 and Proposition 8.2, we obtain the following result. For
more details on the proof see [2].
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Proposition 10.1. Let s € N, «, €9, R, 1, 8 be parameters as in (9.2) and € << «. Then
forany X € Af (€0), there is a subset of velocities M(Xy) C B%s of measure

d—1
IMys (X5 < CasR® 0T, (10.2)

such that Z; = (X, Vi) € Gy(€, €, 8), forall Vs € B%X\MS(XS).

Consider s, n € N, parameters «, €y, R, 1, § as in (9.2), (N, €) in the scaling (4.22)
with ¢ << «,0 < k < nandt € [0, T]. Let us recall the observables INk R. 50,
I% sk.R.5 (0 defined in (7.11)—(7.12). We restrict the domain of integration to velocities
giving good configurations. For convenience, given X; € AX (ep), we write MS(X;) =
BIS\ M (Xy). We define

TN s (O(X) = / B X Vo v, (103)

c
s

%% g s(O(Xs) = / R VI X, V) dV. (10.4)

§(Xs

We now apply Proposition 10.1 and the a-priori estimates of Sect. 5 to restrict to
initially good configurations.

Proposition 10.2. Let s,n € N, «, €, R, n, 8 be parameters as in (9.2), (N, €) in the
scaling (4.22) with € << a, and t € [0, T]. Then, the following estimates hold:

Zuls,c“(r) TN ks Ol (a¥ o)) < Csano. T REN T NN 01N oo

~ ds 4=1
Zu 5 ks = I g sl o (aX eg)) < Catsio, TR 1T NFolloo, o, uo-

Remark 10.3. Under the assumptions of Proposition 10.2, given X; € AX(¢), the defi-
nition of M (X;) implies thatI O.R. sO(Xs) = I O.R. s (Xy) forallz € [() T]. There-

fore, Proposition 10.2 reduces the convergence to controlling the differences v sk.R.s )~
s,k,R,S(t)’ fork =1, ..., n, in the scaled limit.

10.2. Reduction to elementary observables. Here, given s,n € N, parameters «,
€,R,n, 6 asin (9.2) 1 < k < n, (N, ¢) in the scaling (4. 22) with € << o, and
t € [0, T'], inspired by notation used in [19,27], we expand IY LR, 5(f) and IY %R, 50,
defined in (10.3)—(10.4), in terms of elementary observables.

For this purpose, given £, N € N with £ < N, R > 1, we decompose the truncated
BBGKY hierarchy collisional operator (given in (4.17)—(4.20)) in the following way:

¢
N.R N.R+,i N,R,—,i
Copsr = Zcz 042 Zcz,uz ,

N,R,+,i .
Chlivs  8ew2(Zy) = AN,e,e/ bi(we+1, ®e42, Verl — Vi, Vg4 — Vi)
B S%d*lXBIZ?d
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xge+21p,.,<r2)(Z50. o) dwest dwgra dvpsy dvgsa,

N,R,—,i .
Crivr " 8ex2(Zy) = ANt / by(we1, We42, Vo1 — Vi, Vga2 — V)
' S

x g2l (g,,,<r2)(Zpyn.) dwprt dwpsa dvpry dugss.

For s € Nand k € N, let us denote U x = A, x By x, where
Agp = {J:(jl,...,jk) eNF:jie(=1,1}, Vie {1,...,k}}, (10.5)

Byg:= iM: mi,....omp) eNKimye(l,... s+2—2), Vie {1,...,k}}
(10.6)
Under this notation, given s, n € N, parameters «, €g, R, 1,8 asin (9.2), 1 < k < n,
(N, €) in the scaling (4.22) with ¢ << «, and ¢t € [0, T], the BBGKY hierarchy

observable functional Tst R.S (t) (given in (10.3)) can be expressed as a superposition of
elementary observables

k
e rsOX) = Y- (1‘[;}-) e ks 1, M(X), (10.7)
(J,M)els , \i=1
T —t1 AN, R, j1, -
gt I MY(X,) = f $s(Vs) (GRS P
ME(Xs) Tie,s(1)

N,R, jk,my m s+2k
S Tl f P (Z) diy . dndVs.  (10.8)

Similarly, given £, N € N with £ < N, R > 1, we decompose the truncated Boltz-
mann hierarchy collisional operator (given in (4.23)—(4.26)) as:

14 4
oo, R __ o0, R,+,i oo, R,—,i
C£,£+2 - ZCZ,Z+2 - ZC€,£+2 ’
i=1 i=1

00, R,+,i .
Covrn  8es2(Zy) = /M — bi(wp1, Wes2, Vel — Vi, Vgg2 — V;)
S x By

g£+2]1[E(+25R2](Zéiz) dwgs1 dwgsz dvprr dugsa,

R_i
Cors ' 8e2(Zy) = / by(wer1, We42, oyl — Vi, Vg2 — U;)
s S2d—1 XBZd
1 R
ge2l(g,,,<r2)(Zpyn) dogst dwgsr dvesy dvgss.
Under this notation, given s, n € N, ¢ € [0, T], parameters «, €g, R, 1, § as in (9.2),
1 <k <n,andt € [0, T], the Boltzmann hierarchy observable functional If‘,’( rs®
(given in (10.4)) can be expressed as a superposition of elementary observables

k
N rs(X) = (Hji)zﬁ,R,5<t, 7. M)(Xy), (10.9)
(J,M)els ;. \i=1
1% ps(t, 1, MY(X,) 1= / g (V) | SThe s s
ME(Xy) Ti 5 (1) '

R, jk. m 2k
Co i S fo™P (Zg) di ... dndVs. (10.10)
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10.3. Boltzmann pseudo-trajectories. In this subsection, we introduce an explicit dis-
crete backwards in time construction of so called Boltzmann pseudo-trajectory, which
lets us keep track of the collisions. Similar constructions, although continuous in time,
can be found in [15,19,27]. Lets € N, Z; = (X,, Vy) e R,k e Nand ¢ € [0, T].
Given 8 > 0, let us recall from (7.8) the set 7y 5(7).

Consider (t1,....%) € Trs@®), J = (1,5 Ji)s M = (my,...,mg), (J,M) €

U, and foreach i = 1, ..., k, we consider (wy+2i—1, @542 Vs+2i—1, Vss2i) € S7471 x

R?. We inductively define the Boltzmann pseudo-trajectory of Z;. Roughly speaking,
the Boltzmann pseudo-trajectory is formulated as follows:

Assume we are given a configuration Z; = (X;, Vj) € R24S gt time to = t. Zs evolves
under backwards free flow until the time #; when a pair of particles (wg+1, @542, Us+1, Us+2)
is added to the m-particle, the adjunction being pre-collisional if ji = —1 and post-
collisional if j; = 1. We then form an (s + 2)-configuration and continue this process
inductively until time #;+; = 0. More precisely, given Z; = (X, Vi) € R2ds:

Time ry = ¢: We initially define

Z1(ty) = (x‘fo(to_), cen X)), vy ),y - vfo(to_)) = Z.
Timet;,i € {1,...,k}: Consideri € {1, ..., k}, and assume we know
i () = (0D X o (6 ) V), 00 (1)) -
We define Z3%,, _,(t}) = (x‘l’o(t;'), S TR (2 N Vhad (A TR Do Vol 2(f')) as:
Z30i o (t7) = (X35 o (624) = (imt — ) Vi 5 (621) - Voo (121)) -
We also define Z37,, (1) = (xi’o(ti_), R uT1 (730 I el (7 MU e (tl._)) as:

(5@ 00 ) = (3576057 @N) Vi € s 420 =20\ ),
and if j; = —1:
(- 035 ) 2= (35 ). iy ).
(020 -1 (1), 03501 (1)) = (e (), vss2i)
(532 (), v500 (7)) = (i (61, va2i)
while if j; = 1:
(e @7), vy (1

) i= (o (1), v (1)
(217, v (1)) =

) =

)=

(x

(o (595 Vi 21) 5
( Oo(t+) Us+2z)
T,

Wy+2i—1,Ws+2i (U (t ) Us+2i—15 UY+2[)-

(r90i (17, 055y, (17
W (175 V515 Vs
Time ;41 = 0: We finally obtain
o2k (0%) = Z20 () = (X% (1) — Vi (1) 5 Voo (1)) -

The sequence Z%,, ("), i = 0, ..., k + 1 is called Boltzmann pseudo-trajectory of
Zy.

The construction process is illustrated in Fig. 3 (to be read horizontally and from
right to left):
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10.4. Reduction to truncated elementary observables. 'Wenow use the Boltzmann pseudo-
trajectory to define the truncated observables for the BBGKY hierarchy and Boltzmann
hierarchy. The proof will then be reduced to the convergence of the corresponding trun-
cated elementary observables. Given £ € N, parameters «, €p, R, 1, é as in (9.2) and
€ << «a, recall the set G (¢, €g, ) from (10.1).

Let s € N, X, € Af(eo), 1 <k <n, (J,M) € Us and t € [0,T] and
(t1, ..., 1) € Tx 5(t), where we recall from (7.8) the set 7y s(t). By Proposition 10.1,
for any V; € MS(X;), we have Z; = (X,, Vi) € Gs(e, €9, 8). Since o — 1] > &, we
obtain Z* (t1+ ) € Gs(ep, 0). Recalling notation from (9.3), Proposition 9.2 (see (9.6)
for the pre-collisional case or (9.10) for the post-collisional case) yields there is a set
B, (23° (11)) < (S} % BAy* (vge (7)) such that

Z35(13) € Gyra(€0,0),  V(@ss1, @542, Vs, Us2) € By, (Z° (1)) -

Clearly this process can be iterated. In particular, given i € {2,...,k}, we have
22 5t} € Gyuai—a(€o,0), so there exists a set By, (222, , (1F)) < (¥ x
Bahy* (92 (¢77)) such that:

Z395i(111) € Gyi2i(€0,0),  ¥(@sa2i—1, 0542 Vss2i—1, Vss2i) € By (Z550i (1)) -
(10.11)

We finally obtain Z7,, (07) € G424 (€0, 0).

Letus now define the truncated elementary observables. Heuristically we will truncate
the domains of adjusted particles in the definition of the observables IS’Yk’ R 1 SO‘,’( R (see
(10.3)—(10.4)).

More precisely, let s,n € N, «, €9, R, 17, § be parameters as in (9.2), (N, €) in the
scaling (4.22) withe << o, 1 <k < n, (J,M) € Usx and ¢ € [0, T]. For X, €
Af (e0), Proposition 10.1 implies there is a set of velocities M (Xy) € Bl%d such that
Zy = (X5, Vi) € Gs(e, €9, 0), for all Vy € MS(X,). Following the reasoning above,
we define the BBGKY hierarchy truncated observables as:

—t1 AN,R,j1, -
‘ISI,Vk,R,S(t’ ]’ M)(XS) = / ¢S(VS) Tst " Cs,s+2/1 " Tst-}—Z B te
ME(Xs) Tr5(1)

SN, R, ji, 'm s+2k
s Tl £ (Zo) diy, . dnd Ve, (10.12)

5N, R,ji,m; . AN.R,ji.m;
where C(\ 575" i8N s+2i = Ciii s o

[gN,s+2i L togsai 110 ya2i-1:05420) €85, (2905 o (t;'))] :
In the same spirit, for X € Af (€0), we define the Boltzmann hierarchy truncated
elementary observables as:

41 550, R. 1. _
I3 ky(t 1 MY(X,) = / b (Vy) | sngeRamgnon
ME(Xy) Tes(®)

500, R, ji,my tm (s+2k)
oot ems S fEH(Zy) diy, . dndV, (10.13)
700, R, ji,m; . pOO,R, ji,m; )
Where CS+21'—2,S+2igS+2’ T CS+2i—2,S+2i 8s+2i ]l(ws+2i—1 s Ws42i 5 Vs42i—1 ,U5+2,')€Bfn[ (Zsoiz,-_z (t:r)) :

Recalling the observables Y;Nk RS TYO‘;( RS from (10.8), (10.10) and using Proposi-
tion 9.4 (since we integrate at least in one of the bad sets), we obtain:



854 I. Ampatzoglou, N. Pavlovi¢

Proposition 10.4. Let s,n € N, «a, €9, R, n, 8 be parameters as in (9.2), (N, €) in the
scaling (4.22) withe << a andt € [0, T]. Then the following estimates hold uniformly
inN:

n

D D N kst T M) = IN (T M| e (aX )
k=1 (J,M)els

d(s+3n), 4L
< Cl g puo 71515 RV 0352 | Fn ol v o
n
Do D IR ks T M) = I3 g st T M)l e (aX )
k=1 (J,M)els x
d(s+3n) &=L
< Cli s o715l g RTCHD 0352 | Foll oo, o, uo-

Proof. As usual, it suffices to prove the estimate for the BBGKY hierarchy case and the

Boltzmann hierarchy case follows similarly. Fix k € {1, ..., n} and (J, M) € Us . We
first estimate the difference:
IN R, .M (Xs) = TN g st T M)(X). (10.14)

Triangle and Cauchy-Scwhartz inequalities yield

‘b(w17w27v] _va UZ_U)‘ §4R7 V(w19w2)eg%d_l7 vv’v15v2€B[dea
(10.15)
SO
/ |b(w1, w2, V1 — v, V2 — v2)|dw dws dvy dvy
SdelXBZd
1 R
< C4R** < 4R, Vv e B}. (10.16)

But in order to estimate the difference (10.14), we integrate at least once over
B, (Zﬁ2i72 (tf)) for some i € {1, ..., k}. Proposition 9.4 and the expression (10.15)
yield the estimate:

Ib(@1, @2, V1 —v, v2— )| dwy dwn dvy dvsy < Cyls +2i —2)R* pi@

/Bm[ (235 (1))
3d 4L d
< Cy(s +2k)R7n3v2, Vv € Bj. (10.17)
Moreover, we have the elementary inequalities:

s+2k _
G672 lzee < €S 20M0) Fy ol gy, (10.18)

t 151 Th—1 Tk
/ dll...dlkff / [ dty ... dt < —. (10.19)
Tes(1) 0 Jo 0 k!

Therefore, (10.16)—(10.19) imply
T8 gt I, MY(X)) — TN g 50, 1, MY(X)| <

_ _ _ a1 Tk
< Nty gy ™2 v ol o gug Ca R Cy™ R0 (5 4+ 200 Ca R¥ s —-

(s +2k) RA(s+30) 4

k da—1
= Cd,s,MO,T”Q&s“LC"/j X 1 4d+2 ||FN,O||N,ﬂo,m)'
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Adding for all (J, M) € U, x, we get 2ks(s +2)...(s + 2k — 2) contributions, thus

Z ”IskRS(t J M) SkRa(t’ J’M)“LOO(ASX(G()))
(J,M)EZ/{&](

(s + 20" 4y (10.20)
RIG*3H) St A LR R

k d(s+3k) L=
< Cliy o 715l g RYCHO3E2 || Fy ol1n, oo

k
= Cd,s,uo,T”(pS ||L‘€,°T

+ 2k)k+! +2k) (s + 2k)¥
since (s k') = (s )k('s ) < Cf, Summing over k = 1, ..., n, we obtain
the required estimate. ' O

11. Convergence Proof

In Sect. 10.4, given s, n € N, parameters «, €g, R, 1, § as in (9.2), (N, €) in the scaling
(4.22) with € << « and ¢t € [0, T], we have reduced the convergence proof to con-
trolling the differences JY R, st I M) — JY"?{ R,S(t’ J, M) for given 1 < k < n and

(J, M) € Us i, where JY . rss S M), JY R S, M) are given by (10.12)—(10.13),
respectively. Throughout this section s € N will be fixed. We also consider g > 0,
wo € R, T > 0and Fy € Xoo gy, 10 as in the statement of Theorem 6.9.

11.1. BBGKY pseudo-trajectories and proximity to the Boltzmann pseudo-trajectories.
Consider s € N, (N, €) in the scaling (4.22), k € Nand ¢ € [0,T]. Given § > 0
recall from (7.8) the set 7; s5(1). Let Z; = (X, Vi) € R¥*, (11,....10) € T (1),
J=01oooos i), M = (my,...,my), (J, M) € Us i, and foreachi = 1,...,k, we
consider (wy42i 1, Wg42i 5 Vs42i—1, Vs42i) € S%d” x B2

In the same spirit as in Sect. 10.3 where we introduced the Boltzmann pseudo-
trajectory, we define the BBGKY pseudo-trajectory, the main difference being that we
take into account the interaction zone of the adjusted particles in each step. More pre-
cisely, given Z; = (X, V) € R2ds.
Time ry = ¢: We initially define

ZN(g) = (x{V(t(;), xNa) N ). sz(zO*)) — 7,

Timet;,i € {1,...,k}: Consideri € {2, ..., k}, and assume we know
N N N - N, — N -
Lot y) = (xl (G2 s X o (G vy (G- vs+2i—2(ti71)> :
N N N N N
We define Z2,, (1) = (x{ (1), .o xlp oG v (1), v, () as

ZNai o) —( Noi o (t2) = i — ) Vi o (1,) Vi Z(tiil)>'

We also define ZN,. (1;7) = (xIV (t;7), ..., xN,. ), vl (1), ..., oM, (1)) as

(xj.V(z;), uj.V(t;)) = (xj.v(z;), vj.v(z,f)) S Vjell, ... s+2i =2\ {mi),
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andif j; = —1:

EACORTACIE
(x (17) — V2€wsu2i—1, Vsa2i— 1)
(X (1) — V2ewg i, Us+21> ,

(i)
(stiZi—l ), vﬁZi—l (ti_)) .
(x;:]-Zi (1), v (tii))

while if j; = 1:

(e ), 0 6)) = (i ), o)
(xleﬂi—l(ti_ 0N )> = (x,lnv 1)+ V2ewgmai1, Vg ]>
(xﬁzi(ti_)vvﬁzi(% )> ( N7 + V2ewsni, s+2,),
y="T,

N N .+
(W, (67)s V33015 Vi Ws42i—1,Ws42i (Umi(ti )’Us+2i71’vs+2i)'

Time ;41 = 0: We finally obtain

ZNo (07) = ZN 5 (6) = <X.ﬁ2k (1) — Vil (1) > Vil (6 )) :

The sequence ZY 45, i =0,...,k+1is called BBGKY pseudo-trajectory of Z;.
The construction can be illustrated by an analogous diagram to Figure 3.

We now state a proximity result for the corresponding BBGKY and Boltzmann
pseudo-trajectories. The proof of this result follows inductively from the definition of
the pseudo-trajectories, for more details see [2].

Lemma 11.1. Let s,n € N, (N, €) in the scaling (4.22), 1 < k < n, (J,M) € Uy,
t €[0,Tland (1, ..., t) € T(t). Fix Zg = (X4, Vy) € R Foreachi =1, ...,k

consider (Ws42i—1, Ws+2i, Vs42i—1, Us42i) € S%”’Ll x R, Then foralli =1,...,k+1
and £ =1, ...,s +2i — 2, we have
N () — x5 < V2el — 1), oY) = vXa). (11.1)

In particular; if s < n, there holds:

XN, @) = X%, )| < Von¥?e, Yi=1,...k+1. (11.2)

11.2. Reformulation in terms of pseudo-trajectories. We will now re-write the Boltz-
mann hierarchy truncated elementary observables, defined in (10.13), and the BBGKY
hierarchy truncated elementary observables, defined in (10.12), in terms of pseudo-
trajectories.

Let s,n € N with s < n, parameters «, €g, R, 1,8 as in (9.2). For the Boltzmann
hierarchy case, there is always free flow between the collision times. Therefore, for
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X, € Af(eo), 1 <k <n,(J,M) € Us and ¢t € [0, T], the Boltzmann hierarchy
truncated elementary observable can be written

qu(rJM)(X)—/ ¢S<V)/ / f
ME(Xs) Tis(0) Bml(zoo(’+)) By, (2% 2 ()

k
l_[b+ (w5421, W42, Vswai1 — Vg, (1) vsw2i — viy, (1)) f(HZk) (Z55 (0M))
i=1
k
X l_[ (dwgi2i—1 dwgs2i dvgyni—1 dvge2i) dig ... dty dV.
i=1
(11.3)

It is not immediate to obtain a comparable expansion at the BBGKY level because
of the recollisions. However, thanks to Proposition 9.2 and Lemma 11.1, this is possible
for N large enough.

More precisely, fix X; € Af(eo), 1l <k <n, (J,M) € Us,t € [0,T] and
(t1,...,t%) € Trs(t). Consider (N, ¢€) in the scaling (4.22) with N large enough
such that n’/?¢ << «. By Proposition 10.1, given V; € ME(Xs), we have Z;, =
(X5, Vs) € Gg(e, €0, 8). By the definition of the set G (e, €9, §), see (10.1), we have
Zs € Gy(e,€0,8) = Zg(1) € YDDM, for all ¢ > 0, thus

Wiz (1) = @Iz (1), Vr e ln, tol, (11.4)

where Wy, given in (3.29), denotes the e-interaction zone flow of s-particles and Py,
given in (3.30), denotes the free flow of s-particles. We also have Z; = (X;, Vi) €

Gs(€,€0,8) = ZX(t) € Gs(eo, 0). Moreover, for all i € {1,...,k}, we have seen
that for all (wg12i—1, Ws+2i, Vs42i—1, Us42i) € B (Zs+2, 2(1‘;—))
v+21 (tl+1) € Gy42i (€0, 0). (11.5)
Since s < n and n?/%¢ << «, (11.2) from Lemma 11.1 implies
(o4 .
(X2 () = X2 51| = SooVi=l.ok
Then, Proposition 9.2 yields that forany i =1, ..., k, we have
ti 7N - ti 7N -
\11;_21 Zii (i ) = q>;'+2l Zi (i )’ VT € ltiv1, 1] (11.6)
Moreover, Lemma 11.1 also implies that Um,~ () = v (), foralli = 1,... k.

Therefore, for N large enough such that n3/?

st . M)(X) = ”‘/ ¢s(vs)f f /
MiXs) Tes ) By, (Z3°(17)) B, (232 (1)

k
1_[ by (@s42i—1, ©542i5 Vgs2i—1 — Uy (67) , vss2i — vy (£7)) f(Hm ( ok (0*))
i=1

k

X H(da)s+2i—1 dwsy;i dvgini—1 dvgioi) diy ... dty d Vs,
i=1

€ << «, (11.4), (11.6) yield the expansion

(11.7)
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where, recalling (4.20), we denote

k k
k - _ . .
Ay = [[Anesnia =22PECDTTN =5 =20 +2)(V — 5 = 2i + 1),
i=1 i=1
(11.8)

Remark 11.2. Notice that for fixed s, k € N, (N, €) in the scaling (4.22), there holds the
estimate

0<1— A% <25 =125 12k — 1), (11.9)

N,e
In particular Aj\’,ke /" 1,as N — oo and € — 0 in the scaling (4.22).

Let us approximate the BBGKY hierarchy initial data by Boltzmann hierarchy initial
data defining some auxiliary functionals. Let s € N and X; € AX (60) For1 <k <n,

(J,M) € Us  and t € [0, T], we define the auxiliary functional J LR, 5(t J, M) which

differs from J Nk R. ;(t, J, M) by the absence of the scaling factor A ok  and the use of
Boltzmann hierarchy initial data:

‘/I;IT;C,R,S(L Jv M)(XS‘) :Z/ ¢?(VY)/ / /
ME(Xs) Tis (@) B;”(zsw(zf)) By, ( 2 ()

k
[ 10+ (@ss2i 10 055200 v = viy () 2 vesai — v (7))
i (11.10)
fo S (Zﬁzk (0+))
k

X l_[ (dwsi2i—1 dwgro; dvgioi—1 dvsyni) diy ... dty dVs.
i=1
Due to the scaling (4.22) and convergence of the initial data, we conclude that the aux-

iliary functionals approximate the BBGKY hierarchy truncated elementary observables
TN g - defined in (11.7).

5,
Proposition 11.3. Let s, n € N, withs < n, «, €9, R, 1, 8 be parameters as in (9.2), and
t € [0, T]. Then for any ¢ > 0, there is N* = N*(¢) € N, such that for all (N, €) in
the scaling (4.22) with N > N¥*, there holds:

DD N ks T MY = TN g s T Ml (aX o)

k=1 (J,M)els i
< Cl s o, 719515 ROV 2, (11.11)

In the case of tensorized initial data and approximation by conditioned BBGKY initial
data (see Proposition 6.6), the estimate can be improved to

n
Z Z 1Y R.s (s T MY = I g 51, Iy M) | Lo (A% (e0))

k=1 (J,M)€Us i
S Cs’s,ﬂo,ﬂho”(i)s”Lc";; Rd(;&‘+3ﬂ)€l/2’ (1112)

forall (N, €) in the scaling (4.22) with N large enough.
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Proof. Fix 1 < k < n and (J, M) € U . Consider (N, €) in the scaling (4.22) with
N large enough such that n3/?¢ << «. Triangle inequality and the fact that Af.( (e0) C
AX(ep/2) yield

”JskRS(t J, M) — kaS(t Iy M) | Lo (AX (e0))

< 1 ks T, M) — A skRS(t S M) Lo (AX (e0/2))
+1 = AOIT] kmt I M)l oo (a¥ (e0))- (11.13)
We estimate each of the terms in (11.13). For the first term, let us fix (f1, ..., %) €

Tk.s(1). Applying (11.5) for i = k — 1, we obtain Zofzk 2(t,j) € Gyor—2(€0, 0). Since
s < nandn’?e << a,(11.2), applied fori = k, 1mp11es|XS+2k L) =X () <
5. Therefore, Proposition 9.2 (precisely expression (9.5) for the pre-collisional case,

(9 9) for the post-collisional case) implies Z ok (0%) € Gyiar(€0/2,0) C Agior(€0/2).
Thus (10.16), (10.18)—(10.19), (11.7)—(11. 10) imply

1 R I, M) — AT kTN R, M) oo (A% eo/2))

Cck
d T 2k s+2k
< 22Dl RAOPOIATEY = 17 e vy (1114)
Ck
d,s,T 2k 2k
< =Dy e RICFOY LT = F 20N oo )

as long as € < 60/2\/5 (i.e. N large enough) so that Ag2k(€0/2) € Dyiok . For the
second term, using (10.16) we obtain

k

Cds‘ ()T

17% R 5 M)l L (A% ey < 1651152 RN Folloo, i, g - (H-19)

Adding over all (J, M) € Usk, k = 1,...,n,using (11.13)=(11.15), (11.9) and an
argument similar to (10.20) to control the summation over k = 1,...,n , for N large
enough, we obtain the estimate

YooY W ks I M) = T g5 T Ml (a e

k=1 (J,M)el k

< Clh g, sl RECH
2k 2k —
x (k sup ||(f<“ D PN oDy o) + 1 Follos, oo €° 1/2).
S

Since n is fixed, the result follows from convergence in the level of initial data and the
scaling estimate (11.9).

In the case of tensorized initial data and approximation by conditioned BBGKY
initial data, the estimate can be improved to (11.12) using (6.3). |

Due to the proximity Lemma 11.1 and the uniform continuity assumption (6.14) on the
Boltzmann hierarchy initial data, we also obtain the following
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Proposition 11.4. Let s,n € Nwiths < n, a, €y, R, 1, § be parameters as in (9.2) and
t € [0, T]. Then for any ¢ > 0, there is N* = N*(¢) € N, such that for all (N, €) in
the scaling (4.22) with N > N*, there holds

DD N ks T M) = I3 g s T Ml (aX o)

k=1 (J,M)€Us i
< Clls o, 7195 ll5p ROV, (11.16)

In the case of Holder continuous cOr, y € (0, 1] tensorized initial data (see Re-
mark 6.3), the estimate can be improved to

n
YD M ks T MY = I3 g s T Ml (aX ey

k=1 (J,M)els i
< Cli o1 sllge RICH e, (11.17)

for all (N, €) in the scaling (4.22).
Proof. Let¢ > 0.Fix 1 <k <nand (J, M) € Us . Since s < n, Lemma 11.1 yields
1Z25 (0%) — Z22 (09| < Von/%e, VZ, e R, (11.18)

Thus the continuity assumption (6.14) on Fy, (11.18) and the scaling (4.22) imply that
there exists N* = N*(¢) € N, such that for all N > N*, we have

+2k 7 + +2k 7 + o+ 2k — ]
|f(§s )( s+2k(0 )) f(§s ? )( s+2k(0 ))l =< (o 2* 1§27 VZS € Rzm-

In the same spirit as in the proof of Proposition 11.3, using (11.19), (10.16), (10.19),
and summing over (J, M) € Us x, k = 1, ..., n, we obtain estimate (11.16).
In the case of tensorized C*” data, one can easily see by induction that for any

Z.Y+2kv Z§+2k S ]R2d(s+2k), we have

s+2k 2k
2O (Zoa) = FESPNZ 001 < 1l 2  folcoy v/2d (s + 200 Zsak — ZLin |

< CHHN Zook = ZL o).
Thus by (11.18) we have
2k 2k —
|fSZN 5, (0%) — f359 (229, (0))] < ¢+ Ler

and the estimate (11.17) follows in a similar manner as estimate (11.16). |
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11.3. Proof of Theorem 6.9. We are now in the position to prove Theorem 6.9. Fix
0 >0,5 €N, ¢ € Co(R¥) and ¢ € [0, T]. Consider n € N with s < n, and
parameters «, €g, R, 1, § satisfying (9.2). Let { > 0 small enough. Triangle inequality,
Propositions 7.1, 10.2, 10.4, Remark 10.3, estimates (11.11), (11.16) and part (i) of
Definition 6.1, yield that there is N*(¢) € N such that for all N > N*, we have

N _go© —n _fog2 n
1Y@ = IOl (ax ) = € (27" +e T 4 5C7) 1120)

+ CnR4dnn% + CM RN 2,
where C > 1 is an appropriate constant.
We now choose parameters satisfying (9.2), depending only on ¢, such that the right
hand side of (11.20) becomes less than ¢.
Choice of parameters: For ¢ sufficiently small, we choose n € N and the parameters
8,1, R, €9, o in the following order:

max {s,log2(C§_l)} <<n, 8§<<¢C b,

max{l,ﬁlgo_l/z lnl/Z(C(l)] << R << ¢ MAdng-1/4d,

n << ;%, €p << min{o, né}, o << €pmin{l, R*]n}. (11.21)

Relations (11.21) imply the parameters chosen satisfy (9.2) and depend only on ¢. Then,
(11.20)—(11.21) imply that we may find No(¢) € N, such that for all (N, €) in the scaling
(4.22) with N > Ny, there holds

N o0 €=0 N o]
Y1) = IOl (axoy) = N @) = IO o (ax o) < &
and Theorem 6.9 is proved.

Proof of Corollary 6.11. By Theorem 5.13 we have that F = (f®%),cn, where f is the
mild solution of the ternary Boltzmann equation. Therefore, in the same spirit as before
(using estimates (11.12), (11.17) instead of (11.11), (11.16)), for N large enough we
have

g, £ ) = g, FE Ol 1o (aX eo)

<cC (2*" T sc") + CM RNy iTs 4 O RN Y (11.22)
where y, = min{l/2,y} € (0, %] and y is the Holder regularity of fy. Consider
0<7r <y

Choice of parameters: For N large enough (or equivalently for € small enough), we
choose n € N and the parameters §, 17, R, €, « in the following order:

max {s, log,(Ce?)} <<n, §<<eC™ "D,

max {1, x/gﬂ(;]/z lnl/z(Ce_y*)} << R << eﬁc—lﬂd’

4d+2)
n<<ed1¥ ¢ <<min{o,nd}, a << € min{l, R_ln}. (11.23)

Then by (11.22), for N large enough, we take

. € <0
1o, 15;)0) o I¢Sf®s(t)”L°°(A§(0)) = Iy, Ig)(t) - I¢>.Yf®x(t)||L°0(A_gf(eo)) <€,

and Corollary 6.11 is proved. O
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Appendix A. Auxiliary Results
In this appendix, we state two auxiliary results. For the proofs, see [2].

Lemma A.1. Letn € N, & # 0and w, u € R". Denoting by I, the n X n identity matrix,
we have

det(A L, + wul) = A1+ 2" Nw, u)).

Lemma A.2. Letn € N, W : R" — R be a C! function and y € R. Assume there is
8§ >0withV¥(w) #0forw ey —8§ <V <y +34]. Let 2 C R" be a domain and
consider a C' map F : Q@ — R" of non-zero Jacobian in Q. Then for any measurable
g :R" — [0,+00] or g : R" — [—00, +00] integrable

/ SWNF, [V o F =yl)do(v)
[W=y]

VW (F(w))]

where given v € R" and A C @, Np(v, A) := card({w € A : F(w) = v}) is the
Banach indicatrix of A.
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