Session 6B: Special Session - 2: Application-oriented Hardware Security

Challenges and Solutions

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

Graph Neural Network based Hardware Trojan Detection at
Intermediate Representative for SoC Platforms

Weimin Fu
weiminf@ksu.edu
Kansas State University
Manhattan, Kansas, USA

Kaichen Yang
bojanykc@ufl.edu
University of Florida
Gainesville, Florida, USA

Honggang Yu
honggang.yu@ufl.edu
University of Florida
Gainesville, Florida, USA

Yier Jin
yierjin@ece.ufl.edu
University of Florida
Gainesville, Florida, USA

Orlando Arias
orlandoa@ufl.edu
University of Florida
Gainesville, Florida, USA

Tuba Yavuz
tuba@ece.ufl.edu
University of Florida
Gainesville, Florida, USA

Xiaolong Guo
guoxiaolong@ksu.edu
Kansas State University
Manhattan, Kansas, USA

ABSTRACT

The rapid growth of the Internet of Things (IoT) industry has in-
creased the demand for intellectual property (IP) cores. Increasing
numbers of third-party vendors have raised security concerns for
System-on-Chip (SoC) designers. With the growing complexity of
SoC design, the workload is overwhelming for SoC designers to
diagnose security vulnerabilities manually. Almost all existing SoC
platforms are developed using SystemVerilog. However, there is a
lack of reliable security static analysis tools for directly processing
the SystemVerilog program. Due to its open-source, flexibility and
extendability, RISC-V CPU has become an ideal platform for the
IoT applications such as wearable devices, entertainment, smart
thermostats, etc. As a result, assuring the trustworthiness of a given
RISC-V system is highly desired. This paper proposes a graph neural
network-based Trojan detection framework to protect the RISC-V
SoC platform written in SystemVerilog from intruding malicious
logic. The study is under-construction and planned to be validated
on the Ariane RISC-V CPU with several peripheral IPs in the ex-
perimental section.

CCS CONCEPTS

« Computer systems organization — Embedded systems; Re-
dundancy; Robotics; « Networks — Network reliability.

KEYWORDS

Anomaly Detection, Hardware Trojans, RISC-V, Intermediate Rep-
resentations, Graph Neural Networks

(0. ®

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA.
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9322-5/22/06.
https://doi.org/10.1145/3526241.3530827

This work is licensed under a Creative Commons
Attribution International 4.0 License.

481

ACM Reference Format:

Weimin Fu, Honggang Yu, Orlando Arias, Kaichen Yang, Yier Jin, Tuba Yavuz,
and Xiaolong Guo. 2022. Graph Neural Network based Hardware Trojan
Detection at Intermediate Representative for SoC Platforms. In Proceedings
of the Great Lakes Symposium on VLSI 2022 (GLSVLSI °22), June 6-8, 2022,
Irvine, CA, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3526241.3530827

1 INTRODUCTION

As an open-source instruction set architecture (ISA), RISC-V pro-
vides more robust support for low-power and high-performance
processor designs. The current RISC-V standard version supports
16-bit, 32-bit, and 64-bit instructions. In addition, the RISC-V-based
processor core can support flexible architecture design and help
reduce hardware overhead. Therefore, it has been widely used as
the platform of Internet-of-Things (IoT) applications. In the mean-
time, hardware Trojan, as a typical threat of 3rd-party vendors, also
places high-security uncertainties on SoC end-users and customers
in IoT industry. Unfortunately, although many frameworks have
been developed to resist the attacks like return oriented program-
ming (ROP) and jump oriented programming (JOP), few works
have been proposed to address micro-architecture level threats in
the RISC-V micro-architecture by now. The methods for checking
hardware Trojan in a very large system always run into problems
such as the state space explosion.

For example, speculation vulnerabilities in the modern processor
core are utilized to launch a series of attacks, like branch predictor
(BP), branch target buffer (BTB), and return stack buffer (RSB) [22].
Additionally, the vulnerability in out-of-order (OOO) processors is
exploited to leak sensitive information by launching side-channel
based attacks [24]. Furthermore, more and more hardware secu-
rity vulnerabilities and Trojans are released through the database,
such as the Common Weakness Enumeration [2], and published in
security competitions, such as Hack@Dac[1].

However, while most RISC-V SoC designs are built using Sys-
temVerilog, security verification tools that work at the HDL level
are lacking [20]. One of the significant reasons is that detecting

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3526241.3530827
https://doi.org/10.1145/3526241.3530827
https://doi.org/10.1145/3526241.3530827

Session 6B: Special Session - 2: Application-oriented Hardware Security

Challenges and Solutions

Front-End Design House h

}»[Funct;logl:Level »[Gate-Level HDL]
J

——

Design
Specifications

IP Gate-Level
HDL

00O

IP Gate-Level
HDL

Third IP Parties

T

Back-End House

Foundry/
Runtime J

Figure 1: The IC supply chain.

a specific vulnerable structure becomes an NP-Hard problem af-
ter mapping hardware design to a graph [14]. On the other hand,
designers must convert their SoCs into gate-level netlists for analy-
sis purposes for verification [42]. Unfortunately, high-level circuit
structures are lost in post-synthesis netlists and high-level software
descriptions. The recovery of high-level circuit structures is also
NP-hard and is an ongoing research problem, along with locating
the position of threats. To solve the above problem, we developed
an approach to train the hardware vulnerability model and then
utilize it in threat detection on the micro-architecture level. The
hardware design written in SystemVerilog is first parsed into an
Abstract Syntax Tree (AST). Yosys transcribes the synthesizable
parts of the AST into IR (RTLIL), and at same time, it would gener-
ate a graphviz DOT file for the specified component of the design.
Following this processing, we acquire the hardware’s topology and
feed it into a graph neural network for analysis.
In summary, the main contributions of this paper are:

e We investigate the technical details of existing hardware
intermediate representations (IRs) frameworks and the cor-
responding tools that process various hardware description
language (HDL) programs.

e By evaluating the topology of hardware design through
graph neural networks, we overcome the scalability issues
and unpredictable test time associated with simulation-based
methodologies.

e We use a residual learning technique to minimize the influ-
ence of particular hardware characteristics. Thus, the hard-
ware Trojans embedded in a variety of IP Cores consisted one
testbench. Our purpose is to determine the effect of inserted
hardware Trojans on the hardware topology. Simultaneously,
we utilize an RISC-V SoC Benchmark as our test dataset.

2 BACKGROUND
2.1 Attack Model

The IC supply chain is shown in Figure 1, which involves several
stages. First, the function-level HDL is developed from the design
specifications and then synthesized into the gate-level netlist files.
In this stage, third-party vendors and offshore companies are in-
cluded, bringing security uncertainty. Then in the back-end house,
the gate-level HDL is transformed to the layout netlist by consid-
ering more physical-level parameters. Finally, the layout files are
given to the foundry to fabricate the final IC products.

482

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

RT-Level Hardware Backend
Description Hardware IRs Process
Language
| SystemVerilog | I LLHD |
" Verification
i || (Coerosion]
FIRRTL
o0 0 o000

Figure 2: Examples of hardware IRs in design flow.

This paper assumes that the adversary can insert malicious logic
into the design stage Functional-level HDL. We assume that ad-
versaries may be the rogue agent at either the Front-end Design
House or the third-party IP vendors who can access the hardware
description language (HDL) code and insert a hardware Trojan
or backdoor to manipulate critical registers of the design. Such
a Trojan can be triggered by the conditions such as a counter, a
predetermined time, an input vector, or certain physical conditions.

2.2 Intermediate Representations for Hardware

An abstract syntax tree (AST) is a representation of the syntactic
structure of the source code. Within the AST, each node represents
an operation in the source code. Tools that deal with programming
languages, such as compilers, assemblers, synthesis tools, and ana-
lyzers, do not directly work on the source code. Instead, these tools
often take the AST as the initial representation of the code to be
processed before any transformations or analysis are performed.
To generate the AST of any source code, there are three steps. First,
a lexer converts elements in the source code stream into tokens.
Then a grammar definition is used to process the stream of tokens
ensuring that the syntactical rules are met. Lastly, the token stream
is rearranged and converted into a tree structure. The final AST
is generated after eliminating redundant extras. The equivalent
representations of AST that is readable for human beings are the
intermediate representations (IR).

2.3 Hardware IRs in Design Flow

Nowadays, high-level synthesis technologies and SystemVerilog
are utilized to rapidly develop large-scale SoCs. In addition, many
IR frameworks have been developed to improve the flexibility in
verifying and testing these hardware designs. The latest examples
of hardware-oriented IRs include FIRRTL [19], LLHD [32], LiveHD
[39-41], CorelR [26], and ulR [33]. These IRs aim to become the
critical infrastructure of the hardware design flow and present an
ecosystem, as summarized in Figure 2.

In the ecosystem, developers use hardware description language
to design the circuit in RT-Level, such as SystemVerilog, Chisel, or
higher abstractions like C++. Then the RT-Level descriptions are
translated to these hardware IRs, that is shareable across multiple
designers and EDA tools. Based on the IRs, simulations, formal
verifications, synthesizing and security checking can be carried
out. Open-source tools are involved in these design flows, like the
LLVM compiler [23], Yosys [42], Verilator simulator [34], ABC [28],
and SAT/SMT solvers [11].

Session 6B: Special Session - 2: Application-oriented Hardware Security

Challenges and Solutions

As an example, developed in [32], LLHD is a hardware IR to
represent a finished hardware RT-Level design. It is claimed to
support a wide range of languages, including Chisel, SpinalHDL,
MyHDL, SystemVerilog, and VHDL. It covers most back-end pro-
cessing such as simulation, test-benches/formal verification, behav-
ioral and structural modeling, gate-level netlist synthesis. However,
most of the optimization and transformation functions are still in
development. Therefore, only a small subset of its ecosystem has
been implemented. LiveHD is another open-source framework de-
veloped to build scalable hardware designs [40]. It mainly applies
two hardware IRs: LNAST [41] and LGraph [39]. So far, the LiveHD
is still under construction. Due to the ambitious objective, these
hardware IRs still need time to connect with other RTL languages
and existing electronic design automation (EDA) tools.

2.4 Security Applications of Hardware IRs using
Lightweight Parsers

Meanwhile, unlike the above “ambitious” hardware IR frameworks,
some lightweight frontends are developed to pre-process the HDL
program, such as Veriable [8], Surelog [9], Slang [29], as well as
PyVerilog [36]. These tools parse either Verilog or SystemVerilog
design to their self-defined IRs. Accordingly, more and more studies
are proposed to analyze or formally verify hardware designs using
these lightweight parsers to finish the security check at a specific
domain. These methods include QIF-Verilog [13], RTSEC [5], If-
Tracker [25], QFlow [30], HW2VEC [44], GNN4T]J [43], Hardware
Fuzzing [37], Coppelia [45], etc. We summarize the workflow of
these security applications as shown in Figure 3.

As the most popular hardware description language, Verilog
is utilized as the source language for many well-developed EDA
parsers. For instance, PyVerilog is a Python-based parser that trans-
lates Verilog designs to IRs using a self-defined syntax and then
provides data flow analysis between two associated/connected sig-
nals. Then the data flow graph (DFG) of the Verilog design can be
generated for further analysis and verification. In QIF-Verilog and
QFlow, the quantitative information flow metrics are designed and
added as a feature to the DFG to evaluate the information leakage.
In terms of HW2VEC and GNN4T]J, the DFG is utilized for training
the model and then detecting security vulnerabilities. Although
DFG is employed effectively in the above methods, it is only a data
structure subset extracted from IRs. IF-Tracker and RTSEC perform
analysis based on the IRs directly to detect more sophisticated be-
haviors. For example, the malicious IPs’ interactions over the bus
in an SoC can be detected using IF-Tracker, while the trustworthy
enhanced hardware is generated by adding watermarking and logic
locking in RTSEC.

Very recently, methods have been proposed to translate Ver-
ilog codes into high-level descriptions in C++ or similar languages
[18, 45], which allows for the use of existing software verification
tools such as KLEE or Verilator [6, 34]. Although the Verilator is fa-
mous as an open-source simulator, it has become a popular Verilog
parser. By applying Verilator to convert a hardware design to C++
code, Coppelia performs security checking on the equivalent C++
program [27]. HW-Fuzzing uses Verilator to acquire the equivalent
model of the C++ language for Verilog code, based on which the

483

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

traditional software fuzzing is performed [37]. In addition, sym-
bolic execution engines such as KLEE or Fuzz tools such as AFL are
utilized in these approaches, respectively.

Compared with Verilog, it is more challenging to develop an
open-source parser for SystemVerilog because of its more complex
syntax. Slang and Surelog are two of the stable maintained Sys-
temVerilog parser. Specifically, Surelog is capable of transforming
SystemVerilog design to IRs that can be readable by Yosys. In this
paper, the proposed NN-based Trojan detection framework is based
on the AST graph mapped from Surelog IRs by Yosys.

2.5 Learning based Trojan Detection Approach

Over the last several decades, advances in machine learning (ML)
have reshaped established methodologies and models for various
design applications. Several machine learning detection algorithms
effectively detect HT in hardware designs, either at the register
transfer level (RTL)[16] or at the gate-level netlisting (GLN)[17].

While typical machine learning approaches provide very desired
results applied to Euclidean data, they are often severely performed
for non-Euclidean data. The graphs defining the hardware design,
on the other hand, are not Euclidean[7], which challenges utiliz-
ing these approaches. The notion of graph deep learning has been
developed to address NP-complete issues in graph matching. Fur-
thermore, other graph learning techniques, including Graph Convo-
lutional Networks (GCN)[21], Graph Neural Networks (GNN)[35],
and Graph Autoencoder (GAE)[38], partially solve the challenge
of evaluating non-Euclidean data. These works simultaneously
provide tools for the future development of machine learning ap-
proaches in hardware security.

As an example, HW2VEC[44] is proposed as a graph deep learn-
ing method to analyze the flow of hardware data on this foundation.
This work is on the netlist layer that detects the existence of hard-
ware Trojans. On the other hand, a more extensive data scale and
a lower abstraction level in the netlist layer increase the computa-
tion complexity of applying HW2VEC. Additionally, the PyVerilog
component is utilized in HW2VEC as a front-end with severe re-
strictions — it cannot take SystemVerilog files and is inefficient
when accepting large instances. Furthermore, this study does not
solve the issue of insufficient data to support network learning.
Therefore, we suggest our novel approach in an attempt to solve
these three constraints.

3 METHODOLOGY

The overall architecture of the proposed approach is demonstrated
in the Fig. 4. Beginning with hardware RTL design in SystemVer-
ilog, Surelog parses the design in one UHDM model. With the
help of UHDM Yosys integration, Yosys transforms the UHDM to
IR and generate a dot file for hardware structure. The Networkx
python package reads the dot file and provides an API to manipulate
the graph and export a graph. Graph Neural Network Framework
Spektral can be employed to construct the model. Specifically, the
approach is split into five components as follows.

(1) Parse the SystemVerilog design: Surelog, an ANTLR-
based parser, is used as a front-end to parse the SystemVer-
ilog hardware design into a Universal Hardware Data Model

Session 6B: Special Session - 2: Application-oriented Hardware Security

Challenges and Solutions

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

| SystemVerilog |——-;--->| Surelog |--->| Yosys |--->

Proposed NN-based

1

| Verilog

-> PyVerilog |== "{

Trojan Detection

QIF-VeriIogIl QFlow “ HW2VEC |

IF-Tracker ” RTSEC ” GNNA4T) |

--->| Verilator |---> I Coppelia (KLEE) || HW Fuzzing (AFL) |

Figure 3: Applications of lightweight parsers in design flow.

Hardware RTL Design

((System)Verilog)
lL Prediction
Surelog W
ll Spektral
Universal Hardware Data
Model
(HexFile) ﬁ
U Graph
(numpy)
Yosys T
Hardware Structure
(Graphviz) _—__.__l> Networkx

Figure 4: Overall architecture of the proposed approach.

(UHDM). This file includes AST consisting of the Verilog
Procedural Interface (VPI) [10] .

(2) Create a schematic of the hardware structure: Yosys[42]
receives the UHDM file and automatically translates it to the
AST called RTLIL. Then RTLIL is converted to a hardware
structure diagram by yosys.

(3) Pre-processing the schematic of the hardware struc-
ture: A merge script is created to combine several Yosys
diagrams inside the hardware design.

(4) Transform: Graphviz graphs are transformed into a struc-
ture that the neural network can handle.

(5) Classify: Classification via Graph Residual Network.

3.1 Parse the Hardware Design

The raw data from the whole hardware design is parsed to a UHDM
model in the first step. Surelog, a multi-threaded SystemVerilog
preprocessor and parser, is the front-end of our approach, support-
ing the full SystemVerilog2017 standard. Due to the compiler’s
Antrl-based architecture, the recursive-descent parse technique
makes it one of the finest open-source tools for SystemVerilog. At
the moment, the compiler can compile any synthesizable subset of
SystemVerilog. Before Surelog preprocesses the hardware, we need
to create a flist that contains the entire hardware design. Surelog
generated UHDM is very similar to SystemVerilog’s Object Model.

484

Yosys AST == RTLL
Design UHDM frlilr-lwlt)el\:d Graph
(Hardware.uhdm) using VPI Show == (hardware.dot)
Yosys

Figure 5: The UHDM-YOSYS flow. The UHDM integration[4]
read the UHDM model via VPI, the AST is immediately rewrit-
ten into Yosys’ internal AST format, and Yosys generates
its own internal IR from the portions that can be synthe-
sized. Meanwhile, the show command could be used to get a
graphviz representation of the hardware topology.

Therefore, the simulator and other tools inside the toolchain can
access the data using the Verilog Procedural Interface(VPI).

3.2 Hardware Schematic Creation

In contrast to the conventional hardware security approach, neither
data-flow nor control-flow graph are employed directly. As in Fig.5,
Yosys’ function is utilized to generate schematics directly from
the synthesizable section of the IR (RTLIL) Yosys relied on, which
contains the hardware’s topology. We presume that the hardware
Trojan is inserted in the hardware design. Unlike other simulation-
based techniques, we aim to utilize a static method to reduce the
amount of data in the approach to avoid scalability concerns. Clas-
sification results could be acquired straight from static inspection.
Moreover, the proposed work is at the RT level, which further elim-
inates the scalability issues. Yosys creates a graph for each module
and the nodes are named evenly. Accordingly, a script is developed
to combine all the diagrams for the whole hardware design into a
giant diagram containing all hardware topological information.

3.3 Graphviz Graph Transformation

After acquiring the hardware design in Graphviz format, we have
to transform it into a graph to further simplify the computing work.
We accomplish this goal by utilizing Networkx [15], a Python li-
brary for constructing, manipulating, and analyzing complicated
networks. A variety of well-known geometric representation learn-
ing libraries (PyTorch-Geometric, Deep Graph Library, and Spek-
tral) could accept networkx-generated graphs as input. However,

Session 6B: Special Session - 2: Application-oriented Hardware Security
Challenges and Solutions

after being transformed to networkx graphs, the graphviz files gen-
erated by Yosys preserve additional information. This additional
information is omitted at this stage because the processed data
retains the hardware’s structure and could be put into the graph
neural network pipeline.

3.4 Handling of Hardware Topology

Due to the lack of datasets in hardware security, deep learning
approaches have yet to be ideal trained. Different IP core has natu-
rally distinct design structures, and it is difficult to migrate Trojan
features from one IP core to another. While some netlist-level work
could extract Trojan characteristics due to device homogeneity,
falling into the scalability issue at the netlist level would use much
more time. This stage introduces the notion of graph spectral do-
main and residual learning. The graph model obtained from the
hardware design is also known as a spatial domain; however, since
the number of node neighbors in this domain is not always equal,
we transform it into a spectral domain to complete the convolution
process. Specifically, the hardware represented in the spatial do-
main is converted to the spectral domain by utilizing the Fourier
normal transform of the graph.

In order to determine the impact of the Trojan’s implantation on
the hardware topology spectrum, the proposed method performs
subtraction between the Trojan-in and Trojan-free spectral matrices.
We intend to exploit the graph neural network in this approach to
extract Trojan’s features, enabling it to be used on various hardware
architectures. Furthermore, the proposed method generates datasets
that span many different IP cores, which solves the lack of datasets.

3.5 Graph Neural Network Model

We employ spektral[12], a framework for graph deep learning, and
refer to previous work for molecular protein prediction.

We are now building a three-layer convolutional graph network.
Each layer of the model generates a new node representation by
aggregating neighbor information, by selecting the average of a
graph’s node features. The training loop repeatedly trains and
computes gradients using graph loader objects, similar to image
classification or language modeling.

This work is still ongoing.

4 EXPERIMENTAL RESULTS

The overall purpose of this paper is to provide Trojan detection
for a SystemVerilog-based SoC. As a result, our testbench[3] is an
SoC equipped with an Ibex core, an open-source 32-bit RISC-V
CPU core written in SystemVerilog. Additionally, we link an AES
128 module[31] via the AXI bus. The experiment is on a computer
with an Intel(R) Core(TM) i7-4770 CPU, 16GB RAM, and Ubuntu
20.04.1 as the operating system. The compilation procedure took
20 seconds in total.

4.1 From IR to Graph

We develop code to process these graphs efficiently. In the transfor-
mation, superfluous attributes are deleted from the dot file. While
in the current approach, conversion from the directed graph to an
undirected graph is done in the next step due to the graph’s Laplace
transform’s validity. At this stage, we maintain the orientation of

485

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

Figure 6: Diagram showing the hardware architecture of the
AES-T100 from the trust-hub after Trojan injection.

the edges. Fig.6 indicates the hardware architecture of AES-T100
from Trust-hub after the Trojan’s insertion.

Following that, the data are converted to spectral space. Then a
graph neural network is used to analyze the data. The results will
be demonstrated in our future work.

5 DISCUSSIONS

We plan to complete the experiments with the following aspects in
future work. First of all, the UHDM model generated by Surelog has
the potential to cause core dumps in Yosys and Verilator, which are
the only applications that presently support the UHDM model. In
subsequent work, we may bypass these two software and directly
acquire the hardware topology via UHDM. Second, we tried to refer
to the molecular prediction network. Molecules, on the other hand,
are very distinct from hardware. For example, hardware always
includes more types of nodes, more edges from single nodes, and
a far larger overall design size than molecules, necessitating the
reworking of the layer and network structure. Finally, the proper
Fourier basis has to be investigated experimentally.

6 CONCLUSIONS

To secure a RISC-V based SoC design, we present an NN-based
hardware vulnerability detection framework. We extend the tool’s
functionality by employing Surelog as a SystemVerilog front-end,
and then evaluate the hardware architecture using graph neural
networks to perform a static analysis of hardware security. Simul-
taneously, we use residual learning to minimize the influence of
hardware functions on the analysis, hence increasing the size of
the training database. The experimental section of this work is still
under construction, and more completed demonstrations will be
given in our future work.

Session 6B: Special Session - 2: Application-oriented Hardware Security

Challenges and Solutions

ACKNOWLEDGMENTS

Portions of this work were supported by the National Science Foun-
dation (CCF-2019310, CCF-2028910, and CCF-2019283.).

REFERENCES

(1]

[10]

[11

[12

[13]

[14

[15

[16]

[17]

[18]

[19]

[20

[
=

[22]

[23

2021. HACK at DAC. Retrieved December 5-9, 2021 from https://hackatevent.
org/hackdac21/

2022. Common Weakness Enumeration. https://cwe.mitre.org/

lowRISC . 2022. GitHub - lowRISC/ibex: Ibex is a small 32 bit RISC-V CPU core,
previously known as zero-riscy. [Online; accessed 2022-04-10].

antmicro. 2022. GitHub - antmicro/yosys-uhdm-plugin-integration. https:
//github.com/antmicro/yosys-uhdm-plugin-integration

Orlando Arias, Zhaoxiang Liu, Xiaolong Guo, Yier Jin, and Shuo Wang. 2022.
RTSec: Automated RTL Code Augmentation for Hardware Security Enhancement.
In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE.
Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted
and automatic generation of high-coverage tests for complex systems programs..
In OSDI, Vol. 8. 209-224.

Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A com-
prehensive survey of graph embedding: Problems, techniques, and applications.
IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018), 1616-1637.
Chipsalliance. 2019. Verible project. Retrieved April 5, 2022 from https://github.
com/chipsalliance/verible/

chipsalliance. 2022. GitHub - chipsalliance/Surelog: SystemVerilog 2017 Pre-
processor, Parser, Elaborator, UHDM Compiler. Provides IEEE Design/TB C/C++
VPI and Python AST APIL Compiles on Linux gcc, Windows msys2-gce & msvc,
OsX. https://github.com/chipsalliance/Surelog

C. Dawson, S.K. Pattanam, and D. Roberts. 1996. The Verilog Procedural Interface
for the Verilog Hardware Description Language. In Proceedings. IEEE International
Verilog HDL Conference. 17-23. https://doi.org/10.1109/IVC.1996.496013
Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337-340.

Daniele Grattarola and Cesare Alippi. 2020. Graph Neural Networks in Tensor-
Flow and Keras with Spektral. CoRR abs/2006.12138 (2020). arXiv:2006.12138
https://arxiv.org/abs/2006.12138

Xiaolong Guo, Raj Gautam Dutta, Jiaji He, Mark M Tehranipoor, and Yier Jin.
2019. QIF-Verilog: Quantitative information-flow based hardware description lan-
guages for pre-silicon security assessment. In 2019 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST). IEEE, 91-100.

Xiaolong Guo, Huifeng Zhu, Yier Jin, and Xuan Zhang. 2019. When capacitors
attack: Formal method driven design and detection of charge-domain trojans. In
2019 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
1727-1732.

Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,
dynamics, and function using NetworkX. Technical Report. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).

Tao Han, Yuze Wang, and Peng Liu. 2019. Hardware Trojans detection at register
transfer level based on machine learning. In 2019 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE, 1-5.

Kento Hasegawa, Youhua Shi, and Nozomu Togawa. 2018. Hardware Trojan
detection utilizing machine learning approaches. In 2018 17th IEEE Interna-
tional Conference On Trust, Security And Privacy In Computing And Commu-
nications/12th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE). IEEE, 1891-1896.

Jiaji He, Xiaolong Guo, Travis Meade, Raj Gautam Dutta, Yigiang Zhao, and Yier
Jin. 2019. SoC interconnection protection through formal verification. Integration
64 (2019), 143-151.

Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert
Magyar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, et al. 2017.
Reusability is FIRRTL ground: Hardware construction languages, compiler frame-
works, and transformations. In 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 209-216.

Himanshu Jain, Daniel Kroening, Natasha Sharygina, and Edmund M Clarke.
2008. Word-level predicate-abstraction and refinement techniques for verifying
RTL Verilog. IEEE transactions on computer-aided design of integrated circuits and
systems 27, 2 (2008), 366—379.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2019.
Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 1-19.

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

Generation and Optimization, 2004. CGO 2004. IEEE, 75-86.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. arXiv preprint arXiv:1801.01207 (2018).

Zhaoxiang Liu, Orlando Arias, Weimin Fu, and Yier Jin. 2022. Inter-IP Malicious
Modification Detection through Static Information Flow Tracking. In 2022 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE.

Cristian Mattarei, Makai Mann, Clark Barrett, Ross G Daly, Dillon Huff, and Pat
Hanrahan. 2018. CoSA: Integrated verification for agile hardware design. In 2018
Formal Methods in Computer Aided Design (FMCAD). IEEE, 1-5.

Xingyu Meng, Shamik Kundu, Arun K Kanuparthi, and Kanad Basu. 2021. RTL-
ConTest: Concolic Testing on RTL for Detecting Security Vulnerabilities. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (2021).
Alan Mishchenko et al. 2007. ABC: A system for sequential synthesis and verifi-
cation. URL http://www. eecs. berkeley. edu/alanmi/abc 17 (2007).

Michael Popoloski. 2019. Slang - SystemVerilog Language Services. Retrieved
April 3, 2022 from https://github.com/MikePopoloski/slang/

Lennart M Reimann, Luca Hanel, Dominik Sisejkovic, Farhad Merchant, and
Rainer Leupers. 2021. QFlow: Quantitative Information Flow for Security-Aware
Hardware Design in Verilog. In 2021 IEEE 39th International Conference on Com-
puter Design (ICCD). IEEE, 603-607.

Hassan Salmani, Mohammad Tehranipoor, and Ramesh Karri. 2013. On design
vulnerability analysis and trust benchmarks development. In 2013 IEEE 31st
international conference on computer design (ICCD). IEEE, 471-474.

Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. 2020. LLHD:
A multi-level intermediate representation for hardware description languages.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation. 258-271.

Amirali Sharifian, Reza Hojabr, Navid Rahimi, Sihao Liu, Apala Guha, Tony
Nowatzki, and Arrvindh Shriraman. 2019. pir-an intermediate representation
for transforming and optimizing the microarchitecture of application accelera-
tors. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. 940-953.

Wilson Snyder. 2013. Verilator: Open simulation-growing up. DVClub Bristol
(2013).

Alessandro Sperduti and Antonina Starita. 1997. Supervised neural networks for
the classification of structures. IEEE Transactions on Neural Networks 8, 3 (1997),
714-735.

Shinya Takamaeda-Yamazaki. 2015. Pyverilog: A python-based hardware de-
sign processing toolkit for verilog hdl. In International Symposium on Applied
Reconfigurable Computing. Springer, 451-460.

Timothy Trippel, Kang G Shin, Alex Chernyakhovsky, Garret Kelly, Dominic
Rizzo, and Matthew Hicks. 2021. Fuzzing hardware like software. arXiv preprint
arXiv:2102.02308 (2021).

Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. 2017.
Mgae: Marginalized graph autoencoder for graph clustering. In Proceedings of the
2017 ACM on Conference on Information and Knowledge Management. 889-898.
Sheng-Hong Wang, Rafael Trapani Possignolo, Qian Chen, Rohan Ganpati, and
Jose Renau. 2019. LGraph: A unified data model and API for productive open-
source hardware design. In Proc. 2nd Workshop Open-Source EDA Technol.
Sheng-Hong Wang and Jose Renau. 2021. Design Decisions in LiveHD for HDLs
Compilation. (2021).

Sheng-Hong Wang, Akash Sridhar, and Jose Renau. 2019. LNAST: A language
neutral intermediate representation for hardware description languages. In Proc.
2nd Workshop Open-Source EDA Technol.

Clifford Wolf. 2016. Yosys open synthesis suite.

Rozhin Yasaei, Shih-Yuan Yu, and Mohammad Abdullah Al Faruque. 2021. Gnn4t;j:
Graph neural networks for hardware trojan detection at register transfer level. In
2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
1504-1509.

Shih-Yuan Yu, Rozhin Yasaei, Qingrong Zhou, Tommy Nguyen, and Mohammad
Abdullah Al Faruque. 2021. HW2VEC: A Graph Learning Tool for Automating
Hardware Security. arXiv preprint arXiv:2107.12328 (2021).

Rui Zhang, Calvin Deutschbein, Peng Huang, and Cynthia Sturton. 2018. End-to-
end automated exploit generation for validating the security of processor designs.
In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 815-827.

https://hackatevent.org/hackdac21/
https://hackatevent.org/hackdac21/
https://cwe.mitre.org/
https://github.com/antmicro/yosys-uhdm-plugin-integration
https://github.com/antmicro/yosys-uhdm-plugin-integration
https://github.com/chipsalliance/verible/
https://github.com/chipsalliance/verible/
https://github.com/chipsalliance/Surelog
https://doi.org/10.1109/IVC.1996.496013
https://arxiv.org/abs/2006.12138
https://arxiv.org/abs/2006.12138
https://github.com/MikePopoloski/slang/

	Abstract
	1 Introduction
	2 Background
	2.1 Attack Model
	2.2 Intermediate Representations for Hardware
	2.3 Hardware IRs in Design Flow
	2.4 Security Applications of Hardware IRs using Lightweight Parsers
	2.5 Learning based Trojan Detection Approach

	3 Methodology
	3.1 Parse the Hardware Design
	3.2 Hardware Schematic Creation
	3.3 Graphviz Graph Transformation
	3.4 Handling of Hardware Topology
	3.5 Graph Neural Network Model

	4 Experimental Results
	4.1 From IR to Graph

	5 Discussions
	6 Conclusions
	Acknowledgments
	References

