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Abstract

This study aims to analyze electric scooter (e-scooter) markets in transit deserts and oases in the U.S. The four cities of
Austin, Chicago, Portland, and Minneapolis were selected as case studies to determine the prevalence of e-scooter rides as
related to locations with limited public transportation options. A t-test was performed to analyze the difference in the num-
ber of e-scooter rides between the transit deserts and transit oases. Overall, the arithmetic means of the e-scooter rides
between the transit deserts and transit oases were not significantly different in Austin, Chicago, and Portland. The results
confirm that the transit index score was among the top three predictors of trips in Austin, Minneapolis, and Portland. In
Chicago, health-related characteristics such as crude prevalence of arthritis, diabetes, and obesity were found to be the most

important predictors of trips in Chicago.
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Today, most American urban areas are adequately cov-
ered by transit services. However, many regions have less
development where local streets are not connected to
main arterials through public transit, so the residents are
likely to be automobile oriented (/). These areas’ unique
structures and forms generally affect accessibility to tran-
sit services, consequently creating the regions designated
as “Transit Deserts” (2). Transit deserts are a concept
introduced by Jiao and Dillivan (3) based on the popular
concept of food deserts. A food desert is an urban area
where people have limited access to healthy food because
of increasing suburban sprawl (4). Likewise, a transit
desert is an area of people who have limited transporta-
tion access. The supply of transportation is related to the
mass transit service of a city. High concentrations of
people who rely on public transportation for their daily
needs create a high demand for transit that exceeds the
supply, resulting in a transit desert. Transit deserts are
areas where the supply of mass transportation does not
meet the demand from the population. However, if the
transit supply surpasses the transit demand, then the
area is a transit oasis. Transit deserts are undesirable, as

people need to find alternative ways to travel to their
final destination, such as relying on personal vehicles or
walking (both of which could cause significant draw-
backs). For instance, personal vehicles have the problem
of storage, maintenance, and additional road congestion.
However, walking to the destination could take a signifi-
cant amount of time and be dangerous in adverse
weather conditions or urban obstacles such as highways,
construction zones, or busy streets.

The “first mile, last mile” issue is a concept in urban
planning that tries to tackle the problem of people travel-
ing long distances inside the city. Electric scooter (e-scoo-
ter) businesses stated that e-scooters are helping to solve
the final mile problem in urban public transit (5). The
first step toward understanding this issue is recognizing
that the public transportation system of each city can
only maximize services for a certain amount of space
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before it becomes financially unreasonable to support.
The first mile describes the beginning of a person’s trans-
portation journey, and the last mile is the final transpor-
tation step to reach the final destination. Individuals
relying on public transportation might need to walk or
take another secondary mode of travel to reach their final
destination. However, the lack of a proper public transit
system can alter the transport network connectivity in a
city (6). For example, an individual traveling to their
local light-rail station would need to take a bus or walk.
If the person had absolutely no connection between the
starting point and the station, they would be stranded at
the origin. As reported by Bouton et al. (7), public transit
use drops up to 90% when passengers need to walk more
than half a mile to the nearest transit stop. A city has a
choice of expanding the transportation routes or leaving
gaps in transit accessibility to accommodate the majority.
But expansion can be burdensome given the cost of addi-
tional vehicles, tracts, and employees. Sometimes the
expansion might not be feasible in high density urban set-
tings because of narrow roads or historic buildings which
prevent new tracts. The average citizen cannot use public
transportation to get to the exact location they wants to
go. Walking is often not a suitably fast or direct option.
In addition, every person in a city owning a car causes
traffic congestion and hurts the city’s economy when
there are uncontrollable levels of traffic (8). Services such
as Lyft and Uber have been seen as a solution to the first-
and last-mile problem. However, they contribute around
14% of traffic in some cities, a burden which is expected
to grow over time (9). A recent possible resolution to the
first- and last-mile problem is the use of micro-mobility
transportation. Micro-mobility includes any lightweight
device that is ideal for short trips (/0). The popularity of
micro-mobility devices has risen in recent years as e-
scooters have become mainstream (/7). E-scooters might
benefit the public transit system and close the gap in first-
and last-mile transportation. As such, e-scooters could be
providing the necessary extra transit supply needed in
transit deserts.

If e-scooter rides are happening more frequently in a
transit oasis area than a transit desert area, the e-scooters
might be used as alternative transportation. However,
higher e-scooter ride numbers in transit desert areas
could be showing that the use of the e-scooters is caused
by the lack of transportation options. Most e-scooter
companies have been claiming that the e-scooters are a
fun new way for people to commute to work in the urban
settings where there is a lack of transportation options
(12, 13). However, if there is no correlation between the
number of e-scooter rides and the transit supply in either
the transit deserts or transit oases, then there is a possi-
bility that the e-scooters are not adding to the transit

supply.

Previous research efforts have demonstrated there are
certain conditions, such as day of the week, where e-
scooter rides were more likely to take place (/4). In addi-
tion, spatial and temporal analyses have been performed
demonstrating how some locations such as restaurants
and educational centers draw more e-scooter rides than
others, creating specific hotspots (/0, 15). Furthermore,
an online study found that 21% of adults would consider
using an e-scooter when convenient. In addition, the per-
son’s perceived walkability and street safety were impor-
tant factors in determining the likelihood of an e-scooter
ride (16).

Major cities design their public transportation to serve
major hotspots (/7). Therefore, there could be a correla-
tion between the location of e-scooter trips and the
amount of transportation measured. The amount of
transportation in a particular area can be measured by
the transit desert index. The transit desert index consid-
ers the level of public transportation while normalizing it
to the area’s demand for transportation. Even in areas
where public transportation is provided, there might be
regions of high demand (such as a tourist location) that
cause the area to be classified as a transit desert. E-scoo-
ters are often seen as a new mode of transportation best
for filling gaps. However, even though they are easing
the traffic in certain areas, they might not be being used
in areas lacking public transportation. More e-scooter
trips occurring within transit deserts could, therefore, be
a valid sign that the e-scooters are generating more tran-
sit supply in areas with high demand for transportation
options.

In addition, past works (/8, 19) have attempted to
analyze the travel behavior and socio-demographic back-
ground of e-scooter users. Therefore, the extent to which
health-related factors contribute to e-scooter usage is not
clear. This gives scope to researchers to uncover underly-
ing health issues that corresponded to the varying mobi-
lity of users. In a previous study, records of the social
vulnerability of residents were measured in relation to
the transit desert index by using the Centers for Disease
Control and Prevention (CDC) social vulnerability
index. The residents living in a transit desert have a
social vulnerability index higher than the city averages
(20). Therefore, there could be a specific variable within
the social vulnerability index that corresponds well to e-
scooter ridership, and this factor could predict the num-
ber of e-scooter rides better than the transit desert index.
This paper, therefore, aims to address two primary ques-
tions on e-scooter ridership in the cities.

1. How and to what extent do access to high-quality
transit services, socioeconomic factors, and
health-related variables contribute to the number
of e-scooter rides per census tract?
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2. What are the differences in use of e-scooters
between transit deserts and transit oases?

The remainder of this article is structured as follows:
the next section summarizes the data used for the study
and provides the location where the data can be accessed
for future research purposes. We then describe the meth-
odology of the study, which factors of socioeconomic
variables might predict e-scooters, and the details about
the function of the proposed models. This is followed by
a description of the results of the results of the study and
a detailed analysis of the outcomes. We conclude with a
summary of the findings and the possible theoretical
implications of the results.

Data

To collect data for use in this study, a list of the 200 most
populated cities in the United States was created from
the U.S. Census Bureau. Next, the researchers examined
each city’s data platform to determine whether they offer
open access to e-scooter rides. Certain large major cities,
such as Seattle and Los Angeles, have an Application
Programming Interface (API) that allows selected
researchers to access data on its e-scooter rides. The
highly selective process of gaining access caused these cit-
ies not to be selected for this study. In addition, the
researchers wanted e-scooter data from the cities that
have start and finish locations, which adds versatility to
the data sets. If a city did not provide this basic info in
the terms of stop and start, then it could not be selected
for the research. The origin and termination points of e-
scooter trips were often arranged in a hexagon pattern
along the city. In the end, the cities of Austin, Chicago,
Minneapolis, and Portland were selected for this study.
In this study, we used the transit score to measure for
accessibility to transit services and identification of tran-
sit deserts and oases. The transit index score was col-
lected through the Urban Information Lab’s ArcGIS
online data portal (27). In summary, the transit supply
was calculated at the census tract level, as demonstrated
in Figure 1, by using the General Transit Specification
Feed from Transitland, street intersection, and points of
interest. The transit feed can consist of multiple forms
such as tram, subway, rail, bus, ferry, funicular, or
monorail. For consistency, we collected other data at the
census tract level to support the analysis. The transit
demand is the number of citizens who may benefit from
transit services in a particular census tract, and the z-
score of the transportation demand minus the z-score of
the transit supply equates to the final transit desert index
score (20). In addition, the census tracts were classified
as transit deserts or transit oases based on the transit
index score. A transit desert index score greater than 1
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Figure |. Transit desert map of Minneapolis, Minnesota.

denotes a transit desert area, while a score of less than 1
denotes a transit oasis. Finally, an area with a score
between —1 and + 1 is a transit adequate area (22).

The U.S. Census Bureau provides open access to each
state’s census tract data containing socioeconomic vari-
ables which can be imported into ArcGIS for further eva-
luation (23). Since the e-scooter trips were assigned to
points as demonstrated in Figure 2, the points can be
joined to the corresponding census tract to create a raw
total number of e-scooter rides in the census tract.

Last, to establish the extent of certain variables on the
effect of e-scooter trips per census tract, we used health-
related variables in addition to socioeconomic factors to
predict the number of e-scooter rides for each census
tract. This allows the researchers to see if there was an
underlying health issue that corresponded to mobility in
a region. A strong correlation in a particular health cate-
gory might provide detailed insight about the culture of
the city that cannot be initially explained by one standard
value. For example, a region with high alcohol consump-
tion could indicate a region with an increased number of
young adults in college. Furthermore, socioeconomic
variables from the American Community Survey, such as
income and employment status, were used to aid in the
prediction. The variable descriptions and summary statis-
tics are included in the Appendix in Tables 1 and 2.

Methodology

To answer the first research question, we proposed a ran-
dom forest model to predict the number of e-scooter
trips. The random forest model was chosen for a variety
of reasons. First, cities might have unbalanced e-scooter
trips in certain parts of the city. In that instance, one
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Figure 2. E-scooter points for the city of Portland, Oregon.

region may have many e-scooter trips, but its adjacent
regions may have fewer trips. It is uncertain if such areas
are outliers in the city’s e-scooter usage. The random for-
est model can handle the outliers by binding them to the
decision trees (24). In the same way, a random forest
model will bind non-linear variables, which is useful for
the transit desert index as it is z-scored at zero. Second,
the random forest categorization will reduce the bias in
the model by averaging all the variables. This means that
the results cannot change widely between the final mod-
els when repeated. Also, since we are combining multiple
data sets, this strategy will heavily favor the random for-
est model (24).

The random forest model produces two important
numbers, which allows for the importance of each vari-
able to be determined with regard to the ability to predict
the dependent variable of the number of e-scooter rides.
It is first important to note that the IncNodePurity is
also known as the Gini importance. Every time a split of
a node in the algorithm is made on the variable, a new
Gini impurity criterion is created for two descendent
nodes, where the descendent categories would be less
than the parent nodes. Adding up the Gini score over the
entire random forest model produces a fast variable
importance ranking that is usually consistent with the
permutation importance measure. The IncNodePurity
may be quicker to run; however, the total amount of
data for the project is smaller than typical large data
projects, so the slight additional time of the result of the
percent mean decrease accuracy (%IncMSE) was used
for better accuracy. The random forest model algorithm
computes a mean squared error for each of the variables
for the number of permutations it takes to create a reli-
able model. That model is temporarily stored until a new

model is created by a different set of variable permuta-
tions. The difference between the first and second model
is taken into account by storing the results in a list, which
then produces each variable’s importance according to
the value of the %IncMSE, where the higher the value,
the better the predictor of the variable.

An important part of the random forest process is
having a wide number of variables for the random forest
machine model to run through. The full list of variables
used is listed in Appendix Table 2. However, each vari-
able has a reason for why it was chosen as a variable.
The primary reason for most variables’ inclusion was the
need to evaluate the e-scooter rides on socioeconomic
variables. A socioeconomic variable includes social and
economic factors that fall within the categories of occu-
pation, income, and education. Many of the variables
could be categorized in multiple categories, yet some are
distinct. For education variables, we choose the amount
of people who have completed high school or a bache-
lor’s degree from the American Community Survey. The
income variables were gross rent, household income, and
poverty. For occupation, we considered full-time employ-
ment status and uninsured status. Then, to be able to
understand the full situation of the census tract, health
variables such as cancer, chronic obstructive pulmonary
disease (COPD), and high blood pressure were added.
The goal in having multiple variables is to determine if
there is a specific variable that might improve our predic-
tion of the number of e-scooter rides.

To address the second research question, we proposed
a t-test to identify whether there is a significant differ-
ence in the mean number of e-scooter rides between tran-
sit deserts and transit oases. A t-test is a statistical test
used to evaluate the means of two groups. An unpaired
t-test was used in the study as each e-scooter ride is inde-
pendent of every other e-scooter rider. In this research, if
there is no significant difference in the mean number of
e-scooter rides between a transit desert and a transit
oasis, the t-test will demonstrate that e-scooters are not
exclusive to a particular transit category, whether it be a
transit desert or transit oasis. By contrast, a significant
difference in the mean number of e-scooter rides indi-
cates that one transit category is being favored.

The raw number of e-scooter rides of each census tract
was divided by the census tract area to create the depen-
dent variable of “Rides by Area.” The number of e-
scooters should be dependent on whether or not there are
strong public transportation options in the census tract
area. The variables of “Rides by Area” and “Transit
Index Score” were compared under a Pearson correlation
to uncover any potential strong linear relationship, and
then t-tests were performed to test if the means of e-
scooter rides were different between transit deserts and
transit oases.
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Table I. T-Tests Between Rides by Area and Transit Index Score

Degree of Mean number Mean of transit Product-moment
City T-value freedom P-value of rides by area index score correlation
Austin 7.150 223 0.000 42.133 0.351 —0.432
Chicago 5.229 198.05 0.000 37.462 —1.321 —0.168
Minneapolis 4.088 150 0.000 78511 0.674 0.317
Portland —3.770 129 0.000 31.206 —0.203 —0315

To accommodate for the census tract size discrepan-
cies, the number of rides was divided by the acreage of
the census tract. The area of the census tract was calcu-
lated in ArcGIS Pro and then modified by creating a new
attribute; the number of rides was divided by the area of
the census tract to create the new column of “Rides by
Area.” The resulting table was then exported as a CSV
for further evaluation in RStudio. The unit of measure-
ment for the census tract area was selected as acreage to
ensure the resulting e-scooter ride number would be
larger than one. This evaluation was performed while
also preventing extreme outliers when the number of e-
scooters was large or the census tract area was small.
This phenomenon was discovered to happen frequently
when the Shape Area was measured in cubic meters.

The transit index score was then joined by the census
tract GEOID as illustrated in Figure 2. The transit index
score was collected through the Urban Information
Lab’s ArcGIS online data portal (27). The transit index
consists of measuring the transit supply (which is calcu-
lated by the number of transit routes and stops in a cen-
sus tract), the street intersection density, and point of
interest density. The transit demand consists of residents
over 12 who are not institutionalized, according to the
American Community Survey (22). The resulting data
table could be reimported into ArcGIS for a basic visua-
lization of e-scooter rides and transit deserts, and any
visual relationship can then be confirmed through
another data analysis software like RStudio.

Results

To predict the e-scooter rides for each census tract, we
proposed a random forest model using the socioeco-
nomic and health-related variables listed in Appendix
Table 2. We analyzed the socioeconomic factors to reveal
whether the transit score is a better predictor than other
common sociological predictors.

Moreover, since e-scooters are a mode of transporta-
tion dealing with individuals’ physical attributes, it is crit-
ical to include the health factors that correspond to
limited mobility, such as arthritis and obesity. Appendix
Table 2 represents the full description of the variable used
in the random forest models. The random forest model

of each city was run accordingly through RStudio using
the “randomForest” program package. Furthermore, all
the cities” data was merged into one data set to identify
the best predictor of all the data (Figure 6).

The data for each city was tested for a linear correla-
tion between the “Rides by Area” variable and the
“Transit Desert Index” variable. The data appears to be
non-linear for the cities with a change in the relationship
between a transit desert and a transit oasis (Table 1 and
Figure 3). Other correlations were displayed with a linear
best-fit line, and it was discovered that a majority of the
data fits with a hyperbolic curve better than with a linear
curve (Figure 4). The vertex on Figure 4 was discovered
to be around the zero axis of the transit index score, so
each city was broken into the transit desert or transit
oasis categories where an individual correlation could
take place (Table 2).

A t-test was performed between the transit desert and
transit oasis of each city to determine if there is a signifi-
cant difference in the e-scooter rides between the two
transit categories. The classification of a census tract
being a transit desert is when the transit index is greater
than zero (Table 3).

Discussion

The random forest algorithm model was used to try to
predict the e-scooter rides by area. Specifically, this
model type was chosen because the model is a classifica-
tion and regression algorithm; additionally, the model
benefits from the inclusion of multiple decision trees. A
decision tree is an algorithm that can be used to solve
both regressions and classifications. This allows for a
decision tree to be generated as a training set that can
predict the value of the recipient variable, in this case, the
e-scooter trips. In a random tree classifier, every decision
tree tries to forecast a response for an occurrence. The
random forest creates multiple decision trees in a model,
allowing each data point to be classified based on its
attributes. The algorithm then “votes” on the tree based
on the importance score and takes the average difference
of all the trees that it combines to create the most accu-
rate result. The variable importance is measured in two
ways. The first step is permuting the data for each tree
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Figure 3. %IncMSE from random forest results of Austin, Chicago, Minneapolis, and Portland.

for each variable to create a prediction error, the mean
squared error (MSE) for regression. Second, the measure
of importance is calculated by the total decrease in the
node impurities from splitting on the variable, which is
averaged over all trees. In the regression process, this
result is then measured by the residual sum of squares.
Lastly, the %IncMSE is the increase in the MSE as a
result of a variable being randomly shuffled. The higher
the %IncMSE number is, the more significant the vari-
able with regard to a relationship with the dependent
variable, which would here be the number of e-scooter
rides. The IncNodePurity shows the amount of function
loss when the best split occurs. Typically, in random for-
ests, the more valuable variables increase the node puri-
ties because the algorithm will have a harder time finding
a split with both a high inter-node variance and small
intra-node variance. The IncNodePurity scores are typi-
cally biased and would be viewed as only a basic refer-
ence point when determining which variable helps the
prediction of e-scooter riders. The highest IncNodePurity
for the combined cities is gross rent. However, it is

important to note that %IncMSE has similar top vari-
ables, with gross rent being second. Therefore, the e-
scooter rides are being heavily factored in the equations
for gross rent and transit deserts. Adding many health
factors to the algorithm was useful for the prediction pro-
cess (as certain health factors should contribute to a per-
son’s mobility) and identification of better predictors for
e-scooter trips. For example, people with arthritis would
have more difficulties moving around the city than ordi-
nary citizens. Suppose numerous health factors are a bet-
ter predictor than the transit desert index score, it could
then be possible to state that the e-scooter rides are inde-
pendent of the transit supply.

The city of Austin’s best predictor was the transit des-
ert index (Figure 3). When referring to the correlation
tests of Austin, the census tract’s increase in transit desert
index score evidenced that as it becomes more of a transit
desert, the number of e-scooter rides increases. In addi-
tion, when the transit desert index decreases, the area
thereby becoming a transit oasis, the number of e-scooter
rides also increases. The number of e-scooter rides is
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Figure 4. %IncMSE and IncNodePurity of random forest results for all cities combined.

Table 2. T-Tests Between Rides by Area and Transit Index Score Categorized by Transit Desert or Transit Oasis

Degree of Mean number of Mean of transit Product-moment
City T-value freedom P-value rides per area index score correlation
Austin—Desert 2.255 155.01 0.025 27.236 0.637 0.793
Austin—Oasis 1.717 68.003 0.090 63.503 —0.744 —0.286
Chicago—Desert 2.132 19.004 0.046 28.550 0.499 0.031
Chicago—Oasis 4.925 178.03 0.000 38.458 —1.524 —0.185
Minneapolis—Desert 16.540 91.158 0.000 85.470 1.362 0.392
Minneapolis—Oasis (NN 59.004 0.000 67.842 —0.381 —0.400
Portland—Desert 6.744 55.001 0.000 20.982 0.670 —0.164
Portland—Oasis 8.239 74.000 0.000 39.760 —0.855 —0.195

Table 3. T-Tests of Rides by Area in Regards of Transit Desert

Mean number of rides Mean number of rides
City T-value Degree of freedom P-value per area in transit oases per area in transit deserts
Austin 0.682 151.130 0.496 60.851 36.650
Chicago 0.882 108.590 0.378 16.390 10.773
Minneapolis —2.212 0.029 0.029 67.842 85.470

Portland 1.924 44.181 0.061 42.978 26.779
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usually at a minimum when the tract is not a transit des-
ert or transit oasis. This is called transit adequate, mean-
ing the transit desert index value is close to 0. In transit
adequate zones, the supply and demand of transit are at
close to equal levels. This meets the needs of the public
on most days while sometimes underperforming or over-
performing based on unique conditions. For example, a
rare sporting event in the city might cause the transit
demand to increase dramatically so that once adequate
transit areas would temporarily become transit deserts.

According to the random forest model, the better pre-
dictor of e-scooter rides for Chicago is the arthritis crude
prevalence estimate (Figure 3). When running a linear
correlation, the comparison between “Arthritis” and
“Rides by Area” variables produces a correlation of
—0.177, which is slightly stronger than the correlation of
the transit index to the “Rides by Area,” which was
—0.168. In the model using the adults with arthritis num-
bers, the census tract having a high number of arthritis
citizens indicates a decrease in the number of e-scooter
rides. Furthermore, if e-scooters were helping create new
transit supply, it should also be increasing randomly in
all areas of a city. There could be a component within the
transit index that strongly coordinates to the rides of e-
scooters. Furthermore, other studies might want to inves-
tigate the walkability index rather than transit deserts for
the relationship with e-scooters. A possible explanation is
that micro-mobility devices can only be used in locations
with sidewalks, bike lanes, or low-traffic roadways.

Next, the random forest model in Figure 3 claims that
the best predictor of e-scooter rides for Minneapolis is
the number of households with children. The second-best
predictor of Minneapolis was the crude prevalence of the
population. In addition, Minneapolis had the transit des-
ert index score as the third-best predictor. The other cities
in this research have an increased ridership when the cen-
sus tract is a transit desert or a transit oasis, and they
have less ridership when the census tract is transit ade-
quate (transit desert index ~ 0). However, Minneapolis
is the polar opposite, with lower ridership when a census
tract is an extreme transit desert or transit oasis (yet more
ridership when the census tract is transit adequate).

As shown in Figure 3, Portland’s top predictor is the
transit desert index. Also, full-time employment status
seems to predict the number of e-scooter trips better than
the other variables. However, a negative correlation
appears when a linear regression is run between e-scooter
rides and full-time employment status. The census tracts
in the Portland city limits with high full-time employ-
ment status would then have lower e-scooter rides. The
transit index score, the best predictor, displays a similar
hyperbolic correlation with fewer scooter rides happen-
ing when the census tract is transit adequate (Figure 6).
The random forest results show that the transit desert

index is a decent predictor for the number of e-scooter
trips. The next steps require determining the specific rela-
tionship between the transit desert index and the number
of e-scooter rides.

The results of the t-test in Table 1 demonstrate that
the means of both groups are different and could be inde-
pendent given the p-value of the cities being low enough
(Iess than 0.05) to be considered significant. Figure 5 and
Table 1 show a positive correlation between the transit
index and number of rides by area for Minneapolis. The
corresponding linear relationship is found to be negative
for Austin, Chicago, and Portland. It is important to
note that increasing the transit index would mean the
census tract is a transit desert. Therefore, the positive
correlation implies that the areas with a lesser degree of
accessibility to transit services (areas with a higher transit
desert index value) are more likely to have a higher num-
ber of e-scooter rides normalized in the area. On the
other hand, negative correlation would mean that areas
with higher accessibility to transit services (areas with
lower transit scores) tend to have a higher number of e-
scooter rides divided by area. There are two main reasons
for this correlation. First, travel behaviors and distribu-
tion of the population might differ from one city to
another. Second, people living in transit deserts and
oases might use e-scooters for different trip purposes.
The data was visualized on a scatter plot to visualize the
correlation further. The correlation was tried with differ-
ent non-linear correlations to see if the relationship is
non-linear.

In Figure 5, a non-linear relationship between the
“Rides by Area” and “Transit Index Score” was discov-
ered. Figure 6 was created with a parabolic curve, which
fit the data better than a linear line. The investigation of
Figure 6 revealed that the vertex of the curve appears to
be around zero for the transit index score. This resulted
in each city being divided into its transit desert and tran-
sit oasis counterparts. When the census tract’s transit
index score is greater than 0, the census tract is classified
as a transit desert, and when the tract is less than 0, it is
classified as a transit oasis.

Furthermore, the division of each city allows for two
linear regressions to be run for each city. The results in
Table 2 show that Austin, Chicago, and Portland have a
negative correlation between transit index and e-scooter
rides when the census tract is classified as a transit oasis.
In this scenario, the census tract starts to have a positive
correlation between the transit index and e-scooter rides
when the census tract is classified as a transit desert.
Minneapolis has the opposite result with census tracts
that are transit deserts, resulting in a negative correlation
between transit index and e-scooter rides. Consequently,
it also maintains a positive correlation between the tran-
sit index and e-scooter rides when the census tract is a
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Figure 5. Graphical visualization of “no. rides per area” and the “transit desert (TD) index” for each city with a linear best-fit line.

transit oasis. Overall, when a census tract is on the
extreme ends of the transit desert index, meaning that
their transit desert index number was closer to —1 or
+ 1, they showed a greater number of e-scooter rides
compared with census tracts that are classed as transit
adequate (TD Index =~ 0).

As displayed in Table 1, each city individually exhib-
ited a negative linear correlation, except for Minneapolis.
When the four cities are combined, the chart displays a
slight positive correlation of e-scooter rides. This connec-
tion might be a result of Minneapolis having a strong
positive correlation and being able to shift the addition
of the other points to a more positive correlation. As
noted, when a city’s census tract is on the extreme scales
of being a transit desert or transit oasis, an increase in
the number of e-scooter rides is then observed.

By answering where e-scooters are more likely to
occur, it could be speculated that their occurrence is help-
ing to add a layer of public transportation that could not
have been initially provided from traditional forms of
transportation. The wealthy neighborhoods in dense
urban settings might have the luxury of personal vehicle
transportation, while lower income neighborhoods may
need to rely on public transportation. Furthermore,

wealthier neighborhoods are in the less dense parts of the
city as each person there occupies more space and
requires space for a car. Access to a car allows a person
to have higher job security (thanks to having stable trans-
portation to work). Conversely, a person who relies on
public transportation could be one train ride away from
being late to their job, risking termination.

The 2019 e-scooter report by Portland Bureau of
Transportation (25) in Oregon states that e-scooters were
most used in heavily traveled areas, including “NE
Going Street, SE 122nd Avenue, NW Johnson, SW
Naito Parkway, and the Willamette Greenway Trail.”
These heavily trafficked areas are also a part of
Portland’s bikeway network, which might correspond to
e-scooter rides happening more for leisure than for com-
muting in areas with a lack of public transportation. If e-
scooters are being used more for leisure activities, it
could explain why the e-scooter rides are happening in
both extreme transit deserts and transit oases. Most lei-
sure activities have a high density of people seeking
transportation to a certain spot. For example, a park
might have a bus station at the north end but be com-
pletely vacant of transportation at the park’s southern
end. The e-scooter rides could happen in both park areas
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Figure 6. Graphical visualization of “no. rides per area” and the “transit desert (TD) index” for each city with a quadratic best-fit line.

but be occupied in two different types of transit indices.
This theory may be supported by Appendix Table 2,
where Minneapolis and Portland significantly differ in
the mean of scooter rides between transit deserts and
transit oases.

Cities could use the results of e-scooter analyses to
take steps to solve issues like overcrowding on sidewalks
and public areas caused by dockless e-scooters. For
example, cities can create zones to limit the number of e-
scooter deployments. If the cities do not allocate the e-
scooters properly, this situation could cause the creation
of new transit desert zones. The results show how a
majority of cities have a certain relationship with the
transit desert index. Therefore, it would be useful for
cities to focus on addressing their transit deserts.
Furthermore, cities should consider special events where

micro-mobility would be especially popular. Regulators
should be able to create flexible restrictions that change
depending on the circumstances. Particular points of
interest like tourist attractions might need to be given
special circumstances to help provide the necessary
amount, and local transportation experts should use the
transit desert index to create the guidelines on the restric-
tions of e-scooters.

Conclusion

The selected cities of Austin, Chicago, Minneapolis, and
Portland have displayed a strong correlation between the
transit desert index score and e-scooter rides. Typically,
when a census tract becomes more of a transit desert or
transit oasis, the e-scooter count increases. The exception
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is in Minneapolis: when that city’s census tract becomes
more of a transit desert or transit oasis, the e-scooter
rides were observed to decrease. The mean of e-scooter
trips between the transit desert and transit oasis showed
no significant difference in Austin, Chicago, or Portland.
Minneapolis showed a significant difference in the mean
of e-scooter rides between census tracts classified as tran-
sit deserts versus census tracts that are transit oases.

Furthermore, a greater number of e-scooter rides took
place in census tracts classified as transit deserts. For
Minneapolis, the mean of e-scooter rides in transit oases
was 67.841, and the mean of e-scooter rides in transit
deserts was 85.469. The e-scooter data was joined with
corresponding CDC health demographics per the census
tract. A random forest model was created for each city to
try to predict the number of e-scooter rides. The best pre-
dictor for Austin and Portland was the transit desert index
score, while Chicago’s was the crude prevalence of arthritis
among adults aged = 18 years, and in Minneapolis it was
the crude prevalence of households with children.
However, the transit index score placed first for Austin,
13th for Chicago, fourth for Minneapolis, and third for
Portland. Last, the transit desert index score was the best
predictor for e-scooter rides when the cities were combined
as in Figure 4.

Many cities are placing limits on where e-scooters can
be deployed (26). E-scooters might be helping to increase
the supply of transportation, but if the e-scooters are not
used effectively, they will be useless. The allocation of e-
scooters based on population or heavily trafficked areas
might not be the best way. If cities are trying to predict
the number of e-scooter rides per census tract, the rec-
ommendation based on this study would be to use the
transit desert index score highlighted in the methods,
given the high predictive nature of the results from the
random forest models. Furthermore, the high predictive
nature of the transit desert index score for the number of
e-scooter rides could be used by e-scooter companies to
place e-scooters where citizens tend to use e-scooters
more frequently. These locations tend to be in regions on
the extreme ends of the transit desert index scale. The
census tracts with adequate transportation (transit index
~ 0) tended to have a lower number of e-scooter rides
than the census tracts that were distinctly a transit desert
or transit oasis. It is important to note that spatial plan-
ning in the cities would account for the clusters of e-
scooter rides. A future research analysis could evaluate
the specific trip-types to identify patterns in users’ end
destinations. The first limitations of the study are that
most cities do not provide the same level of access to
data. For example, Austin includes data for an entire
year, while Minneapolis provides a few select months. In
addition, some other e-scooter data for select cities are
only available for authorized users. If the research was

to be expanded on, access to more cities’ e-scooter data
and a longer time frame for the data would help the
analysis. In addition, if possible, a smaller scale beside
the census tract would allow for the results to be even
more precise. Similarly, scaling the study to a higher
scale, such as the the zip code level, would provide a
larger general representation of e-scooters but would lose
the precision of smaller-scale research.

Author Contributions

The authors confirm contribution to the paper as follows: study
conception and design: N. Degen; data collection: N. Degen;
analysis and interpretation of results: N. Degen; draft manu-
script preparation: N. Degen, A. Azimian, and J. Jiao. All
authors reviewed the results and approved the final version of
the manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This project was supported by the Good System Grand
Challenge and the Cooperative Mobility for Competitive
Megaregions (CM2) center both at The University of Texas at
Austin.

ORCID iD

Nathaniel Degen (#) https://orcid.org/0000-0001-9630-2940

Supplemental Material

Supplemental material for this article is available online.

References

1. Jiao, J., and A. Azimian. Measuring Accessibility to Gro-
cery Stores Using Radiation Model and Survival Analysis.
Journal of Transport Geography, Vol. 94, 2021, p. 103107.

2. Allen, D. J. The Evolution of ‘Transit Deserts’ and How to
Achieve Transit Equity, Mobility. Metro-Magazine. https://
www.metro-magazine.com/10002947 /the-evolution-of-tran
sit-deserts-and-how-to-achieve-transit-equity-mobility.
Accessed January 10, 2021.

3. Jiao, J., and M. Dillivan. Transit Deserts: The Gap
Between Demand and Supply. Journal of Public Transpor-
tation, Vol. 16, No. 3, 2013, p. 2.

4. Dutko, P., M. Ver Ploeg, and T. Farrigan. Characteristics
and Influential Factors of Food Deserts. Economic
Research Report Number 140. Economic Research Ser-
vice, Washington, D.C., 2012.

5. Sipe, N. G., and D. Pojani. Can E-Scooters Solve the ‘Last
Mile’ Problem? They’ll Need to Avoid the Fate of Dockless


https://orcid.org/0000-0001-9630-2940
https://www.metro-magazine.com/10002947/the-evolution-of-transit-deserts-and-how-to-achieve-transit-equity-mobility
https://www.metro-magazine.com/10002947/the-evolution-of-transit-deserts-and-how-to-achieve-transit-equity-mobility
https://www.metro-magazine.com/10002947/the-evolution-of-transit-deserts-and-how-to-achieve-transit-equity-mobility

Transportation Research Record 00(0)

10.

11.

12.

. Almannaa, M. H., H. L

Bikes. The Conversation. https://theconversation.com/can-
e-scooters-solve-the-last-mile-problem-theyll-need-to-
avoid-the-fate-of-dockless-bikes-102633. Accessed Decem-
ber 10, 2020.

. Gurumurthy, K. M., K. M. Kockelman, and N. Zuniga-

Garcia. First-Mile-Last-Mile Collector-Distributor System
Using Shared Autonomous Mobility. Transportation
Research Record: Journal of the Transportation Research
Board, 2020. 2674: 638-647.

Bouton, S., D. Canales, and E. Trimble. Public—Private
Collaborations for Transforming Urban Mobility. Mckin-
sey. https://www.mckinsey.com/business-functions/sustain
ability/our-insights/public-private-collaborations-for-transf
orming-urban-mobility. Accessed December 20, 2020.
Fleming, S. Traffic Congestion Cost the US Economy

Nearly $87 Billion in 2018. Presented at Annual Meeting of

the World Economic Forum, Davos, 2019.

Hawkins, A. J. Uber and Lyft Finally Admit They’re Mak-
ing Traffic Congestion Worse in Cities. The Verge, 2019.
Jiao, J., and S. Bai. Understanding the Shared E-Scooter
Travels in Austin, TX. ISPRS International Journal of Geo-
Information, Vol. 9, No. 2, 2020, p. 135.

Azimian, A., and J. Jiao. Modeling Factors Contributing
to Dockless E-Scooter Injury Accidents in Austin, Texas.
Traffic Injury Prevention, Vol. 23, No. 2, 2022, pp. 107-111.
Popovici, 1., and M. T. French. Binge Drinking and Sleep
Problems Among Young Adults. Drug and Alcohol Depen-
dence, Vol. 132, No. 1-2, 2013, pp. 207-215.

. Wolfson, A. The Exhilarating New Way You may be Com-

muting to Work in the Future. MarketWatch. https://www
.marketwatch.com/story/the-exhilarating-new-way-you-may-
be-commuting-to-work-in-the-future-2018-07-20. Accessed
December 20, 2020.

Ashqar, M. Elhenawy, M.
Masoud, A. Rakotonirainy, and H. Rakha. A Compara-
tive Analysis of E-Scooter and E-Bike Usage Patterns:
Findings From the City of Austin, TX. International Jour-
nal of Sustainable Transportation, Vol. 15, No. 7, 2021,
pp. 571-579.

. McKenzie, G. Spatiotemporal Comparative Analysis of

Scooter-Share and Bike-Share Usage Patterns in

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Washington, DC. Journal of Transport Geography, Vol. 78,
2019, pp. 19-28.

Mitra, R., and P. M. Hess. Who are the Potential Users of
Shared E-Scooters? An Examination of Socio-Demo-
graphic, Attitudinal and Environmental Factors. Travel
Behaviour and Society, Vol. 23, 2021, pp. 100-107.

Behrens, K. On the Location and Lock-In of Cities: Geo-
graphy vs Transportation Technology. Regional Science
and Urban Economics, Vol. 37, No. 1, 2007, pp. 22-45.
Buehler, R., A. Broaddus, T. Sweeney, W. Zhang, E.
White, and M. Mollenhauer. Changes in Travel Behavior,
Attitudes, and Preferences Among E-Scooter Riders and
Nonriders: First Look at Results From Pre and Post E-
Scooter System Launch Surveys at Virginia Tech. Trans-
portation Research Record: Journal of the Transportation
Research Board, 2021. 2675: 335-345.

Zou, Z., H. Younes, S. Erdogan, and J. Wu. Exploratory
Analysis of Real-Time E-Scooter Trip Data in Washington,
DC. Transportation Research Record: Journal of the Trans-
portation Research Board, 2020. 2674: 285-299.

Jiao, J., J. Conrad, and A. Azimian. Measuring Social Vul-
nerability in Transit Deserts of United States Metro Areas.
International Journal of Geospatial and Environmental
Research, Vol. 8, No. 1, 2021, p. 3.

UIL. Transit Desert Index, v2.1, by US Census Tract. ESRI
ArcGIS Online. https://www.arcgis.com/home/item.html?
id =f1b6dd3c82d748ca%ac1e98972deSeSa. Accessed Decem-
ber 20, 2020.

Jiao, J. Identifying Transit Deserts in Major Texas Cities
Where the Supplies Missed the Demands. Journal of Trans-
port and Land Use, Vol. 10, No. 1, 2017, pp. 529-540.

U.S. Census Bureau. TIGER/Line Shapefiles. Census.gov,
2019.

Biau, G., and E. Scornet. A Random Forest Guided Tour.
Test, Vol. 25, No. 2, 2016, pp. 197-227.

PBOT. 2018 E-Scooter Findings Report. Portland.gov,
2018.

Zipper, D. The Local Regulations That can Kill E-Scooters.
Bloomberg. https://www.bloomberg.com/news/articles/
2020-02-10/local-regulations-can-be-an-e-scooter-Killer.
Accessed December 20, 2020.


https://theconversation.com/can-e-scooters-solve-the-last-mile-problem-theyll-need-to-avoid-the-fate-of-dockless-bikes-102633
https://theconversation.com/can-e-scooters-solve-the-last-mile-problem-theyll-need-to-avoid-the-fate-of-dockless-bikes-102633
https://theconversation.com/can-e-scooters-solve-the-last-mile-problem-theyll-need-to-avoid-the-fate-of-dockless-bikes-102633
https://www.mckinsey.com/business-functions/sustainability/our-insights/public-private-collaborations-for-transforming-urban-mobility
https://www.mckinsey.com/business-functions/sustainability/our-insights/public-private-collaborations-for-transforming-urban-mobility
https://www.mckinsey.com/business-functions/sustainability/our-insights/public-private-collaborations-for-transforming-urban-mobility
https://www.marketwatch.com/story/the-exhilarating-new-way-you-may-be-commuting-to-work-in-the-future-2018-07-20
https://www.marketwatch.com/story/the-exhilarating-new-way-you-may-be-commuting-to-work-in-the-future-2018-07-20
https://www.marketwatch.com/story/the-exhilarating-new-way-you-may-be-commuting-to-work-in-the-future-2018-07-20
https://www.arcgis.com/home/item.html?id=f1b6dd3c82d748ca9ac1e98972de5e5a
https://www.arcgis.com/home/item.html?id=f1b6dd3c82d748ca9ac1e98972de5e5a
https://Census.gov
https://Portland.gov
https://www.bloomberg.com/news/articles/2020-02-10/local-regulations-can-be-an-e-scooter-killer
https://www.bloomberg.com/news/articles/2020-02-10/local-regulations-can-be-an-e-scooter-killer

