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ABSTRACT: Thermal energy storage offers numerous benefits by reducing energy
consumption and promoting the use of renewable energy sources. Thermal energy
storage materials have been investigated for many decades with the aim of improving the
overall efficiency of energy systems. However, finding solid materials that meet the
requirement of high heat capacity has been a grand challenge for material scientists.
Herewith, by training various machine learning models on 3377 high-quality data from
full density functional theory (DFT) calculations, we efficiently search for potential
materials with high heat capacity. We build four traditional machine learning models and
two graph neural network models. Cross-comparison of the prediction performance and
model accuracy was conducted among different models. The deeperGATGNN model i
exhibits high prediction accuracy and is used for predicting the heat capacity of 32,026 storage
structures screened from the open quantum material database. We gain deep insight into
the correlation between heat capacity and structure descriptors such as space group,
prototype, lattice volume, atomic weight, etc. Twenty-two structures were predicted to
possess high heat capacity, and the results were further validated with DFT calculations. We also identified one special structure,
namely, MnIn,Se,, with space group no. 227 (Fd3m), that exhibits extremely high heat capacity, even higher than that of the
Dulong—Petit limit at room temperature. This study paves the way for accelerating the discovery of novel thermal energy storage
materials by combining machine learning with minimal DFT inquiry.

KEYWORDS: Thermal Energy Storage, Materials Discovery, Machine Learning, Graph Neural Network, Heat Capacity,
Dulong—Petit Limit

Thermal

B INTRODUCTION reversible thermochemical reactions for heat storage. In this
paper, we search for materials based on SHS, and those are
materials which are affected by an increase or decrease of the
material temperature. Thus, it is desirable for the storage
medium to have as high as possible heat capacity,” as the heat
capacity of a material is the amount of heat required to change
the temperature of the material.

All materials have a capability of absorbing and storing heat
due to the fact they have mass (m) and specific heat capacity
(c,) at constant pressure. As described by the thermodynamics,
for a temperature difference AT, the amount of energy stored
in SHS material is given by

The rapid development of global industrialization and
population has led to the increase in the demand of energy.
However, the use of fossil fuels has caused severe environ-
mental pollution by greenhouse gas emission,' which has led to
great research interest and development of renewable energy.
Thermal energy storage (TES) systems have emerged as
promising solutions in solving the problem of storing the
excess energy produced from renewable energy sources and
made available for later use, and developing TES materials is
the core element of the TES system.” TES is very important in
many engineering applications. It has been applied mostly in
solar energy systems,” and it can also be applied to store heat Qensivle = MGAT (1)
in building structures, to couple waste heat and district heating
systems, and to couple heat pumps and combined heat power
generators in district heating networks. TES materials can be
classified into sensible heat storage (SHS), latent heat storage
(LHS), and thermochemical heat storage (THS) materials. Received: June 26, 2022
Each storage material occurs in a different physical state, Accepted:  September 6, 2022
storing and release energy differently. For example, SHS

materials store and release energy through a change in

temperature,” and LHS materials store the energy mainly

based on phase change.”® However, the THS system utilizes

As clearly seen from eq 1, the Qe depends on the heat
capacity of the material. For solid materials, the specific heat
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Figure 1. Statistics (structure type and element distribution) for training and prediction data. (a,b) Space group count for training and predicted

data. (c,d) Element distribution for training and predicted data.

per mole of a substance has an upper limit of about 3NR (the
so-called Dulong—Petit law), where R = 8.31441 J/mol-K
being the molar gas constant and N the molar number of
atoms in the material. Thus, the molar thermal energy g,
stored in solids can be approximated by

qmol < 3NRAT (2)

In the past decade, material scientists have been using high-
throughput screening (HTS) coupled with density functional
theory (DFT) for structure—property prediction with high
accuracy in search of novel materials.”® DFT is highly accurate
but less efficient, and hence it is computationally expensive and
time—consuming.7’9 Machine learning (ML) methods offer the
possibility of reducing the number of DFT calculations needed
to discover new materials because ML models are based on

statistical predictions rather than physical-based calculations,
hence they are computationally less expensive.'’

ML has been used for prediction of mechanical properties of
metal alloys,""'> band gap energies of crystals,’”'* and
formation energies of crystals.””~'” Kauwe et al.'’ used ML
to predict the heat capacity of solid inorganics over a wide
range of temperatures. Their work showed that the ML
algorithm can be presented as an alternative method to predict
heat capacity for any material at a wide range of temperatures,
with better accuracy and less time than traditional DFT
methods. In medicine, Odigwe et al.'® utilized ML techniques
to predict the expected magnitude of heart failure patients’ left
ventricular end-systolic volume, 3 months after cardiac
resynchronization therapy placement, within a 17% median
margin of error. Though ML is highly efficient, it has few
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limitations which reduces its accuracy in prediction; such
limitations include measurement error,"” lack of generality and
precision, reliance on high-quality data,””*" inability to
determine high level concepts,”” and poor extrapolation.”***
In this work, we implement four traditional ML algorithms and
two graph neural network (GNN) algorithms. The accuracy of
the traditional ML depends on the effective input representa-
tion of the crystal structures. In this study, we represent our
crystal structure with many simple descriptors. We also use
GNN models which do not need any input representation, as
they learn directly from the crystal structures. After thoroughly
screening of the 50,000 crystal structures from the OQMD, we
identify 22 structures with high heat capacity and one of which
has heat capacity even higher than that of the traditional
Dulong—Petit limit. We also compare our results between each
ML model and DFT calculations to validate our findings.

B METHODOLOGY

Heat Capacity Calculation by DFT. Optimal perform-
ance of ML models requires high-quality training data either
from high-throughput calculations or from experiment. The
initial data used in this paper to train and build the heat
capacity predictive models were obtained from our first-
principles calculations of 3377 cubic crystal structures from
four different space groups (specifically space group numbers
216, 221, 225, and 227), eight different atom types, and 66
elements, as shown in Figure 1. The initial data downloaded
from the OQMD database were 50,000. We then screened the
data by removing any structures with a band gap equal to zero,
as we are only interested in semiconductors. Finally, we
obtained 32,026 structures after screening. The initial crystal
structures (atomic positions and lattice yarameters) were
downloaded from the OQMD database®”*® and then were
reoptimized by our own computational parameters. We did not
explore the prediction of space groups that were not contained
within the training data. This is because we only successfully
reoptimized ~50,000 cubic structures with the same space
groups as the training data. Our predicted data have many
structures with few atoms (e.g., less than S) in the primitive
cells, while large primitive cell structures (such as above 20
atoms) are few. We also did not explore disordered supercells;
all predicted structures are ordered crystalline phases. The
DFT calculations were performed using the plane-wave basis
projector-augmented wave (PAW) method,”” within the
Perdew—Burke—Ernzerhof exchange-correlation functional,”®
as implemented in the Vienna ab initio simulation package
(VASP).””7*! The cutoff energy was set to 520 eV for all
crystal structures. The energy and force criteria for the DFT
calculation of structure optimization were set at 107 eV and
107" eV/A, respectively. The phonon band structures were
determined using the supercell approach implemented in the
PHONOPY package.”> The second- and third-order intera-
tomic force constants (IFCs) required for phonon band
structure calculation were calculated using a compressive
sensing lattice dynamics (CSLD) method,” which extracts the
IFCs from the Taylor-expanded interatomic forces in terms of
atomic displacements via advanced compressive sensing
techniques. All atoms in the supercells were randomly
displaced with a magnitude of 0.03 A by the PHONOPY
package. The advantage of this method is the significantly
lowered requirement of supercell numbers for IFCs, reducing
the needed DFT for converged IFCs. For example, for
quaternary (ABCD, space group number 225) Heusler

structures, a traditional finite displacement method would
require at magnitude ~10® structures to get the third-order
interatomic force constants even if only the third nearest
neighbor is considered, whereas only 12—16 randomly
displaced supercell structures are needed from CSLD. With
IFCs obtained by DFT, the phonon dispersions were
calculated by the PHONOPY package, and the heat capacity
was further calculated by the ShengBTE package.’* This
technique of calculating heat capacity by the ShengBTE
package using second-order harmonic interatomic force
constants has been widely used for various materials in the
past few years.*>*°

Data Generation and Analysis for Machine Learning
Model Training. Table 1 shows some of the DFT-calculated

Table 1. Experimental and DFT-Calculated Heat Capacity
of Some Materials from OQMD

material ID formula experiment (J/g-K) DFT (J/g-K)

3683 KCl 0.695%° 0.653
110592 NaCl 0.85% 0.822
1224082 Zn$S 0.469%° 0.465

1222438 LiF 1.5617°" 1.5134
1223683 Zn0 0.495% 0.501
12376 AlAs 0.49% 0.435
1104282 AIN 0.819%* 0.802
5686 NaF 1.088%° 1.084

11589 PbS 0.285% 0.2028
1104590 KI 0.313% 0.297
2577 MgO 1.0% 0.937

heat capacities compared to experimental data. From Table 1,
we can observe that our DFT result is in very good agreement
with the experimental result. Both training and predicted data
contain four different space groups, eight atom types, and 66
elements in the periodic table except the La and Ac elements.
In Figure 1, we present the statistics of our training and
predicted data. Figure 1a,b shows the number of structures and
atom types in each space group, respectively. This statistic
gives us insight on what space group and atom type we can
explore to find novel TES materials. We observe that the space
group 227 in our training data is relatively small compared to
other space group, but our model was able to predict all high
heat capacity from the 227 space group and AB,C, atom type
(see details below). Figure lc,d shows the distribution of
elements in our training and predicted data, respectively. All
elements showing up in the predicted data occurred in the
training structures, which makes the prediction of the trained
models more reasonable.

Figure 2 illustrates the relation between each attribute and
the target. The somewhat monotonic relationships between the
variables justify the use of the Spearman’s rank correlation in
evaluating the monotonic relationship between the attributes
and the target, as is presented Figure 3. High multicollinearity
was observed among the independent variables “Average
Weight” and “Total Weight”, “Number Density” and “Bond
Length”, with values of 0.73 and —0.87, respectively, where
zero is ideal (representing no correlation), and 1 and —1
represent a perfect correlation (unideal for the independent
variables). In this study, we define correlation values greater
than 0.7 as high collinearity. Nevertheless, multicollinearity is
undesirable as it enables less reliable statistical inferences. The
statistical relevance of the observed correlations is measured
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Figure 2. Scatter plot between attributes and target variables with different colors representing different space groups. This justifies the use of
Spearman’s rank correlation in evaluating the monotonic relationship between the attributes and target.

using the p value, with the assumption of the null hypothesis
being true. The p values for the observed correlations between
the input features are below 5% or 0.05, thus rejecting the null
hypothesis and supporting the unlikelihood of the correlations
happening by chance.

The Spearman’s rank correlation between the attributes and
the target is shown in Figure 3. It can be observed from Figure
3 that the “Number Density” attribute is negatively correlated
with the heat capacity variable, while the “Total Weight”,
“Average Weight”, “Mass Density”, “Volume”, and “Bond
Length” are positively correlated with the heat capacity. It can
be further observed that the “Total Weight” and “Volume”
attributes have a relatively stronger correlation with the target
with correlation values of 0.59 and 0.66, respectively, where 1
and —1 represent a perfect correlation (an ideal correlation)

and zero represents no correlation. The p value results suggest
the unlikelihood of the correlations for the “Number Density”,
“Mass Density”, and “Average Weight” attributes with the
“Heat Capacity” target.

Outliers were found to be present within the data, as
presented in Figure 4. The outliers are defined in this study as
observations outside the upper boundary and lower boundary
for each attribute as defined in eqs 3—S5. Nevertheless, the
outliers in this data set were left unaddressed as there was no
valid reason for their exclusion; they are more representative of
reality. Furthermore, all attributes were normalized to a 0—1
bound to reduce learning bias.

IQR=Q3 - Q1 3)
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upper boundary = Q3 + 1.5 X inter-quartile range (4)

lower boundary = Q1 — 1.5 X inter-quartile range (5)

where inter-quartile range = Q3 — Q1, Q1 is the 25th quartile,
and Q3 is the 75th quartile.

Machine Learning Model Training. Four traditional ML
models and two graph neural networks are investigated in this
study, namely, the linear regression, random forest, extreme
gradient boosting, Catboost, crystal graph convolution neural
network (CGCNN), and global attention graph neural
network (deeperGATGNN). We discuss in this subsection,
the learning scheme of the machine learning approach, the
summary of the theoretical underpinnings of these models, and
a description of the implementation, optimization, and

validation of the investigated machine learning approaches.
The learning task is formulated to map the relationship
between the input features and the target (“Heat Capacity”).
The objective of the learning process is defined in eq 6, where
the learning objective is defined to be the minimization of the
mean absolute error (MAE) between the ML-predicted heat
capacity values and the DFT-calculated heat capacity.

1 m ; ;
minimize: J(6,, 8,) = — hy(x7) — 5]
]( 0 1) m Zi:l 6( ) y (6)

Linear Regression. Linear regression is used to find the
best line of fit which describes the statistical relation between a
defined set of predictors and target variables.”” It is used for
the value of the target (dependent variable) based on the
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Figure S. Testing results of the ML and GNN model. (a—d) Testing results for the traditional ML model, random forest, linear, Catboost and

XGBoost models. (e,f) CGCNN and deeperGATGNN model.

information provided on the predictors (independent varia-
bles). The operation of the linear regression model is generally
governed by

target = w X predictor + b (7)

where w refers to the slope of the line and b represents the
intercept of the line.

Random Forest. The random forest (RF) machine
learning algorithm was introduced by Breiman in 2001.°° It
is characterized by a collection of many individual decision
trees, thus operating as an ensemble. The output of the
ensemble is selected as the average of the predictions of each
individual tree. The RF is created by the random feature
selections and bagging as introduced by Breiman,”” which

helps to reduce overfitting. The performance of the RF
algorithm on regression problems has been demonstrated in
several application areas such as predicting atomic local
environment™’ and lattice thermal conductivity of crystalline
material.*' See ref 38 for more information on random forest.

Extreme Gradient Boosting (XGBoost). Boosting
proposed in 1999 by Schapire*” is an ensemble method that
aggregates and integrates multiple base (tree) learners to
produce better predictions of classification and regression
problems. Boosting outperforms bagging when the data are
characterized by less noise.””** The XGBoost specifically as
proposed by Chen and Guestrin in 2016* is a scalable and
efficient implementation of the gradient boosting technique
proposed by Friedman et al. in 2001.*%*” It is characterized by
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an efficient linear model solver and tree learning algorithm.
The XGBoost creates new decision trees to fit the residuals of
previous decision trees through a process of continuous
iteration with the aim of improving the prediction accuracy
with each passing iteration. The XGBoost model makes use of
the average of the predictions of the individual number of trees
within a given sample.”® More details on XGBoost can be
found in Chen et al.*

Catboost. Catboost has found successful applications to
several problems.*”*° Initially proposed by Prokhorenkova et
al. in 2017,°" Catboost is based on the gradient boosting
decision tree which uses a complex ensemble learning
approach. During the learning stage, decision trees are
sequentially constructed to produce subsequent trees with
decrease loss. The decision tree learns from the preceding trees
and influences the creation of the next tree, thus boosting the
performance of the model. One of the ways the Catboost
model differs from other gradient boost techniques is in its
ordered boosting mechanism which addresses the target
leakage problem of traditional gradient boosting methods
caused by gradient bias.

Graph Neural Network. CGCNN was development by
Xie et al. in 2018,>* and deeperGATGNN>® was further
developed by Omee et al. in 2021. Both GNN codes have
found success in the material discovery for accurate and
efficient prediction of material properties. Both CGCNN and
deeperGATGNN extract features from the crystal structure,
which are then used for training the model. They combine the
descriptors and learning model into one inseparable step. The
model learns material properties directly from the connection
of atoms in the crystal.

ML Model Optimization, Validation, and Prediction.
For the effective application of the machine learning models to
the SHC prediction problem, the models were optimized using
the sklearns randomized search library.”* The machine learning
models are trained on 80% of the randomly sampled data set
using the Scikit-learn library.”> The results describing the
performance of the model on the training data set are
presented in Figure S. Figure S highlights the results describing
the performance validation of the trained model on the
outstanding 20% of the data set. The average of the results
obtained via a cross-validation with five folds demonstrates the
superiority of the Catboost model compared to the other
traditional ML models, but the graph attention neural network
(deeperGATGNN) has the best performance over all models
used.

B RESULTS AND DISCUSSION

Figure Sa—f shows the testing results for all trained models.
The MAE for the deeperGATGNN model, as shown in Figure
5f, was relatively small, and the R* value is much higher
compared to that of other ML models, which justified the use
of the deeperGATGNN model for the further screening of
potential TES materials. We determined that the Catboost
model also has a good R* value compared to that of the
deeperGATGNN model, but the corresponding MAE is much
higher. According to the testing results from Figure S, the
deeperGATGNN model was finally chosen for the prediction
of 32,026 structures from the OQMD database in order to
search for potential TES materials with high heat capacity.
Another advantage of the deeperGATGNN model is that there
is no manual feature extraction needed. The only input for the
model is the 3D atomic structures with basic information on

elements, atomic positions, etc. After using the deep-
erGATGNN model to predict the heat capacity of 32,026
structures, we finally chose 22 highest predictions of heat
capacity to be validated by DFT calculations. Addition of more
data will improve the performance of our model, as shown in
Figure S2, where the 22 recommended structures (calculated
by DFT) were added to the previous training data. There is a
slight improvement in our result, as seen in the MAE, which is
due to the small amount of new data added (22), compared
with the previous large amounts of training data (3377).

We would like to emphasize that it is possible to use active
learning to further improve the deeperGATGNN model,
provided that a significantly large amount of new data will be
added. We have tried to add the 22 recommended structures
(calculated by DFT) to the previous training data and retrain
the deeperGATGNN model. There is only a slight improve-
ment in our result in terms of MAE (results not shown for
brevity), which is due to the small amount of new data added
(22), compared with a previous large amount of training data
(3377). However, performing high precision DFT calculations
on very large number of new structures is very time- and
resource-consuming. Due to the limited time and resources, we
cannot perform large-scale active learning approaches to
32,026 structures. Another reason for not using the active
learning approach is that we find the MAE of our trained
deeperGATGNN model is already low, ie, ~0.8 J/mol-K,
compared to the heat capacity range of 350 J/mol-K, meaning
the MAE is within 0.23% of the heat capacity range. The R*
score of the deeperGATGNN model is already 0.998, leaving
very little room for further improvement by active learning.

Figure 6 shows the comparison of heat capacity between the
prediction by the deeperGATGNN model and DFT
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Figure 6. DFT result and deeperGATGNN prediction for the 22
selected structures with high heat capacity.

calculations for our 22 highest heat capacity structures. We
can see that the DFT calculations confirmed that our 22
structures have relatively high heat capacity (above 300 J/mol-
K), which makes them potential TES materials. The agreement
between the deeperGATGNN model prediction and DFT
results is good, meaning that the deeperGATGNN model is
indeed well trained and it captures the inherent nature and
properties of the atomic structures in terms of vibrational
frequency and phonon density of states.

https://doi.org/10.1021/acsami.2c11350
ACS Appl. Mater. Interfaces XXXX, XXX, XXX—-XXX


https://pubs.acs.org/doi/suppl/10.1021/acsami.2c11350/suppl_file/am2c11350_si_002.pdf
https://pubs.acs.org/doi/10.1021/acsami.2c11350?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c11350?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c11350?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c11350?fig=fig6&ref=pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.2c11350?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Applied Materials & Interfaces

www.acsami.org

Research Article

(@) =

-20 -

Number Density (atom/A%)

0.2300
02015
04730
0.1445
0.1160
0.08750
-10 4 0.05900
0.03050

-20 4

T
-20 -10 0 10 20

Bond Length (A)

cor 8 AR 5.160
.’:ﬂﬁy €
f 4.688

10 Lo ~ o Y 4215
; HES 3

‘“ Ry 3743

0+ 1_”)" 3 3270
i

5’ — 2798

s o4
-104 { F 2325
o é p 1.853
-20 ‘ﬁ -~ 1.380

T
-20 -10 0 10 20

0.002000

Volume (log(A®))

3.350

3.065

2780

2.495

2210

— 1.925
.
-10 4 1 1.640
- 1.355
reys
-20 4 ;%:g 1.070
T T T T T
-20 10 0 10 20

(d) =

3210

2.880

2.220
1.890
-10 4

1560

1230

-20 0.9000

Heat Capacity (J/mol-K)

3380
2075
2570
2165
176.0
1355
-10 4 95.00
54.50

-20 14.00

T
-20 -10 0 10 20
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distribution. (f) Heat capacity distribution for the predicted structures.

In order to gain deep insight into the model training and
structure—property relationship, Figure 7 presents the t-
distributed stochastic neighbor embedding (t-SNE) plot for
exploring high-dimensional data. The t-SNE method was
introduced by Van der Maaten and Hilton in 2008.°° It is a
nonlinear dimensional reduction suited for embedding high-
dimensional data for visualization in a low-dimensional
space.””” This helps us to visualize our high-dimensional
data in a 2D plot and get a correlation between target
properties and material descriptors and insight of potential
structures as TES materials. Figure 7a shows the distribution of
our predicted structures based on space group number. We can
see that the structures with space group 227 are few compared
to other space group structures and are for the most part
isolated from the other space groups as seen by the yellow

islands. The isolation of space group 227 structures from other
structures can be understood in terms of the much higher
structural symmetry of space group 227 compared to other
space groups. In particular, space groups 225 and 216 are very
similar except that different elements usually occupy the same
sites for space group 216, and thus the structural symmetry is
reduced. Figure 7b—e shows the color distribution of some of
the atomic properties (volume, number density, total weight,
and bond length) on the same t-SNE plot as Figure 7a. It is
seen that those distributions have different color patterns,
meaning that the structures have very diverse atomic features.
Nevertheless, the dominant yellow and green color in those
plots indicate that the atomic features are not uniformly
distributed, which is quite normal considering our screening
structure pool is huge (32,026 structures), and diverse
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Figure 8. Temperature-dependent four top highest heat capacity materials: (a) Mnln,Se,, (b) Y,Te,Pb, (c) KY,Se,, and (d) Y,GeSe,. The dashed
line denotes the Dulong—Petit limit. The heat capacity of MnIn,Se, exceeds the Dulong—Petit limit near and above room temperature, whereas the
other three materials’ heat capacity only approaches the Dulong—Petit limit at elevated temperatures.

structures should have been included to the largest extent.
Figure 7f shows the distribution of the molar heat capacity.
Observably, the 227 space group shown in Figure 7a has some
of the highest heat capacity values ranging from 250 to 330 J/
mol-K in Figure 7f, followed by space groups 225, 216, and
221 in general. As determined, the closest correlation with the
heat capacity is the volume in Figure 7b, whereby the volume
scales with the heat capacity for most structures. This is also
seen by the Spearman’s rank of 0.66 for the volume in Figure 3
owing the highest correlation with the heat capacity out of all
the other physical properties listed there. In a sense, the t-SNE
plots serve as alternative visual representations of the
Spearman’s rank. As such, the total weight with rank value of
0.59 is also closely tied to the space group and heat capacity, as
observed by the higher total weight in space group 227
structures and 221 toward the lower end. Although the number
density and bond length have low Spearman’s ranks with the
heat capacity, some conclusions could be made from the
evaluated structures. For instance, many of the color contours
for Figure 7¢,d are matching those in the volume figure where
notably the number density follows the inverse relationship of
the volume, and the bond length follows a direct relationship
with the volume and is physically intuitive. Overall, properties
such as volume and total weight are easily calculated from
structure files and in turn could serve as quick indicators for
thermal energy storage materials in which the heat capacity is
the dominant characteristic for the performance.

Figure 8 shows the four highest recommended high heat
capacities verified by DFT: Mnln,Se,, Y,Te/Pb, KY,Se,, and
Y,GeSe,. We also calculated the heat capacity as a function of

temperature. We first notice that all four highest heat capacity
materials share the same crystalline structure prototype and
symmetry, i.e., space group 227 (Fd3m) and prototype AB,C,.
Generally, the heat capacity of all four structures increases
when temperature increases, which is well-known by the Debye
and Einstein models. More interestingly, we compare the high
temperature limit of heat capacity with the historically famous
Dulong—Petit limit, which is specified as 3NR, where N is
molar number of atoms in the structure and R is the gas
constant (R = 8.31 J/mol-K). For space group 227 and
prototype AB,C,, n = 14, yielding the Dulong—Petit limit for
heat capacity to be 349.2 J/mol-K. For structures Y,Te,Pb,
KY,Se,, and Y,GeSe,, their heat capacity approaches the
Dulong—Petit limit at high temperatures well above the Debye
temperature. This phenomenon is quite understandable from
the previous Debye and Einstein models, as well. However, we
find an exception that, in Figure 8a, the structure MnlIn,Se, has
an unexpectedly high heat capacity, which is above the
Dulong—Petit limit even at room temperature. As temperature
continues to increase, the heat capacity of Mnln,Se, goes well
beyond the Dulong—Petit limit. Such phenomenon is not
common in solid crystalline materials.

To gain insight into the mechanism for high heat capacities,
we further compare the full phonon dispersions among
Mnln,Se,, Y,Te,Pb, KY,Se,, and Y,GeSe, in Figure 9. First,
no negative or imaginary frequencies were found in any of the
phonon dispersions of the four structures. The absence of
negative frequencies in the full phonon dispersions in the first
Brillouin zone indicates the thermodynamical stability of those
structures, which means that these structures could be
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Figure 9. Phonon dispersions of (a) MnlIn,Se,, (b) Y,Te,Pb, (c) KY,Se,, and (d) Y,GeSe, along high symmetry paths. The non-negative phonon

dispersions prove the thermodynamic stability of the structures.

synthesized experimentally provided that the formation energy
has also been calculated to be negative for all four materials.
Second, the phonon band structures of the four materials look
very similar, which is understandable considering that all four
materials share the same space group (227) and prototype
(AB,C,). Third, it is interesting to find that all four structures
have relatively low cutoff frequencies in the range of ~5.5—8
THz, which is attributed to the medium to heavy elements in
those materials. According to the Bose—Einstein distribution

. 1 .
function of phonons, (n) = Tt 7 where 7 is Planck’s
. _

constant, k is the Boltzmann constant, @ is the phonon
frequency, and T is the absolute temperature, the correspond-
ing characteristic frequency for the phonon energy comparable

ksT _ 1381x107°x300 _

. *
to kyT at room temperature is w" = =
B p [ 6.626 x 107>+

6.25 X 10" s7' = 6.25 THz. This means the phonon modes
with a frequency less than 6.25 THz can be excited near room
temperature. From the phonon dispersions in Figure 9, we
know that almost all phonon modes for all four structures are
populated near room temperature. This is the fundamental
reason for these four materials having high heat capacities. To
study the uniquely high heat capacity of MnlIn,Se,, we plot the
frequency-dependent accumulative heat capacity in Figure 10,
from which we can see how the heat capacity increases with
frequency of phonon modes. As frequency increases to the
cutoff frequency (~5—6.5 THz) of the three materials
(Y,Te,Pb, KY,Se, and Y,GeSe,), the heat capacity of
Mnln,Se, is slightly lower than that for the other three
materials. However, since MnlIn,Se, has a large phonon band
gap between 6 and 8 THz (see Figure 9a), the heat capacity of

400

Mnin,Se,
3504 ——KY,Se,

——Y,GeSe,
—Y,Te,Pb

300

250

200

150

Heat Capacity (J/mol-K)

100

50

Frequency (THz)

Figure 10. Comparison of frequency-dependent accumulative heat
capacity among the four materials shown in Figures 8 and 9.

Mnln,Se, increases again (see the last steep increase in Figure
10) as phonon frequencies around 8 THz contribute to the
heat capacity. As we analyzed above, those phonon frequencies
around 8 THz can still be populated near room temperature,
leading to the total heat capacity higher than the Dulong—Petit
limit.
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B CONCLUSIONS

In summary, we trained various machine learning models for
screening large-scale structures in search of thermal energy
storage materials with the target being high heat capacity. We
built four traditional machine learning models and two graph
neural network models. Cross-comparison of the prediction
performance and model accuracy was conducted among
different models. We finally chose the deeperGATGNN
model to make a prediction on heat capacity of 32,026
structures taken from the OQMD database, due to its high
prediction accuracy as manifested by the low MAE scores.
Insight into the correlation between heat capacity and atomic
properties such as space group, prototype, lattice volume, etc.
were gained by means of the t-SNE plot. The deep-
erGATGNN model predicted 22 structures that potentially
have high heat capacity, and the prediction was further verified
by high precision DFT calculations. More interestingly, we
found one structure (Mnln,Se,) exhibits extremely high heat
capacity that is even higher than the Dulong—Petit limit at
room temperature. Considering the total number of DFT
calculations is only 0.07% of the number of all 32,026
structures that have been screened, the approach of combining
machine learning and DFT is very promising for accelerating
the discovery of novel materials with high efficiency and
accuracy.
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