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ABSTRACT

The Paleocene-Eocene Thermal Maximum (PETM) was a rapid global warming occurred 56 million years ago and
has been widely viewed as an ancient analogue to the ongoing warming driven by anthropogenic CO, emissions.
The complete and continuous Paleogene shallow marine strata well preserved and outcropped in the Tarim
Basin, northwestern China are ideal to study the paleoenvironmental change of the Paratethys Seaway during the
PETM. To date, no high-resolution calcareous nannofossil biostratigraphy has been performed for the PETM
interval in the Tarim Basin. Outcrop samples taken from the Qimugen Formation in the Kuzigongsu section
contain abundant, moderately well preserved calcareous nannofossils, allowing for the establishment of a high-
resolution biostratigraphic framework. Overall, 73 species of calcareous nannofossils from 33 genera were
observed, with the dominant species including Coccolithus pelagicus, various Toweius species, Pontosphaera exilis,
and Micrantholithus flos. The five calcareous nannofossil datums allow for the recognization of nannofossil Zone
NP6 through Zone NP10. The common occurrence of shallow-water taxa (Micrantholithus) throughout the section
suggests a middle to outer neritic setting as the depositional environment of the Kuzigongsu section. The
stratigraphic distribution of “excursion taxa” (Coccolithus bownii, Discoaster araneus, D. acutus, Rhomboaster spp.)
is consistent with the range of negative excursions in 5'3Cearb and 8™%0car, indicating that these “excursion taxa”
are micropaleontological markers for identifying the presence of the PETM in the Paratethys Seaway. During the
PETM, the deteriorated preservation and extremely low abundance of nannofossils and near-zero wt% CaCO3
values suggest that ocean acidification occurred in the shallow water of the Paratethys Seaway. In addition, a
significant increase in the species Neochiastozygus junctus, which is a high productivity indicator suggests
increased surface ocean productivity. Higher primary productivity may be triggered by enhanced continental
weathering delivering increased nutrient through river runoff.

1. Introduction

(CIE, 3-6%0) and 5-9 °C warming globally (see McInerney and Wing,
2011 for a review), and shares many similarities to the ongoing climate

The Paleocene-Eocene Thermal Maximum (PETM), occurred at
approximately 56 Ma and lasted for ~150-220 kyr (Rohl et al., 2007;
Westerhold et al., 2012), has received considerable attention in the last
30 years (Kennett and Stott, 1991; Bralower et al., 1995; Thomas and
Shackleton, 1996; Zachos et al., 2003; Self-Trail et al., 2017). The PETM
is associated with prominent global negative carbon isotope excursion

change due to anthropogenic fossil fuel combustion (IPCC, 2013; Zeebe
et al. (2016). The rate of carbon emissions during the PETM was about
ten times slower than the current anthropogenic carbon release (Cui
et al., 2011; Zeebe et al., 2016). The estimated cumulative amount of
carbon released during the PETM ranges from ~2000 to >13,000 Pg C
(Panchuk et al., 2008; Cui et al., 2011; Gutjahr et al., 2017).
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Despite the differences in the environmental conditions between the
late Paleocene and today (i.e., late Paleocene was ice free in polar re-
gions), the PETM is arguably considered as one of the best analogs to
understand the impact of rapid and massive carbon addition, global
warming, and ocean acidification (Zachos et al., 2005; Zeebe et al.,
2014; Kiehl et al.,, 2018). The climatic, marine biological and
geochemical impacts of the PETM were manifested as a large-scale
extinction of benthic foraminifera (Thomas and Shackleton, 1996;
Thomas, 2007; Alegret et al., 2009; Keller et al., 2018), ocean acidifi-
cation (Zachos et al., 2005; Penman et al., 2014; Bralower et al., 2018),
intensified hydrological cycle (Bowen et al., 2004; Handley et al., 2012;
Carmichael et al., 2017), turnover of calcareous nannoplankton (Gibbs
etal., 2006a; Lei et al., 2016), an increase in dinoflagellate Apectodinium
(Crouch et al., 2003) and ocean deoxygenation (Zhou et al., 2014; Yao
et al., 2018). On land, biotic response to the PETM was associated with
mammal migrations (Smith et al., 2006) and mammalian dwarfing due
to extreme warmth (Secord et al., 2012). These various environmental
processes involved are particularly difficult to disentangle and their
expressions in the sedimentary records likely vary in different regions
(Dickson et al., 2014).

Since its discovery in the deep-sea sediments by Kennett and Stott
(1991), >150 locations worldwide have been documented that record
the PETM, with depositional environments ranging from continental
interior to abyssal ocean (McInerney and Wing, 2011; Carmichael et al.,
2017). Most records are from a deep-sea setting or from the terrestrial
realm with only a limited number of shallow marine PETM sections
reported (Speijer and Schmitz, 1998; Speijer and Wagner, 2002). The
existing shallow marine records are mainly distributed in the western
Tethys and the mid-Atlantic Coastal Plain (e.g. Stassen et al., 2012;
Self-Trail et al., 2012; Lyons et al., 2019), and there is still a scarcity of
detailed research in the Paratethys Seaway.

The semi-closed Paratethys Seaway is considered as a critical site for
the formation of warm and saline intermediate water due to intense
evaporation (Sagoo et al., 2013; Zhu et al., 2020). It is also thought to be
an important moisture source for the Eurasian landmass (Ramstein et al.,
1997; Zhang et al., 2007; Zhu et al., 2019). Burial of organic matter may
have been enhanced along the shallow continental margins of the Par-
atethys Seaway due to increased upwelling of low-oxygen intermediate
water (Speijer and Wagner, 2002; Dickson et al., 2014). This makes the
Paratethys a key region for understanding the mechanisms that drove
the PETM (Kennett and Stott, 1991). However, unequivocal PETM re-
cords from the Paratethys are sparse, and the existing shallow marine
records have low temporal resolution and/or poor age constraint, or are
truncated, leaving a major gap in understanding of this climatically
sensitive and ecologically fragile region (Li et al., 2017; Zhang et al.,
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2017; Cao et al., 2018; Li et al., 2021). Moreover, few sea surface tem-
perature data are available and general circulation models simulate
varying magnitude of temperature anomalies in the Paratethys during
the PETM (Winguth et al., 2010; Zhu et al., 2019). These limitations
hamper a thorough understanding of the effects of warming and ocean
acidification on the shallow marine ecosystem.

In this study, we examine in detail a newly discovered shallow ma-
rine PETM section from the Paratethys Seaway located in the western
Tarim Basin, northwestern China (Fig. 1). We attempt to: (1) document
the high-resolution PETM biostratigraphic record using calcareous
nannofossils and bulk carbon and oxygen isotopes from marine car-
bonates; (2) explore the environmental impact from greenhouse gas
forcing in the Paratethys during the PETM; and (3) compare the char-
acteristics of the Paratethys to other shallow marine PETM sites in the
western Tethys and mid-Atlantic Coastal Plains.

2. Geological background
2.1. Regional geology

The Tarim Basin is a northwestward trending rhombic-shaped
depression covering an area of 563,000 kmZ It lies in the Xinjiang
Uygur Autonomous Region in NW China (37°10- 42°00' N,
75°00'-93°00’ E) and is surrounded by the West Kunlun mountains to
the west, the Altyn Tagn mountains to the south and the Tien Shan to the
north (Fig. 1). The center of the basin is mostly covered by the Takli-
makan Desert. The average elevation of the basin floor is 1200 m above
sea level (asl) and Cretaceous-Paleogene marine rocks crop out on the
fringes of the basin usually at >2000 m asl. The Paleozoic sediments of
the Tarim Basin are widespread and primarily consist of platform car-
bonates and fine-grained clastic rocks (Carroll et al., 1995), whereas
coarse-grained fluvial and lacustrine sequences are dominant during the
Mesozoic and Cenozoic (He et al., 2005; Bosboom et al., 2014).

Marine deposition initiated in the Tarim Basin in the Late Cretaceous
and occurred intermittently throughout the Paleogene (Zhong, 1984;
Tang, 1992; Burtman, 2000; Zhang et al., 2018; Wang et al., 2022),
during which a shallow epicontinental sea known as the Paratethys
connected central Eurasia to the western Mediterranean Tethys (Mao
and Norris, 1984; Tang, 1992; Bosboom et al., 2011). This epiconti-
nental sea retreated westward after five successive marine trans-
gressions through the present-day Alai Valley (Bosboom et al., 2014),
eventually separating the western Tethys and the Arctic Sea during the
latest Eocene to early Oligocene, and becoming the remnant Paratethys
Seaway (Figs. 1 and 2). The largest transgression occurred across the
Paleocene-Eocene boundary, when the Paratethys was a restricted
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Fig. 1. A) Paleogeographic setting of the study area in the early Eocene (after Scotese, 2014); B) present location of the Kuzigongsu section (after Cao et al., 2018).
Also shown are other shallow water PETM records in southern Tibet (Li et al., 2017, 2020, 2022; Zhang et al., 2019; Jiang et al., 2021), Tarim Basin (Cao et al., 2018;

Li et al., 2020), and Maryland, USA (Self-Trail et al., 2012).
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Fig. 2. A) Schematic regional stratigraphy and sea level change in the Tarim Basin (Bosboom et al., 2011, 2014); B) Outcrop of the Kuzigongsu section showing the
approximate extended range of the CIE; C) Lithologic column of the sampled section.

shallow water carbonate platform as documented by the Qimugen For-
mation in the southwestern Tarim Basin (Fig. 2; Li et al., 2021).

2.2. Regional geography and lithology of the sampled section

The Kuzigongsu section (39°44'19“ N, 75°18°20” E) is located 5 km
NW of the Wugia County, bordering the northwestern Kashgar of China
and Kyrgyzstan (Fig. 1). The study section was originally deposited
along an east-facing terrigenous-rich foreland basin referred to as the
“Tarim Sea”, which was connected to the Siberian Sea to the north
(Lippert et al., 2014; Jiang et al., 2018). This section is adjacent to
several small gypsum mine fields in the Paleocene Aertashi Formation.
The Aertashi, Qimugen, and Kalatar formations are continuously
exposed along the slopes due to limited vegetation cover (Fig. 2), of-
fering easy access to the sampled section. The Kuzigongsu section is
47.6 m thick and spans the lower part of the Qimugen Formation. It
consists primarily of limestone, marlstone (or calcareous mudstone),
and bivalve-rich limestone. The basal section is a 4 m-thick grey massive
limestone overlain by alternating grayish-green calcareous mudstone
and grey marlstone in the middle and a massive limestone on the top
(Fig. 2).

3. Materials and methods
3.1. Calcareous nannofossil biostratigraphy

A total of 123 samples were selected for calcareous nannofossil
analysis. The top >1 m of surface weathered rocks were removed and
fresh rock chips were carefully collected to avoid weathering contami-
nation. Average sample spacing was approximately 0.4 m, which is
equivalent to ~16 kyr intervals. The central portion of freshly broken
rock pieces without cracks was taken to prepare smear slides for
calcareous nannofossil analysis. The smear slides were prepared using
the standard technique to avoid assemblage differentiation (Bown,
1998). Slides were mounted with Norland Optical Adhesive No. 61,
cured under UV light and examined with a Zeiss Axio ImagerA2 light
microscope under cross-polarized and plane-transmitted light at 1000 x
magnification. Micrographs were taken with a Zeiss Axiocam 506 color
6-megapixel digital camera.

Calcareous nannofossil taxonomy was determined following the
concepts of Perch-Nielsen (1985) and Bown (1998), and the biozonation
of Martini (1971) was used, supplemented by the zonation of Agnini
et al. (2014). An initial semiquantitative analysis was conducted to
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determine species abundance and to identify rare taxa. Additional
scanning provided a more precise biostratigraphic determination. Only
the top and/or bottom of a continuous occurrence of a marker species
was used to define the corresponding datum, and consideration was
given to barren intervals when defining the continuity of occurrence.
The sporadic presence of a marker species above the datum was
considered to be reworked. Each nannofossil datum was assigned an
orbitally tuned age of Gradstein et al. (2012) to roughly estimate linear
compacted sedimentation rates.

3.2. Geochemical analyses

Planktonic and benthic foraminifers are sparse and poorly preserved
due to compaction and lithification, consistent with a previous study at
the nearby Bashibulake section (Jiang et al., 2018), and therefore
geochemical analyses on whole rock samples were conducted in this
study.

The fresh rock samples were ground and homogenized with an agate
mortar and pestle to obtain a powder which could pass through a 200-
mesh (75 pm) sieve. About 0.8 g of the powder was weighed and
pressed into a disc using a tablet-making machine for X-Ray Fluores-
cence (XRF) analysis (Model FW-5 Powder-to-tablet Machine, China)
under a pressure of 20 MPa. The elemental composition of each tablet
was measured 10 times with an EDX-6000B X-ray fluorescence spec-
trometer (XRF; Skyray Instrument Inc., China), and the average was
calibrated with a Chinese national stream sediment standard
(GBWO07305a). The variance was better than 5% for the major oxides
(P05, TiO4, SiO2, Aly03, Fex03, MgO, CaO, K20) and 10% for the minor
elements, based on the repeated measurements of the standard pro-
cessed with each batch of samples.

Another aliquot of the powder was weighed for bulk carbonate car-
bon and oxygen isotopic analysis. No pretreatment was used in order to
avoid potential carbon isotopic exchange between calcium carbonate
and organic matter (Wierzbowski, 2007). The subsample was reacted
with 100% phosphoric acid at 72 °C and the carbon and oxygen isotopic
ratios of the CO, produced were analyzed using a Gas Bench II Auto-
Carbonate device connected to a Thermo Finnigan Delta Plus Advan-
tage mass spectrometer at the Key Laboratory of Submarine Geosciences
of the Second Institute of Oceanography, Ministry of Natural Resources,
China. The isotopic data were calibrated based on measurements of an
international standard (NBS-19) and two Chinese National Standards
(GBW04405 and GBW04406) analyzed with each batch of samples.
Isotopic results are reported in the standard delta notation as 613Ccarb
and 880,y in reference to the international Vienna Pee Dee Belemnite
(VPDB) standard. Analytical precision is better than 0.1%o for 613Cmb
and 0.2%o for 8'®0ca based on replicate analyses of the standards
processed with each batch of samples.

Weight percent CaCO3 (wt% CaCO3) was measured using a modified
acid soluble weight-loss method (Molnia, 1974), which was improved
over the standard method and minimizes the errors by (1) using the XRF
CaO data as a first-order estimate of the HCl to be added; (2) lengthening
reaction time to overnight in a 40 °C bath; (3) decanting supernatant
after lengthened centrifuging during the rinsing process with deionized
distilled water until the pH was ~7; and (4) using multiple carbonate
standards to calibrate as an integral part of the analysis. The advantage
over other methods is that the resulting residue can be used for further
total organic carbon (TOC) and stable C and N isotopic analyses. The
analytical error was better than 0.1% based on the five replicate mea-
surements of an in-house carbonate standard (wt% CaCO3z = 50%) run
with each batch of samples.

4. Results
4.1. Calcareous nannofossil assemblages and biostratigraphy

Calcareous nannofossils are moderately preserved throughout the
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studied section with various degrees of overgrowth, fragmentation, and
dissolution (Figs. 3-5; Supplementary Table S1). Most Rhomboaster
specimens were unidentifiable due to heavy overgrowth or recrystalli-
zation (Fig. 5), the latter may be responsible for the formation of many
siderite rhombohedrons seen in the Maryland South Dover Bridge (SDB)
cores (Self-Trail et al., 2017) and the Kuzigongsu section (Supplemen-
tary Fig. S2). Fragmentation was commonly seen in Micrantholithus and
Discoaster specimens, for which dissolution influenced the fragile central
structures of Toweius, Neochiastozygus, and Chiasmolithus. Despite these
diagenetic effects, most specimens were identifiable at the species level.
Most samples contain variable abundances of nannofossils except for
those from intervals corresponding to the onset of the carbon isotope
excursion (Fig. 3; Supplementary Table S1), with high abundances
occurring below the lowermost 10 m and above the PETM recovery (the
uppermost 15 m). A total of 73 species belonging to 33 genera were
observed (Figs. 4 and 5). The dominant taxa include, in descending
order, Coccolithus pelagicus, Toweius pertusus, T. eminens, T. callosus,
Pontosphaera exilis, Micrantholithus flos, T. rotundus, Discoaster multi-
radiatus, and Neochiastozygus junctus. The maximum absolute abundance
reached 1553 individuals/100 field of views (FOVs) at 7.0 m, and
C. pelagicus, T. pertusus and T. eminens dominated the assemblage with an
average relative abundance of 61.6%. The pre-PETM interval contains
mostly C. pelagicus and various species of Prinsius, Toweius, Heliolithus,
Fasciculithus, and Chiasmolithus. Various Discoaster species occur above
10 m and co-dominate the pre-PETM nannofossil assemblages with
C. pelagicus. The PETM interval is characterized by the presence of the
distinct Rhomboaster spp.—Disocaster araneus (RD) association, Coccoli-
thus bownii, and Discoaster acutus. The absolute abundance of calcareous
nannofossils during the PETM is extremely low, with an average of 167
specimens/100 FOVs. The percent abundance of Micrantholithus astrum
and M. flos increased during the PETM, with average values increasing
from 0.2% and 1.5% in the pre-CIE to 2.4% and 4.6% during the PETM,
respectively. In addition, the percent abundance of Neochiastozygus
junctus also increased rapidly during the PETM interval from 0.9% to
5.4%, while T. pertusus and T. eminens decreased significantly from
20.5% and 8.0% to 13.0% and 3.3%, respectively. The post-CIE as-
semblages contain dominant nannofossil taxa that are similar to those of
the pre-CIE except without Fasciculithus and Prinsius but with Discoaster.
A continuous sequence of nannofossil Zones NP6 through NP10 was
recognized according to the stratigraphically ordered occurrence of
zonal markers, and additional datums are consistent with the zonal
boundaries (Fig. 3; Supplementary Table S2). From bottom to top, the
first occurrence (FO) of Heliolithus kleinpellii defines the base of Zone
NP6, the FO of Heliolithus riedelii defines the NP7/NP8 boundary, the FO
of Discoaster multiradiatus defines the zone NP9, and the subzone NP9b/
NP9a boundary was placed at FO of the “excursion taxa” D. araneus. The
base of Zone NP10 was identified by the FO of Rhomboaster bramlettei.

4.2. Bulk carbonate 613Cmrb and 61805,1,1,

The most prominent characteristic of the PETM at this site is the
negative excursions in both the carbon and oxygen isotopes. As shown in
Figs. 6 and 7, the measured bulk carbonate 513ccarb values at the Kuzi-
gongsu section fall between —5.2%o and 4.7%., and 5'80.arb values be-
tween —8.3%o and 0.5%o. Both §'3Ceap, and 880 values show an
abrupt negative shift at 19.9 m and a rapid recovery at 30.5 m (Sup-
plementary Table S2). In addition, four gaps in the bulk carbonate re-
cord occur within the CIE due to the lack of calcareous materials. The
post-PETM 613ccarb and 6180carb values do not recover to pre-PETM
values and level out upsection.

Based on the abruptness of changes in bulk-carbonate carbon iso-
topes, we divided the studied section into pre-PETM (0-19.9 m), PETM
(19.9-30.5 m) and post-PETM (30.5-47.6 m) intervals. The PETM in-
terval (19.9-30.5 m) was further subdivided into the CIE onset
(19.9-20.6 m), CIE body (20.6-29.8 m), and CIE recovery (29.8-30.5 m)
according to the definitions by Rohl et al. (2007).
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Fig. 4. Selected calcareous nannofossils observed in the Kuzigongsu section, Tarim Basin (NW China). Sample positions are shown in Fig. 1.
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19-KZGS-187 19-KZGS-133 19-KZGS-133 19-KZGS-149 19-KZGS-285

Sphenolithus sp. T. pertusus T. pertusus T. rotundus Z. sigmoides
19-KZGS-317 19-KZGS-473 19-KZGS-473 19-KZGS-473 19-KZGS-133

Fig. 5. Selected calcareous nannofossils observed in the Kuzigongsu section, Tarim Basin (NW China). Location of sample numbers are shown in Fig. 1.
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4.3. Major and trace element geochemistry based on XRF

Both major and trace elements show significant variation across the
PETM and are reported according to their paleoenvironmental in-
dications: (1) proxies for nutrient condition such as P and Zn/Al, with
higher values indicating higher nutrient supply (Khozyem et al., 2013);
(2) proxies for detrital input and weathering intensity such as Ti/Al and
K/Al, with higher values indicating enhanced delivery of detrital ma-
terials from various sources (Bertrand et al., 1996; Murphy et al., 2000).

In general, various proxies in each group show a similar trend
(Fig. 7). Phosphorus concentrations and nutrients-related elemental
ratios are high in the lower 10 m of section, decrease abruptly up section
before the PETM (P: 9.0 m; Zn/Al: 4 m) and increase evidently during
the PETM interval, and then level out during the post-PETM interval.
Weathering proxies show an increasing trend below 10 m (with K/Al
displaying a gradual increase and Ti/Al an abrupt shift at 9 m), remain
high from 10 m and throughout the PETM where several negative shifts
occur, decrease abruptly at the end of PETM recovery phase (30.5 m),
followed by a brief increase and then level off during the post-PETM
interval.

5. Discussion

5.1. The shallow marine PETM record at the Kuzigongsu section in the
Paratethys

The PETM at the Kuzigongsu section was identified based on a
negative excursion in bulk 613Ccarb and SlsOcarb (about 6.3%o and 4.5%o,
respectively), presence of calcareous nannofossil Zones NP9 and NP10,
and an abrupt color change of the shale from greenish to black. The
calcareous nannofossil “excursion taxa” Coccolithus bownii, Discoaster
araneus, D. acutus, Rhomboaster bramlettei (Figs. 4 and 5) are typically
restricted stratigraphically to the PETM interval and are often used to
identify the event (Kahn and Aubry, 2004; Self-Trail et al., 2012; Bra-
lower and Self-Trail, 2016). The stratigraphic distribution of the
“excursion taxa” at the Kuzigongsu section falls within 19.9-30.5 m, and
is consistent with the range of negative excursion in al3ccarb and alsocarb
(Figs. 6 and 7). Moreover, the completeness of the section is indicated by
the successive occurrence of the eight nannofossil datums recognized
(Supplementary Table 1, Fig. S1). Our newly reported PETM record is
associated with a much higher sampling resolution than the previously
published shallow marine records in the Tarim region (Li et al., 2017;
Zhang et al., 2017; Cao et al., 2018; Li et al., 2021), and does not have
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any obvious truncation or condensation as evidenced by field observa-
tion and biostratigraphy (detailed below). The presence of a complete,
shallow-water PETM record at the Kuzigongsu section fills a major data
gap in the Paratethys, a key region needed to understand the trigger and
recovery mechanisms of the PETM (Kennett and Stott, 1991; Zhu et al.,
2019).

As Walther's Law states, any vertical progression of facies is the result
of a succession of depositional environments that are laterally juxta-
posed to each other (Lopez, 2015). As shown in the stratigraphic column
(Fig. 2), the Kuzigongsu section spans the lower Qimugen Formation
marlstones and calcareous mudstones and is sandwiched between the
massive Aertashi gypsum beds at the base and the upper Qimugen brown
gypsum-bearing mudstones on the top. Such a temporal superposition of
lithology constrains the Kuzigongsu section to a shallow marine depo-
sitional environment according to the Walther's Law, as gypsum deposits
characterize shallow evaporative environments (Hardie and Eugster,
1971). As depositional environments change their lateral position due to
transgression and regression, the sedimentary facies of adjacent depo-
sitional environments will overlap one another as a vertical sequence.
Therefore, the vertical sequence of facies mirrors the original lateral
distribution of sedimentary environments. The presence of marlstone
and gypsum, along with the red color on the top of the Kuzigongsu
section, suggests a tidal flat environment for the underlying and over-
lying sediments of the Kuzigongsu section (Reif and Slatt, 1979).

Nannofossil species Micrantholithus astrum and M. flos are indicators
of shallow epicontinental sea environment (Bown, 2005; Bartol et al.,
2008). Their common occurrence at the Kuzigongsu section (Fig. 5)
suggests that the Paratethys in the southwestern Tarim Basin was a
shallow marine environment during the PETM. These two characteristic
species are also common in the nearby Bashibulake Section (Cao et al.,
2018), supporting this part of the Tarim Basin was a shallow marine
environment during the PETM. This is consistent with the inference from
calcareous nannofossils, foraminifera and microfacies analysis from
other nearby sections in southwestern Tarim Basin (Cao et al., 2018;
Jiang et al., 2018; Zhang et al., 2018; Li et al., 2021). More specifically,
the Paratethys Seaway in the southwestern Tarim Basin was a carbonate
platform environment based on microfacies analysis of Li et al. (2021),
which shows predominantly marlstones with abundant bioclasts such as
foraminifers, bivalves and serpulids. In contrast, pentaliths, such as
Micrantholithus astrum and M. flos, are very rare in the mid-Atlantic
Coastal Plain (Self-Trail et al., 2012), likely reflecting regional oceano-
graphic heterogeneity across the PETM. The better preservation of
calcareous nannofossil assemblages in the mid-Atlantic Coastal Plain
may be attributed to its drill core rather than outcrop samples and its
higher sedimentation rates (Self-Trail et al., 2012), which can result in
rapid burial and thereby improve the preservation of calcareous
nannofossils.

5.2. Calcareous nannoplankton responses to the PETM

Calcareous nannoplankton responses to the rapid and extreme
warming conditions during the PETM have been documented at a va-
riety of deep-ocean settings (Bralower, 2002; Kahn and Aubry, 2004;
Gibbs et al., 2006a; Jiang and Wise Jr., 2006; Angori et al., 2007;
Mutterlose et al., 2007) and coastal and continental margin regions
(Agnini et al., 2007; Angori et al., 2007; Bown and Pearson, 2009; Self-
Trail et al., 2012; Bralower and Self-Trail, 2016). The quantitative an-
alyses of calcareous nannofossil assemblage compositions suggest that
the biological productivity increased in coastal and continental margin
regions but decreased in the open ocean during the PETM (Gibbs et al.,
2018).

Changes in calcareous nannofossil assemblages combined with
geochemical proxies can be used to assess the surface water productivity
in the Paratethys during the PETM. Neochiastozygus junctus is thought to
represent mesotrophic to eutrophic conditions and to have flourished in
high productivity environment of the New Jersey and Maryland shelves
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(Fig. 9; Gibbs et al., 2006b; Self-Trail et al., 2012). As a result, N. junctus
is commonly used as a proxy for surface ocean primary productivity. The
relative abundance of N. junctus increases dramatically from a pre-PETM
average of 0.9% to 5.4% during the PETM at the Kuzigongsu section
(Fig. 6), suggesting that the primary productivity in the Paratethys
increased during the PETM.

The inferred increase in productivity based on increased abundance
of N. junctus is consistent with the productivity proxies based on
geochemical data. It has been suggested that the phosphorus concen-
tration and Zn/Al values can be used as nutrient indicators because both
phosphorus and zinc are essential elements for marine organisms and
are productivity sensitive (Khozyem et al., 2013). An increase in both P
and Zn/Al at ~20 m is supportive of increased nutrient condition and
elevated primary productivity across the PETM (Fig. 8). The increased
nutrient condition may be facilitated by enhanced continental weath-
ering, as evidenced by higher values of Ti/Al and K/Al ratios (Fig. 8),
which are commonly used as weathering proxies (Bertrand et al., 1996;
Murphy et al., 2000). It is plausible that the warmer climate during the
PETM led to increased weathering intensity, which allowed the trans-
port of terrestrially derived nutrients into the Paratethys, promoting
marine productivity (Fig. 9.).

5.3. Shallow ocean acidification in the Paratethys during the PETM

Ocean acidification has been inferred based on decreased ocean pH
based on boron isotope and B/Ca proxies and significant carbonate
dissolution observed in the deep sea (e.g., Babila et al., 2016; Babila
et al., 2018; Penman et al., 2014; Zachos et al., 2005), but the excellent
preservation of foraminifera and the lack of severe benthic extinction in
the mid-Atlantic Coastal Plain during the PETM argue against extreme
ocean acidification in shelf settings (Stassen et al., 2012). This is because
continental shelf environments are affected by complex processes
related to terrestrial input, coastal upwelling, and mixing of the water
mass (Self-Trail et al., 2012; Stassen et al., 2013; Bralower et al., 2018).
Some suggest that shelf acidification occurred in the eastern US/mid-
Atlantic coastal plain based on B/Ca in planktonic foraminifera during
the low carbonate intervals in the Maryland-New Jersey depth transect
during the main phase of the PETM (Babila et al., 2016), and the reduced
carbonate intervals suggest a shoaling of the calcite compensation depth
and the lysocline to the middle shelf (120-130 m; Bralower et al., 2018).
Following the CO5 emissions, continental weathering delivering alka-
linity input possibly may have helped neutralize the ocean pH and buffer
changes in ocean acidity in coastal waters. This not only helps minimize
the extinction of benthic foraminifera along the shelf (Babila et al.,
2016), but increase the survival of pteropods through the water column
(Janssen et al., 2016).

Surface ocean acidification in the Paratethys can be inferred by
paleontological and geochemical indicators such as changes in the
abundance, morphology, preservation state and composition of calcar-
eous organisms, and wt% CaCOs. The wt% CaCOs at the Kuzigongsu
section is near 100% in the lowermost part of the section, rapidly
decreasing upsection and reaching near zero values during the PETM
interval, and rebounding to high levels after the PETM (Fig. 8). Addi-
tionally, the absolute abundance of calcareous nannofossils decreased
sharply during the PETM interval, with an average of only 167 in-
dividuals per 100 view fields (Fig. 8). The whole shield index (WSI; see
Bralower et al., 2018) abruptly increased during the PETM, indicating a
deterioration in the preservation state of calcareous nannofossils due to
the dissolution of fragile structures.

As a vast epicontinental sea surrounded by the Eurasian continents
(Mao and Norris, 1984; Tang, 1992; Bosboom et al., 2011), the Para-
tethys has been shown to respond in more complex ways due to envi-
ronmental heterogeneity and intense land-sea interactions (Afzal et al.,
2011; Stassen et al., 2013; Li et al., 2017; Self-Trail et al., 2017; Bralower
et al., 2018; Ivany et al., 2018; Zhang et al., 2019). Sedimentary wt%
CaCOj3 depends on the carbonate production in the surface ocean, the
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dissolution in the water column, and the dilution by non-carbonate
materials (Berger, 1992). These three separated processes could
contribute to the highly fluctuated wt% CaCOs at the Kuzigongsu
section.

Ocean acidification may have occurred in the shallow seawaters of
the Paratethys during the PETM based on the poor preservation (lower
WSI values; Fig. 8) and many barren samples of calcareous nannofossils,
and the near zero wt% CaCOs values within the PETM interval
(19.9-25.0 m). However, additional mechanisms other than dissolution
are needed to explain the comparable lows in wt% CaCO3 and nanno-
fossil abundance in the pre-PETM interval (8.0-18.0 m; Fig. 8). The
remarkable increase in Ti/Al and K/Al ratios at 4.0 m, 9.0 m and 19.9 m
is coincident with the abrupt decline in wt% CaCO3; and nannofossil
abundance, suggesting that enhanced weathering intensity, and thus
stronger dilution influence is possible during the pre- and syn-PETM
intervals. In addition, freshening of the surface ocean due to increase in
precipitation may have also contributed to the decrease in wt% CaCOg in
the Paratethys, because calcareous nannofossils and planktonic fora-
minifera are unable to tolerate the less saline conditions (Self-Trail et al.,
2017), resulting in decreased abundance of calcareous plankton and
calcium carbonate production. Therefore, it seems ocean acidification,
terrestrial dilution, and reduced carbonate production due to surface
ocean freshening have jointly contributed to the large fluctuation in wt%
CaCOs3 and calcareous nannofossil abundance observed in the Kuzi-
gongsu section.
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6. Conclusions

A detailed analysis of calcareous nannofossils in the Kuzigongsu
section allows for the establishment of a high-resolution biostratigraphic
framework for the upper Paleocene through lower Eocene of the Tarim
Basin in the Paratethys. The consistent stratigraphic range of “excursion
taxa” suggests that they are good micropaleontological markers for
identifying PETM records in the Paratethys. The common occurrence of
nearshore taxon Micrantholithus suggests a middle to outer neritic
depositional setting for the Kuzigongsu section. The significant increase
in the relative abundance of the high-productivity taxon N. junctus co-
incides with higher values of nutrient and weathering proxies, indi-
cating that the PETM warming may have enhanced continental
weathering and increased nutrient input through runoff into the basin,
promoting marine primary productivity. The decrease in wt% CaCOs
values suggests that ocean acidification may have occurred in the
shallow water of the Paratethys.
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