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Abstract: With commercial space travel now a reality, the idea that people might spend time on
other planets in the future seems to have greater potential. To make this possible, however, there
needs to be ŕexible means for manufacturing in space to enable tooling or resources to be created
when needed to handle unexpected situations. Next-generation manufacturing paradigms offer
signiőcant potential for the kind of ŕexibility that might be needed; however, they can result in
increases in computation time compared to traditional control methods that could make many of
the computing resources already available on earth attractive for use. Furthermore, resilience is
a signiőcant focus of next-generation manufacturing strategies, and one way to enable resilience
for space manufacturing would be to have backup controllers available on earth. These types of
considerations raise questions about remote control and monitoring, as well as privacy of the
data involved in such practices, that must be considered. This work provides a perspective on
several topics tied to remote control and monitoring for manufacturing in space.
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1 Introduction

Travel or long-term habitation on the surface of Mars
and other distant locations in space involves establishing
safe living conditions on the order of hundreds of millions
of miles from Earth. These distances mean that supplies
could take months to reach a space settlement, represent-
ing a huge reliability and logistics challenge and making
it impossible to rely solely on Earth-based resources. The
distances also imply a challenge in aborting missions when
emergencies or unexpected events occur, which necessi-
tates increased adaptability and self-sufficiency. Addition-
ally, the signiőcant energy required to transport cargo
into near-Earth orbit and the transport time to reach
distant settlements will lead to increased (and perhaps
prohibitive) mission expenses Owens and de Weck (2016).

Point-of-use manufacturing offers the ability to address
many of these issues. Due to its inherent ŕexibility and
small footprint, additive manufacturing is appealing for
this purpose, allowing for on-site production in space and
avoiding the need to anticipate supply requirements in ad-
vance (some of which may not be used in actuality). How-
ever, advanced manufacturing in space may require sig-
niőcant computing capabilities. The remoteness of space
means that delivering computing equipment to on-site
locations may increase shipping expenses, and it may be
more difficult to łback-upž information which could pose
a challenge for continued operation of key manufacturing
processes. For these reasons communication with Earth-
based computers, which could function either continuously
for control of space-based manufacturing, or be used as

back-up in the case of emergencies, is an important consid-
eration and introduces additional challenges. Some issues,
such as maintaining privacy of process simulations and
monitoring a process remotely, are not speciőc to space
manufacturing, but take on additional importance for
space-based resources due to the remoteness of space man-
ufacturing applications (limiting back-up solutions). Fur-
thermore, some challenges, such as large communication
delays due to the vast distances that information needs to
travel through space, are unique to space manufacturing.
In the case of Earth-Mars communication, these delays
can add up to a round-trip total of 42 minutes Attwood
(2018) and introduce an obstacle to the use of earth-based
control actions. Since controllers deal with time-sensitive
information, they may struggle to manage processes ef-
fectively unless these issues are explicitly considered. This
work provides perspectives on several such issues for next-
generation manufacturing in space.

2 Motivating Example: Powder Bed Fusion Simulation

In this work, we hypothesize that one step toward safety
certiőcation of commercial space travel will include the
ability to perform manufacturing in space to obtain needed
tooling or materials on demand, and that part of the
certiőcation process will require the use of Earth-based
computing and control systems as backup or primary sys-
tems to provide greater access to resources for remotely
handling digital twin computational resources, or control
system failure or upgrades. If, for example, additive manu-
facturing is used as part of this space manufacturing strat-
egy, then because the parts to be created in space would



change regularly, aspects of the manufacturing strategy
(including how the process is to be controlled) must also be
regularly re-speciőed. Because space resources are likely to
be limited, it would be preferable to reduce the uncertainty
in what the necessary operating parameters are to achieve
a desired outcome. One idea for seeking to accomplish
this is to utilize a digital twin. However, developing a
full digital twin of an additive manufacturing process can
be complex, requiring many phenomena to be considered,
including phase transitions, ŕuid and solid mechanics, heat
transfer, and changes in microstructure. In this section, we
use a simpliőed őnite element analysis model of a powder
bed fusion (PBF) system (a type of additive manufactur-
ing process) that is designed with consideration of heat
conduction, surface convection, and the changing material
properties of different phases. Given that PBF is a complex
process, some phenomena are neglected, such as ŕuid and
solid mechanics, microstructure changes, convection in the
molten metal, radiation, the effects of alloying on melting
temperature, wetting, sintering, and gravity in space. De-
spite the simplicity of the simulation compared to a full
PBF system, this simulation still serves to motivate several
key issues for space manufacturing that will be discussed
in the remainder of this work.

PBF can be used to create metallic components by using
a laser to melt successive layers in a bed of metal powder.
Each subsequent layer is created by applying a thin layer
of powder over the bed and the previously melted section,
using a rolling or sweeping mechanism, and using the laser
to melt the next layer into the previous. Parts created
using PBF are either directly fused to a metal base plate,
or supporting structures are added and later removed
when őnishing the part Mani et al. (2017).

To develop the PBF simulation used as a motivating
study, modeling strategies from previous works were syn-
thesized Hussein et al. (2013); Zeng et al. (2015); Goldak
et al. (1984) to create an ANSYS thermal simulation of
a 0.4 mm by 0.8 mm by 2.75 mm rectangular geometry.
The top 80 µm is set as the powder layer, meaning the
entire geometry represents a thickness of 5 layers. Custom
ANSYS Parametric Design Language (APDL) code com-
mand blocks were inserted to include additional function-
ality. This includes the application of a moving Gaussian
volumetric thermal proőle applied as heat generation to
represent the laser, taken from Goldak et al. (1984):

q(ζ, y, z) =
6
√
3Q

R3π
√
π
e−3y2/R2

e−3z2/R2

e−3ζ2/R2

(1)

This equation assumes a laser with power Q and charac-
teristic radius R that moves in the x−direction at velocity
v. The applied volumetric heat generation q is a function
of coordinates y and z and ζ = x+ v(t− τ), which itself is
a function of coordinate x and time t. The τ parameter is
used to indicate the laser starting point. The simulations in
this work use Q = 400 W, R = 0.00025 m, v = 1 m/s, and
τ = 0. Additionally, an absorptivity of 0.8 was assumed,
which is applied as a scalar multiple of q in Eq. 1.

The powder bed and base plate were simulated as 316
stainless steel with nonlinear temperature-dependent ma-
terial properties. Values of the solid-phase speciőc heat can
be found in Deng and Kiyoshima (2010) and the molten-
phase in Fukuyama et al. (2019). Density, enthalpy, and

thermal conductivity of both the solid and liquid can be
found in Mills (2002). To estimate the values of the speciőc
heat, density, enthalpy, and thermal conductivity of the
powder, the following equation was applied:

Mpowder = Msolid(1− ϕ) (2)

Mpowder and Msolid represent a material property (speciőc
heat, density, enthalpy, or thermal conductivity) of the
powder and solid phase respectively, and ϕ represents the
porosity of the powder phase, assumed to be 0.4. This rela-
tion assumes that the value of a property is proportional to
the solid fraction of the material, which has been applied
in previous studies Hussein et al. (2013); Luo and Zhao
(2018). Similar to previous studies, radiation effects were
neglected because they are smaller in magnitude when
compared to other heat transfer methods (e.g., conduc-
tion) Zeng et al. (2015).

The geometry is set to an initial temperature of 300 K, the
surface of the powder is subjected to a convection bound-
ary condition with a convection coefficient of 10 W/m2/K,
and the underside and sides of the geometry are held
at 300 K. During the thermal analysis at the beginning
of each time step, custom APDL code manages material
properties based on the current phase of the material
(powder, liquid, or solid). To accomplish this, two ma-
terials were created. One material represents the powder
phase and the other the solid phase, and both materials
contain material property data for the liquid phase. This
means that either phase can be melted without reassigning
the material for a particular element. At the end of each
load step, a section of the code loops over the nodes in
the geometry and selects those which have reached the
melting point. The elements attached to these nodes are
then assigned to the solid phase. The result is a method
of managing the phases to represent the system.

Mesh and time step independence analysis was performed
to show how the simulation results depend on the size of
the elements or time steps. Table 1 lists the simulation time
for six simulations with differing element sizes and/or time
step sizes. These simulations were performed on a Z240
Workstation desktop with Windows 10 (Build: 18363), an
Intel(R) Xeon(R) CPU E3-1240 v5 @ 3.50GHz processor,
4 cores, and 32 GB RAM. These simulations were not
optimized for simulation speed, so the simulation times
are for demonstration purposes. Fig 4 shows one of the
plots of temperature versus time that was used to analyze
mesh and time step independence. The simulation with
40 µm element and 25 µs time steps appears to have an
adequate temperature proőle, as the results for decreasing
the element size to 20 µm led to a maximum percent
change of 5.61% and decreasing the time step size to 10 µs
led to a maximum percent change of 6.75%.

Table 1. Simulation Information.

Element Time Step Simulated Time to µs Simulated per

size (µm) size (µs) time (µs) simulate (s) Real-Time Second

80 100 2000 325 6.15385

40 100 2000 7571 0.264166

40 25 1500 21392 0.0701197

40 10 2000 65711 0.0304363

20 100 2000 57843 0.0345764

20 25 1500 148293 0.0101151





maintain privacy during calculations. For example, similar
to Kogiso and Fujita (2015), consider the system ẋ = x+u
under proportional control (u = −kx), where x represents
the process state, u is the process input, and k is the pro-
portional gain. RSA encryption Rivest et al. (1978), which
is a homomorphic encryption algorithm that allows for
multiplication on encrypted values, is applied to encrypt x
and k, calculate kx in the encrypted space, and decrypt the
result to őnd u. Because RSA is for encryption of integers,
the state measurement can be scaled up by multiplication
by a factor λ and rounding to the nearest integer, and later
dividing the input by λ. Rounding to the nearest integer
before encryption can contribute to ŕuctuations around a
value offset from the steady-state (Fig. 3).
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Fig. 3. Encrypted proportional control with λ = 1.

RSA cannot privately perform addition, which is needed
for advanced model-based control (for example, in nonlin-
ear optimization). Attempts to get around this limitation
with additional communication between the earth and
space systems would suffer from the lengthy communi-
cation times involved over large distances. This indicates
that constraints tied to the challenges of space manu-
facturing impact the number of strategies available for
ensuring privacy in space manufacturing. Secret sharing
is an alternative privacy technique that has been explored
(e.g., Darup and Jager (2019)) to divide data (the ‘secret’)
into ‘shares’ (pieces of the calculation that need to be
completed) and are divided among ‘shareholders’ (separate
Cloud computers) to preform calculations. Because only
part of the information is available on each Cloud, each
individual Cloud lacks the information required to learn
the secret. However, if an eavesdropper could gain access
to every Cloud, they might learn the secret. Another idea
could be to obscure where the calculations are performed
(for example, including several decoy Cloud computers
performing dummy calculations, such as computing con-
trol actions for many different possible state measurements
so that an attacker would have to őgure out which was the
true state measurement, and potentially randomly select-
ing a Cloud at each time step to receive the correct state
measurement). This might aid in slowing an eavesdropper
from learning about a process, but it creates computa-
tional redundancy. Also, states between sampling periods
are related via the process model, which may give the
eavesdropper clues that aid them in őguring out the plant
data. Further work will be needed to develop sustainable
space solutions for Cloud computations.

4 Interpretability for Space Manufacturing Analysis

As noted in Section 2, another aspect of developing a space
manufacturing strategy is remote monitoring of a process

due to the greater degree of process expertise expected on
earth compared to space. When plant data from a space
system deviates from expected data based on a digital
twin, engineers and operators for the process in space may
need assistance from earth in diagnosing the cause. This
can be understood as a desire for the data received from
space to be łinterpretablež to those on earth, or somehow
to reveal the process physics (when the łcorrectž physics
may not be fully understood, particularly in relatively
unexplored environments such as space, so that param-
eter estimation using a őrst-principles model may not be
sufficient for providing an understanding of what may have
happened). In general, however, deőning łinterpretabilityž
of data can be a challenge, which is increasingly high-
lighted through black-box data-driven modeling strategies
where many deőnitions of łinterpretabilityž of the models
may exist (e.g., Chakraborty et al. (2017)). One could ask
whether neural networks, given their ŕexibility, might be
trained so that some indicator (e.g., the weight distribu-
tion) may help to show what happened with the under-
lying process dynamics. Inspired by Wu and Christoődes
(2019) which developed a recurrent neural network (RNN)
model of a continuous stirred tank reactor (CSTR), we
can discuss this within the context of a CSTR. The CSTR
dynamic model is given by:

dCA

dt = F
V (CA,0 − CA)− k0e

−EA/RTCn
A

dTA

dt = F
V (TA,0 − TA)− k0e

−EA/RT∆Hr

ρcp
Cn

A + QC

ρcpV

(3)

where CA and T are the reactant concentration and
temperature, and the manipulated inputs are the inlet
reactant concentration CA0 and heat rate input Q. The
reaction order is n = 2, the reaction rate constant is
k0 = 8.46×106 (m3kmol−1)n−1h−1, the activation energy
is EA = 5× 104 kJ/kmol, and the molar heat of reaction
is ∆Hr = −1.15×104 kJ/kmol. The reaction medium has
a density of ρ = 103 kg/m3 and speciőc heat capacity of
cp = 0.231 kJ kg−1K−1. The CSTR was simulated with an
integration step of 10−4 h, with inputs applied in sample-
and-hold with a sampling period of 0.01 h. An RNN was
designed to predict the values of CA and T at the end
of 10 integration steps given the state measurements and
inputs at the beginning of this time period. It was trained
using data from open-loop simulations over a sampling
period from a variety of initial states and using a variety
of different inputs. 10 integration steps were used for
every batch. Keras and Tensorŕow were used to generate a
neural network consisting of a SimpleRNN with 8 hidden
states and a Dense layer with 2 outputs corresponding to
CA and T at the end of 0.001 h. Because 10 data points are
available across 0.001 h, these were used in training with
the return_sequences = True command and by using the
data (CA(tk), T (tk), CA0(tk), and Q(tk)) for the RNN. The
activation functions were chosen as hyperbolic tangents.
The full model structure is shown in Table 2. The model
was tuned with a 9:1 training and test data split over a
single epoch. The RNN was re-trained using data with a
reaction order of 1 (Case 1) and with a reaction order of
3 (Case 2). The mean absolute errors for the normalized
training data for the Baseline (reaction order 2), Case 1,
and Case 2 scenarios were 0.00425, 0.00355, and 0.00380,
with the absolute error for the normalized test data at
0.00426, 0.00356, and 0.00381. The weights of the trained
neural networks for the three cases were obtained, and



Table 2. Sequential Model Structure: Total
number of tuneable parameters = 122

Layer Type Output Shape No of parameters

simple_rnn (None, 10, 8) 104
dense (None, 10, 2) 18

a heat map was generated showing the differences in
the weights of Case 1 and Case 2 with respect to the
Baseline case (Fig. 4). There are locations within the
maps where weights change signiőcantly between cases,
and where they do not; however, a large-scale pattern is
not obvious and assessing whether one exists and how it
depends on the training data and procedure would require
further analysis. Understanding when and how unknown
physics might be remotely monitored and diagnosed from
earth remains an important challenge for effective space
manufacturing.

Fig. 4. Weights for Case 1 - Baseline (left) and for Case
2 - Baseline (right) in a heat map. Weight difference
values are indicated on the plots. The x-axis indicates
layer inputs and the y-axis indicates layer outputs

5 Delayed Measurements in Earth-Based Control

The őnal challenge for space manufacturing which we
address is the signiőcant communication delay. As noted
in Section 2, it would be desirable to understand the
conditions under which space manufacturing systems can
provably handle the communication delay to guide in
process design and computing architecture selection for
space. In this section, we provide a perspective on this
using Lyapunov-based economic model predictive control
(LEMPC) for processes designed to operate in a region
around an operating steady-state and which can be driven
toward it at any point in time. The selection of this
control law is due to prior studies investigating LEMPC
for processes with measurement delay Heidarinejad et al.
(2012) and because of its ability to optimize economics for
next-generation manufacturing. LEMPC is a model-based
controller that solves an optimization problem at every
sampling time. This section updates time delay-handling
for LEMPC to consider the space manufacturing-speciőc
consideration of delayed inputs as well as measurements.

5.1 Preliminaries

5.1.1 Notation The notation |x| represents the Eu-

clidean norm and xT represents the transpose of a vector

x. The function α : [0, a) → [0,∞) is a class K function if
α(0) = 0, and if it is continuous and strictly increasing. For
a scalar-valued function V (x), Ωρ := {x ∈ R

n : V (x) ≤ ρ}.
Set subtraction is denoted using ‘/’ (i.e., A/B := {x ∈
R

n : x ∈ A, x /∈ B}). A sampling time is represented as
tk := k∆, k = 0, 1, 2, ..., where ∆ is the sampling period.

5.1.2 Class of systems In this work, the following class
of systems is considered:

ẋ = f(x(t), u(t), w(t)) (4)

where x ∈ X ⊂ R
n is the state vector, u ∈ U ⊂ R

m is
the input vector, and w ∈ W ⊂ R

z is the disturbance
vector. f is a locally Lipschitz on X × U ×W . W and U
are deőned as W := {w ∈ R

z : |w| ≤ wmax, wmax > 0}
and U := {u ∈ U

m : |u| ≤ umax}. We consider the
nominal system (w ≡ 0) which is stabilizable through
the application of an asymptotically stabilizing feedback
control law h(x), a sufficiently smooth Lyapunov function
V (x), and class K functions αi(·), i = 1, 2, 3, 4, where,
∀x ∈ D ⊂ R

n (D is an open neighborhood of the origin):

α1(|x|) ≤ V (x) ≤ α2(|x|) (5a)

∂V (x)

∂x
f(x, h(x), 0) ≤ −α3(|x|) (5b)

∣

∣

∣

∣

∂V (x)

∂x

∣

∣

∣

∣

≤ α4(|x|) (5c)

h(x) ∈ U (5d)

Ωρ is deőned as the stability region of the nominal closed-
loop system under the Lyapunov-based controller h(x) and
is chosen so that x ∈ X, ∀x ∈ Ωρ.

5.2 LEMPC Formulation for Space Manufacturing with
Earth-based Cloud Resources

The LEMPC formulation incorporating both measurement
and input application delay is:

min
u(t)∈S(∆)

∫ tk+N∆

tk

[le(x̆(τ), u(τ))]dτ (6a)

s.t. ˙̆x(t) = f(x̆(t), u(t), 0) (6b)

u(t) = u∗(t), t ∈ [tk −D, tk +D) (6c)

u(t) ∈ U, t ∈ [tk +D, tk +N∆) (6d)

x̆(tk −D) = x̄(tk −D) (6e)

V (x̆(t)) ≤ ρe, ∀ t ∈ [tk +D, tk +N∆)

if V (x̆(tk +D)) ≤ ρe (6f)

∂V (x̆(tk +D))

∂x
f(x̆(tk +D), u(tk +D), 0)

≤ ∂V (x̆(tk +D))

∂x
f(x̆(tk +D), h(x̆(tk +D)), 0) (6g)

if V (x̆(tk +D)) > ρe

where x̆ and u represent the estimated state and optimized
input values, respectively. x̄ represents the actual state of
the process and u∗(t) represents all of the inputs from
tk−D to tk+D. u(t) ∈ S(∆) in equation 6a indicates that
u(t) is a piecewise-constant input vector with N sections
(N is the length of the prediction horizon), each held for
a single sampling period of time length ∆.

The one-way communication delay between Earth and a
space manufacturing system (e.g., on Mars) is represented
as D, and at each time step, the process state at the



location of the process is x̄(tk −D) (changes in the delay
length time as the earth and Mars orbit about the sun is
not considered here for simplicity). The signal is then sent
to Earth where it arrives in D time units and is used in the
LEMPC as x(tk). The LEMPC calculates x̆(tk) and x̆(tk+
D) using a nominal model. The value of x̆(tk) represents a
prediction by the controller on Earth of the process state
on Mars at the time of calculation. The controller also
needs to predict the state that will exist once the signal
travels to Mars, designated as x̆(tk +D), which is used to
calculate the applied control action u(tk+D). An example
of the predictions made by the controller is, assuming a
round-trip communication delay of 40 minutes, the model
must be able to predict the necessary control actions from
20 minutes into the future using The state measurements
from 20 minutes in the past. The control actions that will
be applied during this period must also be predicted.

If there is no plant-model mismatch and the predictions
made the controller are perfectly accurate, a stabilizing
control action for the prediction would also be stabilizing
for the process. The controller would then inherit the
feasibility and stability theoretical properties from Hei-
darinejad et al. (2012). However, in realistic cases with
plant-model mismatch, additional theoretic study would
be required as the actual process dynamics will deviate
from those of the model. Particularly in cases where the
process dynamics are fast, this would be expected to make
it more challenging to control the system with delay from
earth unless the plant/model mismatch is very low. Given
the possible difficulty of őnding accurate process models,
methods of ensuring optimal operation with less accurate
models, such as potentially sending a set of control actions
instead of only a single control action corresponding to
various possible state measurements and letting the system
on Mars select which is the most applicable at the time of
application, could be a beneőcial direction for future work.
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