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Abstract— Next-generation manufacturing involves increas-
ing use of automation and data to enhance process efficiency.
An important question for the chemical process industries, as
new process systems (e.g., intensified processes) and new data
modalities (e.g., images) are integrated with traditional plant
automation concepts, will be how to best evaluate alternative
strategies for data-driven modeling and synthesizing process
data. Two methods which could be used to aid in this are
those which aid in testing data-based techniques on-line, and
those which enable various data-based techniques to be assessed
in simulation. In this work, we discuss two techniques in this
domain which can be applied in the context of chemical process
control, along with their benefits and limitations. The first is a
method for testing data-driven modeling strategies on-line by
postulating the experimental conditions which could reveal if
a model is correct, and then attempting to collect data which
could help to reveal this. The second strategy is a framework
for testing image-based control algorithms via simulating both
the generation of the images as well as the impacts of control
on the resulting systems.

I. INTRODUCTION

Modern manufacturing relies on assured replicability, and

selecting data-driven models appropriately, as well as test-

ing control algorithms before deployment, is important for

efficient process operation. To use model identification tech-

niques, a suitable model structure that represents a dynamic

system must be selected, which may include physics-based

and/or empirical components [1], [2]. Experiment design

[3] has been investigated to either carry out parameter

estimation [4] or select model candidates [5]. The present

paper develops a control-assisted online technique for model

discrimination based on our previous work [6], which uti-

lizes an advanced control law known as Lyapunov-based

economic model predictive control (LEMPC) [7] to aid in

evaluating whether proposed models may describe process

physics. Additionally, as industrial control adapts to the

needs of modern manufacturing, the ability to move systems

traditionally tested online into virtual testing simulations

becomes increasingly important. This paper focuses on one

of those systems - image-based control (IBC). Although

image-based closed-loop systems have been used for real
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systems involving camera sensors [8], [9], simulation-based

methods for evaluating image-based control designs require

attention for chemical processes. Moving towards simulating

IBC systems, 3D creation software such as Blender, which

has an embedded Python interpreter, may help with creating

animated simulations that allow evaluation of image-based

control integrated with processes for industrial applications.

In this work, we investigate a closed-loop simulation of an

IBC system developed in Blender to demonstrate benefits

and limitations of 3D creation platforms for studying image-

based control designs and their implications for a process.

II. PRELIMINARIES

A. Notation

R corresponds to the set of real numbers. The Euclidean

norm of a vector is indicated by | · | and the transpose

of a vector x is denoted by xT . A continuous function

α : [0, a) → [0,∞) is said to be of class K if it is strictly

increasing and α(0) = 0. Set subtraction is designated by

x ∈ A/B := {x ∈ Rn : x ∈ A, x /∈ B}. Finally, a

level set of a positive definite function V is denoted by

Ωρ := {x ∈ Rn : V (x) ≤ ρ}.
B. Class of Systems

The class of nonlinear systems considered is the following:

ẋ(t) = f(x(t), u(t), w(t)) (1)

where x ∈ X ⊂ Rn and u ∈ U ⊂ Rm are the state and

input vectors, respectively, in deviation variable form from

the steady-state (xs) and steady-state input of the system

(us); w ∈ W ⊂ Rz (W := {w ∈ Rz | |w| ≤ θ, θ >
0}) is the disturbance vector and f is locally Lipschitz on

X×U×W . We consider that the “nominal” system of Eq. 1

(w ≡ 0) satisfies f(0, 0, 0) = 0 and is stabilizable such that

there exists an asymptotically stabilizing feedback control

law h(x), a sufficiently smooth Lyapunov function V (x),
and class K functions αi(·), i = 1, 2, 3, 4, where:

α1(|x|) ≤ V (x) ≤ α2(|x|) (2a)

∂V (x)

∂x
f(x, h(x), 0) ≤ −α3(|x|) (2b)

∣

∣

∣

∣

∂V (x)

∂x

∣

∣

∣

∣

≤ α4(|x|) (2c)

h(x) ∈ U (2d)



∀ x ∈ D ⊂ Rn (D is an open neighborhood of the

origin). We define Ωρ ⊂ D to be the stability region of

the nominal closed-loop system under the controller h(x)
and require that x ∈ X , ∀x ∈ Ωρ. We consider that state

measurements are available continuously, but are only used

by a controller at discrete sampling times. Because f is a

locally Lipschitz function of its arguments, we can write the

following ∀x1, x2 ∈ Ωρ, u ∈ U , w ∈ W , and Lx, L
′
x, Lw,

L′
w, and Mf as positive constants:

|f(x1, u, w)− f(x2, u, 0)| ≤ Lx|x1 − x2|+ Lw|w| (3a)
∣

∣

∣

∣

∂V (x1)

∂x
f(x1, u, w)−

∂V (x2)

∂x
f(x2, u, 0)

∣

∣

∣

∣

≤ L′
x|x1 − x2|+ L′

w|w| (3b)

|f(x, u, w)| ≤Mf (4)

We consider that an i-th empirical model is represented by

ẋi = fNL,i(xi(t), ui(t)) where Eqs. 2a-4 hold with respect

to the empirical model (i.e., replace αi, i = 1, . . . , 4 by

α̂i, replace Mf by Mf,i, replace V by V̂i, replace h by

hNL,i, replace Lx, Lw, L′
x and L′

w with L̂x,i, L̂w,i, L̂′
x,i

and L̂′
w,i, and replace ρ with ρi). ui represents the input

vector in deviation form from the steady-state input of the

i-th model. We assume that x = xs is a steady-state for both

f and fNL,i, with different steady-state inputs uis for the

empirical models compared to us for the actual system.

C. Lyapunov-Based Economic Model Predictive Control

LEMPC [7] computes control actions via:

min
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ)) dτ (5a)

s.t. ˙̃x(t) = f(x̃(t), u(t), 0) (5b)

x̃(tk) = x(tk) (5c)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N ) (5d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (5e)

V (x̃(t)) ≤ ρe, ∀ t ∈ [tk, tk+N ),

if x(tk) ∈ Ωρe
(5f)

∂V (x̃(tk))

∂x
f(x̃(tk), u(tk), 0)

≤ ∂V (x̃(tk))

∂x
f(x̃(tk), h(x(tk)), 0),

if x(tk) ∈ Ωρ/Ωρe
(5g)

where u(t) is a piecewise-constant input trajectory with N
pieces, where each piece is held constant for a sampling

period with time length ∆, and N is the prediction horizon.

The economics-based stage cost Le of Eq. 5a is evaluated

throughout the prediction horizon based on the future predic-

tions of the process state x̃ from the model of Eq. 5b started

from the state measurement at tk (Eq. 5c). The process

constraints of Eqs. 5d-5e are state and input constraints,

respectively. Ωρe
⊂ Ωρ is a subset of the stability region

that makes Ωρ forward invariant under the LEMPC of Eq. 5.

III. AUTOMATED ONLINE CONTROL-ASSISTED MODEL

STRUCTURE DISCRIMINATION USING LEMPC

Prior work [10] in our group has proposed control-assisted

designs using LEMPC to seek to collect desired data online

for selecting model structures while ensuring closed-loop

stability in a safe region of operation. However, [10] did

not provide a way to automatically choose what desired data

should be. Subsequently, in [6], we defined desired data as

the information that could discriminate between rival models

and sought to collect this data using the LEMPC objective

function (with an economics-based stage cost and/or a stage

cost rewarding differences between state predictions from

different models under the control actions). This strategy

ensures safety while gathering data for trying to discriminate

between model candidates, but is less targeted in the data

that it collects than might be desired from the perspective

of performing experimentation online to determine an ap-

propriate model for an unknown physical system. Scientific

experiments are often performed to either verify or refute

a hypothesis. This implies that another way for defining

desired data for discriminating between model candidates

could be data that is able to refute or satisfy a hypothesis.

The flexibility of LEMPC allows it to be designed to drive

the process state to a neighborhood of an operating point

when the plant/model mismatch is sufficiently small (i.e.,

|f(x, u, w)− fNL,i(x, u)| ≤Merr,i, where Merr,i indicates

the plant/model mismatch for all x ∈ Ωρ|Mc|,1
, u ∈ U ,

and w ∈W and would be bounded by a stability/feasibility

analysis of LEMPC if guarantees were to be made such as

the LEMPC driving the closed-loop state toward an operating

point). Then, if an LEMPC is used to attempt to drive the

closed-loop state toward a desired operating point but data

obtained indicates that the closed-loop state was not driven

near that point, this may indicate that the model used in

computing the control actions was not accurate enough to

probe state-space and could be discarded. This procedure

then serves as online experimentation for discriminating

between models and potentially better understanding the

process physics. An LEMPC operated in this fashion can

use a constraint of the form of Eq. 5g to attempt to force

the process state toward desired data and “check” different

model candidates. In the next section, we present this control-

assisted scheme.

A. Control-Assisted Online Model Structure Discrimination

using LEMPC: Formulation

To achieve the data-gathering goals described above and

attempt to discriminate between models, the set of |Mc|
model candidates must first be developed, where |Mc| repre-

sents the cardinality of a set of process models Mc. This

set will be assumed to contain a model where Merr,i is

sufficiently small in the sense that the closed-loop state under

the LEMPC to be developed could be driven toward a neigh-

borhood of a desired operating point when the i-th model is

used in a constraint with the form of Eq. 5g. We also assume

that the models in the set are ordered such that their stability

regions are nested. This is done to ensure that the closed-loop



state does not leave the stability region of the sufficiently

accurate model when the constraints with the forms of

Eqs. 5f-5g utilize a model that is not sufficiently accurate.

We will denote the stability region of the sufficiently accurate

model as Ωρa,1
, where a ∈ {1, . . . , |Mc|}, but this region

corresponding to the a-th model is not known until the data-

gathering process is concluded. Furthermore, the proposed

LEMPC will discriminate between models by seeking to

drive the closed-loop state toward different operating data

points. We assume that in the time of operation, p such

points are selected to be tracked, and we denote them by

xs,j , j = 2, . . . , p (xs,1 represents the operating steady-state

when no non-routine operating data is being gathered).

The operating strategy then consists of progressively at-

tempting to drive the closed-loop state toward each of the

xs,j , j = 2, . . . , p, by switching to an LEMPC with Eq. 5g

based on the model in Mc with the smallest stability region

(corresponding to i = 1) and with the models and all

constraints rewritten to consider the equilibrium to be at

a steady-state xs,j . When the closed-loop state does not

approach xs,j in the subsequent operating period, the model

in Mc with the smallest stability region can be discarded

from that set, so that now that which previously had the

second largest stability region becomes that with the smallest

stability region (a metric on the “approach” of the closed-

loop state to xs,j and a threshold ϵD on this metric that leads

to models being discarded can be a design decision). We

can therefore consider that when the LEMPC operates in a

data-gathering mode (i.e., seeking to track xs,j), it is probing

whether the model candidates in Mc are sufficiently accurate

according to the selected approach metric and threshold.

However, for the majority of the time of operation, the

closed-loop system is operated under a “baseline” 1-LEMPC

to only optimize economics around xs,1. The 1-LEMPC

formulation is as follows:

min
u1,1(·)∈S(∆)

∫ tk+N

tk

[

|Mc|
∑

i=1

Le(x̃i,1(τ), u1,1(τ))] dτ

s.t. ˙̃xi,1(t) = fNL,i,1(x̃i,1(t), ui,1(t)), i = 1, . . . , |Mc|
(6a)

x̃i,1(tk) = x(tk), i = 1, . . . , |Mc| (6b)

x̃1,1(t) ∈ X, ∀ t ∈ [tk, tk+N ) (6c)

u1,1(t) ∈ U1,1, ∀ t ∈ [tk, tk+N ) (6d)

V̂1,1(x̃1,1(t)) ≤ ρe,1,1, ∀ t ∈ [tk, tk+N )

if V̂1,1(x̃1,1(tk)) ≤ ρe,1,1 (6e)

∂V̂1,1(x̃1,1(tk))

∂x̃1,1
fNL,1,1(x̃1,1(tk), u1,1(tk)) ≤

∂V̂1,1(x̃1,1(tk))

∂x̃1,1
fNL,1,1(x̃1,1(tk), hNL,1,1(x̃1,1(tk)))

if V̂1,1(x̃1,1(tk)) > ρe,1,1 (6f)

where Le is the EMPC objective function, x̃i,1 is the state

prediction in deviation variable form from xs,1 based on the

i-th model candidate, and x(tk) is the state measurement at

tk (with slight abuse of notation, this is used in Eq. 6b to

represent the deviation form from the steady-state for the

i-th model). In Eq. 6, many terms have two subscripts; the

first refers to the process model under consideration, and

the second refers to the j-th steady-state, j = 1, . . . , p. The

controller of Eq. 6 is used if te,j−1 ≤ t < ts,j , j = 2, . . . , p,

where te,1 = 0; ts,j is defined as the switching time when

the LEMPC changes to drive the closed-loop state to the j-th

desired data point (j > 1), and te,j is the time at which the

control law switches back to the 1-LEMPC.

At ts,j , the LEMPC formulation is switched from the 1-

LEMPC to that associated with xs,j to drive the closed-loop

state to a neighborhood of xs,j . The j-th LEMPC, j > 1,

which is used for t ∈ [ts,j , te,j), is formulated as follows:

min
u1,j(·)∈S(∆)

∫ tk+N

tk

[

|Mc|
∑

i=1

Le(x̃i,j(τ), u1,j(τ))] dτ

s.t. ˙̃xi,j(t) = fNL,i,j(x̃i,j(t), ui,j(t)), i = 1, . . . , |Mc|
(7a)

x̃i,j(tk) = x(tk), i = 1, . . . , |Mc| (7b)

x̃1,j(t) ∈ X, ∀ t ∈ [tk, tk+N ) (7c)

u1,j(t) ∈ U1,j , ∀ t ∈ [tk, tk+N ) (7d)

∂V̂1,j(x̃1,j(tk))

∂x̃1,j
fNL,1,j(x̃1,j(tk), u1,j(tk)) ≤

∂V̂1,j(x̃1,j(tk))

∂x̃1,j
fNL,1,j(x̃1,j(tk), hNL,1,j(x̃1,j(tk)))

(7e)

where x̃i,j(tk) represents the state measurement for the i-th
model in deviation variable form from the j-th steady-state.

One of the benefits of this strategy is that it provides a

means for manufacturers to have a system attempt to discover

its own physics and to provide data over time which can

help to uncover aspects of the physics, as opposed to only

routine operating data. As concepts in learning from data

gain prominence, the potential for a process to gather non-

routine data in a manner that is expected to be revealing

has potential to be helpful in developing data-based models

on-line. However, if it is done while the process is on-line,

it is necessary to consider the impact of this on profits

and to attempt to reduce that impact. For example, one

could explore activating the j-th LEMPC when only a few

sampling periods would be required to drive the state to a

neighborhood of xs,j based on x(tk) (where the number of

sampling periods allowable will depend on the timescale

on which the process profit metric evolves). Because the

decision to switch to a j-th LEMPC may depend on the

location of the closed-loop state in state-space and how

moving toward desired data could impact profits, ts,j and

te,j would be expected to be determined online (further

detail on such an implementation strategy is presented in

the next section, where the impacts of selecting a certain

xs,j on the closed-loop stability/feasibility guarantees of the

j-th LEMPC also are taken into account in selecting ts,j
by choosing to switch to the j-th LEMPC only when the



closed-loop state is within a stability region containing the

new steady-state). Limitations of this LEMPC-based method

for gathering non-routine operating data for aiding in model

discrimination include that the set of Mc models must be

developed a priori and should include a sufficiently accurate

model in the set, and that requiring the nesting of stability

regions has a potential to be conservative.

B. Control-Assisted Online Model Structure Discrimination

using LEMPC: Implementation Strategy

Assuming that a reasonably accurate model is used by

the proposed LEMPC design, the implementation strategy

below includes a region Ωρe,1,j
, selected such that if the

actual state is in Ωρe,1,j
⊂ Ωρa,1

, under sufficient conditions,

then the closed-loop state is maintained in Ωρa,1
for t ≥ 0.

Information may be gathered automatically as follows:

1) At t0, set an index ζ = 0 and set te,j = 0. Go to

Step 2.

2) At the sampling time tk, if ζ = 1 and tk < te,j , go to

Step 6. If ζ = 1 and tk = te,j , set te,j = 0 and ζ = 0,

and go to Step 3. Otherwise, evaluate if process data

is desired to be collected. If so, set ζ = 1 and go to

Step 4. Otherwise, set ζ = 0 and go to Step 3.

3) The 1-LEMPC of Eq. 6 is activated and receives the

state measurement x(tk). Go to Step 5.

4) Evaluate if a j-th steady-state (j > 1) corresponding

to the desired information can be generated such that:

1) Ωρ1,j
⊂ Ωρi,j

, i = 2, . . . , |Mc|, around this steady-

state; 2) xs,j has a steady-state input within the input

bounds for all |Mc| models; 3) Ωρe,1,j
contains the

state measurement x(tk) and xs,j ; and 4) Ωρ|Mc|,j
⊂

Ωρe,1,1
. If this is possible, set tk = ts,j and select te,j

to be sufficiently long to drive the closed-loop state to

a neighborhood of the desired information, and go to

Step 6. If these conditions cannot be satisfied, go to

Step 3 and set ζ = 0.

5) If x(tk) ∈ Ωρe,1,1
, go to Step 5a. Else, go to Step 5b.

a) Compute a control action for the subsequent

sampling period with Eq. 6e of the 1-LEMPC

activated. Go to Step 7.

b) Compute a control action for the subsequent

sampling period with Eq. 6f of the 1-LEMPC

activated. Go to Step 7.

6) The j-LEMPC of Eq. 7 is activated and receives

the state measurement x(tk). The controller computes

control actions to drive the closed-loop state to the

desired information xs,j until te,j . Go to Step 7.

7) If x̃i,j exits the stability region of the i-th model candi-

date at any t ∈ [tk, tk+1), or if |x̃i,j(tk+1)−x(tk+1)| ≥
ϵD, then the i-th model is discarded from the set

Mc and the set Mc is updated to have the models

renumbered such that i← i+1, i = 1, 2, . . . , |Mc|−1.

Go to Step 8.

8) Go to Step 2 (k ← k + 1).

1) Control-Assisted Online Model Discrimination using

LEMPC: Stability Analysis: In this section, we demonstrate

that the implementation strategy of Section III-B maintains

the closed-loop state within Ωρa,1
at all times.

Theorem 1: Consider the closed-loop system of Eq. 1

under the implementation strategy of Section III-B, where

hNL,i,j(·) used in the LEMPC’s of Eqs. 6-7 for any i-th
model in the set Mc and j = 1, . . . , p meets the inequalities

in Eqs. 2a-2d with respect to the i-th empirical model

candidate. Let ϵw,i,j > 0, ϵ′w,a,1 > 0, ϵ̄′w,a,j > 0, L̄′
x,j > 0,

L̄′
w,j > 0, ∆ > 0, and N ≥ 1. At every sampling time,

let Ωρ1,j
⊂ Ωρi,j

⊂ X and Ωρ|Mc|,j
⊂ Ωρe,1,1

, where

ρ1,j = min{ρi,j}, ρi,j > ρe,i,j > ρmin,i,j > ρs,i,j , for

i = 1, 2, . . . , |Mc| and j = 1, . . . , p, and ρe,i,j > ρi−1,j

for i = 2, . . . , |Mc|, satisfy:

− α̂3,i,j(α̂
−1
2,i,j(ρs,i,j)) + L̂′

x,i,jM̂f,i∆ ≤ −ϵw,i,j/∆,

i = 1, . . . , |Mc|
(8)

∣

∣

∣

∣

∂V̂a,j(x1)

∂x
fj(x1, u, w)−

∂V̂a,j(x2)

∂x
fj(x2, u, 0)

∣

∣

∣

∣

≤ L̄′
x,j |x1 − x2|+ L̄′

w,j |w|, ∀x ∈ Ωρ|Mc|,1

(9)

∣

∣

∣

∣

∣

∂V̂a,1(x(t))

∂x
− ∂V1(x(t))

∂x

∣

∣

∣

∣

∣

≤Mg,a,1,

Mg,a,1 > 0, ∀x ∈ Ωρ|Mc|,1

(10)

− α̂3,a,1(α̂
−1
2,a,1(ρe,a,1)) + α̂4,a,1(α̂

−1
1,a,1(ρa,1))Merr,a

+ L′
xMf∆+ L′

wθ + 2Mg,a,1Mf ≤ −ϵ′w,a,1/∆
(11)

− α̂3,a,j(α̂
−1
2,a,j(ρs,a,j)) + α̂4,a,j(α̂

−1
1,a,j(ρa,j))Merr,a

+ L̄′
x,jMf∆+ L̄′

w,jθ ≤ −ϵ̄′w,a,j/∆
(12)

ρe,a,1 + fV,a,1(fW,a,1(∆)) ≤ ρa,1 (13)

ρe,i,j ≥max{V̂i,j(x(t)) : x(tk) ∈ Ωρi−1,j
, w ∈W,

t ∈ [tk, tk+1), u1,j ∈ U}, i = 2, . . . , |Mc|
(14)

ρi,j ≥max{V̂i,j(x(t)) : x(tk) ∈ Ωρi−1,j
, w ∈W,

t ∈ [tk, tk+1), u1,j ∈ U}, i = 2, . . . , |Mc|
(15)

ρmin,i,j =max{V̂i,j(x(t)) : x(tk) ∈ Ωρs,i,j
, w ∈W,

t ∈ [tk, tk+1), u1,j ∈ U}, i = 1, . . . , |Mc|
(16)

ρmin,i,j =max{V̂i,j(xi,j(t)) : xi,j(tk) ∈ Ωρs,i,j
, w ∈W,

t ∈ [tk, tk+1), u1,j ∈ U}, i = 1, . . . , |Mc|
(17)

where fW,i(τ) :=
(

Lwθ+Merr,i

Lx

)

e(Lxτ−1) and fV,i,1(s) :=

α̂4,i,1(α̂
−1
1,i,1(ρi,1))s + Mv,i,1s

2, Mv,i,1 > 0. If x̃(t0) =
x(t0) ∈ Ωρe,1,1

, then the closed-loop state is maintained in

Ωρa,1
for t ≥ 0.

Proof: This proof consists of multiple parts. In the first,

recursive feasibility of the 1-LEMPC and the j-LEMPC is

demonstrated. In the second, third, and fourth, we build to

demonstrate that the closed-loop state is maintained in Ωρa,1
.

Part 1: Recursive feasibility of the 1-LEMPC and j-

LEMPC holds because hNL,1,j satisfies Eqs. 6e-6f and 7e

and maintains the state prediction in Ωρ1,j
if Eqs. 8 and 17

are satisfied [10]. Also since Ωρi,j
⊂ X, i = 1, 2, ..., |MC |,



j = 1, . . . , p, Eqs. 6c and 7c are met under hNL,1,j . Finally,

hNL,1,j satisfies Eqs. 6d and 7d by Eq. 2d applied for the

empirical model.

Part 2: Under the conditions in Theorem 1, [6] demon-

strates that when the 1-LEMPC is utilized and x(tk) ∈ Ωρ1,1

(as enforced by Step 7 of the implementation strategy), then

the closed-loop state remains in Ωρa,1
until tk+1.

Part 3: We now demonstrate that the j-LEMPC maintains

the closed-loop state in Ωρa,1
. By Steps 4 and 7 of the

implementation strategy, when tk ∈ [ts,j , te,j), x(tk) ∈
Ωρ1,j

. In this case, either Ωρa,j
= Ωρ1,j

or Ωρi,j
, i > 1, is

Ωρa,j
. The implementation strategy develops a new steady-

state xs,j such that the stability region Ωρ1,j
for the i = 1

empirical model around the new steady-state contains x(tk)
and xs,j . This stability region should also be developed

such that it meets the assumptions in Eqs. 2a-2d for the

i = 1 empirical model formulated with respect to xs,j . The

stability regions for the other models, j > 1 are required

to contain Ωρ1,j
and be fully contained in Ωρe,1

. In this

case, Eq. 7e is the constraint utilized. If ρa,j = ρ1,j , then if

x(tk) ∈ Ωρa,j
/Ωρs,a,j

, Eqs. 7e and 2b give:

∂V̂1,j(x(tk))

∂x
fNL,1,j(x(tk), u1,j(tk))

≤ ∂V̂1,j(x(tk))

∂x
fNL,1,j(x(tk), hNL,1,j(x(tk)))

≤ −α̂3,a,j(|x(tk)|)

(18)

Defining
˙̂
V1,j =

∂V̂1,j(xj(t))
∂x fj(xj(t), u1,j(tk), w(t)), adding

and subtracting both
∂V̂1,j(x(tk))

∂x fNL,1,j(x(tk), u1,j(tk)) and
∂V̂1,j(x(tk))

∂x fj(x(tk), u1,j(tk), 0) to
˙̂
V1,j (with slight abuse

of the notation u1,j(tk) to stand for the same input in

appropriate deviation form for the model it is in), and using

Eq. 18, Eq. 3b applied to the model of Eq. 1 in deviation

form from xs,j , the definition of Merr,i, the bound on

w, Eq. 4, Eq. 9, and Eq. 2a and 2c, we obtain that
˙̂
V1,j

is bounded by the left-hand side of Eq. 12. Therefore, if

Eq. 12 holds, V̂1,j decreases over a sampling period when

x(tk) ∈ Ωρa,j
/Ωρs,a,j

if ρa,j = ρ1,j . This ensures that

x(tk+1) ∈ Ωρ1,j
⊂ Ωρa,1

. If instead x(tk) ∈ Ωρs,a,j
and

ρa,j = ρ1,j , then Eq. 16 ensures that x(tk+1) ∈ Ωρmin,a,j
⊂

Ωρa,j
⊂ Ωρa,1

. If ρa,j ̸= ρ1,j , Eq. 15 ensures that x(tk+1) ∈
Ωρa,j

⊂ Ωρa,1
. Thus, with this implementation strategy, the

closed-loop state is maintained in Ωρa,1
from tk to tk+1.

Part 4. x(t0) ∈ Ωρe,1,1
by the statement of the theorem.

At t0, either the 1-LEMPC or the j-LEMPC is utilized. If

the 1-LEMPC is used, then from Part 2, x(t) ∈ Ωρa,1
, for

t ∈ [tk, tk+1). If the j-LEMPC is used, then from Part 3,

x(t) ∈ Ωρa,1
, for t ∈ [tk, tk+1). Applying Parts 2 and 3

recursively shows that the closed-loop state is maintained in

Ωρa,1
at all times.

IV. TEST FRAMEWORK FOR IMAGE-BASED CONTROL

USING BLENDER

The prior section discussed a method for on-line testing of

data-driven models. In this section, we develop a framework

for a priori testing of process control systems based on

images. As image data becomes more important in the

context of Industry 4.0, it is desirable to have a means for

testing how an automated system might interact with image-

based control. Rather than having an experimental system to

test such studies for chemical processes, we explore the use

of the 3D creation suite Blender [11] to better understand

what the potential benefits and limitations of the use of this

type of software might be for such a purpose.

A. Level Control Example: Image-based Level Control using

Classical Controller with a Fixed Camera Sensor

In this section, a level control example is used to explore

how the image-based control simulation described above

might work. The process is represented by Eq. 19:

dh

dt
= (u− c

√
h)/A (19)

where the state variable is the level in the tank h and the

input is the volumetric flow rate entering the system u. A =
0.23 m2 denotes the cross-sectional area of the tank and

c = 0.008333 m5/2/s is the outlet resistance coefficient. The

minimum tank height is 0 m and the maximum tank height

is 0.5184 m. No disturbances were considered.

The process was initialized at xinit = x(t0) = 0.1 m and

numerically integrated using the explicit Euler method with

an integration step of 10−3 s. The simulation was performed

over 7 s of operation in Blender 2.93 using its embedded

Python interpreter. A proportional-integral (PI) controller

was designed to drive the tank level to its set-point hsp over

7 s of operation. The PI controller for the tank level has the

following form:

dϵ

dt
= hsp − h̃, ϵ(0) = 0 (20)

u = us +Kc(hsp − h̃) +Kcϵ/τI (21)

where u is the controller output (0 ≤ u ≤ 0.6 m3/s), us =
0.0026 m3/s is the steady-state value of u that corresponds

to the initial level of the tank at t = 0. h̃ is the measured

level of the tank, ϵ is the dynamic state of the PI controller.

The PI tuning parameters were selected to be Kc = 0.6 and

τI = 43.2. The set-point was set to be hsp = 0.4 m.

For the image-based measurements, which are sent to

the controller every sampling period (∆ = 0.1 s), a fixed

camera was positioned facing one side of the tank. For

the image processing task, we utilized a Python Imaging

Library, Pillow [12], which includes features and supports for

loading, manipulating, and saving images. Fig. 1 shows the

render of the tank level at its final configuration. To measure

the level of the tank, the algorithm must translate the tank

image provided by the camera sensor into a measurable tank

level so that the controller can compute the control actions

accordingly. This can be achieved by taking the RGBA

values of the pixels at the bottom and top of the tank as

references for their pixel indexes to track the variations in the

tank image over time. Specifically, based on the pixel indexes

of the bottom and top of the tank image at t = 0, a linear



Fig. 1. Render of the level of the tank (converted from png to PDF to eps)
at t = 7 s with hsp = 0.4 m using Blender.

relation can be obtained to convert the pixel index counted

at the top of the tank image to the level of the tank. The

camera image of Fig. 1 has size of 1920×1080. Variations

in the pixel indexes must be counted only in the RGBA

values corresponding to the tank level. The pixel index at

the bottom of the tank is 1079 (which represents h = 0 m)

and, at t = 0, the pixel index at the top of the liquid is 1055

(which represents h = 0.1 m). A linear conversion between

the tank level and pixel index at the top of the tank image

(Ip) was then developed and is given by Eq. 22. Therefore, at

every sampling time tk, a new count is performed to obtain

the pixel index at the top of the tank image and its conversion

to the measured level of the tank is sent to the PI controller

as follows:

h̃ = −3.8462× 10−3 × Ip + 4.1577 (22)

The change in the RGB value from the color that represents

the tank level to the color outside the boundaries of the

tank level is detected in the presence of lighting by allowing

for several RGB values to represent the tank, and several

to represent the region beyond the tank. In Blender, to

update the tank level in the renders of the camera, the global

coordinates where the tank is located in Blender Edit Mode

must be tracked as well. In particular, the bottom edge of the

tank was positioned at (0,0,-1.57 m). The coordinates of the

tank level at h = 0.1 m are (0,0,-1.47 m), and thus variations

in the tank level can be adjusted in Blender by updating the

position of the top edge of the tank.

The closed-loop response of the tank level under this PI

controller of Eqs. 20-21 described above is shown in Fig. 2.

We can observe that both the actual closed-loop state and the

measured tank level reach the set-point of 0.4 m after 1.5 s

of operation under the PI controller.

Remark 1: The ability to capture small process changes

based on image-based measurements depends on the process

dynamics and the sampling period to collect the measure-

ments. The degree to which the camera is “zoomed-in” on the

process segment to be visually measured impacts the degree

to which small process variations in a sampling period can

be captured for measurement accuracy.

V. CONCLUSION

This work examines a control-assisted framework for

model discrimination using LEMPC and a framework for

testing image-based controllers using Blender. Theoretical

results for the former study indicate that closed-loop stability
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Fig. 2. Closed-loop response of the tank level problem under the image-
based PI controller.

can be maintained while the models are discriminated; a level

control problem was used in the second study.
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