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ABSTRACT: Molten salts have attracted interest as potential heat
carriers and/or fuel solvents in the development of new Gen IV
nuclear reactor designs, high-temperature batteries, and thermal
energy storage. In nuclear engineering, salts containing lithium
fluoride-based compounds are of particular interest due to their
ability to lower the melting points of mixtures and their
compatibility with alloys. A machine learning potential (MLP)
combined with a molecular dynamics study is performed on two
popular molten salts, namely, LiF (50% Li) and FLiBe (66% LiF
and 33% BeF2), to predict the thermodynamic and transport
properties, such as density, diffusion coefficients, thermal
conductivity, electrical conductivity, and shear viscosity. Due to
the large possibilities of atomic environments, we employ training
using Deep Potential Smooth Edition (DPSE) neural networks to learn from large datasets of 141,278 structures with 70 atoms for
LiF and 238,610 structures with 91 atoms for FLiBe molten salts. These networks are then deployed in fast molecular dynamics to
predict the thermodynamic and transport properties that are only accessible at longer time scales and are otherwise difficult to
calculate with classical potentials, ab initio molecular dynamics, or experiments. The prospect of this work is to provide guidance for
future works to develop general MLPs for high-throughput thermophysical database generation for a wide spectrum of molten salts.
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1. INTRODUCTION

Molten salt reactors (MSRs) first appeared in the mid-20th
century and have recently been accepted as candidate Gen IV
reactors competing with the existing light water and boiling
water reactors.1−3 The design of MSRs centralizes molten salts
as fuels and heat carriers in the primary loop, providing
inherent advantages over commercial technologies such as
meltdown mitigation through passive cooling, negative
temperature coefficients of reactivity, low operating pressures,
increased operating temperatures for efficiency, and improved
waste management.4,5 However, as molten salts are required to
satisfy a diverse number of nuclear, physical, and chemical
criteria to operate effectively, knowledge on salt properties is
essential for MSR design.6,7 So far, thermodynamic and
thermophysical databases for molten salts are limited by the
difficulty of high temperature, toxicity, and corrosive experi-
ments.8,9 Furthermore, the possible number of salt config-
urations, including single, binary, ternary, and more complex
mixtures of compounds, with the consideration of impurities
from chromium alloys and other particulates, further increases
the design space of MSRs. This huge design space calls for the
development of theoretical and/or computational methods to
speed up the present bottlenecks in experimental methods.

In recent years, computational simulations of candidate
MSR fuels permitted a deeper understanding of their behavior
and structure. Salanne et al. developed the polarizable
interaction potential (PIM) to study ionic liquids by inclusion
of polarization effects, which has been used to study a wide
variety of single and binary molten salts involving LiF, NaF,
KF, BeF2, and ThF4 end members with high accuracy relative
to experiment.10−16 Nam et al. studied the structural effects of
chromium dissolved in FLiBe and FLiNaK melts using ab initio
molecular dynamics (AIMD) to observe chromium fluoride
formations and diffusivity as a function of chromium valence.17

Similarly, Lam et al. studied FLiBe and FLiNaK with AIMD to
observe tritium complexes and diffusivity.18 However, the
costly performance of ab initio methods with system size
creates difficulty when predicting properties where long time
scale statistics are needed, and the a priori nature of classical
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potentials such as PIM requires the re-fitting of new potentials
when encountering new end members and/or elemental
impurities in the system. Recently, a new class of potentials
called the machine learning potential (MLP) allow researchers
to approach materials with an “out-of-the-box” mindset when
compared to classical potentials, requiring no knowledge of the
mathematical form of the potential for a particular material.
Further, MLPs can reduce the severity of cost accuracy trade-
off associated with classical potentials by finding more optimal
functions for describing the interatomic interactions in systems
of high complexity (structural, compositional, and chemical).
Recently, LiF and FLiBe salts have been studied using a neural
network-based MLP for the equation of state, surface energies,
local structure, and self-diffusivity,19 but no works have been
published that predict the transport properties of molten salts
with MLPs to the best of our knowledge.
In this paper, we train an MLP using the Deep Potential

Molecular Dynamics (DeePMD) method to model the
transport properties of the single salt lithium fluoride (LiF)
and the binary salt FLiBe (66% LiF and 33% BeF2).

20 While
the previous paper by Lam utilized a modified Behler−
Parrinello descriptor, we chose DeePMD for its reduced
manual input in hyper-parameterization. The model requires
only the finite distance cutoff and the maximum number of
neighbors found in the dataset. This is a critical feature for
general modeling of molten salts, considering the complex and
diverse local complexes formed in melts such as BeF4

2−

tetrahedral and polymer-like chains in denser compositions.21

In addition, we validate the results of the training by evaluation
of transport properties as functions of temperature. It is well
known that the transport properties of molten salts are the
most difficult to evaluate both experimentally and theoret-

ically,10,22−25 and from our knowledge, no other works have
evaluated the transport properties of molten salts with MLPs.
In Section 2, we cover the development of LiF and FLiBe
DeePMD potentials, including details on dataset generation,
training, and MD. Section 3 details the various properties
predicted from the DeepMD-Smooth Edition (DPSE)
potential and compares them to other works including
experimental and MD results. Finally, Section 4 concludes
this work with a brief discussion on our future work concerning
molten salt modeling.

2. COMPUTATIONAL DETAILS
2.1. Dataset Generation. Training for LiF and FLiBe

neural network potentials requires a dataset that sufficiently
covers the range of configurations that may manifest during
finite-temperature MD simulations. As such, data for LiF and
FLiBe configurations were borrowed from the existing ab initio
MD data with simulation details previously described.19 Briefly,
calculations were performed using the Vienna Ab Initio
Simulation Package (VASP) with the plane wave basis set
and periodic boundary conditions in all cell directions. The
plane wave energy cutoff is 600 eV, and the k-point sampling is
done on a 2 × 2 × 2 Γ-centered grid. All calculations were
performed using the Perdew−Burke−Ernzerhof (PBE) gener-
alized gradient approximation exchange−correlation functional
and projector-augmented wave potentials. The LiF dataset
contains 118,115 configurations with 70 atom supercells at
1200 K and experimental density, and the FLiBe dataset
contains 222,903 configurations with 91 atom supercells at 973
K and experimental density. To capture changes in volume, we
also generated a mixed dataset containing −5, 1, 5, and 10%
changes to the lattice constant for 9208, 3951, 5253, and 4751

Figure 1. Plots comparing unobserved testing DFT and DeePMD predictions for (a) LiF energy and (b) forces and (c) FLiBe energy and (d)
forces. Results closer to unity are better, and the black line is to guide the eyes.
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(23,163 total) LiF configurations, respectively, and 7168, 1188,
4017, and 3334 (15,707 total) FLiBe configurations,
respectively, with all systems under the same simulation
parameters and conditions. With the LiF and FLiBe datasets,
each was shuffled and split 80−20% for training and testing.
2.2. Atomic Potential Training. For training an atomic

potential, we opted for the DeePMD-kit (DP-kit) package, a
Python/C++ package for neural network training and
evaluation of atomic energies and forces with efficient tensor
operations through the Tensorflow interface.26,27 The Deep-
Pot-Smooth Edition (DPSE) potential contained inside the
above package is chosen due to its natural symmetry
conservation of atomic descriptors.28 Here, the smooth cutoff
and hard cutoff distance was chosen as 2 and 7 Å, respectively.
The choice of hard cutoff is primarily due to the time savings
in FLiBe MD (1.3187 × 10−3 time/step/atom for 7 Å vs
2.3187 × 10−3 time/step/atom for 9 Å) with a negligible 0.03
g/cm3 improvement in the predicted density, whereas the
smooth cutoff from 8.8 to 2 Å shows an ∼0.01 g/cm3

improvement with no notable difference in speed. The
resulting training of DPSE networks yielded a testing root-
mean-squared error of 2.54 × 10−5 eV/atom and 13.8 meV/Å
for LiF energy and forces, respectively, and 4.86 × 10−5 eV/
atom and 23.2 meV/Å for FLiBe energy and forces,
respectively. As exhibited by the comparison of the testing
energies and forces in Figure 1, the excellent accuracy on
untrained data suggests well-represented potentials for
simulating ab initio potential energy surfaces and ensuing
dynamics for LiF and FLiBe molten salts.
To generate acceptable MLPs with high quality of energy

and force, sufficient data must be provided during training to
capture, at minimum, a range of all possible configurations that
may be found during finite-temperature MD simulations. Due
to the costly nature of ab initio calculations, it is of interest to
minimize the computational cost from the data generation step
by requiring the least number of configurations needed for
converged force and energy testing errors, such that any further
training is not necessary to sufficiently generalize the unseen
structures. We have provided Figure 2 which contains both
energy and force errors against the number of AIMD steps.
From our existing FLiBe data, 50,000 constant volume AIMD

steps were isolated as training data, leaving the remaining
172,903 structures for testing. We further split the training data
into segments and train various models with increasing number
of steps, each inheriting the same data as the last. After
training, we evaluate the same testing set with the models and
compare the model output with ab initio energies and forces.
As can be seen from the figure, acceptable RMSE values are
reached around 10,000 steps, with slight fluctuations in the
force and energy RMSE thereafter.
Furthermore, the effect of compressed/expanded volume

data on model accuracy is investigated. Provided the converged
model at 10,000 constant volume configurations, we re-train
new models with the same previous 10,000 steps but with the
existing variable volume data, such that 1000, 2000, 4000, and
7000 compressed, expanded, and 50/50 compressed/expanded
volume data are included for training (i.e., yielding 12 new
networks). We then evaluate the same testing set as before to
find the RMSE. Note that the expanded volume data is
randomly selected from the pool of +1, +5, and +10% lattice
constant datasets. From our training of additional volumes, all
force RMSE values lie on the converged 23.5 meV/Å found
from constant volume networks, while the energy RMSE
fluctuates about 3 × 10−5 eV/atom, more than double the 1.21
× 10−5 eV/atom in the constant volume case. Although an
energy RMSE increase is observed with added volume data, we
emphasize this as a necessary trade-off to improve the quality
of molten salt MD simulations due to the improvement of the
predicted density and subsequent properties as discussed in
Section 3. A. The networks trained with a constant volume
either resulted in very low or unstable densities in which
excessive cell expansion occurs, with no particular pattern in
the increasing number of constant volume configurations.
Here, we briefly show how the inclusion of variable volumes
improves the resulting density via MD simulations with the
aforementioned DPSE models. The setup for MD is described
in Section 2.3. The inset of Figure 2 shows a 10.4%
improvement to the predicted density at 973 K with additional
volume data. Interestingly, all networks including expanded
data seem to converge with only 1000 additional structures
(500 expanded structures in the compressed + expanded case),
whereas the pure compression case requires at least 4000 to
reach a similar density. We assign the performance increase by
the inclusion of forces in an expanded system, with the DPSE
model more accurately capturing the calculated pressure under
cell expansion and converging to a relatively higher density. On
the other hand, without the expanded data, the pure
compressed case requires more samples to reach density
convergence. We theorize that the compressed system
improves the quality of short-ranged interactions and promotes
the attractive potential between atoms in the system.

2.3. Molecular Dynamics. After training on the dataset,
the DPSE potentials were used in the Large Scale Atomic/
Molecular Massively Parallel Simulator (LAMMPS) via the
interface with DeePMD-kit.29 Specifically, a pair style in
LAMMPS uses the trained model for energy and force
calculation during MD steps. Exploiting the linear scaling of
DPSE, the supercell from AIMD is extended to a 2 × 2 × 2
system as the initial structure, resulting in 560 LiF atoms and
728 FLiBe atoms. The temperature was chosen such that the
system is well beyond its liquidus; thus, the systems are
simulated at 1120−1320 K at 40 K intervals for LiF and 800−
1100 K at 100 K intervals +973 K for FLiBe. With 1 fs as the
time step, the system is first relaxed for 250 ps under NVT,

Figure 2. Energy and force RMSE for FLiBe against the number of
supercells used in training. Inset: the resulting density of DPSE
simulations versus the number of additional volume data in the
10,000 constant volume dataset for training.
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followed by 250 ps under NPT, where the lattice constant is
taken from the average volume during NPT. Then, we perform
two sets of production runs at various temperatures, one set
using the calculated relaxed volumes and the other set at
experimentally known densities. Both of these sets of
simulations undergo 100 ps of NVT, followed by 1000 ps of
NVE. We note that the temperature range of the MD
simulations is outside the constant temperature simulations
of the training dataset. Nonetheless, the structure of the melts
does not vary strongly within the small temperature range as
discussed in Section 3.2, and the current model was sufficient
for our study.
To display the linear scaling of MLPs, we generated Figure 3

containing the CPU time per time step against the system size

of LiF. As can be seen from the figure, the evaluation time for
AIMD scales closely with the number of atoms cubed. On the
other hand, the rigid ion model (RIM),30,31 a parameterized
potential, the spatial density neural network force field
(SDNNFF),32 a machine learning force field, and DPSE all
scale linearly with the system size. Although the ML-based
methods are more time-consuming in comparison to para-
meterized potentials, they offer the same linear scaling quality
inaccessible by first-principles while representing the potential
energy surfaces seen in DFT. Moreover, the computational
cost of MLPs can be reduced by a constant if efforts are made
to prune the model or systemically reduce the number of
inputs to remove redundant or insignificant parameters, after
the network has been trained. In this way, the MLP
performance can be tuned based on the required sensitivity/
accuracy of the system in a way that classical models cannot.

3. THERMODYNAMIC AND TRANSPORT PROPERTIES

3.1. Density. For the determination of transport properties
in MD, the density ρ of molten salts is closely related to the
composition and existing local structures in the salt and is
essential for matching subsequent properties with the experi-
ment. Several studies on thermal conductivity through
equilibrium MD simulations have shown direct correlation
with the number density of the melt and cell volume.16,33

Additionally, the model developed by Gheribi et al. for thermal
conductivity prediction strongly depends on known densities
of molten alkali and alkaline earth salts, with a relatively weak
dependence on temperature.22 As mentioned in the previous
section, NPT relaxations on LiF and FLiBe were performed to
obtain the equilibrium volumes from the DPSE potential, and
the resulting densities versus temperature are plotted in Figure
4. As can be seen in the figure, the densities follow a similar
downward trend as experiment but are ∼14% lower when
compared with the absolute value. We attribute the higher
average volume to the quality of the DFT dataset the DPSE
was trained on. A previous study by Nam et al. determined by

Figure 3. Time scaling of AIMD, RIM, SDNNFF, and DPSE against
system size (lower is better).

Figure 4. Plots of density against temperature for LiF and FLiBe above the melting point. (a) In order as shown in the legend, the density for LiF
under NPT is obtained from our work, MD with the PIM model,24 and experiment.35 (b) Similarly, values for FLiBe under NPT from our work,
MD with the PIM model,36 and experiment are shown.35
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first-principles MD that the effect of van der Waals (vdW) on
FLiBe volume is significant, such that no consideration of
dispersion forces can lead to 18% higher volume with the PBE
pseudopotential.17 Although the addition of mixed volumes in
the training set promotes higher density as can be seen in the
inset of Figure 2, the resulting densities are still within the
lower 10−20% region, which we attribute to the lack of
dispersion interactions in the training data. Moreover, accurate
inclusion of dispersion effects can be non-trivial. In standard
deep neural network potentials and DeepMD, the distance
cutoff results in truncation of long-range electrostatic and
dispersion interactions. Recent efforts (third- and fourth-

generation NNIPs) have sought to resolve this using additional
neural networks to predict environment-dependent charges
that can be used to predict long-range interactions.34 For this
work, we proceed to evaluate other transport properties in MD
at both NPT relaxed volumes and experimental densities to
emphasize the importance of capturing density, a relatively
straightforward property to calculate, before computing
complex transport properties, such as thermal conductivity.
For future studies, we strongly suggest including vdW
dispersion interactions such as vdW-DF or DFT-D2 in
generating molten salt datasets from DFT since exchange−
correlation functionals cannot consider these dispersion

Figure 5. RDF curves for (a) LiF at 1200 K and (b) FLiBe at 973 K in comparison to AIMD. (Inset) RDF curves comparing like-charged ions with
largest disagreement between MD relaxed and experimental densities.

Figure 6. RDF curves against temperature for (a) LiF at 1200 K and (b) FLiBe at 973 K. Solid vertical lines guide the eyes for the first peak
positions. Solid black curves represent the RDF at the lowest temperature here, while dotted curves are those at the highest temperature.
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interactions on their own. Further, we recommend testing
different neural network schemes for representing these
interactions with high fidelity.
3.2. Radial Distribution Function. To measure the local

structure of ionic fluids, the radial distribution function (RDF)
and diffusion coefficients are compared between DPSE-MD,
AIMD, and results from other papers. As can be seen from
Figure 5, the RDF curves found from DPSE-MD match
excellently with AIMD and confirm the efficacy of the
potential. Furthermore, these curves for FLiBe and LiF offer
insight into the decrease in density after MD relaxation. For
the inset of Figure 5, only Be−Be RDF for the relaxed structure
is compared with that from the experimental structure for
brevity since the other RDF pairs show little variation in peak
positions. As such, the drop in density is attributed to the
expansion between Be−Be pairs, as noted by the stretched
inter-peak distances for relaxed structures. This phenomenon
has also been observed by Jabes et al. when comparing the
transferable rigid ion model (TRIM) and polarizable ion
model (PIM) atomic potentials for FLiBe, where lack of
polarizability effects in the TRIM potential led to stretched
Be−Be peaks and a reduction in density by 17−20%.21 The
expansion of RDF peaks is also observed for the LiF system as
seen in the inset for Figure 5. Again, we isolated the F−F pair
for brevity, which contains the largest discrepancy between
relaxed and experimental volumes. A similar behavior is found
as with the Be−Be pair for FLiBe, with relaxed LiF
experiencing larger F−F peak distances, although the stretch
is not as pronounced as that for the FLiBe Be−Be pair. Due to
the shared volume expansion of both systems, the absence of
dispersive interactions from AIMD results in a weak
representation of the interactions between like-charged ions,
which are essential for the precise modeling of local structures
and the resulting density in molten salts.
To showcase the temperature dependence on the local

structures of liquid LiF and FLiBe, Figure 6 plots RDF curves
for various temperatures found from DPMD. The largest
observable discrepancy is in the height of the first peak

positions of all curves for which the highest peak corresponds
to the lowest temperature simulation here (1120 K for LiF and
800 K for FLiBe), decreasing with the increase of temperature.
Although at low temperature the peak size is maximized, the
radial position of the peak itself experiences no changes across
all temperatures, which suggests an approach to crystallization.
A similar behavior has been shown for LiF with the Born−
Mayer potential, wherein first peak positions near the captured
melting point closely correspond with those at much higher
temperatures; meanwhile, solid LiF differs in both peak
positions and height from its liquid counterpart.37 Provided,
the LiF and FLiBe molten salt data at a constant temperature
for training captures the local atomic structures at surrounding
temperatures since the structures in the liquid phase are not
sensitive to changes across their respective temperature ranges.
Additionally, the aforementioned weak dependence of molten
salt densities on temperature (i.e., −0.1 g/cm3 from 800 to
1100 K in FLiBe experiments) also supports the relatively
small changes in local structures of the melt. However, we warn
others that this behavior may not transfer to other salt mixtures
for all temperatures in the liquid phase, and testing for local
structures is recommended to discover those unaccounted for
at other temperatures especially near the melting point.

3.3. Diffusion Coefficient. In tandem with the structure,
the dynamic behavior of molten salts also follows closely with
the density and is measured by the diffusion coefficient D.
Here, the diffusion coefficients of ions are calculated through
the slope of the mean-square displacement via the Einstein
relation

∑ ∑= + −
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= =
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1 1
( ( d ) ( ))
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where the term inside the brackets is the mean-square
displacement (MSD), averaged over atoms N of type i and
subsets nt of time tj.

19 The diffusion coefficients in Figure 7
increase with the temperature, with lithium-ion diffusion
dominating both LiF and FLiBe systems. Additionally, the

Figure 7. Plots of the diffusion coefficients against temperature for LiF and FLiBe above the melting point. (a) Diffusion coefficients for LiF at
experimental and NPT relaxed volumes are obtained from our work, MD with the PIM model,13 and experimental results.13 (b) Diffusion
coefficients for FLiBe at experimental and NPT relaxed volume are obtained from our work, MD with HDNNP,19 and AIMD results.19
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fluorine ion diffusion in LiF is significantly more diffusive than
that in the FLiBe case, where fluorine diffusion is much closer
to the beryllium ion diffusion. The formation of tetrahedral
BeF4

2−, Be2F7
3−, and more complex polymer chains may be

attributed to the low fluorine and beryllium ion movement due
to the increased effective mass of these complexes.18

Meanwhile, the lithium ion in FLiBe experiences no polymer-
ization and maintains its high mobility. For comparison, the
plots also display the diffusion coefficients for the relaxed
systems, consistently yielding larger values, albeit the MD
temperatures were equivalent to those at experimental
volumes. In fact, the LiF and FLiBe diffusion coefficients for
the lower density case follow extremely similar trends as those
at experimental density, implying no qualitative changes to the
structure. This behavior is indicative of a more free-flowing
system, where ions and Be−F complexes are less likely to
scatter and maintain higher average velocities in the larger
simulation cell. Finally, excellent agreement of the DPSE-MD
results with other works are shown, although not many points
are plotted since the current literature is starved of diffusion
data due to the difficulty in measurement.8

3.4. Thermal Conductivity. The thermal conductivity λ
for ionic liquids is computed in equilibrium molecular
dynamics by the Green−Kubo relation through integration
of autocorrelation between heat and charge fluxes through the
phenomenological coefficients Lαβ

38,39

∫= ⟨ · ⟩α βαβ

∞
j jL

k V
t t

1
3

( ) (0) d
B 0 (2)

where thermal conductivity is defined as36

λ = −
T

L
A
B

1
ee2

i
k
jjj

y
{
zzz (3)

For single-component molten salts, A = Lez
2 and B = Lzz,

where e and z refer to the heat and charge terms, respectively,
and for binary salts, = + −A L L L L L L L2ez z z ez z z ez ez z z

2 2
1 2 2 2 1 1 1 2 1 2

and = −B L L Lz z z z z z
2

1 1 2 2 1 2
. In our simulations, ion 1 is the

beryllium ion and ion 2 is the lithium ion. The formulism for
charge flux in the binary case used in this work is16

∑= − *j vq q( )z
n

n f n
n (4)

with n being over all cations in the melt and f as the anion (qf =
−1). For improved convergence of the autocorrelation in eq 2,
we divide the 1 ns simulation into 1000 1 ps samples and
perform a time averaging of the resulting thermal conductiv-
ities over these samples.
Because the thermal and electrical conductivity of ionic

liquids requires the charge flux of atoms in the simulation cell,
we assigned fixed charges corresponding to their chemical
element, that is, Li with +1e, F with −1e, and Be with +2e
charges. However, the LAMMPS simulations do not consider
additional Coulombic forces. This is because DPSE, like other
second-generation ML potentials, invokes full electronic
interactions including those of Coulombic nature up to the
cutoff, but no long-ranged interactions or charge transfer
between atoms are considered.34 Regardless, we obtain
agreeable results for the thermal and electronic conductivity
in the systems studied here, possibly due to the strongly ionic,
well-defined characteristic of the ions in the melt. Future works
on MD simulations of molten salts including fixed charges,
dynamically altered partial charges, such as those found in the
modeling of HfO2 RRAM cells using the ReaxFF potential,40

or MLP trained with partial charges from charge equilibration
method34 combined with long-ranged solvers for Coulombic
interactions should be considered.

Figure 8. Plots of the thermal conductivity against temperature for LiF and FLiBe above the melting point. (a) In order as shown in the legend,
thermal conductivities for LiF at experimental and NPT relaxed volumes are obtained from our work, MD with the polarized ion model,36 MD with
the RIM,33 fitted line from MD with polarized ion model,24 experimental results,41,42 and by a predictive model.22 (b) Similarly, the thermal
conductivities for FLiBe at experimental and NPT relaxed volume are obtained from our work, MD with the polarized ion model,36 experimental
results,43,44 and by a predictive model.23 Error bounds are shown in light green for MD simulations at experimental density and black for those at
relaxed densities. The heights of the error bounds represent the RMSE about the average thermal conductivity at the tail end of the autocorrelation
curves.
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The thermal conductivities found from DPSE-MD and other
works are depicted in Figure 8. For the LiF thermal
conductivity, results from the simulations at experimental
density fall between those from other MD simulations and
experimental results. The thermal conductivity for the relaxed
case shows even further improvement, although this may be a
coincidence from the increased ion diffusivity in larger
volumes. For FLiBe, the agreement with relatively constant
thermal conductivity from experiment also matches well with
the DPSE results. For the relaxed case, the thermal
conductivity remains below that at experimental density until
1100 K, where the thermal conductivity suddenly jumps.
Unlike the thermal conductivity for single-component salts, the
ratio of determinants A/B for binary salts contains both
additive and subtractive terms to the thermal conductivity, and
the cause for the behavior becomes non-trivial. We further
discuss the difference in thermal conductivity contributions in
low- and high-density simulations below.
To understand the effects of phenomenological coefficients

in eq 2 on the resulting thermal conductivities of molten salts,
their contributions under experimental and MD-relaxed
densities are plotted in Figure 9. The construction of thermal

conductivity for single salts is subtractive from the pure heat
flux term Lee by the cross-correlation charge and heat flux ratio
Lez

2/Lzz. For LiF in Figures 9a and 8b, the thermal conductivity
is approximately halved from that of the heat flux term,
yielding a much lower thermal conductivity than the pure heat
flux thermal conductivity. On the other hand, for binary salts,
the thermal conductivity contributions are no longer purely
subtractive but follow a more complex set of contributions by
the ratio of determinants A/B. As can be seen from Figures 9c
and 8d, while a large portion of the thermal conductivity of
FLiBe originates from the heat flux term Lee, an equally large
portion is canceled out by the L L B/ez z z

2
2 1 1

term. In our results,
we noticed much higher values among the cross-correlation
constants for the lithium-ion charge flux with the heat flux Lez2
and to itself Lz2z2, explaining the large conductivity contribu-

tions of subtractive L L B/ez z z
2

2 1 1
and additive 2Lez1Lez2Lz1z2/B.

The high contribution to thermal conductivity by lithium may
be assigned to its high mobility in FLiBe in comparison to the
mobility of fluorine and beryllium ions. In LiF, the high
mobility of both lithium and fluorine ions dampens the effect
on the subtractive Lez

2/Lzz term, unlike in FLiBe where the

Figure 9. Contributions to the thermal conductivity for (a) LiF, (b) relaxed LiF, (c) FLiBe, and (d) relaxed FLiBe. Solid lines are additive to the
thermal conductivity, while dashed lines are subtractive. The total thermal conductivity is also shown.
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heat flux term is essentially canceled out by the existing
disparity in ion diffusivity. The lowest contributor to
conductivity, L L B/ez z z

2
1 2 2

, is primarily dictated by the square

of the heat charge flux correlation of the beryllium ion Lez
2

1
and

was observed to be about a tenth of the Lz2z2 term. This lowers

the effective thermal conductivity reduction of the L L B/ez z z
2

1 2 2

term and has the least effect on conductivity. Hence, the term
that maintains the conductivity of FLiBe in addition to Lee is
2Lez1Lez2Lz1z2/B in which all the heat charge flux terms are
weighed similarly (i.e., power to the unity).
To analyze the effects of high (experimental) and low (MD

relaxed) density on the resulting thermal conductivity with
respect to temperature, their results for LiF and FLiBe are
placed together for comparison in Figure 9. In experimental
density LiF, the heat flux term Lee/T

2 in Figure 9a greatly
influences the thermal conductivity, both experiencing an
overall decreasing trend with relatively fixed Lez

2/Lzz/T
2.

Indeed, experimental density FLiBe also experiences decreas-
ing thermal conductivity with temperature but is described by
a more complex set of coefficients involving several cross-
correlation terms with the heat flux, that is, Lez1 and Lez2, and
the behavior is increasingly non-trivial when compared to LiF.
From Figure 9c, it can be observed that the decrease is
primarily dominated by the increase in the subtractive
L L B T/ /ez z z

2 2
2 1 1

term, most likely attributed by the sudden
jump in lithium-ion diffusion after 973 K. Nonetheless, this
inverse relation of thermal conductivity with temperature for
both single and binary salts is mentioned in previous works and
has been attributed to the decreasing density of the melt.16,33

On the other hand, the thermal conductivities of the melts for
the MD relaxed volumes in Figures 9b and 8d are directly
proportional to the temperature and deviate from the
experimental results despite owning a decreasing density
trend as observed in Figure 4. For low-density LiF, both the

Lee/T
2 and Lez

2/Lzz/T
2 terms remain relatively constant with

their difference, yielding a slight increase in conductivity.
Although the Lee term increases in both the low- and high-
density simulations, low-density Lee rises more rapidly with
temperature than the high-density Lee as seen by the ratio with
T2 and results in a mostly temperature-independent Lee/T

2

contribution. For low-density FLiBe, the increase in thermal
conductivity is made possible by a decline in both subtractive
L L B T/ /ez z z

2 2
2 1 1

and L L B T/ /ez z z
2 2

1 2 2
terms after 900 K, more

so than the decline in the additive 2Lez1Lez2Lz1z2/B/T
2 term.

The drop in all the three terms with temperature which involve
charge−charge and charge−heat cross-correlations is again
most likely due to the weaker scaling with T2 for the low-
density case. We note that despite division by

= −B L L Lz z z z z z
2

1 1 2 2 1 2
, both high-density and low-density

simulations owned matching values of B and contributed little
to the mentioned trends. In summary, we have shown how the
simulated density affects thermal conductivity behavior against
temperature, reinforcing our earlier statement to accurately
capture the density before approaching other properties.

3.5. Electrical Conductivity. The electrical conductivity σ
in MD simulations may be found through the MSD of charges
in the melt, the Nernst−Einstein approximation, or through
the Green−Kubo formalism.12,38 Since the Green−Kubo
thermal conductivity for ionic liquids requires the charge
correlation term Lzz, the electrical conductivity is readily
available by dividing by the temperature. Note that the Lzz
term is found through the charge flux of all atoms in the
system; hence, the charge flux for single-component salts is
applied to the electrical conductivity for FLiBe. For improved
convergence of the autocorrelation, we divide the 1 ns into
1000 1 ps samples and perform time averaging of the resulting
electrical conductivity. The results for LiF and FLiBe electrical
conductivity are provided in Figure 10 with fitted experimental
results from Janz et al.35 Here, the electrical conductivity

Figure 10. Plots of electrical conductivity against temperature for LiF and FLiBe above the melting point. (a) In order as shown in the legend,
electrical conductivities for LiF and (b) FLiBe at experimental and NPT relaxed volumes are obtained from our work. Both plots show
experimentally fitted data, where dotted lines represent extrapolated data.35 (Insets) Extensive electrical conductivity with units 1020 ohm−1 cm2.
Error bounds are shown in light green for MD simulations at experimental density and black for those at relaxed densities. The heights of the error
bounds represent the RMSE about the average electrical conductivity at the tail end of the autocorrelation curves.
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matches well with the experiment following an increasing trend
against temperature. Interestingly, the results from low-density
simulations yield lower electrical conductivity values despite
owning higher ionic mobility. The difference in the electrical
conductivity is primarily attributed to the division by the
volume in the Lzz term from eq 2. The insets of Figure 10
contain the electrical conductivity multiplied by the cell
volume for the extensive electrical conductivity, where an
improved agreement between the relaxed and experimental
density simulations is observed. For LiF, a slight disagreement
remains; although based on the fluctuations of the electrical
conductivity, we attribute the uncertainty toward the Green−
Kubo MD. For FLiBe, an improved overlap in the extensive
electrical conductivity is observed. Based on these results, the
electrical conductivity owns a strong dependence on density.
3.6. Viscosity. The shear viscosity η is found similarly to

the Green−Kubo thermal conductivity45

∫η = ⟨ · ⟩
∞

αβ αβ
V
k T

P t P t( ) (0) d
B 0 (5)

where Pαβ represents the off-diagonal terms in the pressure
tensor during MD. For improved statistics, the viscosity is
averaged over Pxy, Pxz, and Pyz terms. Optionally, the viscosity
may also be averaged over Pxx−yy and P2zz−xx−yy, but the first
three terms were sufficient for convergence of the autocorre-
lation function.24 In addition, due to the Arrhenius relation of
viscosity to temperature, the convergence of the autocorrela-
tion in eq 5 requires variable autocorrelation times for the time
averaging over the span of the 1 ns simulation time.
Specifically, for convergence of viscosity plateaus regardless
of the simulated experimental or relaxed densities, the
autocorrelation times for LiF were 5 ps for all simulated
temperatures, while those of FLiBe were 15, 15, 10, 5, and 5 ps
in order of increasing temperatures. As can be seen in Figure
11, the viscosity of LiF and FLiBe at experimental densities

matches well with experimental works, while those found from
relaxed supercells own significantly lower viscosity. In
comparison to the PIM model, the LiF viscosity agrees well
with other works, while the FLiBe viscosity underestimates the
experimental viscosities with PIM overestimating by a similar
magnitude. It is well known that the viscosity is a difficult
property to predict from MD simulations due to the required
long simulation times for converged autocorrelation in eq 5,
and here, the relatively short 1 ns simulation time is a potential
source of error.8,36 Nonetheless, the agreement with
experimental trends is acceptable with matching errors from
those of other MD works. Other works have shown that the
viscosity owns an inverse relationship with the diffusion
coefficient,37 and the diffusion coefficient increases with
decreased density as previously observed in Figure 7. For
example, the higher ionic mobility in the relaxed supercell is
consistent with the lowered viscosity, further increasing the
ionic mobility and decreasing the viscosity from expansion due
to the temperature. As such, the viscosity is directly
proportional to the density of molten salts as observed by its
decrease with increasing volume and temperature.

4. CONCLUSIONS

An investigation on the thermodynamic and transport
properties of molten salts LiF and FLiBe is performed,
where flexible and rapid MLPs are fitted with DFT data
without the need of pre-existing physical models. The
matching of local structures with AIMD and diffusion
coefficients with experiment displays the excellent ability of
the MLPs to reproduce complex energy surfaces and realistic
dynamics. With the linear scaling of Deep Potential Smooth
Edition (DPSE) neural networks, we explored the dynamics of
molten salts using large supercells through MD with DFT
accuracy. Due to the difficulty of evaluating dynamic properties
in experiments, the diffusion coefficients, thermal conductivity,

Figure 11. Plots of viscosity against temperature for LiF and FLiBe above the melting point. (a) In order as shown in the legend, viscosities for LiF
at experimental and NPT relaxed volumes are obtained from our work, MD with the polarized ion model,24 and experiments.46,47 (b) Similarly,
viscosities for FLiBe at experimental and NPT relaxed volumes are obtained from our work, MD with the polarized ion model,36 and
experiments.43,48 Error bounds are shown in light green for MD simulations at experimental density and black for those at relaxed densities. Those
with limited height are omitted for visual purposes. The heights of the error bounds represent the RMSE about the average viscosity at the tail end
of the autocorrelation curves.
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electrical conductivity, and viscosity of LiF and FLiBe were
predicted within the acceptable accuracy of experiments and
other works using MD. Although the density of molten salts
only has reasonable agreement with experimental results, the
resulting densities are linked to the lack of dispersion relations
in the training data and match previous works excluding these
interactions.17,21 In future studies, dispersion considerations in
DFT packages will be studied to consider polarization in the
training data and improve the atomic interactions in molten
salt MLPs. Inclusion of long-ranged interactions beyond the
cutoff of DPMD may also improve the resulting density.
Here, we conclude this work with a perspective on the future

of atomic molten salt modeling. With the massive design space
of molten salts, developing parameterized potentials, for
example, PIM potentials for all possible compositions would
take much effort and time. Instead, the “hands-free” approach
of MLPs is crux for the development of general potentials that
can simultaneously cover a wide range of molten salt
compositions and temperatures, essentially spanning across
the periodic table. The multi-dimensional, non-linear nature of
MLPs allows for a higher degree of transferability that is cut
short by the limited flexibility of parametric potentials.
However, one of the main limitations of recent MLPs is the
exponential scaling of model parameters with the number of
elements. For example, the popular high-dimensional neural
network potential (HDNNP) requires N radial and N(N + 1)
angular symmetry functions for each element-specific network,
which can quickly slow down both training and the evaluation
of structures with increasing elements N.49 Although the DPSE
potential used in this paper necessitates no user-specified
descriptors such as symmetry functions, the model still requires
N fitting networks with N2 embedding networks and is
increasingly more time-consuming during training and
evaluation steps for large number of elements.28,50 Further-
more, descriptors should be designed in such a way that any
number of elements may be added without needing to
reconstruct and train the model from scratch. Generating
such descriptors from data spanning many elements could
enable a reduction in, for example, network complexity if a new
element only changes the NN input numerically rather than
the shape/size of networks or improve training speeds if only
one network can well describe both input atomic positions and
species. This opens the opportunity to develop potentials
without the need to re-fit ab initio data when new chemical
element is introduced, allowing for MLPs to grow rather
remain limited to a fixed set of chemistries. An example would
be to add chromium impurity to an existing trained FLiBe
MLP. Another difficulty for general potential development is
the generation of sufficient structures for training. Because
molten salts contain local atomic structures characteristic of
the composition and concentration of end members, it is
critical to capture these local structures while requiring
minimal lengthy DFT evaluations. The generation of structures
purely via AIMD is excessively expensive, considering that
many structures encountered in MD may be redundant or
lacking distinctive features for MLP training. Therefore, more
effective sampling methods are needed to speed up this
process. In addition, the transferability of our model to other
compositions is tested here on FLiBe, with increasingly higher
disagreement to the linearly decreasing temperature relation of
the density as one departs from 33% BeF2. Despite this, we
observe that the resulting simulations are stable and their
densities are comparable to the composition of the training set,

implying some degree of transferability. We expect an
improvement in the model with further training on other
compositions; however, we leave this for future work due to
the expensive nature of AIMD simulations. On the other hand,
active learning techniques offer the opportunity to generate
data efficiently by sampling new configurations with the MLP
itself, requiring DFT only when the model recognizes a poorly
represented atomic configuration. The active learning
approach recently presented by Zhang et al. addresses the
bottleneck of dataset generation by exploration and labeling of
configurations through DPSE-MD, cutting down the required
number of DFT evaluations to 0.0044% of the total number of
configurations explored.51 Therefore, active learning can
significantly improve the search for poorly represented local
structures in molten salts varying with respect to temperature
and composition while minimizing the needed DFT to
generate the training set. Essentially, the development of
MLPs with improved elemental scaling and minimal DFT
calculations is keystone for modeling a wide range of molten
salts for rapid database development. Currently, we are
working on a modification of deep learning potentials that
changes how the model distinguishes elements with improved
scaling in model complexity for application on molten salts and
existing large databases containing materials such as ceramics
and semiconductors.
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