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Abstract

Agents trained by reinforcement learning (RL) often fail to generalize beyond the environ-
ment they were trained in, even when presented with new scenarios that seem similar to the
training environment. We study the query complexity required to train RL agents that gener-
alize to multiple environments. Intuitively, tractable generalization is only possible when the
environments are similar or close in some sense. To capture this, we introduce Weak Proximity,
a natural structural condition that requires the environments to have highly similar transition
and reward functions and share a policy providing optimal value. Despite such shared structure,
we prove that tractable generalization is impossible in the worst case. This holds even when each
individual environment can be efficiently solved to obtain an optimal linear policy, and when
the agent possesses a generative model. Our lower bound applies to the more complex task of
representation learning for the purpose of efficient generalization to multiple environments. On
the positive side, we introduce Strong Proximity, a strengthened condition which we prove is
sufficient for efficient generalization.

1 Introduction

Reinforcement learning (RL) is the dominant paradigm for sequential decision making in machine
learning, and has achieved success in a variety of domains such as competitive gaming [M*15,/S*17]
and robotic control [GHLL17, [HPZ"18]. Despite this success, many issues prevent RL from being
regularly used in the real world. For example, one typically trains and tests RL agents in the same
environment. In such cases, an agent can memorize behavior that achieves high reward, without
acquiring the true behavior that the system designer desires. This has raised concerns about RL
agents overfitting to a single environment, instead of learning meaningful skills [FMB18].

Indeed, a long line of work has noted the brittleness of RL agents: slight changes in the envi-
ronment, such as those incurred by modeling or simulator design errors, or slight perturbations of
the agent’s trajectory, can lead to catastrophic declines in performance [RLTK17,ZBP18, HIB18].
Furthermore, although RL agents can solve difficult tasks, they struggle to transfer the skills they
learned in one task to perform well in a different but similar task [RZF*19, YQHT19]. Yet, in
the real world, it is reasonable to expect that RL agents will see scenarios that are at least mildly
different from the specific scenarios they trained for.

Hence, a desirable property of RL agents is that of generalization, broadly defined as the ability
to discern the correct notion of behavior and perform well in semantically similar environments.
We focus on two popular generalization settings. The Average Performance setting assumes there
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is an underlying distribution over the environments that an agent might encounter. The agent’s
goal is to perform well on average across this distribution [PGK™18, NPH18, ICKH*19]. The
Meta Reinforcement Learning setting is closely related [FAL17, (CNL*19, RZF"19]. Here an agent
first learns from a suite of training environments sampled from a distribution. Then at test time
the agent must leverage this experience to adapt to a new environment sampled from the same
distribution, via only a few queries in the new environment.

Of course, in full generality, both notions of generalization are impossible to achieve efficiently.
This is especially true in the RL function approximation setting, where the cardinality of the state
space is potentially infinite, and so we desire query complexity that scales (polynomially) with the
dimensionality of the state space [DLWZ19, RD19, DKWY20, LSW20, WAJ*21]. Hence, key to
both lines of inquiry is the premise that the environments are structurally similar. For example, a
robot may face the differing tasks of screwing a bottle cap and turning a doorknob, but both tasks
involve turning the wrist [RZET19]. The hope is that if the environments are sufficiently similar,
then RL can exploit this structure to efficiently discover policies that generalize.

Yet, it remains unclear what kind of structure is necessary, and what it means for different
environments to be close or similar. Motivated by this, we ask the following question:

What are the structural conditions on the environments that permit efficient
generalization?

This question underlies the analysis of our paper. We focus on environments that share state-action
spaces, since even this basic case is not well understood in the literature. Indeed, even in this simpli-
fied setting, efficient generalization can be highly non-trivial. We make the following contributions.

Our Contributions. We introduce Weak Proximity, a natural structural condition that is moti-
vated by classical RL results, and requires the environments to have highly similar transition and
reward functions and share optimal trajectories. We prove a statistical lower bound demonstrating
that tractable generalization is impossible, despite this shared structure. This lower bound holds
even when each individual environment can be efficiently solved to obtain a linear policy providing
optimal value, and when the agent possesses a generative model. Consequentially, we show that
a classical metric for measuring the relative closeness of MDPs is not the right metric for mod-
ern RL generalization settings. Our lower bound implies that learning a state representation for
the purpose of efficiently generalizing to multiple environments, is worst case sample inefficient —
even when such a representation exists, the environments are ostensibly similar, and any single
environment can be efficiently solved.

To provide a sufficient condition for efficient generalization, we introduce Strong Proximity. This
structural condition strengthens Weak Proximity by additionally constraining the environments to
share an optimal policy. We provide an algorithm which exploits Strong Proximity to provably and
efficiently generalize, when the environments share deterministic transitions.

Organization. The remainder of this paper is organized as follows. In Section 2, we discuss prior
work that has tackled the generalization problem in RL. In Section B, we formally present our
settings of interest and state the problem that is our object of study. In Section @] we present our
theoretical results. We conclude and discuss avenues for future work in Section [5l All proofs are
presented in Appendices [A, Bl [Cl and [D.



2 Related Work

Simulation Lemma. Many prior works define notions of statistical distance between Markov deci-
sion processes (MDPs), and measure the relative value of policies when deployed in different MDPs
that are close under such metrics. The Simulation Lemma, which uses total variation distance
between transitions and the absolute difference of rewards as this metric, is a well known formal-
ization of this and has been very useful in classical prior work [KK99, [KS02, BT03, KKL03, ANO05].
These works do not directly tackle generalization, but their analyses construct an approximate
MDP that models the true MDP under the aforementioned metric. Solving this approximate MDP
then corresponds to solving the true MDP. It is natural to ask whether this metric is useful for
measuring the similarity of MDPs in modern RL generalization settings. We show this metric is
not appropriate for the settings we study.

Transfer & Multitask Learning. There are varying formalisms of both settings, so we do not
directly study them. However, they are broadly relevant, and we expect our theory to be useful
for future studies of these settings. The works |[LG10, BL13, |Jial8, WZXS19] all study metrics for
measuring variation between MDPs that are different from the metrics we study. A metric similar
to the one used in the Simulation Lemma has also been studied [FYY19], and we show that this is
inappropriate for our settings.

Average Performance & Meta RL Settings. We directly study these two settings, which have
seen much empirical work [PGK*18 |[CKH'19, (CHHS20, RZF™19, YQH™19]. On the theoretical
side, [BMPS20, ISJT*20] study an Average Performance setting where the agent receives a noisy
observation in lieu of the actual state. We focus on the simpler setting where the agent knows its
state. Recent works [FMO20, WCYW20] analyze the MAML algorithm [FAL17] in the context
of Meta RL. In the worst case, their complexity bounds scale exponentially with the horizon, and
they do not discuss structure which permits tractable Meta RL.

Representation Learning. A large body of work has focused on extracting a representation
useful for a single MDP [EPP04, [Cas20, LBC21, |ZMC*21]. Some works extend this to multiple
MDPs |CP10, AMCB21, [SPM20], but they are about learning shared representations for MDPs
that appear similar (but not from a sample efficiency perspective), while we formalize what it
means for MDPs to be similar (in a sample efficient sense). Indeed, these works study the general
case when the environments have distinct state spaces, but our lower bounds show generalization
is non-trivial even when each MDP shares the same state space.

3 Problem Formulation

Notation & Preliminaries. Before describing our settings of interest, we establish notation
and briefly review preliminaries. We always use M to denote a Markov decision process (MDP).
Recall that an undiscounted finite horizon MDP is specified by a set of states S, a set of actions A,
a transition function 7 which maps from state-action pairs to distributions over states, a reward
function R which maps state-action pairs to nonnegative real numbers, and a finite planning horizon
H. We assume that the state-action pairs are featurized, so that S x A C RY, and that ||(s,a)|ls = 1
for all (s,a) € S x A. Any MDP we consider is undiscounted and has a finite action space, but



could have an uncountable state space. If we need to refer to the transition or reward function of
a specific MDP M, then we shall denote this via T j; or Ry;. We will denote a distribution over
MDPs as D. We also assume that S can be partitioned into H different levels. This means that for
each s € S there exists a unique h € {0,1... H — 1} such that it takes h timesteps to arrive at s
from sg. We say that such a state s lies on level h, and denote Sy, to be the set of states on level h.
This assumption is without loss of generality, since we can always make the final coordinate of each
state-action pair encode the number of timesteps that elapsed to reach the state. A “deterministic
MDP” is one with deterministic transitions. For any MDP, we assume a single initial state sq,
which strengthens our lower bounds.

A policy maps each state to a corresponding distribution over actions, and shall typically be
denoted by w. The total expected reward accumulated by policy m when initialized at state s

in MDP M is given by E hHgivol(s) Ryr(sn,an) | m| and will be denoted by V3 (m). Here the

expectation is over the trajectory {(sp, ah)}th_lével(s) given that the first state in the trajectory is s.
So Vi (m) is the value of the policy m in MDP M with respect to (w.r.t) initial state s. Analogously,
if a policy is parameterized by § = {Hh}fz_ol, then we denote it as m(f), and the notation V()
is then replaced by V3;(6). We assume that the cumulative reward collected by any trajectory
from any initial state s in any MDP M is always bounded by 1. Hence the value of any policy in
any MDP lies in the interval [0,1]. TV(P, Q) denotes the total variation (TV) distance between

probability distributions P and (. Throughout, we use standard big O notation.

3.1 Problem Settings

Average Performance Setting. There is a fixed distribution D over a family of MDPs. One
can sample MDPs from D. The algorithm can query states in the sampled MDPs, to learn some
common structure. The goal is to solve

mfriXEMN’D [VAS/[O(TI')] . (1)

Meta Reinforcement Learning Setting. There is a fixed distribution D over a family of MDPs.
At training time, one can sample MDPs from D. The algorithm can query states in the sampled
MDPs, to learn some common structure between all the MDPs. Then at test time, an MDP M;egt
is sampled from the same distribution D. The goal of the algorithm is to learn a subroutine, which
with non-trivial probability over the selection of Mest, can solve

max Vit (), (2)
significantly more efficiently than trying to solve Miet without having seen any training MDPs.

In both settings, “sampling an MDP” means drawing an MDP i.i.d from D, so that the agent can
then interact with it by performing trajectories in it. Note that in Eqs. () & (), in full generality
the initial state sg is random and depends on M, Miest. We focus on the case when the MDPs
supporting D share a state-action space, and hence share the same single initial sy since we assume
a single initial state for any MDP. While such assumptions are already strong, they only strengthen
our lower bounds. Furthermore, it is necessary to understand this simpler setting, before looking
at more complex scenarios. To the best of our knowledge, such a study has not appeared in prior
work.



To solve the problems described by Egs. (I) & (2]), we need to define an appropriate query
model for the algorithm. We consider two query models, the first of which is strictly stronger than
the second.

Strong Query Model (SQM). Sampling an MDP from D incurs no cost. The agent has a
generative model of any sampled MDP M. To interact with M, the agent inputs a state-action
pair (s,a) of M into the model, and receives Rj/(s,a) and a state sampled from 7 p/(s,a). This
incurs a query cost of one. The goal is to solve Eqgs. (1) & (12) with total query cost that is at most
polynomial in |A|, H,d.

Weak Query Model (WQM). Sampling an MDP from D incurs a query cost of gp > 1. Within
a sampled MDP M, the agent operates in the standard episodic RL setup. Concretely, during each
episode the agent interacts with the MDP by starting from sg, taking an action and observing the
next state and reward, and repeating. Each action taken during an episode incurs a query cost

of one. The goal is to solve Eqgs. (1) & (2) with total query cost that is at most polynomial in
qD7 ’A’7 H7 d

Note that under both SQM and WQM, we desire query cost that is polynomial in the dimension
d of the state-action space, as opposed to the cardinality of the state space. This is standard
for our function approximation setting [DLWZ19, RD19, DKWY20, LSW20, WAJ*21], since the
cardinality of the state space could be infinite. Also, we separate SQM and WQM because it
is well known that different query models can lead to various subtleties in analysis and sample
complexity guarantees [DLWZ19, RD19, DKWY20, LSW2(, WAJ*21]. The generative model that
defines SQM assumes that we can simulate any state of our choice without performing a trajec-
tory, which is unrealistic in practice, and is one of the strongest oracle models considered in prior
literature [KMN99, AMK12, SWWT18, DKWY20, ILSW20, IAKY20]. We shall present our lower
bounds under SQM, which makes these results stronger, but shall present our upper bound under
the natural and standard WQM. More generally, we emphasize that proving a lower bound under
stronger assumptions makes the lower bound stronger. By contrast, proving an upper bound under
weaker assumptions means that upper bound applies more generally.

Without any conditions on D, the Average Performance & Meta RL settings can be intractable,
even under SQM. This will occur if the MDPs supporting D do not share structure. This will also
occur if any individual MDP cannot be solved efficiently. Nevertheless, in practice one often deals
with MDPs which share meaningful structure [CKH™19, RZF*19]. For instance, the transition
distributions of the MDPs may be close in a suitable metric. Similarly, the reward functions of the
MDPs might be close in an appropriate norm, or each MDP may share a set of optimal trajectories.
And in practice, individual MDPs can usually be optimized efficiently [PGKT18, [YQH"19]. In such
cases, it is reasonable to expect tractable generalization. We are interested in formalizing conditions
that permit efficient generalization. We will particularly focus on conditions which capture shared
structure of the MDPs and the tractability of individual MDPs. We now formally state the problem
we consider throughout our paper.

Which conditions on D allow us to solve the Average Performance € Meta RL settings efficiently?

As mentioned above, there are two types of requirements. The first requirement should ensure
that the MDPs are meaningfully similar. We formalize such conditions in Section [3.2l The second



requirement should ensure that any individual MDP is efficiently solvable, else there is no hope to
efficiently find policies that generalize for many MDPs. We formalize such properties in Section [3.3]

3.2 Strong & Weak Proximity

We now identify conditions that capture when the MDPs supporting D share meaningful structure.
Since MDPs are defined in terms of rewards and transitions, it is very natural to impose conditions
directly on the rewards and transitions. To this end, we state the following condition.

Condition 1 (Similar Rewards & Transitions) The distribution D satisfies this condition with
parameters &, & > 0 when:

(a) Each MDP supporting D shares the same state-action space S x A.
(b) For all M;, M; supporting D and all (s,a) € S X A we have |Ryy,(s,a) — Ry, (s,a)] < &

(¢c) For all M;, M; supporting D and all (s,a) € S x A we have TV(T a,(s,a), T p;,(s,a)) < &

The parameters &, &, naturally quantify the similarity of different MDPs. Conditions of this form
are canonical and have yielded fruitful research in classical RL literature [KK99, KS02, BT03,
KKL03, IAN05], in the guise of the Simulation Lemma (see Section [2). To concretize this condition
with an example, consider a suite of simulated robotic goal reaching tasks [YQHT19], where the
physics simulator is the same in each task, so the transitions are fixed and &, = 0, but the goal
location changes from task to task, implying that & > 0. We now establish our Weak Proximity
condition, which strictly strengthens Condition [l

Condition 2 (Weak Proximity) The distribution D satisfies Weak Proximity with parameters
& e, 0 > 0 when:

(a) D satisfies Condition 1] with parameters &, &y > 0.

(b) There exists a deterministic policy 7 which for any MDP M satisfies

Vir (%) = max V7 (') — a.

Weak Proximity strengthens Condition [1 by additionally requiring (via part (b)) that there exists
some policy 7 which provides a-suboptimal value for each MDP supporting D. Intuitively, this
condition implicitly constrains the MDPs to be similar, since there is a single policy which provides
(nearly) optimal value, irrespective of the MDP it is deployed in. Furthermore, recall from Egs. (1)
& (2) that the objectives of the Average Performance & Meta RL settings are defined in terms of
value w.r.t the initial state sg. So it is natural to assume, as we do in part (b), that there is one
policy which provides good value w.r.t sy for all MDPs. From an algorithmic perspective, this is
helpful, because it ensures that we can restrict our search to those policies which perform well for
many MDPs supporting D.

Although Condition [I] is natural and well motivated by classical RL literature, it (and Weak
Proximity) may seem strong. This is because it requires that each MDP supporting D shares the
same state space, which may not hold in practice. We stress that we will prove a lower bound under



Weak Proximity, showing that efficient generalization is impossible even in the simpler regime of a
shared state space.

We now present Strong Proximity, a condition which strictly strengthens Weak Proximity. We
will later show that unlike its Weak counterpart, Strong Proximity indeed permits efficient gener-
alization.

Condition 3 (Strong Proximity) The distribution D satisfies Strong Proximity with parameters
& €, > 0 when:

(a) D satisfies Condition [ with parameters &, &y > 0.

(b) There exists a deterministic policy ™™ which is a near optimal policy for each MDP. Concretely,
the policy 7 satisfies
Vi () > max Vi (7') —
7.rl

for each state s and each MDP M.

Let us compare Weak with Strong Proximity. Part (a) remains identical. But Weak Proximity
(b) only requires a shared policy which provides a-suboptimal value with respect to so. This is in
contrast to the shared policy in part (b) of Strong Proximity, which provides a-suboptimal value
for any state.

3.3 Tractability of Individual Optimization

As discussed previously, in order to efficiently solve Eqgs. (1) & (2), we require the property that
each individual MDP supporting D can be efficiently solved. It is natural to expect such a property
to hold in practice. For instance, in the context of our earlier example of simulated robotic goal
reaching tasks [YQHT'19], any individual task can be efficiently solved via policy gradient methods.
We now state two such properties, the first of which is strictly stronger than the second. Since
these properties require a notion of query cost, we state both of them with reference to a generic
query model QM, and when we later present our results we will instantiate QM to be either SQM
or WQM. To avoid complicating notation in these statements, we assume in this subsection (as is
our focus throughout the paper) that all MDPs supporting D are defined on the same state-action
space S x A C R%. Recall that a linear policy 7 is parameterized by 6 = {Hh}hH:_Ol, where 6, € R?
and ||0p |2 = 1 for all0 < h < H—1, such that 7(s) € argmax,¢ 4(s,a)’ 0}, for any s € S;,. Here 27y
denotes the Euclidean inner product of z,y € R%. We use 7y, to denote an arbitrary deterministic
optimal policy of MDP M.

Property 1 (Strong Individual Optimization (SIO)) Let the query model be QM. The dis-
tribution D satisfies SIO with parameters k > 0 and 0 < 8 < /4 when:

(a) Any MDP M supporting D admits an optimal linear policy. Concretely, given any M, there
ezists 6* = {0}, hH:_OI such that for every state s € Sy, we have

w4 (s) € argmax(s, a)’ 05
acA

7



(b) There exists a fized and known algorithm, such that given any MDP M and any state s, this
algorithm uses at most O(| A |HF) query cost (under QM) on M to identify (almost surely) a
linear policy (0) parameterized by 0 = {0, }1—; which satisfies

max Vi (r) > VE(0) > max Vi (7' = B.
This algorithm then outputs m(0) as well as Vi (0).

Let us discuss this property. Part (a) requires that for any MDP supporting D, there exists an
optimal linear policy. Part (b) requires that the user has knowledge of an algorithm, which can
efficiently find a linear policy providing -suboptimal value from any input state s in any MDP M.
The exponent k describes the (polynomially sized) complexity of this algorithm.

SIO is a fairly strong property, since it says that a linear policy is sufficient to optimize any
individual MDP, whereas in practice one typically requires nonlinear neural network policies. SIO
also heavily constrains each individual MDP supporting D to be efficiently solvable from any initial
state. We stress that we will prove our lower bounds under SIO, which makes our result stronger.

Meanwhile, we prove our upper bounds under the following property, which is significantly weaker
than SIO.

Property 2 (Weak Individual Optimization (WIO)) Let the query model be QM. The dis-
tribution D satisfies WIO with parameter 0 < 8 < 1/4 when the following holds. There exists an
oracle V which takes as input a state s and MDP M, and outputs VM satisfying

~

max V3 (7') > Vi > max Vi (') — B,
! !
via query cost (under QM) on M that is polynomial in | A|, H,d.

WIO postulates the existence of an oracle ‘7, which can efficiently approximate the optimal value
that is achievable from an input state and MDP. To see that WIO is strictly weaker than SIO,
simply note we can implement 1% by running the algorithm described in part (b) of SIO. Note that
in certain states, a user may use domain knowledge to implement V without solving an entire RL
problem. Also note that WIO does not place (arguably unrealistic) linearity restrictions on the
MDPs supporting D. Finally, note that although the algorithm in SIO (b) returns both a policy
and a scalar value, the oracle in WIO only returns a scalar value.

4 Main Results

We shall present our results in two subsections. In Section 4.1, we prove lower bounds which
demonstrate that even under Weak Proximity, SQM and SIO, tractable generalization is worst case
impossible. In Section .2, we prove that efficient generalization is possible under Strong Proximity,
WQM and WIO, when the MDPs supporting D share a deterministic transition function.

4.1 Lower Bounds

Before stating our own results, we first state the following classical result which is known as the
Simulation Lemma [KK99, KS02, BT03, [KKLO03, AN05]. Recall that &, &, are parameters used to
satisfy Condition [1}



Lemma 1 Consider any D satisfying Condition [I with &,&: > 0. For any policy m and any
My, My supporting D, we have that |Vyp (m) — Vip ()] < & H + & H.

This result is almost identical to the one given by |[KKILO03|, although there are some (minor)
differences in assumptions so we provide a proof in Appendix [D. This lemma shows that when D
satisfies Condition [1] and &, &, are each 0(%), then efficient generalization is trivial, at least in
problems where H is large and we want to optimize to within o(1) tolerance. Concretely, take any
M supporting D and use a standard RL method to find 7 which satisfies V; (7) ~ max, V37 (7).
Then Lemma [l]ensures V3},(7) 2 max Vi) (7') — o(1) for any other MDP M’ supporting D. This
implies Eagop [VyP (7)] 2 maxy Eprop [Vif ()] — o(1) and Vi () Z maxy Vi (') — o(1).

Since Weak Proximity implies Condition [1, Lemma [L and all the above statements remain
true when D satisfies Weak Proximity. Naturally then, in our settings it is only interesting to
consider problems when at least one of either & or &, is Q(%) Our next result is a lower bound
which shows that when & = ©(+) and &, = 0, then Weak Proximity is not sufficient to efficiently
generalize in the Average Performance Setting. For the statement of this result, recall that &, &, «
are parameters used to satisfy Weak Proximity, while 3, k are parameters used to satisfy SIO.

Theorem 1 Let the query model be SQM. For any k > 3, there exists D satisfying Weak Proz-
mmiaty with & = @(%), (e = 0 8 a = 0 and SIO with 8 = 0 & k, such that the MDPs sup-
porting D are deterministic and the following holds. Any (possibly randomized) algorithm requires
Q (min {| Al Zd}) total query cost to find (with probability at least 1/2 over the randomness of the
algorithm) a policy m satisfying

Eyviep [Vip(m)] = max  Eyep [ViP(n')] — 14
linear policy 7’

We defer the proof to Appendix [A.1l Let us discuss this theorem, which is stated for the Average
Performance Setting, when the MDPs supporting D all share a deterministic transition function.
Recall that SQM is the stronger query model we consider, which strengthens this lower bound,
and trivially implies a lower bound for when WQM is the query model. Also recall that SIO is
the stronger individual optimization property that we consider, and it ensures that the user can
efficiently find a linear policy providing optimal value w.r.t any initial state for any individual MDP,
since 8 = 0. Moreover, Weak Proximity (b) ensures that each MDP supporting D shares a policy
that provides optimal value (w.r.t sp), since & = 0. And Weak Proximity (a) explicitly requires
that the reward functions are (non-trivially) close, in the sense defined by Condition [1} because
& = @(%) Despite this significant structure, the theorem demonstrates that one can still require
an exponential query cost to find a policy that is nearly as good as the best linear policy (which
is of course easier than finding the best generic policy). Note that this lower bound holds with
a=f=¢&; =0, and so implies a lower bound for when any of «, 8, &, are strictly positive. As we
discuss at the end of Section 4.1, Theorem [l (and its forthcoming corollaries) immediately applies
to the task of learning a feature mapping which maps similar states to the same vector, for the
purpose of efficiently solving Average Performance and Meta RL settings.

We note that in the construction used to prove the lower bound of Theorem [ the algorithm we
provide to satisfy the SIO property is extremely simple and natural. It is simply a greedy version
of Monte Carlo Tree Search, which is extremely popular in practice [KS06, [S*T17].

Let us provide some intuition for our proof of Theorem|[ll In the |A|-ary tree hard instance used
in our proof, there are (| A|) possible trajectories. The fact that & = @(%) allows us enough



degrees of freedom to hide the policy that generalizes across D, so that identifying it requires
querying each of the Q(| A |) trajectories. We leverage recent techniques [DKWY20, WDYS20]
to construct a suitable featurization of the state-action space, that is expressive enough to allow
for efficiently finding an optimal linear policy for any single MDP, but does not leak any further
information. Notably, our constructed featurization satisfies that d is a polynomial function of H.

A similar result holds for the Meta RL setting. Recall that by SIO (b), the user has access to an
algorithm which can solve any Mieg; at test time in O(| A|H¥) queries, even if it does no training.
So it only makes sense to train, if one can use this training to solve Mg in o(| A |H*) queries. The
following corollary to Theorem [1] demonstrates that this may require exponential query cost during
training time. Its proof is presented in Appendix [A.2

Corollary 1 Let the query model be SQM. For any k > 3, there exists D satisfying Weak Proximity
with & = O(%), & =0 & a = 0 and SIO with B =0 & k, such that the MDPs supporting D are
deterministic and the following holds. If a (possibly randomized) algorithm at test time can identify
w satisfying
Ve (M) = max Vi (7') —1/a
s linear policy 7/ s

in o| A|HF) queries, with probability at least /2 over the selection of Miesy (and the randommess
of the algorithm), then this algorithm must have required (min {| AlH ,Zd}) total query cost at
training time.

So far we presented results for when the MDPs supporting D share deterministic transitions but
have (slightly) varying rewards. For the remainder of Section [4.1] we present analogous results for
when the MDPs share a reward function but have (slightly) varying transitions, again under both
SIO and SQM. Recall from our discussion of Lemma [1] that when & = 0, it is only interesting to
consider problems when &, is Q(%) Unfortunately, the following corollary of Theorem [1] shows
that efficiently solving the Average Performance Setting is impossible in this regime.

Corollary 2 Let the query model be SQM. For any k > 3, there exists D satisfying Weak Prozimity
with & = 0, & = @(%) & o = 0 and SIO with 8 = 0 & k, such that the following holds.
Any (possibly randomized) algorithm requires Q (min{].A]H ,2d}) total query cost to find (with
probability at least 1/2 over the randomness of the algorithm) a policy © satisfying

Eyviep [Vip(m)] > max  Eyep [ViP(n')] — 14

" linear policy 7’/
We defer the proof to Appendix [A.3l Recall the discussion of Theorem [, and note that the same
discussion applies here, after swapping &, with &.. An analogous result holds for the Meta RL
setting. As we discussed before presenting Corollary [1, it only makes sense to train, if one can use

this training in order to solve Mg in o] A|H¥) queries. The following result shows that this is
impossible without exponential query cost at training time. Its proof is presented in Appendix[A.4]

Corollary 3 Let the query model be SQM. For any k > 3, there exists D satisfying Weak Proximity
with & = 0, &, = @(%) & a =0 and SIO with B = 0 & k, such that the following holds. If a
(possibly randomized) algorithm at test time can identify © satisfying

S0 S0 /
VMtest (7'(') 2 lineaII‘ril)%fiicy ! VMtest (7T ) - 1/4
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in o| A|HF) queries, with probability at least 1/2 over the selection of Miesy (and the randommess
of the algorithm), then this algorithm must have required (min {| AlH ,Zd}) total query cost at
training time.

In conjunction with Lemma [T the results of Theorem [I] and Corollaries [I] 2] & [3 suggest that the
classical (and natural) way of measuring variation in MDPs using Condition [I] is inappropriate
for the modern Average Performance & Meta RL settings. When both & and & are 0(%), then
these settings are trivially solvable. But when either & or &, is @(%) then these settings become
exponentially hard, even with the additional Weak Proximity condition as well as SIO & SQM.
Theorem [I]and Corollaries [T} 2] & B all hold in the setting where each MDP supporting D shares
a state-action space. So these lower bounds immediately apply to more complex settings where the
MDPs are defined on disjoint state-action spaces, and where learning an appropriate representation
is necessary. Indeed, it is popular in practice to learn a feature mapping which maps similar states
to the same vector. Our results show that if such a mapping enables efficient solution of the Average
Performance & Meta RL settings, then learning the mapping itself is worst case inefficient.

4.2 Upper Bound

We now show that Strong Proximity permits efficient generalization when the MDPs supporting D
share deterministic transitions. While this setting is restricted, we study it because our Theorem [1
shows that even this setting can be worst case inefficient under strong assumptions. Furthermore,
past literature on even traditional RL with a single MDP has often focused on the deterministic
setting [WVR13, DLMW20]. Notably, to prove our upper bound we only require the weaker WQM
and weaker WIO. Our method is defined in Algorithm [[. It exploits Strong Proximity, which
requires the existence of a policy which provides optimal value for each MDP from any given initial
state, even though the objectives in Eqs. (I)) & (2) are defined only in terms of value w.r.t sg.

Algorithm 1 GenRL

1: Inputs: horizon length H, distribution D, sample size n, oracle V as defined in WIO
2: Initialize 7 as an arbitrary function from {0,1... H — 1} to A

3: fort € {0,1...H — 1} do

4: forie{1,2...n} do

5 Sample M; ~ D

6 for a € A do

7: Begin a new episode in M; at sg

8 if £ > 0 then

9: Execute action sequence {7 (t')}o<y<; to arrive at s;

10: end if

11: Take action a to arrive at s’ = Ty, (s¢, a) and receive Ry, (st,a)
12: Query V to obtain TA/]\‘Z and store Q; o = Rz, (s¢,a) + 17&

13: end for

14:  end for

15 Store a; € argmaxy e 4{2 S°7 | Qi '} and define 7(t) = a
16: end for

17: return w

11



Let us describe Algorithm [Il It represents policy m as a vector which stores one action for each
timestep in {0,1... H — 1}. It initializes arbitrary 7w and incrementally updates it at each timestep
t. At the beginning of any timestep ¢ > 0, m has been constructed to play the action 7 (t') = ay
at each timestep ¢’ < t. The algorithm then executes {7 (t')}o<y<¢ to arrive at s;. Crucially, due
to the assumption of a shared state-action space and shared deterministic transitions, the state s;
is fully determined by 7 and does not depend on the particular M;. Exploiting WIO, the method
queries V to estimate the value in M; of each child state of s;. Averaging this estimated value
over {M;}?_, yields an estimate of the expected value (over the randomness in D) of each action
at s;. Finally, the algorithm picks the action a; with the highest estimated value, and updates 7 to
play a; at timestep t. This algorithm operates in the standard RL framework and falls under the
purview of WQM.

The following result provides a performance guarantee for Algorithm [1. Recall that «, &, &
are parameters used to satisfy Strong Proximity and [ is a parameter used to satisfy WIO.

Theorem 2 Let the query model be WQM. Consider any D satisfying WIO with 8 > 0 and Strong
Prozimity with & = 0 and any o, & > 0, such that the MDPs supporting D are deterministic. Fix

€,0 >0, and let ™ be the output of Algorithm [1 when run with n = f—; log (%) samples. Then
with probability at least 1 — §, we are guaranteed that

Enep [Vif(m)] > max Eysp [Vid(n")] —e—3aH —38H.
Hence the total query cost under WQM required to achieve this guarantee is polynomial in qp,|A|, H,d.

We defer the proof to Appendix A few comments are in order. First, note that Theorem [2]
directly provides a guarantee for the Average Performance setting. It also provides a guarantee for
the Meta RL setting, since the w found by Algorithm [I] will on average perform well for Mg, and
the user can use 7 to warm start any finetuning or adaptation at test time. Second, the specified
value of n depends only on quantities that are either known a priori or chosen by the user. This
makes Algorithm [ parameter free — the user does not need to know the values of «, 3,&;, & to
run this method.

Third, note Theorem [2 holds under WIO. By contrast, Weak Proximity was insufficient for
efficient generalization even when paired with SIO. This suggests that a condition that is both
necessary and sufficient for efficient generalization lies somewhere between Weak and Strong Prox-
imity — assuming, of course, that we do not assume an individual optimization property that is
even stronger than SIO. Indeed, SIO is already quite strong, since SIO says that a linear policy is
sufficient to optimize any individual MDP, but in practice one typically employs nonlinear neural
network policies.

Finally, observe that & does not appear in the error bound. So £, can be arbitrarily large, and
Theorem ] requires no explicit conditions on the reward functions of the MDPs supporting D, as
in the sense of Condition [Il Instead, the implicit reward structure induced by the shared nearly
optimal policy required by Strong Proximity is sufficient. Comparing this observation with the
result of Theorem [[suggests that the classical explicit constraints on rewards and transitions is not
appropriate for modern RL generalization settings. Instead, implicit constraints of the sort afforded
by Strong Proximity offer a more fine grained characterization of when efficient generalization is
possible.

12



Recall from Theorem [I] that a lower bound holds for Weak Proximity and SIO even with
a = 8 = 0. However, Strong Proximity and WIO provide enough structure that the error bound of
Theorem 2l can tolerate «, 8 > 0. But these o, 8 terms in the error bound of Theorem Rlscale linearly
with H. It is natural to question whether this scaling is due to a suboptimality of Algorithm [1/ or
looseness in our analysis. We provide a partial answer to this question in Appendix [C| where we
prove that the dependency on 3 given in the result of Theorem [2]is tight to within a logarithmic
factor in H.

5 Discussion

In this paper, we studied the design of RL agents that generalize. We proved that efficient general-
ization is worst case impossible, even under structural conditions like Weak Proximity and strong
assumptions on the query model and tractability of individual MDPs. This result extends to the
task of learning representations for the purpose of efficient generalization. On the positive side, we
provided Strong Proximity, which permits efficient generalization, even under mild assumptions on
the query model and individual tractability. Our analysis highlights that classical metrics for mea-
suring similarity of MDPs are inappropriate for modern RL. It also suggests that a condition which
is both necessary and sufficient for efficient generalization lies between Weak & Strong Proximity
— unless we make (arguably unreasonable) assumptions on the tractability of individual MDPs.

The primary limitation of our work is that our upper bound has limited applicability. It holds
only when the MDPs share a state-action space, and when the MDPs are deterministic, which is
very restrictive in practice. Our rationale for working in this restricted setting was due to our
lower bounds, which show that even this toy setting can be worst case inefficient, and because it is
necessary to understand the toy setting before looking at more complex scenarios. Nevertheless, our
upper bound is several steps removed from the practice of RL. It is best interpreted as a preliminary
sufficient condition for when efficient generalization is possible, albeit in a toy setting, and is far
from conclusive on this matter.

Note that our upper bound might apply if we are a priori given a feature mapping which maps
similar states of different MDPs to the same state space. For example, in self driving, learning to
drive in different countries might be difficult because the images of traffic signs are different. But if
a known feature map extracts the underlying meaning of these signs, then our upper bound could
conceivably apply. Of course, such a known feature map is rarely available a priori, and is usually
learned from data. The key direction for future work, is how to learn such a feature mapping
efficiently, while ensuring that it is still useful for generalization.
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Figure 1: An illustration of the generic binary tree structure used to define the MDPs that support the D
constructed in the proof of Theorem [L.

A  Lower Bound Proof Details

In this section, we will provide proofs of Theorem[I and Corollaries[T,2/&[3. For ease in presentation,
we shall assume throughout that the action space A for each MDP contains two actions, which we
denote a; and ag. It is easy to extend the proofs to the case when there are many actions. We
will often use the notation s; and ss to denote the child states of a state s when taking actions ay
and ap respectively. We shall also use 7}, to denote an optimal policy for MDP M. Whenever we
require H to be sufficiently large for an algebraic argument to go through, we shall assume so.

A.1 Proof Of Theorem [1]

Construction Details. Our construction of D will consist of MDPs whose shared state and ac-
tion spaces are generically defined by a binary tree. The structure of the binary tree is depicted
in Figure [ The tree is of length H, each node in the tree will define a different state and the
edges connecting two nodes define the actions. In this fashion, each state has two actions, which
we denote a; and ae, and taking either action leads deterministically to the corresponding child.
Taking any action from states on the final level of the tree exits the MDP. The state sq is the root of
the tree. We thus have defined the shared state and action space for MDPs supporting D, and have
also defined the shared and deterministic transition dynamics. So the MDPs are all deterministic
by construction. Note that to verify Weak Proximity (a), the construction so far implies that the
state-action space is shared and the transitions satisfy &, = 0, although we have not yet defined
the reward structure so cannot say anything about &;.

To complete the definition of D, we must complete the definition of each individual MDP supporting
D by defining a reward function for each MDP. We shall do so via the procedure described below.
But before that, fix a state s* on level H, which is selected by sampling uniformly at random from
the set of states on level H. Note that the location of s* will be kept hidden from the user, although
we will define D with reference to a fixed s*.

Note that there are 2§_1 — 1 states s on level % such that the subtree rooted at s does not contain

s*. Also note that each subtree rooted at such an s has 2§_1 states on level H. If one were to

“view” the final level of a binary tree on paper, as in Figure [1, there is a natural ordering of the
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states on the final level from left to right. In each subtree rooted at such an s, consider the ith
state in this ordering of the states on the final level of that subtree, and denote this ith state as x; s.

Then define §; = Usx; 5. There are a total of 271 such sets S;. We will construct 2% =1 MDPs
total to support the distribution D, one for each S;. Note that for 7 # j, we have §;NS; = &. Note
also that S; never contains a state which is also in the subtree rooted at level % that contains s*.

Define € = m, and note that € is @(%) For each S;, we will define the MDP M; by

defining Ry, as follows. Fix an §;. For each s € §;, let s, denote the unique ancestor of s on level
% +log(HF) 41 of the tree. On the path connecting sp to s, assign each state-action pair a reward
of €. So the total reward accumulated by following the path from the root through s, to s and
taking either action from s is e(Z — log(H*) — 1) = 1. Also, consider the unique ancestor sy of s*
on level % + log(H"*) + 1, and assign each state-action pair along the path s, to s* a reward of e.
So the total reward accumulated by following the path from the root to s* and taking either action
from s* is €(Z — log(H*) — 1) = 1. Any other state-action pair in the tree is assigned zero reward.
This completes the definition of Rjy,, and hence the definition of M;, except that we have not yet
featurized the state-action space.

Perform this procedure for each of the 251 sets S;, to obtain a set which contains 2% ~1 such
MDPs. Once we featurize the state-action space in the fashion described below, the definition of
D is completed by assigning the uniform distribution to this set. The key behind this construction,
is that for any MDP supporting D, each subtree rooted at level % contains a single path which
provides the optimal unit value. But there is only one path providing unit value that is shared by
each MDP, this is the path from the root to s*. Note that for any M;, all of the subtrees rooted at
states on level % are identical, with the exception of the subtree containing s*.

Let us now discuss how to featurize the state-action space. Note that each MDP is defined on
a common state-action space that has at most 2/ states. Sample vectors {21, 22 ... zon } i.i.d from
the spherical measure on the surface of the unit sphere that sits in d — 2 dimensions. By the results
of [DKWY2(Q], we can pick d to be at most a polynomial of H, while ensuring that [/z;|[2 = 1 and
|2F 2| < % for all i # j. Take any ordering of the states {s;} indexed by i, and assign the following
features
¢(si,a1) = [2i,1,0] and ¢(s;, a2) = [0,1,1].

Rescaling the features to have unit norm is trivial, so we work with these since they make the
computations more apparent. In the above, it appears that ¢(s;,as) is the same for each 4, but
this is without loss of generality since we can always add a dummy coordinate that makes them all
unique. Crucially note that the features do not depend on the reward structure of the MDP, since
they are completely agnostic to the choice of rewards. Hence they do not leak any information
about the rewards.

Verifying Weak Proximity (a). We have already checked above that the state-action space is
shared and &, = 0. To see that & is @(%), simply note that any state in any MDP supporting D

has reward either 0 or €, and € is ©(4). This verifies Weak Proximity (a).

Verifying Weak Proximity (b). Define 7* to be the deterministic policy which prescribes the
path leading from the root to s*, and at states not along this path it prescribes an arbitrary action.
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It is then immediate from our above arguments that for any M, V3P (7*) = max, VP (7') =1, so
Weak Proximity (b) is satisfied with parameter o = 0.

Verifying SIO (a). Fix any M. The key to verifying this is the observation that all subtrees
rooted at level H/2 are identical (in terms of reward structure, not features), except for the one
that contains s*. In the first H/2 — 1 levels one can use an arbitrary policy. So now consider
any level h that is greater than or equal to H/2. Inside the subtree rooted at H/2 that contains
s*, there is a unique state s on this level that is an ancestor of s*. Let us denote z to be the
spherical measure random variable that was used to define the feature map for this state, so that
o(s,a1) = [z,1,0] and ¢(s,az) = [0, 1,1].

Now observe that within the subtree rooted at H/2 that contains s*, the only state from where one
can achieve nonzero reward (on the level h we are considering) is s. So the policy at the other states
in this subtree does not matter. Similarly, in each of the other subtrees rooted at H/2, there is a
unique state s’ which can yield nonzero reward (on the level h we are considering). Furthermore,
since these other subtrees are identical, the optimal policy within one subtree works for another.
To construct our § = 6} for this level h, we use this information to claim that there are four cases
to consider.

First, consider the case when 7},(s) = a1 and 7},(s’) = ag for any s’ in another subtree which can
yield nonzero reward. Let 0 = [2,0,1/2]. Then we have that

#(s,a1)70 = [2,1,0)7[2,0,1/2] = 14040 = 1 and ¢(s,a2)70 = [0,1,1]7[2,0,1/2] = 04+0+1/2 = 1/2,

which implies that we pick ay at s if we follow the linear policy. But

1 1
o(s',a1)T0 =[2,1,0]7[2,0,1/2] < =5 +0+0 = =5 and o(s',a2)T0 =10,1,1)7[2,0,1/2] = 0+0+1/2 = 1/2,
which implies that we pick as at s’ if we follow the linear policy §. Note that this argument holds
for any s’ which can yield nonzero reward lying in any of the subtrees that do not contain s*, and
also recall the optimal policy does not change when looking at different subtrees not containing s*.

Second, consider the case when 7},(s) = az and 7},(s’) = a; for any s’ in another subtree which
can yield nonzero reward. Let § = —[z,0,1/2]. Since we have simply negated the above case, the
result holds.

Third, consider the case when 7},(s) = a1 and 7},(s’) = a1 for any s’ in another subtree which
can yield nonzero reward. Let # = [0,1,—1/2]. Then the result follows immediately because
#(s",a1)T0 = 1 but ¢(s”,a2)T0 = 1/2 for every state s” in the tree.

Fouth, consider the case when 73},(s) = ag and 7},(s’) = ag for any s’ in another subtree which
can yield nonzero reward. Let § = —[0,1,—1/2]. Then the result follows immediately because we
have simply negated the above case.

It remains to rescale the features and 6 to ensure they all have unit norm.

Verifying SIO (b). Consider the following algorithm, which takes as input an MDP M; that is
known to support D, but it knows nothing else about M; (in particular it does not know which S;
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was used to define M;). It of course does not know anything about the location of s* other than
the fact that s* was sampled uniformly at random to define D. It has also not been allowed to
query any other MDPs supporting D. The algorithm begins by picking an arbitrary state s’ on
level % It then queries each state on level log(H*) + 1 of the subtree rooted at s’ (this is level
% + log(H¥) + 1 of the entire tree). There is a single state s, on this level which has an action
providing reward e, and all other states will give reward zero. When it finds the state s, on this
level providing reward e, it stores the path leading to this state s,. It then queries each of the
two child states of s, to identify which of these child states lies along the optimal path, which is
doable since exactly one of these child states has an action which provides reward e. It greedily
takes the action required to arrive at this child, and stores this action. It then repeats this greedy
procedure from the child ©(H) times until it reaches the final level of the tree. In this manner, if it
was given MDP M; as input then it identifies a path from the root through s’ and s, (or perhaps
s;‘,) to either s* or some state s on level H which satisfies s € S;. Let m be the deterministic policy
which prescribes this path, and prescribes arbitrary actions for states not along this path, then it
is clear Vip (m) = max, V7 (7') = 1. Note also that this same algorithm also immediately can
be used to find 7 satisfying Vyj (7) = max, Vi (7') for any initial state a. To see this, note that
if a is an ancestor of s* or some s € S;, then the described algorithm will identify this and find
an appropriate path. If a is not an ancestor of either of these, then the value of this state is zero
and the same algorithm can be used to certify this. The sample complexity of this algorithm is
the number of queries it took at the beginning to identify s, in the subtree rooted at s’. Note
that there are 2198(H")*1 gtates on level log(H*) 4 1 of the subtree rooted at s', so the sample
complexity of this algorithm is O(H¥). To convert the policy 7 found by the algorithm into a
linear policy 6 = {Hh}th_Ol, simply note that we can set 6, = [0, 1, —%] if 7 recommends a; while fol-
lowing its path at timestep h, and set 8, = [0, —1, %] if 7 recommends ay while following its path at
timestep h. Then rescale 6}, to ensure it has unit norm. This verifies SIO (b) with parameter 5 = 0.

With this construction of D in hand, we return to the proof of Theorem [I, during which we shall
also prove the claim we made above about how s* cannot be identified in a polynomial number of
samples. A basic computation reveals that any path through the tree which does not end in s*,
has value (in expectation over D w.r.t. sp) at most % However, the path through the tree which
ends in s* has value (in expectation over D w.r.t. sg) precisely one. The optimal policy (in terms
of value in expectation over D w.r.t. sg) is hence clearly the deterministic policy which prescribes
following the path through the tree that ends in s*. Hence, any algorithm which can find a policy
7 satisfying Earop[VyP ()] > max Eprop[ViP (77)] — I must be able to identify s* with non-trivial
probability. So to show that finding such a 7 requires Q(27) queries, it is sufficient to show that
identifying s* requires Q(2) queries.

This is immediate from the nature of our construction. Simply observe that any algorithm must
query in the subtree rooted at level % that contains s* at least once in order to identify s*. However,

for any MDP there are 2% ~1 subtrees on level % and all but one of them are identical. Of course,
identifying the correct subtree with non-trivial probability requires Q(2) total queries. Note that
we crucially used here the fact that the features do mot depend on the reward structure of the
MDP, and hence do not leak any information about the rewards. Note also that our argument
holds when the agent has access to a generative model, since it can transition to any state to query
it. Moreover, the difficulty here comes from querying states, and not from sampling MDPs. So the
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result holds under SQM. Finally, we note that the policy prescribing the path through s* can easily
be expressed as a linear policy. This completes the proof.

A.2 Proof Of Corollary [

We use the same D that was constructed in the proof of Theorem [II Before proceeding with the
proof of Corollary [1l we note the following key fact. If we sample M from D, but do not query any
MDP supporting D beforehand, then any algorithm that can find (possibly nonlinear) 7 satisfying
Vi (m) > max, Vy? (') — 1/4, with probability at least 1/2 over the selection of M, requires Q(H")
query cost (under QM) on M. This fact demonstrates that the algorithm described in SIO (b) is
minimax optimal, since any procedure will need the same complexity to solve an MDP sampled
from D, assuming it has not already queried other MDPs beforehand. In particular, any algorithm
which can solve My at test time in o( H*) queries must rely on querying during training time.

To prove this fact, note that any algorithm (that is optimal to within the constant %) must
discover a path that has Q(H) state-action pairs intersecting with a path that leads either to s*
or to a state s € S;. Of course, discovering such a path is equivalent to identifying s* or the s,
corresponding to s € §;. Assume for now the claim that we cannot identify s* with a polynomial
number of samples. Then we need only show that identifying an s, corresponding to s € S; requires
Q(H*) queries. But this is immediate, since all we know is that M; was sampled from D, and each
subtree (that doesn’t contain s*) rooted at level % is identical. So without loss of generality take
any subtree (not containing s*) rooted at level %, then a priori our prior for the location of s, in
that subtree is exactly the uniform distribution over states on level log(H¥) + 1 of that subtree. So
we must query at least half of the 21°8(H")+1 — ) (H¥) states on level log(H*)+ 1 of that subtree to
identify s, with non-trivial probability. Conditioned on our claim that it is not easy to identify s*,
the claimed fact. Note that this argument uses the fact that we can directly query states on level
log(H*) + 1 of that subtree, and so holds under a generative model. Note that we crucially used
here the fact that the features do not depend on the reward structure of the MDP, and hence do
not leak any information about the rewards.

We now return to the proof of Corollary Il For any M;, there are two types of paths that are
optimal, the first is through s* and the others are through the states lying in S;. Note that since
Miest ~ D at test time, the location of the optimal paths in Mies that do not intersect s* are sampled
uniformly at random. A nearly identical argument to the one used in the proof of Theorem [1, and
the proof of the preceding fact, shows that identifying any of these optimal paths that are sampled
uniformly at random requires Q(H*) queries. The only difference is that we condition on the event
that Miest is not the same as any of the MDPs queried during training, which occurs with high
probability when we are only allowed a polynomial number of queries during training time. Note
that even after conditioning on this event, finding an optimal path (which does not go through
s*) of Miest requires Q(H k) queries. This is simply because conditioning on the aforementioned
event only changes the probability of the location of such a path by a value which is exponentially
small in H, assuming again that we used polynomial in H number of queries during training. So
we cannot perform any inference to reduce the size of the set of feasible locations of an optimal
path (which does not go through s*). Then we can essentially repeat the same argument used in
the proof of Theorem [1l Hence, if an algorithm hopes to solve Mg at test time in o( H*) queries,
then during training time it must narrow the possible locations of s* to a set whose cardinality is
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Figure 2: An illustration of the generic structure used to define the MDPs that support the D constructed in
the proof of Corollary[2. Observe that the first half of the structure is a tree, while the second half comprises
of linear sequences of states.

polynomial in H. But by the proof of Theorem [1} this would require Q(29) queries.

A.3 Proof Of Corollary

Construction Details. The D that we construct here is very similar in spirit to the D that was
constructed in the proof of Theorem[1. D will be supported by MDPs whose shared state and action
spaces all share the same generic structure. We depict this generic structure in Figure 2l For the
first % levels, the structure is defined by a binary tree, where the nodes in the tree represent states.
Each state in the tree has two actions. For the next % levels, there are numerous linear sequences
of states of length g Each such sequence emanates from a corresponding state that is a leaf of the
tree. These sequences all end in a common state, which we denote @ Each state in the sequence

has a single action. The state sg is the root of the tree. There is also a state @, which a priori is
disconnected from the remainder of the structure. This implies that there is a shared state-action
space. For each MDP M supporting D, we will have that Ry; maps @ to one, and maps all other

states including @ to zero. Taking any action from @ or @ always exits the MDP for any MDP
supporting D. A priori, the transition function in this generic structure is deterministic. And it is
“natural” in the sense that taking either action from a state in the tree leads to the corresponding
child, and taking the action when in the linear sequence of states leads to the next state in the

sequence. Of course, we will modify this “a priori natural” transition function in different ways for
each MDP.

Let Fj, denote the set of states at level h of this generic structure that we have outlined above.
Before constructing D, first select a state s* uniformly at random from the 27/2~1 states in Frps.
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As in the proof of Theorem [T} s* is hidden from the user.

Note that there are 2%_1 — 1 states s on level % such that the subtree rooted at s does not contain

s*. Also note that each subtree rooted at such an s has 2%_1 states on level % of the entire

structure. If one were to “view” the final level of a binary tree on paper, there is a natural ordering
of the states on the final level from left to right. In each subtree rooted at such an s such that
subtree does not contain s*, consider the ith state in this ordering of the states on the final level
of that subtree (which is the level % of the entire structure). Denote this ith state as z; . Then

define S; = Ugx; 5. There are a total of 271 such sets S;. We will construct 2%7=1 MDPs total to
support the distribution D, one for each S;. Note that for i # j, we have §; N S; = @. Note also
that S; never contains a state which is also in the subtree rooted at level % that contains s*.

To define each MDP M that supports D, it is sufficient to define the transition function 7 s for
M, since we have already defined the shared state-action space and the shared reward function.
Similar to the proof of Theorem [1| for each S; construct an MDP M; as follows:

1. Consider the linear portion of M; that lies below any state s’ satisfying s’ ¢ S; and s’ # s*.
Recall that a priori, the generic structure for any MDP was deterministic, which implies when
you are at a state in this linear portion then taking the action deterministically leads to the
next state in the sequence. We now modify this so that for any state-action pair along the
linear sequence below s, taking the action takes you to the child with probability 1 — 10/H,
and makes you jump out to state @ with probability 10/r. Do this for all s’ satisfying s’ ¢ S;
and s’ # s*. Leave the linear sequence of states below s* and any s € S; unchanged, so that
the transitions in these two linear sequences remain deterministic.

2. For each s € §;, there is a unique path connecting state s to its unique ancestor on level %.
This path defines a sequence of state-action pairs that leads one from level % to s. Again
recall that a priori, the generic structure for any MDP was deterministic, which implies that
taking one of these actions while in the tree deterministically leads you to the corresponding
child. Modify the transitions for these state-action pairs along this path of length %, so that
when you take an action, then with probability 1 — /%=1 the action leads to the child, and
with probability 1/H*-1 it takes you directly to state @ Do this for each s € §;. Similarly,
consider the path between s* and its unique ancestor on level %. Modify the transitions for
the state-action pairs along this path so that when you take an action, then with probability
1 — 1/H*=1 the action leads to the child, and with probability 1/H*-1 it takes you directly to

state @

We have thus defined 7 j, for each M;, where each M; is identified by a particular S;. This defines a

set containing a total of 971 different MDPs M;. To complete the definition of D, simply consider
the uniform distribution over the set of M; that we have created. We use a featurization that is
identical to the one used in Theorem [1] for the binary tree portion of our construction here, and
arbtirary features for the linear portion since there is only one action to take here.

Verifying Weak Proximity (a). We have already established the state-action space for each

MDP is shared. Note that by definition each MDP shares a reward function, since @ always
provides unit reward and each other state provides zero reward, regardless of the MDP. So we have
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& = 0. Then observe that when we modified the transitions at states, we changed them by making
them lead to states @ or @ with probability at most max{ﬁ, 1—13} It remains to note the /4
characterization of the total variation distance and that k > 3, implying that &, = @(%) This
verifies Weak Proximity (a).

Verifying Weak Proximity (b). Observe that following the unique path leading from the root
through state s* till @ always provides value 1, regardless of the MDP. This is because if we take
the actions corresponding to this path, then either we hop out to @ while we are in the tree,

or we reach the linear sequence from where we deterministically arrive at @ Hence this path is
always optimal. In turn, the policy which prescribes this path, while doing something arbitrary at
states not along this path, always provides optimal value. So Weak Proximity (b) is satisfied with
parameter o = 0.

Verifying SIO (a). The proof of this is identical to the one in Theorem [L.

Verifying SIO (b). To verify this, sample M; ~ D and consider the following greedy algorithm.
Note that s* is not revealed a priori, nor do we know the locations of the states in S;, and the only
information that the user has is that this MDP supports D. Otherwise this problem trivially does
not require any samples to solve. Start at any arbitrary state on level % and sample the left action
O(H*~1) times and the right action O(H*~!) times. With high probability, one of these actions
will lead to the state @ at least once. And of course with unit probability the other action will not

lead to @ Simply take the action that has led to @ at least once, and repeat this procedure at
the next state. Repeating this procedure until you reach level /2 and union bounding guarantees
that with high probability we find a path that leads to either s* or a state s € ;. From here
on, one can deterministically follow the linear sequence of states to arrive at @ The policy that
prescribes this path then provides the optimal (unit) value for that MDP, so 8 = 0. The total
sample complexity of this method is ©(H*~! x H) = ©(HF). Again, note that this argument holds
under a generative model as defined in SQM, since we can plug in whatever state we want, and
receive as feedback from the generative model the next state sampled from the transition process.
Note also that in similar fashion to Theorem [I], this same algorithm can be used to identify a policy
achieving optimal value with respect to any initial state in the tree. To convert the policy found
by the algorithm into a linear policy, we use the same technique as in Theorem [Il

We now complete the proof of Corollary[2l A basic computation shows that for k¥ > 3 and sufficiently
large H, the value (in expectation over D) of any path is at most %0' But the value of the path
(in expectation over D) through s* till @ is one. Hence any algorithm which can find 7 satisfying
Enrep[Vip ()] > maxy Eprop[Vi? (7)) — 2 must be able to identify s* with non-trivial probability.
So to show that finding such a 7 requires (27) queries, it is sufficient to show that identifying s*
requires Q(2H ) queries. This is done via identical arguments to the ones used to prove Theorem [1

A.4 Proof Of Corollary [3]

The proof of this corollary is basically identical to the proof of Corollary Il Briefly, if an algorithm
can solve Mt with a number of queries at test time that is strictly fewer than Q(H k), then
at training time it must have narrowed the possible locations of s* to a set whose cardinality is
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polynomial in H. By the proofs of Theorem [[ and Corollary 2] this requires Q(27) queries during
training time.

B Upper Bound Proof Details

In this section, we will provide a formal proof of Theorem 2. For ease in presentation, we shall
assume throughout that the action space A for each MDP contains two actions, which we denote
a1 and ag. It is easy to extend the proofs to the case when there are many actions. We will
often use the notation s; and so to denote the child states of a state s when taking actions a; and
ap respectively. We shall also use 7}, to denote an optimal policy for MDP M. Before proving
Theorem [2, we shall state two helpful lemmas. Recall the definition of 7* from Strong Proximity

(b).

Lemma 2 Consider any D satisfying WIO with 8 > 0 and Strong Prozimity with & = 0 and
any «,& > 0, such that the MDPs supporting D are deterministic. Run Algorithm 1l with n > 1
samples, and assume at timestep t we are at state sy such that 7*(s;) = a1. We are guaranteed that

the event
1 1 «
;ZQLMZEZQL@_O‘_ﬁ
i=1 1=1
occurs almost surely. The symmetric statement for 7 (s¢) = ag is also true.

Lemma 3 Consider any D satisfying WIO with 8 > 0 and Strong Prozimity with & = 0 and
any o, & > 0, such that the MDPs supporting D are deterministic. Run Algorithm W with n =

13—22 log (%) samples, and assume at timestep t we are at state s = s;. Then the event

1 o s1p % €
EZQZ',KH —Ep~p [RM(Saal) + VMl(WM)] < 54‘%
i=1
1 So /% €
and |~ Qia, = Earop [Rar(s,a2) + Va7 (mhp)] | < B+
i=1

occurs with probability at least 1 — %.

The proofs of Lemmas[2 and [3 can be found in Appendix[B.2 and Appendix[B.3 respectively. With
these lemmas in hand, we now turn to the proof of Theorem 21

B.1 Proof Of Theorem

First observe that by Strong Proximity (b), we have
EMN'D [V]a)(ﬂ'*)] > EMND [max VASJO(7TM):| - > maXEMND [V]\sf(ﬂ'/)] .
M vy

Hence to prove the theorem, it is sufficient to prove that

Eriep [Vip(m)] > Enep [Vip(n¥)] —e—2aH — 35 H,
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and we shall devote the remainder of the proof to this.

Recall that the policy constructed by Algorithm [I]is represented as a vector of length H, which
stores an action for each timestep. We use the terminology “algorithm recommends an action at a
timestep” to mean that at that timestep, the algorithm stores that action in the policy that it is
constructing. Our proof rests on a key claim, which is that while following Algorithm [1], at each
timestep the algorithm recommends an action whose suboptimality (in expectation over all MDPs)
relative to the other action is at most 7 +2a +3 3. Concretely, assume the algorithm recommends
an action a at state s which transports us to s’. We claim that with high probability at least 1 — %,

’ €
Ey~p [Ru(s,a) + Vi (7)) 2 Enpep [V (7)) — 7 2036 (3)
First, we argue why this claim in Eq. (3] is sufficient to prove the theorem. Assume this claim to
be true, and denote s, to be the state achieved by the algorithm after A timesteps and aj to be
the action recommended by the algorithm at timestep h. Then applying a union bound over H
timesteps, with high probability at least 1 — § we are guaranteed that

H-1 H-2
Eyrep |V (7)) + Z Rar(snyan) | = Eyep [Ru(su—1,am—1) + Vi ()] + Enrep Z Ry (sn, ah)]
h=0 h=0
H-2 .
> Ep~p V&Hﬁl(ﬂ'*) + RM(Sh, ah) — E —2a-30
h=0
H-3 o
> Ep~p VAS/[HQ(W*) + RM(Sh, ah)] — E —4a—60
h=0

H
> Epgep [Vif (7)) = == — 20 H - 33 H

=Ey~p [VAS/[O(W*)] —e—2aH —-35H.

By assumption, the MDPs supporting D have shared deterministic transitions and a common state-
action space S X A, and hence the above calculations remain valid. So we have found a sequence of
actions {ah}th_Ol, which defines a path through the S x A and enables us to arrive at state sy € S
with the above property. Of course Vi (7*) is just trivially zero, since the planning horizon is H.
So the path {ah}th_Ol we have found, which defines a deterministic policy denoted by 7, satisfies

H-1
Enep [Vif(m)] =Enrep | Y Rar(sn,an)
h=0
H-1
=Ey~p VAS/[H(W*) + Z RM(Sh, ah)]
h=0

EEMN’D [VAS/P(W*)] —6—2&H—35H,

which exactly proves the theorem.

Hence it is sufficient to prove the claim in Eq. (3]), and we shall devote the remainder to proving
this claim. Assume that while running the algorithm we are at some state s. Recall the notation
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that s; and sy are the child states of s when taking actions a; and ag respectively, and recall 73,
denotes an optimal policy for MDP M. By the result of Lemma [B] we have with probability at
least 1 — % that

1< S1/ % €
- Z; Qiar — Bt [Rar(s,a1) + Vi (mip)] | < B+
" (4)
1 S0/ % €
and |~ Qi ~ Eriep [Rar(s, 02) + Vip (mhp)] | < Bt 5
=1

We condition on this event to verify the claim in Eq. (3).

Now assume WLOG that 7*(s) = aq, since the case when 7*(s) = ay is entirely symmetric. By the
principle of Bellman optimality, this ensures that for any MDP M we have Ry(s,a1) + Vy} (7%) =
Vi (m*). Furthermore by the result of Lemma [2]

%ZQi,alz%ZQi,az_a_ﬁ- (5)
=1 i=1

We now consider two cases. For the first case, assume % Yoy Qiar > % > Qisas- Then the algo-
rithm recommends action a; and transports us to state s;. Recall again by our WLOG assumption
that for any MDP M, we have Ry (s,a1) + Vyj (%) = V5 (7*). So we are guaranteed that

E[Ry(s,a1) + Vi ()] = E[Vi (7],
and so the claim in Eq. (3)) is trivially shown to be true in this case.

For the second case, assume 13" 1 Q;0, < L3 1 Q;4,. Then the algorithm will recommend
action ag and transport us to state so. But note that by the bound Eq. (B), we have

1 — 1 —
;ZQi,al_EZQi,ag Sa+/8
i=1 i=1

Combining this with the bound Eq. (4), and the triangle inequality, we have

€

|Ear~p [Rar(s, ar) + Vit (war)] — Enrop [Ras(s, a2) + Vit (ny)]| < a+38 o

Hence we have

S * S * €
En~p [Rar(s, a2) + Vy2 ()] = Eniep [Rua(s,a1) + Vi (7)) —a =38 ——

H
> Eprep [Rar(s, a1) + Vi (7)) _O‘_3ﬁ_% (6)
= Eninp [Vig ()] - a =35,

where the second inequality follows from the optimality of 7, for M and the equality follows from
our WLOG assumption and the principle of Bellman optimality. Of course Strong Proximity (b)
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also guarantees that for any MDP M we have V7 (7*) > V7 (7},) — . We use this to upper bound
the LHS of Eq. (€) and obtain

Enr~p [Ru(s,a2) + Vii ()] > Eprp [Rur(s, a2) + Vi (mhy)] —a > Enep Vi (7)) -2 =3 8 —%-

This exactly demonstrates the claim in Eq. (3), which as argued earlier, is sufficient to complete
the proof of the theorem.

B.2 Proof Of Lemma

Let s = s; and recall that s; and so denote the child states obtained by taking actions a; and ao
respectively from state s. The assumption 7*(s) = a; is WLOG, since the case when 7*(s) = as is
entirely symmetric. Now consider any MDP M and recall 7}, denotes an optimal policy for MDP
M. There are two cases to consider.

For the first case, assume there exists 7}, such that 7},(s) = a;. Then,
Rar(s,a1) + Vi (mar) = Vir(may) = Rar(s, a2) + Vif (mag) = Ra(s, a2) + Vi () —

where we used the principle of Bellman optimality.

For the second case, assume there only exists 7}, such that 7},(s) = az. Then,
Ry (s,a1) + Vi (mhr) = Ru(s,a1) + Vi (%)
= Vi (")
> V(i) — @
= Ru(s,a2) + Vi (my) — o,
where the first inequality follows from the optimality of 73, for M, the equalities follow from the

principle of Bellman optimality as well as the WLOG assumption that 7*(s) = a;, and the second
inequality follows from Strong Proximity (b).

So in either case we are guaranteed that
Ry (s a1) + Vi (mhy) = Ru(s,a2) + Vi (myy) — o

Recall that for action a leading to state s’ from state s, we have Q; o = Ry, (s, a) —1—171\‘2 by definition.
We are then guaranteed by WIO that

Hence for any M; we must have

Qi,al

> Ry

;i (
z(
(
(

s,aq) +TA/311_
s,a1) + Vyi (mhy,) — B

) a—
)

B

> Ry, (s,a2) + Vi (mhy,) —
> Ry, (s, a9 +T7A‘Z—a—ﬁ
:Qi,az_a_ﬂ'

Averaging each side of the above inequality over n completes the proof.
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B.3 Proof Of Lemma [3

Note that for action a leading to state s’ from state s, we have Q; = R, (s, a) + ‘7]\54/2 by definition.
We are then guaranteed by WIO that

Hence we must have

—Z RM S (I)+VM ZQza = _Z RMz(Sva)—i_VJ\s/[/Z(WX/[Z)) _5‘
=1

By Hoeffding’s bound and our choice of n, we are guaranteed that with probability at least 1 — %
that

1 3 5 * S * €

n ;(RMi(Sa ar) + Vit (7ir)) — Eanrep [Raa(s,a1) + Vit (mh)] | < 5F
and l Zn:(RM(S (12) + V2 (,n_}kw )) _ ]EMN'D [RM(S CZQ) + ng(ﬂ_}kw)] < L

g Mt ' M S 57

So for action a leading to state s’ from state s, we can combine the previous two equations via the
triangle inequality to obtain

% ; Qia —Eyp~p [RM(S, a) + V]\i(w}‘\/[)} ‘

1 n
< n;(RMl(s Ja) + Vi () ——ZQM
1< , ,
gl ;(RMi(Sa a) + Vi, (mhy,)) — Eniep [RM(s, a) + V@(m)] '
<ﬁ+_

2H
This completes the proof.

C Near Tightness Of Theorem 2

As discussed in Section E.2], the «, 8 terms in the error bound of Theorem [2] scale linearly with H.
So when either « or 3 is Q(%), then our bound becomes vacuous. It is natural to question whether
this unfortunate scaling is due to a possible suboptimality of Algorithm [1] or some looseness in our
analysis. The following result provides a (partial) answer to this question.

Proposition 1 Let n be the total query cost that any algorithm is allowed to use under WQM. For
any B > 0, there exists D satisfying WIO with B and Strong Prozimity with & = &, = o = 0, such
that the MDPs supporting D are deterministic and the following holds. Any (possibly randomized)
algorithm will output (with probability at least %) a policy T satisfying

B H

En~p [V ()] < max Enp [Vaf ()] = log(50n)
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This result demonstrates that the dependency on § given in the result of Theorem [2]is tight to
within a logarithmic factor in H, and cannot be improved beyond this logarithmic factor by a
better algorithm or sharper analysis. It remains unclear whether the dependence on « is tight.
Isolating this is more difficult, since in any construction « and  become inherently intertwined,
and it is unclear to us how to separate the dependencies on these two distinct parameters. We
believe this is an interesting direction for future work. Intuitively the dependency on « seems tight
— roughly speaking it seems natural that if we are planning over H timesteps, while using the
structure induced by 7* to guide our actions, then the suboptimality of o at each timestep leads
to a total error blowup of o H. Nevertheless, a formal proof (or otherwise) would be an interesting
development. We now turn to proving Proposition [11

Proof. Fix any 8 > 0. It is sufficient to construct a single MDP M with deterministic transitions,
and construct an oracle V satisfying WIO with parameter 8, and show that any algorithm will
output a policy 7 that satisfies

Vir (m) < max Vi (m) — logﬂ(%n)’
with probability at least % This is because we can define D to be the point mass on M, so that
Strong Proximity (a) and (b) are satisfied trivially with & = &, = a = 0. We will define M as a
binary tree, where the states are nodes in the tree, and the (deterministic) actions are described by
the edges connecting nodes, which immediately ensures that M is deterministic. We will construct
the following MDP M by chunking the levels of the tree into blocks. Each block has length log(50n).
To facilitate the definition of the reward function used to define M, we will first assign each state
its optimal value, i.e. the value that one could get by following the optimal policy from that state.
This will naturally allow us to later define rewards. We will assign these optimal values of the states
in a sequential fashion, by considering each subtree rooted at some state on level hy = klog(50n),
where k is a nonnegative integer.

Start by considering level hy = 0. Then on level h; = log(50n), pick a single state uniformly at
random, denote it sp, 5,, and assign it value that satisfies V150 (7%) = V*0(7*). We will call this
state the special state for level hy. Let all other states s on level hy have value V¥(1*) = V0 (1*)—f.

Recursively define the values of the leaves below this level in an identical fashion. To be more
concrete, do the following procedure for each state s on level hy = log(50n). Consider all the states
in the subtree of s that lie on level hy = 2log(50n). Pick a single one of these states uniformly at
random, denote it s, 5, and assign it value that satisfies

Vehe (%) = V().

We will call this state one of the special states for level hy. And for all other states s’ # sp, s in
the subtree of s that lie on level ho = 2log(50n), assign them each value that satisfies

Ve (") = V() — B.

In this fashion, we can assign values for every state that lies on a level klog(50n) where k is a
nonnegative integer. We assume without loss of generality that log(50n) evenly divides H. Of
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course, this immediately defines the values for all states in the tree. To actually define rewards
which satisfies the structure induced by the values, fix V7 (7*) to be any number, and then simply
assign rewards to the leaves of the tree which agree with the assigned values of those leaves. The
reward is zero for all states in the tree that are not leaves.

We now define the oracle V. For any state s in the levels h satisfying hg < h < hy, let ‘7(3) =
V0 (n*) — . Similarly, consider any state s on level hy, and now consider any state s’ # s in the
subtree rooted at s such that level(s’) < hy. Then let ‘7(3’ ) = V3(r*) — B. Recursively repeat
this until we have defined V for each state in the tree. By definition, we have defined V so that it
satisfies WIO with parameter .

With this construction in hand, the proof is now straightforward to complete. It is sufficient to prove
this in the case when an algorithm returns a deterministic policy (or path), since any stochastic
policy is a randomization over deterministic paths. We claim that with probability at least %, the
path outputted by the algorithm never intersects any of the special states in the entire tree. It is

sufficient to prove this, because this implies that the path loses S value for a total of % times,
implying that its value is at most
BH
V(") — ———.
i (™) log(50n)

By symmetry, it is clear that any algorithm which can identify even a single special state anywhere
in the tree with non-trivial probability, can be used to identify the special state on level hy. Hence,
it is sufficient to prove that there is no algorithm which can identify the special state on level hy
with non-trivial probability. Strengthen the query model (slightly) so that querying a state will
return whether it is the special state on level h;. But now, observe that we are only allowed to
query n states total. And to identify the special state on level hq, the algorithm must query most
of the states on level hy, which is a total of

210g(50n) — 50n

states. This implies that it cannot identify the special state on level hy with probability at least %
As discussed above, this is sufficient to complete the proof. [J

D Auxiliary Proof Details

In this section, we prove Lemma [1] relying heavily on the treatment given in [KKLO03]. Note that
in our setting, we only use this result in the context of our lower bounds, and all our lower bounds
have finite state-action spaces. So it is sufficient to prove the result assuming that the state-action
space is finite.

Let 7 denote a trajectory, and let PT(7),P5(7) denote the probabilities of taking 7 in MDPs
M, My respectively. Let Ri(7), Ra(7) denote the rewards obtained by following 7 in MDPs M, M,
respectively. The penultimate step of the proof of Lemma 4.3 in [KKL03] shows that

> [PT(r) - P5(r)| < & H. (7)
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The definition of & and a straightforward application of the triangle inequality reveals that

H-1
|Ri(7) = Ra(T)| < D |Ran(se,a) — Rany(s0,a0)| < & H. (8)

t=0,(s¢,at)ET

Again using the triangle inequality, we obtain that

Van (M) = Vi, (77)( = 'Z (PT(7)R1(7) — P3(7) Ra(7))

<

Y (BT(r)Ru(7) — P{ (1) Ra(7))

T

<Y PI(7) |Ri(7) — Ra(7)| +

_|_

> (BT(r)Ra(7) — P’%(T)R2(T))‘

T

> (BT(T)Ra(7) — P5 (1) Ra(7))

T

<&H+ Y (PI(r)Ra(r) — P5(7)Ra(7))

T

9

where we used the result of Eq. (8). Furthermore,

Vit (m) = Vg, ()| S & H +

> (FI(m)Ra(7) — ]P’S(T)Rz(T))‘

<&GH+ Y [PI(r) — P5(7)||Ra(7)]
<&H+ Y |P(7) — P5(7)]
é érH"i'gtrH’

where we used the result of Eq. (7) and also our assumption that the reward of any trajectory is
always upper bounded by one. This completes the proof.
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