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Abstract— Engineered genetic circuits with tailored functions
that mimic how cells process information in changing environ-
ments (e.g. cell fate decision, chemotaxis, immune response)
have great applications in biomedicine and synthetic biology.
Although there is a lot of progress toward the design of
gene circuits yielding desired steady states (e.g. logic-based
networks), building synthetic circuits for dynamic signal pro-
cessing (e.g. filters, frequency modulation, and controllers) is
still challenging. Here, we provide a model-based approach
to build gene networks that can operate as band-pass filters
by taking advantage of molecular sequestration. By suitably
approximating the dynamics of molecular sequestration, we
analyze an Incoherent Feed-Forward Loop (IFFL) and a Nega-
tive Feedback (NF) circuit and illustrate how they can achieve
band-pass filter behavior. Computational analysis shows that a
circuit that incorporates both IFFL and NF motifs improves
the filter performance. Our approach facilitates the design of
sequestration-based filters, and may support the synthesis of
molecular controllers with desired specifications.

I. INTRODUCTION

Beyond sensing and responding to molecular and phys-
ical inputs, cells have the ability to detect and react to
temporal changes in said inputs [1], [2]. Temporal patterns
are essential in routine processes such as cell differenti-
ation, death, and even controlling the immune response.
To process temporal signals at the molecular level, it has
been found that cells take advantage of recurring motifs,
like Negative Feedback (NF), Positive Feedback (PF), and
Incoherent Feed-Forward Loops (IFFL) [3], [4]. Because
this organization bears many similarities to classical designs
in electronic signal-processing circuits, an exciting research
direction is the composition of these motifs to systematically
build artificial genetic networks for processing dynamical
signals.

IFFL motifs have been used in previous works as core
architectures for the design of fold change detectors [5],
pulse generators [6], gradient sensing mechanisms [7], and
to achieve disturbance rejection [8]. In parallel, NF motifs
have guided the design of controllers [9], oscillators [10],
and pulse generators [11]. These demonstrations suggest that
the combination of IFFL and NF motifs may enable the
synthesis of arbitrary, more complex dynamic circuits and
signal processors.

In this paper, through theoretical analysis and numerical
computations, we evaluate the signal processing capabilities
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of combined IFFL and NF motifs. Using these motifs, we
suggest routes to build molecular filters that take direct
inspiration from well-known architectures in analog filter
design. In section II-A and II-B, we first focus on the
IFFL and NF motif in isolation to operate as a band-pass
filter. Further, in section II-C, we combine both motifs to
overcome design challenges for band-pass filter. Finally, a
brief discussion on filter design in section III.

II. RESULTS

In previous works, we demonstrated how an IFFL motif
with delay or a negative feedback network can operates
as a practical derivative operator [7], [12]. Here, we first
study both network’s capacity to operate as band-pass filter
independently. Later, we analyze a network that combines
both motifs (IFFL and NF) to address the limitation of their
single motifs.

A. An IFFL-based network operates as a band-pass filter
An incoherent feed-forward loop processes a single input

U and up-regulates outputs protein Y and mRNA Z at rate
constants k and β, respectively. Then, Z produces protein
X at a rate constant θ. In addition, X down-regulates Y
through a sequestration mechanism at a rate constant γ/ξ.
The parameter ξ is a non-dimensional parameter that tunes
the sequestration rate. Finally, species X,Y,C and Z decay
at rate constants δ and φ. Fig. 1A shows the the IFFL circuit,
associated with the chemical reactions:

U
β−−−⇀ Z Z

φ−−−⇀ ∅ Production/Degradation

U
k−−−⇀ Y Y

δ−−−⇀ ∅ Production/Degradation

Z
θ−−−⇀ Z +X X

δ−−−⇀ ∅ Production/Degradation

Y +X
γ/ξ−−−⇀ C C

δ−−−⇀ ∅. Sequestration/Degradation

Using the law of mass action, we can write the Ordinary
Differential Equations (ODEs) describing the dynamics of
species concentrations:

ż(t) = βu(t)− φz(t), (1)

ẏ(t) = ku(t)− γ

ξ
x(t)y(t)− δy(t), (2)

ẋ(t) = θz(t)− γ

ξ
x(t)y(t)− δx(t), (3)

ċ(t) =
γ

ξ
x(t)y(t)− δc(t). (4)

Since u(t) > 0 for all t, system (1)-(4) is positive, namely,
z(0), y(0), x(0), c(0) ≥ 0 implies z(t), y(t), x(t), c(t) ≥ 0
for all t > 0. In fact, when z(t) = 0, then ż(t) > 0; when
y(t) = 0, then ẏ(t) > 0; when x(t) = 0, then ẋ(t) ≥ 0; when
c(t) = 0, then ċ(t) ≥ 0. Hence none of the state variables
can become negative, which proves positivity of the system.



1) Approximate dynamics in the fast sequestration regime:
Equations (1)-(4) include nonlinear terms. To overcome the
challenges due to nonlinearity, we introduce the new states
xT (t) = x(t) + c(t) and yT (t) = y(t) + c(t), representing
the total amount of the respective species X and Y that is
either free or bound to the complex C. Then, we can rewrite
equations (2)-(4) equivalently as

ẏT (t) = ku(t)− δyT (t) (5)
ẋT (t) = θz(t)− δxT (t) (6)
ξċ(t) = γ[xT (t)− c(t)][yT (t)− c(t)]− ξδc(t). (7)

The trajectories of system (1), (5)-(7) are bounded within
an invariant set, which contains at least an equilibrium point.

Proposition 1: The set

S = {(z, yT , xT , c) : 0 ≤ z ≤ βu

φ
, 0 ≤ yT ≤ ku

δ
,

0 ≤ xT ≤ θz

δ
, 0 ≤ c ≤ min{xT , yT }}

is positively invariant for the system (1), (5)-(7),
namely, (z(t0), yT (t0), xT (t0), c(t0)) ∈ S implies
(z(t), yT (t), xT (t), c(t)) ∈ S for all t ≥ t0. Therefore, the
system admits an equilibrium point in S .

Proof: When yT (t) = 0, then ẏT (t) ≥ 0, and the same
holds for xT (t), c(t) and z(t), thus guaranteeing the lower
bounds. As for the upper bounds, when z(t) = βu

φ , then
ż(t) ≤ 0; when yT (t) = ku

δ , then ẏT (t) ≤ 0; when xT (t) =
θz
δ , then ẋT (t) ≤ 0. When c(t) = min{xT (t), yT (t)}, then

we can have three cases: if xT (t) < yT (t), then invariance
is guaranteed by Nagumo’s theorem provided that ċ(t) −
ẋT (t) ≤ 0, which is true because ẋT (t) ≥ 0 within S; if
xT (t) > yT (t), then it must be ċ(t) − ẏT (t) ≤ 0, which is
again true because ẏT (t) ≥ 0 within S; if xT (t) = yT (t),
then both ċ(t)− ẋT (t) ≤ 0 and ċ(t)− ẏT (t) ≤ 0 must hold,
which is indeed the case. Positive invariance of the compact
set S implies that S includes an equilibrium point [13].
Allowing c(t) > min{xT (t), yT (t)} would mean that either
x(t) or y(t), or both, are negative, which is unacceptable
since they represent concentrations.

Then we can consider the equilibrium value (z̄, ȳT , x̄T , c̄),
where z̄ = βū

φ , ȳT = kū
δ , x̄T = θz̄

δ = θβū
δφ and c̄ can be

computed as a solution to γ(x̄T − c̄)(ȳT − c̄) − ξδc̄ = 0.
In a fast sequestration regime, ξ → 0. Since the roots of a
polynomial are continuous functions of the coefficients, the
limit of c̄ for ξ → 0 is the smallest solution to the algebraic
equation γ(x̄T − c)(ȳT − c) = 0. Hence,

lim
ξ→0

c̄ = min{x̄T , ȳT }. (8)

Then, the limit of the asymptotic value of y = yT − c in the
fast sequestration regime can be computed as

lim
ξ→0

ȳ = max{0, ȳT − x̄T }. (9)

It can also be shown that, for ξ sufficiently small, the
differences ec(t) = |min{xT (t), yT (t)} − c(t)| and ey(t) =
|max{0, yT (t) − xT (t)} − y(t)| are upper bounded for all

t ≥ T , with T appropriately chosen depending on the initial
conditions: as t increases, the differences asymptotically
decrease to 0. The smaller ξ > 0, the slower the dynamics
of xT and yT with respect to the dynamics of c; hence,
xT and yT can be seen as approximately constant in the
equation of ċ. The faster the dynamics of c(t) (i.e., the
smaller ξ > 0), the faster the transient after which the
differences ec and ey become negligible. This legitimates
the use of max{0, yT (t)− xT (t)} to approximate y(t).

Since the dynamics (1) of z, (5) of yT and (6) of xT

are described by linear ODEs, we can derive their transfer
functions in the Laplace domain and write:

Z(s) =
β

s+ φ
U(s) (10)

Y T (s)−XT (s) =
k

s+ δ
U(s)− θ

s+ δ
Z(s) (11)

By substituting Z(s) from (10) into (11), we get

Y T (s)−XT (s) =
k(s+ φ− βθ/k)

(s+ φ)(s+ δ)
U(s) (12)

The transfer function in (12) does not describe the whole
dynamics of the full system, but it can be used to compute
the approximation of y(t) as

max{0, yT (t)− xT (t)} = max{0,L−1
[
Y T (s)−XT (s)

]
},

(13)
where L−1 denotes the inverse Laplace transform.

Fig. 1. IFFL-based band-pass filter. A) Circuit schematic based on
molecular sequestration. B) The full model’s dynamics converge to the
approximate dynamics, dash black line. C) Comparing prediction of ap-
proximate dynamics for different parameter rates. Nominal parameters (NP):
β = k = θ = δ = 1, φ = 3, and γ/ξ = 100. D) Frequency response as a
function of network’s parameter. The same as before except for θ = 1/5,
and φ = βθ/k.



In Fig. 1B, we compare the time evolution of y(t) for
different sequestration rates γ/ξ (increasing from yellow to
red), by solving equations (1)-(3) for a step input u (starting
from zero initial conditions), and also its approximation
(dash black line) obtained by evaluating (13). The trajectories
of the full model quickly converge to expression (13) for
larger γ/ξ (the two curves are very close at all times because
the transient is negligible, being the dynamics of c(t) very
fast and the initial conditions zero). We also compare the
evolution of y(t) obtained by solving the full system for
different rates θ, φ, and δ, along with its approximation, as
shown in Fig. 1C. The simulations confirm that, in the fast
sequestration regime, we can successfully approximate the
dynamics of y(t) by evaluating expression (13).

The discrepancy ey between approximated and full-
dynamics trajectories is larger when y takes smaller values.
These discrepancies decrease for even larger sequestration
rates (not shown here).

2) Frequency response in the fast sequestration regime:
Transfer functions are useful to understand the frequency
response for linear systems. Although the IFFL-based net-
work is nonlinear due to the sequestration reaction, in the fast
sequestration regime we can use (13) to get an approximation
of the frequency response, and not only of the time evolution.

Fig. 1D shows the frequency analysis of the IFFL-based
circuit by solving computationally equations (1)-(3) for a
periodic input u = 0.5(sin(ft) + 1). When φ = θβ/k, the
transfer function (12) has a zero at the origin (s = 0). This is
a key feature of the IFFL-based network, which enables us to
tune the zero of the system. Ideally, this results in a band-pass
filter, as shown in the right side of Fig. 1D. We evaluate the
frequency response for different values of sequestration rate.
Smaller values of γ/ξ (yellow lines) result in the absence
of sequestration (less effective subtraction part), which leads
to a first order frequency response, while larger values of
sequestration (red line) lead to a well-defined band-pass filter.

To further understand how the system parameters affect
the frequency response, we vary the parameters β and δ as
show in Fig. 1D. By either increasing or decreasing β, it
will change the magnitude of the zero in the numerator. As
a result, the frequency response will converge to a constant
magnitude for low frequencies. The cut-off frequency experi-
ences some small changes. On the other hand, δ changes the
frequency cut-off of the band pass filter for small values. The
effects of these parameters can also get to similar conclusion
by analyzing the transfer function from equation (12).

3) Frequency response of the linearised system: Consider
the frequency response of the IFFL-based circuit linearised
around its equilibrium and expressed in the shifted variables
ṽ(t) = v(t)− v̄, where v = (z, y, x) and v̄ is the equilibrium
state, and ũ(t) = u(t)− ū, where ū is the equilibrium input.
The linearised system is therefore ˙̃v(t) = Aṽ(t) + Bũ(t),
and the shifted output is ỹ(t) = y(t)− ȳ = Cx̃(t), with

A =

−φ 0 0
0 −γξ x̄− δ −γξ ȳ
θ −γξ x̄ −γξ ȳ − δ

 , B =

βk
0

 , C =

0
1
0

> .

We can write the transfer function from U(s) to Y (s),
G(s) = C(sI −A)−1B, as

G(s) =
(s+ φ)(s+ δ + γ

ξ ȳ)k − γ
ξ θȳβ

(s+ φ)(s+ δ)[s+ δ + γ
ξ (x̄+ ȳ)]

. (14)

In the fast sequestration regime, considering a small ξ
leads to the approximation

G(s) ≈
(

ȳ

x̄+ ȳ

)
k(s+ φ− θβ/k)

(s+ φ)(s+ δ)
,

which matches the transfer function in (12) when x̄ → 0
(ȳ � x̄), hence the first term becomes (approximately) one.

An IFFL motif can therefore be used to build a band-pass
filter, provided that the parameters are carefully tuned in a
fast sequestration regime and φ ≈ θβ/k. A critical aspect is
that the cut-off frequencies of the band-pass filter depend on
the degradation rates φ and δ, which could be challenging
to tune in practice.

B. Band-pass filter based on negative feedback (NF)

We propose a negative-feedback motif (NF-based circuit)
that realizes a band-pass filter with tunable frequency as
shown in Fig. 2A. An input U produces at rate constant
k species Y , which at rate constant ρ produces Z, which in
turn produces X at rate constant θ. Species X sequesters Y
at rate constant γ/ξ, where the non-dimensional parameter
ξ tunes the sequestration rate. Species Z decays at rate φ,
while Y , X , and C all decay at rate δ. The corresponding
chemical reactions are:

U
k−−−⇀ Y Y

δ−−−⇀ ∅ Production/Degradation

Y
ρ−−−⇀ Y + Z Z

φ−−−⇀ ∅ Production/Degradation

Z
θ−−−⇀ Z +X X

δ−−−⇀ ∅ Production/Degradation

Y +X
γ/ξ−−−⇀ C C

δ−−−⇀ ∅. Sequestration/Degradation

We use the law of mass action to derive the ODE dynamical
model:

ż(t) = ρy(t)− φz(t), (15)

ẏ(t) = ku(t)− γ

ξ
x(t)y(t)− δy(t), (16)

ẋ(t) = θz(t)− γ

ξ
x(t)y(t)− δx(t), (17)

ċ(t) =
γ

ξ
x(t)y(t)− δc(t). (18)

1) Approximate dynamics in the fast sequestration regime:
Introducing the new state variables xT (t) = x(t) + c(t) and
yT (t) = y(t) + c(t) leads to the ODEs:

ż(t) = ρ[yT (t)− c(t)]− φz(t) (19)
ẏT (t) = ku(t)− δyT (t) (20)
ẋT (t) = θz(t)− δxT (t) (21)
ξċ(t) = γ[yT (t)− c(t)][xT (t)− c(t)]− ξδc(t).(22)



Following the same approach as in the previous section,
we can prove that system (15)-(18) is positive and the set

S = {(z, yT , xT , c) : 0 ≤ z ≤ ρyT

φ
, 0 ≤ yT ≤ ku

δ
,

0 ≤ xT ≤ θz

δ
, 0 ≤ c ≤ min{xT , yT }}

is positively invariant for system (19)-(22), which therefore
admits an equilibrium point in S . We cannot allow c(t) >
min{xT (t), yT (t)}, because either x(t) or y(t), or both,
would become negative.

At the equilibrium, z̄ = ρ(ȳT−c̄)
φ , ȳT = kū

δ , x̄T = θz̄
δ and c̄

can be computed as a solution to γ(x̄T−c̄)(ȳT−c̄)−ξδc̄ = 0.
Therefore, in a fast sequestration regime, ξ → 0,

lim
ξ→0

c̄ = min{x̄T , ȳT } (23)

lim
ξ→0

ȳ = max{0, ȳT − x̄T }. (24)

For ξ sufficiently small, we can make the same considera-
tions as in the previous section about the differences ec(t)
and ey(t): the smaller ξ > 0, the faster the dynamics of
c(t), which allows us to neglect the transient. After the (very
fast) transient, the differences ec and ey become negligible,
which legitimates the use of max{0, yT (t) − xT (t)} as an
approximation of y(t).

Hence, for large enough times t, the dynamics of yT −xT
can be approximated by

ż(t) = ρmax{0, yT (t)− xT (t)} − φz(t) (25)
ẏT (t)− ẋT (t) = ku(t)− θz(t)− δ[yT (t)− xT (t)].(26)

Considering the approximate equations under the addi-
tional assumption that yT ≥ xT and moving to the Laplace
domain leads to the transfer function

Y T (s)−XT (s) =
k(s+ φ)

s2 + (φ+ δ)s+ φδ + θρ
U(s). (27)

In Fig. 2B, considering a step input u, we vary the se-
questration rate and compare the evolution of y(t) computed
by solving equations (15)-(17), shown in yellow to red lines,
with its approximation from expression (27), shown in black
dashed lines. As expected, when for the sequestration rate
γ/ξ is large (i.e. ξ is small), y(t) is very close to its approxi-
mation. We compare exact and approximated trajectories for
different parameters φ, δ, and ρ, as shown in Fig. 2C. In
all our numerical tests, the approximation is very good in
the fast sequestration regime: the larger the values of the
sequestration rate, the smaller the discrepancy.

2) Frequency response in the fast sequestration regime:
Equation (27) can be regarded as the approximated transfer
function for the NF-based circuit under fast sequestration, for
positive values of yT − xT . Examining the transfer function
(27) suggests that the NF-based circuit can behave as an
ideal band-pass filter if φ = 0. However, this requirement
can be challenging to implement experimentally. Moreover,
for small values of φ, the system can operate as a band-pass
filter and also have a constant gain for low frequencies, as
shown in Fig. 2D. Smaller values of δ and larger values of
the feedback gain ρ shows improve the band-pass behavior.

Fig. 2. NF-based band-pass filter A) Negative feedback circuit. B)
Approximate dynamics as a function of γ. C) Comparing approximation
dynamics (black dash line) with the full system. NP: ρ = k = θ = δ = 1,
φ = 3, and γ/ξ = 100. D) Computing the frequency response for periodic
inputs. The same as before except for θ = 1/5, and φ = βθ/k.

3) Frequency response of the linearised system: As done
in the previous section, we now consider the frequency
response of the NF-based circuit linearised around its equi-
librium. The linearised system has matrices

A =

−φ ρ 0
0 −γξ x̄− δ −γξ ȳ
θ −γξ x̄ −γξ ȳ − δ

 , B =

0
k
0

 , C =

0
1
0

>

corresponding to the transfer function from U(s) to Y (s)

G(s) =
(s+ φ)(s+ δ + γ

ξ ȳ)k

(s+ φ)(s+ δ)(s+ γ
ξ (x̄+ ȳ)) + γ

ξ ȳθρ
. (28)

In the fast sequestration regime, assuming ξ > 0 very small
and ȳ � x̄ leads to the approximation

G(s) ≈ k(s+ φ)

(s+ φ)(s+ δ) + θρ

which matches the expression in equation (27). This suggests
that, in the fast sequestration regime, the linearised system
well approximates the dynamics of the original nonlinear
system, also in terms of frequency behavior. With an appro-
priate choice of the parameter values, the NF-based circuit
behaves as a band-pass filter whose cut-off frequencies can
be tuned by adjusting the strength of the overall feedback.
However, a drawback of this circuit is that it cannot deliver
an ideal band-pass filter.



C. Band-pass filter based on incoherent feed-forward loop
(IFFL) and negative feedback (NF)

We now take advantage of both IFFL-based and NF-based
designs to obtain a band-pass filter with tunable cut-off
frequencies. Fig. 3A illustrates the IFFL/NF-based circuit,
showing all the involved species and their interactions. An
input U produces Y at rate k and Z at rate β. Species Y
produces Z at rate ρ, while Z produces X at rate θ. Species
X is sequestered by Y at rate γ/ξ (ξ is a non-dimensional
parameter). Species Z decays at rate φ, while Y , X , and C
all decay at rate δ. The corresponding chemical reactions

U
β−−−⇀ Z, Z

θ−−−⇀ Z +X Production/Production

U
k−−−⇀ Y Y

ρ−−−⇀ Y + Z Production/Production

X,Y
δ−−−⇀ ∅ Z

φ−−−⇀ ∅ Degradation/Degradation

C
δ−−−⇀ ∅ Y +X

γ/ξ−−−⇀ C Degradation/Sequestration

are associated, under the law of mass action, with the
dynamical ODE model

ż(t) = βu(t) + ρy(t)− φz(t), (29)

ẏ(t) = ku(t)− γ

ξ
x(t)y(t)− δy(t), (30)

ẋ(t) = θz(t)− γ

ξ
x(t)y(t)− δx(t), (31)

ċ(t) =
γ

ξ
x(t)y(t)− δc(t). (32)

1) Approximate dynamics in the fast sequestration regime:
Defining the new states variables xT (t) = x(t) + c(t) and
yT (t) = y(t) + c(t) results in the ODEs:

ż(t) = βu(t) + ρ[yT (t)− c(t)]− φz(t), (33)
ẏT (t) = ku(t)− δyT (t) (34)
ẋT (t) = θz(t)− δxT (t) (35)
ξċ(t) = γ[yT (t)− c(t)][xT (t)− c(t)]− ξδc(t).(36)

Following the same approach as in the previous sections,
we can prove that system (29)-(32) is positive and the set

S = {(z, yT , xT , c) : 0 ≤ z ≤ βu+ ρyT

φ
, 0 ≤ yT ≤ ku

δ
,

0 ≤ xT ≤ θz

δ
, 0 ≤ c ≤ min{xT , yT }}

is positively invariant for system (33)-(36), which therefore
admits an equilibrium point in S . As before, we need to rule
out c(t) > min{xT (t), yT (t)} to prevent x(t) and y(t) from
becoming negative.

At the equilibrium, z̄ = βū+ρ(ȳT−c̄)
φ , ȳT = kū

δ , x̄T = θz̄
δ

and c̄ solves γ(x̄T − c̄)(ȳT − c̄) − ξδc̄ = 0. Therefore, in a
fast sequestration regime, ξ → 0,

lim
ξ→0

c̄ = min{x̄T , ȳT } (37)

lim
ξ→0

ȳ = max{0, ȳT − x̄T }. (38)

Again, the smaller ξ > 0, the faster the dynamics of c(t),
which allows us to neglect the transient and approximate y(t)

as max{0, yT (t)−xT (t)} for t large enough, when also the
dynamics of yT − xT can be approximated by

ż(t) = βu(t) + ρmax{0, yT (t)− xT (t)} − φz(t) (39)
ẏT (t)− ẋT (t) = ku(t)− θz(t)− δ[yT (t)− xT (t)].(40)

Considering the approximate equations under the addi-
tional assumption that yT ≥ xT and moving to the Laplace
domain leads to the transfer function

Y T (s)−XT (s) =
k(s+ φ− θβ/k)

s2 + (φ+ δ)s+ φδ + θρ
U(s). (41)

Fig. 3B compares the exact evolution of y(t) in the
IFFL/NF-based circuit, computed from (29)-(31), for differ
sequestration rates (from yellow to orange), with its approxi-
mation provided by expression (41). The discrepancy is small
for large sequestration rates. We vary different parameters
θ, φ and δ to compare the performance of the exact and
approximate dynamics in Fig. 3C.

Fig. 3. NF/IFFL-based band-pass filter A) Circuit schematic. B)
Approximation in the fast sequestration regime. C) Comparing prediction
by varying different parameters. NP: β = ρ = k = θ = δ = 1, φ = 3, and
γ/ξ = 100 D) Characterization of frequency response. The same as before
except for θ = 1/5, and φ = βθ/k.

2) Frequency response in the fast sequestration regime:
We computationally characterize the frequency response of
the IFFL/NF-based circuit for fast sequestration rates ac-
cording to the approximated transfer function (41). An ideal
band-pass filter admits a zero at the origin (s = 0), which
can be obtained by setting φ = θβ/k. Fig. 3D shows the
frequency response for different sequestration rates. A well
defined band-pass filter behavior is obtained for large values
of γ/ξ (red line). With small sequestration rates, we get a



first order frequency response (yellow line). The band-pass
behavior is improved for small δ and we can vary ρ to tune
the frequency response.

3) Frequency response of the linearised system: Again,
we consider the frequency response of the system linearised
around its equilibrium. The IFFL/NF-based circuit has lin-
earised dynamics described by matrices

A =

−φ ρ 0
0 −γξ x̄− δ −γξ ȳ
θ −γξ x̄ −γξ ȳ − δ

 , B =

βk
0

 , C =

0
1
0

> ,
corresponding to the transfer function

G(s) =
(s+ φ)(s+ δ + γ

ξ ȳ)k − γ
ξ θȳβ

(s+ φ)(s+ δ)(s+ γ
ξ (x̄+ ȳ)) + γ

ξ ȳθρ

from U(s) to Y (s). In the fast sequestration regime, assum-
ing ξ > 0 very small and ȳ � x̄ yields the approximation

G(s) ≈ k(s+ φ− θβ/k)

(s+ φ)(s+ δ) + θρ
,

which matches the approximation in (41) and can guide the
design of a band-pass filter with the desired transfer function.

The IFFL/NF-based circuit leverages the main advantages
of both motifs (IFFL and NF). The IFFL motif allow us to
achieve a zero at the origin (s = 0) by setting φ ≈ θβ/k,
while the NF motif allows us to tune the cut-off frequencies
by tuning the strength of the negative feedback θρ. Combin-
ing both features considerably improves the band-pass filter
performance.

III. DISCUSSION

In this paper, we suggest a model-based approach to
engineer molecular networks that exhibit band-pass filter
behavior by taking advantage of molecular sequestration. Our
findings on the design of synthetic genetic networks for dy-
namical molecular filters expand the repertoire of functions
of IFFL (e.g fold change detection [5], pulse behavior [6],
gradient sensing [7], and NF motifs (e.g feedback controllers
[9], gradient sensing [12], oscillators [10], pulse generator
[11]). It also expands and complements the experimental
effort to engineer signal processing based on transcriptional
regulation [14], [15], [16]. A limitation of the NF-based filter
is that the sequestering species must have zero degradation
rate constant. Such a requirement is challenging to meet
in practical settings. The IFFL-based network implements
a subtraction operation to deliver an ideal band-pass filter,
however at low sequestration rate this operation is poorly
approximated. In summary, both individual motifs present a
non-ideal band-pass filter, but their combined tuning within
a single circuit can improve the filter behavior.

The approach we introduce allows us to systematically
study the dynamics of sequestration-based circuits in either
open- or closed-loop systems. We note that the transfer
functions of the IFFL and NF networks resemble a Pro-
portional (P) and Derivative (D) controller. This indicates
that our filters may facilitate the design of PD feedback
controllers with a target frequency response. We also foresee

that these circuits may help to realize biomolecular recur-
rent neural networks, building on previously demonstrated
sequestration-based neural networks [17]. Because a key
feature of sequestration-based networks is their ultrasensitive
and tunable response [18], we speculate that ultrasensitivity
may be key for building signal processors. For this reason,
the synthesis of molecular filters may be possible with other
ultrasensitive mechanisms distinct from sequestration.
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