
Boosted CVaR Classification

Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA, USA 15213

{rzhai,cdan,asuggala,zkolter,pradeepr}@cs.cmu.edu

Abstract

Many modern machine learning tasks require models with high tail performance,
i.e. high performance over the worst-off samples in the dataset. This problem
has been widely studied in fields such as algorithmic fairness, class imbalance,
and risk-sensitive decision making. A popular approach to maximize the model’s
tail performance is to minimize the CVaR (Conditional Value at Risk) loss, which
computes the average risk over the tails of the loss. However, for classification
tasks where models are evaluated by the 0/1 loss, we show that if the classifiers are
deterministic, then the minimizer of the average 0/1 loss also minimizes the CVaR
0/1 loss, suggesting that CVaR loss minimization is not helpful without additional
assumptions. We circumvent this negative result by minimizing the CVaR loss
over randomized classifiers, for which the minimizers of the average 0/1 loss
and the CVaR 0/1 loss are no longer the same, so minimizing the latter can lead
to better tail performance. To learn such randomized classifiers, we propose the
Boosted CVaR Classification framework which is motivated by a direct relationship
between CVaR and a classical boosting algorithm called LPBoost. Based on this
framework, we design an algorithm called ↵-AdaLPBoost. We empirically evaluate
our proposed algorithm on four benchmark datasets and show that it achieves higher
tail performance than deterministic model training methods.

1 Introduction

As machine learning continues to find broader usage, there is an increasing understanding of the
importance of tail performance of models, in addition to their average performance. For instance,
in datasets with highly imbalanced classes, the tail performance is the accuracy over the minority
classes which have much fewer samples than the others. In the field of algorithmic fairness, where
a dataset contains several demographic groups, the tail performance is the accuracy over certain
underrepresented groups that normal machine learning models often neglect. In all these examples, it
is crucial to design models with good tail performance that perform well across all parts/groups of
the data domain, instead of just performing well on average.

Owing to its importance, several recent works have designed techniques to learn models with high tail
performance [HSNL18, SKHL20, SRKL20]. Maximizing the tail performance is sometimes referred
to as learning under subpopulation shift, in the sense that the testing distribution could consist of just
a subpopulation of the training distribution. Most of the works on subpopulation shift fall into two
categories. In the first, also referred to as the domain-aware setting, the dataset is divided into several
predefined groups, and the goal is to maximize the worst-group performance, i.e. the minimum
performance over all the groups. Many methods, such as importance weighting [Shi00] and Group
DRO [SKHL20, SRKL20], have been proposed for domain-aware subpopulation shift. However, the
domain-aware setting is not always applicable, either because the groups can be hard to define, or
because the group labels are not available. Thus, in the second category of work on subpopulation

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

ar
X

iv
:2

11
0.

13
94

8v
2

 [c
s.L

G
]

10
 N

ov
 2

02
1

shift, also referred to as the domain-oblivious setting, there are no pre-defined groups, and the goal is
to maximize the model’s performance over the worst-off samples in the dataset. Most previous work
on domain-oblivious subpopulation shift [HSNL18, DN18, HNSS18, LBC+20, MHN21] measure
the tail performance using the Distributionally Robust Optimization (DRO) loss, which is defined
as the model’s maximum loss over all distributions within a divergence ball around the training
distribution. A popular instance is the ↵-CVaR loss, defined as the model’s average loss over the
worst ↵ 2 (0, 1) fraction of the samples incurring the highest losses in the dataset.

Naturally one might think of maximizing a model’s tail performance by directly minimizing the DRO
loss or the ↵-CVaR loss, as proposed by many previous work [HSNL18, DN18, XDKR20]. However,
[HNSS18] proved the negative result that for classification tasks where models are evaluated by the
zero-one loss, empirical risk minimization (ERM) achieves the lowest possible DRO loss given that
the model is deterministic and the DRO loss is defined by some f -divergence function. We extend
their result to the ↵-CVaR loss which can be written as the limit of Rényi-divergence DRO losses
(with a more direct and simpler proof due to the specialized case of CVaR). This is a very pessimistic
result since it entails that there is no hope to get a better classifier than ERM so long as models are
evaluated by a DRO (or CVaR) loss. So some previous work [HNSS18, LBC+20, MHN21] proposed
to avoid this issue by making extra assumptions on the testing distribution (specifically, that the
testing subpopulation can be represented by a parametric model), and changing the evaluation metric
correspondingly to something other than a f -divergence DRO loss.

In this work, we take a different approach and show that no extra assumption is needed provided that
we use randomized models. While the case of general DRO is more complicated, the reason why
ERM achieves the lowest possible CVaR zero-one loss in the deterministic case is very simple: there
is a linear relationship between the CVaR zero-one loss and the average zero-one loss, so the former
is non-decreasing with the latter. For randomized models, however, such a monotonic relationship no
longer exists. Note that for any single test sample, the zero-one loss of the deterministic model is
either 0 or 1, while the expected zero-one loss of the randomized model is a real number in [0, 1], so
that the randomized model can typically achieve lower ↵-CVaR loss than the deterministic model. In
fact, we can prove that if the two models have the same average accuracy, then the ↵-CVaR zero-one
loss of the randomized model is consistently lower than the deterministic one.

Motivated by the above analysis, we propose the framework of Boosted CVaR Classification to train
ensemble models via Boosting. The key observation we make is that minimizing the ↵-CVaR loss is
equivalent to maximizing the objective of ↵-LPBoost, a subpopulation-performance counterpart of a
classical boosting variant known as LPBoost [DBST02]. Thus training with respect to the ↵-CVaR
loss can be related to a goal of boosting an unfair learner, which always produces a model with
low average loss on any reweighting of the training set, to obtain a fair ensemble classifier with low
↵-CVaR loss for a fixed ↵. Note that this is in contrast to the classical boosting, which boosts a
weak learner to produce an ensemble model with better average performance. We can thus show that
↵-CVaR training is equivalent to a sequential min-max game between a Boosting algorithm and an
unfair learner, in which the Boosting algorithm provides the sample weights and the unfair learner
provides base models with low average loss with respect to these weights. After all base models are
trained, we compute the optimal model weights. At inference time, we first randomly sample a base
model according to the model weights, and then predict with the model. Thus, the final ensemble
model is a linear combination of all the base models.

This paper is organized as follows: In Section 2, we provide the necessary background of subpopula-
tion shift and CVaR, and show that ERM achieves the lowest CVaR zero-one loss in classification
tasks with deterministic classifiers. In Section 3 we show how to boost an unfair learner: we first show
that minimizing the CVaR loss is equivalent to maximizing the LPBoost objective in Section 3.1;
based on this observation, we propose the Boosted CVaR Classification framework and implement an
algorithm that uses LPBoost for CVaR classification in Section 3.2; Then, to improve computation
efficiency, we implement another algorithm called ↵-AdaLPBoost in Section 3.3. Finally, in Section
4 we empirically evaluate the proposed method on popular benchmark datasets.

1.1 Related Work

Caveats of DRO. DRO was first applied to domain-oblivious subpopulation shift tasks in
[HSNL18], in which the authors proved that the DRO loss is an upper bound of the worst-case
loss over K groups (group CVaR) for fairness problems. [DN18] analyzed the convergence rate of

2

DRO for the Cressie-Read family of f -divergence. However, [HNSS18] showed that minimizing
f -divergence DRO over deterministic function classes, with respect to the zero-one classification loss,
yields the same minimizer as that of ERM, provided that the former has loss less than one. [SKHL20]
further showed that for highly flexible classifiers (such as many modern neural models) that achieve
zero error on each training sample, both empirical average risks and DRO risks are zero, so that the
model is not specifically focusing on population DRO objective. [SRKL20] made the related point
that the Group DRO objective with respect to the zero one loss is prone to overfit.

Boosting. Boosting is a classic algorithm in machine learning dating back to AdaBoost proposed
in [Sch90]. See [Sch03] for a survey of the early works. Motivated by the success of AdaBoost,
many later works proposed variants of Boosting, such as AdaBoost⇤v [RWST05], AdaBoost`1 [SL09],
LPBoost [DBST02], SoftBoost [RWG07] and entropy regularized LPBoost [WGV08]. There are
some previous works that apply ensemble methods to tasks related to subpopulation shift: see
[GFB+11] for a survey of Bagging, Boosting and hybrid methods for the class imbalance problem,
while [IN19, BHL19] used AdaBoost to improve algorithmic fairness.

2 Preliminaries

In this section we provide the necessary background on subpopulation shift, DRO and CVaR, in the
context of classification, which is the focus of the paper. Particularly, we will demonstrate that in
classification tasks, ERM achieves the lowest CVaR loss, so there is no gain in using CVaR compared
to ERM. Then, we show that using randomized models can circumvent this problem.

Denote the input space by X , the label space by Y , and the data domain by Z = X ⇥ Y . We are
given a dataset {zi = (xi, yi)}ni=1 that i.i.d. sampled from some underlying data distribution. We
assume that any input x has only one true label y, i.e. for any x 2 X there exists y 2 Y such that
P (y | x) = 1. Given a family of classifiers F , the goal of a subpopulation shift task is to train a
classifier F : X ! Y 2 F with high tail performance. Given a loss function ` : Y ⇥ Y ! R, the
standard training algorithm is empirical risk minimization (ERM) which minimizes the empirical

risk defined as

R̂`(F) =
1

n

nX

i=1

`(F (xi), yi). (1)

Denote the set of minimizers of the empirical risk by F ⇤
ERM` = argminF2F R̂`(F). For classification

tasks, the model performance is evaluated by the zero-one loss `0/1(ŷ, y) = 1{ŷ 6=y}. Although we
can use different surrogate loss functions during training, at test time we always use the zero-one loss
because we care about the accuracy, and the zero-one loss is equal to one minus the accuracy.

To quantitatively measure the tail performance of model F , we can use the ↵-CVaR (Conditional
Value at Risk) loss. For a fixed ↵ 2 (0, 1), the ↵-CVaR loss is defined as

CVaR`
↵(F) = max

w2�n,w4 1
↵n

nX

i=1

wi`(F (xi), yi) (2)

where �n = {(x1, · · · , xn) : xi � 0, x1+ · · ·+xn = 1} is the unit simplex in Rn. The ↵-CVaR loss
measures how well a model performs over the worst ↵ fraction of the dataset. For instance, if m = ↵n
is an integer, then the ↵-CVaR loss is the average loss over the m samples that incur the highest
losses. We use CVaR classification to refer to classification tasks where models are evaluated by the
CVaR loss. Denote the set of minimizers of the ↵-CVaR loss by F ⇤

CVaR`
↵
= argminF2F CVaR`

↵(F).

The CVaR loss can be written as the limit of DRO (Distributional Robust Optimization) losses. For
some divergence function D between distributions, the DRO loss measures the model’s performance
over the worst-case distribution Q ⌧ P 1 within a ball w.r.t. divergence D around the training
distribution P . Formally, the DRO loss of model F is defined as

DRO`
D,⇢(F) = sup

Q⌧P
{EQ[`(F (x), y)] : D(Q k P)  ⇢} (3)

If we denote the Rényi-divergence by D�(P k Q) = 1
��1 log

R
(dPdQ)�dQ , then the ↵-CVAR loss is

equal to the limit of DRO`
D� ,� log↵ as � ! 1 (see Example 3 in [DN18]). Many previous works

1Q is absolute continuous to P (i.e. Q ⌧ P) if for any event A, P (A) = 0) Q(A) = 0.

3

proposed to train a model with high tail performance by minimizing the CVaR loss or the DRO
loss. However, the following result shows that for classification tasks, any model in F ⇤

ERM`0/1
is

also the minimizer of the CVaR loss if F only contains deterministic models, i.e. every F 2 F is a
deterministic mapping F : X 7! Y (all proofs can be found in Appendix A):
Proposition 1. If F only contains deterministic models, then for any model F 2 F and any

F ⇤ 2 F ⇤
ERM`0/1

, we have CVaR`0/1
↵ (F) � CVaR`0/1

↵ (F ⇤). Moreover, if minF2F R̂`0/1(F) < ↵,

then we have F ⇤
ERM`0/1

= F ⇤
CVaR

`0/1
↵

.

[HNSS18] showed that a counterpart of the above result holds for any f -divergence DRO loss. As
noted earlier, we can write the ↵-CVaR loss as the limit of the Rényi family of f -divergence DRO
losses. However our proof is much more direct and simple, and proceeds by showing the following
simple monotonic relationship between the average zero-one loss and the ↵-CVaR zero-one loss:
CVaR`0/1

↵ (F) = min
n
1, 1

↵R̂
`0/1(F)

o
, so the ↵-CVaR loss is non-decreasing with the ERM loss.

This is a very pessimistic result, since it entails that there is no hope to obtain a better model than
ERM no matter what learning algorithm we use for CVaR classification.

For the DRO context, some previous papers [HNSS18, LBC+20, MHN21] propose to avoid this issue
by making extra assumptions on the testing distribution, so as to change the evaluation metric to some
function other than the f -divergence DRO loss. In this work, however, we take a completely different
approach: we show that the above difficulty can be circumvented without any extra assumptions by
using randomized models2. For a randomized model F , its empirical risk and ↵-CVaR loss is defined
as the expectation of (1) and (2), where the expectation is taken over the randomness of F . For
randomized models, the monotonic relationship in Proposition 1 does not exist, and they can achieve
lower ↵-CVaR zero-one loss than deterministic models. For example, if we have a deterministic
model with average accuracy 90%, then the 10%-CVaR zero-one loss of this model is 1. However,
if we have 5 deterministic models with average accuracy 90%, such that each sample is classified
correctly by at least 4 of the 5 models, then the 10%-CVaR zero-one loss of the average of the 5
models is only 0.2, though its average accuracy is still 90%. Furthermore, we can prove that:
Proposition 2. Let F be a deterministic model, and F 0

be any randomized model whose average

zero-one loss is the same as that of F . Then, for any ↵ 2 (0, 1), CVaR`0/1
↵ (F 0)  CVaR`0/1

↵ (F).

This result implies that the tail performance of a randomized model is consistently higher than a
deterministic model with the same average performance. In a nutshell, we have proved that for CVaR
classification, ERM is the best deterministic model learning algorithm, and randomized models can
achieve higher performance than deterministic models.

3 Boosted CVaR Classification

In this section, we propose the framework of Boosted CVaR Classification, which learns ensemble
models with high tail performance via Boosting. An ensemble model consists of T base models
f1, · · · , fT : X ! Y and a distribution � = (�1, · · · ,�T) 2 �T over the models. � is called the
model weight vector. At inference time, we first sample a model f t according to �, and then predict
with the model. Denote the zero-one loss of base model f t over sample zi by `ti. Then, the ↵-CVaR
zero-one loss of the ensemble model F = (f1, · · · , fT ,�) is3

CVaR`0/1
↵ (F) = CVaR`0/1

↵ (f1, · · · , fT ,�) = max
w2�n,w4 1

↵n

nX

i=1

wi

TX

t=1

�t`
t
i (4)

The motivation of this framework comes from a direct relationship between the CVaR loss and the
objective of a variant of Boosting we call ↵-LPBoost, which shows that training with respect to
the ↵-CVaR loss can be related to the goal of boosting an unfair learner (Section 3.1). Thus in
Section 3.2, we present the Boosted CVaR Classification framework which formulates the training

2If F is a randomized model, then for any x, F (x) is a random variable over Y , i.e. for any x, y, P (F (x) = y)
is a real number in [0, 1] instead of binary.

3The notion F = (f1, · · · , fT ,�) means that the ensemble model F consists of base models f1, · · · , fT

and model weight vector �.

4

process as a sequential game between the training algorithm and the unfair learner, and implement
an algorithm that uses (Regularized) LPBoost for CVaR classification. Finally, in Section 3.3 we
implement another algorithm which we name ↵-AdaLPBoost that is computationally more efficient.

3.1 ↵-LPBoost

Suppose we have already obtained t base models {fs}s2[t], and the s-th function fs incurs losses
{`si}i2[n] on the n samples {zi}i2[n]. Consider the following primal/dual linear programs:

Dual:

min
w,�

�

s.t. hw, `si � 1� �; 8s 2 [t]

w 2 �n,w 4 1

↵n

(5)

Primal:

max
�,⇢

⇢� 1

↵n

nX

i=1

(⇢� 1 +
tX

s=1

�s`
s
i)+

s.t. � 2 �t

(6)

where (x)+ = max{x, 0}. Note that the primal problem can be written as a linear program by
introducing slack variables i = (⇢� 1 +

Pt
s=1 �s`

s
i)+. See the full derivation of this primal-dual

linear program in Appendix A.3. Let us denote the optimal dual objective by �t⇤ and the optimal
primal objective by ⇢t⇤. For this linear program, strong duality holds, i.e. ⇢t⇤ = �t⇤. We refer to
these primal/dual linear programs as ↵-LPBoost, since it can be seen as subpopulation-performance
counterpart of a classical variant of Boosting called LPBoost [DBST02].

Intuitively, the dual problem computes a w such that every fs has a high weighted average loss
hw, `si w.r.t. w. One might wonder what the primal problem is doing. The magical thing is that
the primal problem is in fact searching for the model weight vector � that minimizes the ↵-CVaR

zero-one loss of the ensemble model consisting of f1, · · · , f t, as shown by the following proposition:
Proposition 3. For any f1, · · · , f t

, we have the following relationship between the ↵-LPBoost

objective and the ↵-CVaR zero-one loss:

⇢t⇤ = �t⇤ = 1� min
�2�t

CVaR`0/1
↵ (f1, · · · , f t,�) (7)

and the optimal solution of the primal problem �⇤
achieves the minimum in (7).

This result also shows a direct relationship between CVaR and LPBoost: minimizing the ↵-CVaR
loss is equivalent to maximizing the ↵-LPBoost objective. Thus, the problem now becomes how to
maximize �t⇤. Note that we can rewrite the first constraint of the dual problem as � � 1� hw, `si for
all s, so � is the accuracy of the best fs. Therefore, we can increase � by training a new model f t+1

whose weighted average loss with respect to w, i.e. hw, `t+1i, is small. We can repeat this process
until we have obtained sufficient base models so that there is no such w that makes �t⇤ small. Then,
we can obtain the optimal model weight vector �⇤ by solving the primal problem of ↵-LPBoost.

3.2 The Boosted CVaR Classification Framework

Motivated by the above analysis, we design the Boosted CVaR Classification framework that formu-
lates the training process outlined in the previous section as a sequential game between a boosting
algorithm and an unfair learner L. We make the following assumption on L:
Assumption 1. We have access to an unfair learner L that takes any sample weight vector w 2 �n

as input, and always outputs a base model whose weighted average zero-one loss with respect to w is

at most g 2 (0, 1). g is called the guarantee of the learner L.

In each round, the boosting algorithm picks a sample weight vector wt = (wt
1, · · · , wt

n) and feeds
it to the learner L which outputs a base model f t whose average loss w.r.t. wt is at most g. The
boosting algorithm goes as the following:

• For t = 1, · · · , T ,
– Pick a sample weight vector wt = (wt

1, · · · , wt
n) 2 �n and feed it to L

– Receive a base model f t from L such that
Pn

i=1 w
t
i`

t
i  g

• At the end of training, pick a model weight vector � 2 �T and return F = (f1, · · · , fT ,�)

5

Algorithm 1 (Regularized) ↵-LPBoost for CVaR Classification
Input: Density of the test subpopulation ↵, regularization coefficient �, number of base models T

1: Initialization: w1 = (1n , · · · ,
1
n)

2: for t = 1, · · · , T do

3: Run learner L with weight vector wt

4: L outputs model f t with sample losses `t = (`t1, · · · , `tn)
5: Solve the dual ↵-LPBoost problem (5) or its regularized version (8) over the training set to

get the sample weights wt+1

6: Solve the primal ↵-LPBoost problem (6) over the validation set to get the optimal �
7: return F = (f1, · · · , fT , �)

To study the worst-case performance of the boosting algorithm, we can view L as an adversary: The
boosting algorithm picks wt and � in order to minimize (4), while L picks `t = (`t1, · · · , `tn) under
the constraint hwt, `ti  g in order to maximize (4).

Based on this framework, we implement Algorithm 1, which uses LPBoost to pick sample weights
and model weights. For solving linear programs, there are a number of convex optimization solvers
available. Now we prove a convergence rate theorem for this algorithm. To show that Algorithm
1 converges, we need to prove that with a sufficiently large T , the worst-case ↵-CVaR loss of the
ensemble model can be as close to g as we want4. Ideally we would like T to be in the order of
log 1

↵ . However, [RWG07] presented a counterexample in its Theorem 1 where ↵-LPBoost requires
T = ⌦(1

↵) base models to converge. To make T logarithmic in 1
↵ , [WGV08] proposed (Entropy)

Regularized ↵-LPBoost, which adds regularization to the dual problem. At each iteration it solves
the following convex problem for some regularization coefficient � > 0 to pick w:

min
w

� � 1

�
H(w)

s.t. hw, `si  1� � (s 2 [t]), w 2 �n, w 4 1

↵n

(8)

where H(w) = �
Pn

i=1 wi logwi is the entropy function. With the regularization, we can prove the
following theorem:
Theorem 4 (Theorem 1 in [WGV08]). For any � > 0, if we run Regularized ↵-LPBoost with

� = max(2� log
1
↵ ,

1
2), then we have CVaR`0/1

↵ (F)  g + � with T base models where

T = max

⇢
32

�2
log

1

↵
,
8

�

�
(9)

Connection to AdaBoost. [SL09] proved that classical Regularized LPBoost (i.e. ↵-LPBoost with
↵ = 1/n) is equivalent to AdaBoost[FS97] with `1 regularization (see its Section 3.2).

3.3 ↵-AdaLPBoost

We have proved that the ↵-CVaR loss achieved by Regularized ↵-LPBoost can be arbitrarily close to
g with T = O(log 1

↵). However, one disadvantage of Algorithm 1 is that it needs to train a different
set of T base models for each ↵. On the other hand, since ↵ controls the trade-off between fairness
and average performance, in practice we might want to change ↵ from time to time. For example, we
might want to tune down ↵ to make the model fairer. Thus, it would be more efficient if we could
train only one set of T base models for all ↵, and by adjusting the model weight vector � for different
↵ we could still achieve tail performance comparable to Regularized ↵-LPBoost.

To this end, we first use the classical Regularized LPBoost (with ↵ = 1/n) to pick wt to train the
base models, since the resulting base models would also be suitable for more general ↵ > 1/n.
Following [SL09], we solve this step using a variant of AdaBoost. We then pick the model weights
by solving the ↵-LPBoost primal problem after all base models are trained. The method, which we

4The ↵-CVaR loss is lower bounded by g, because L can always output a model whose average loss over the
uniform distribution of z1, · · · , zn is at least g, so that the average loss is at least g.

6

Algorithm 2 ↵-AdaLPBoost
Input: Step size ⌘, density of the test subpopulation ↵, number of base models T

1: Initialization: w1 = (1n , · · · ,
1
n)

2: for t = 1, · · · , T do

3: Run learner L with weight vector wt

4: L outputs model f t with sample losses `t = (`t1, · · · , `tn)
5: Pick wt+1 2 �n such that wt+1

i / exp(⌘
Pt

s=1 `
s
i)

6: Solve the ↵-LPBoost primal problem (6) over the validation set to get the optimal �
7: return f1, · · · , fT and �

denote by ↵-AdaLPBoost, is listed in Algorithm 2. The difference between Algorithm 2 and the
original AdaBoost is that AdaBoost picks wt+1

i / wt
i�

`ti
t where �t = ✏t

1�✏t
and ✏t =

Pn
i=1 w

t
i`

t
i is

the weighted average loss, whereas Algorithm 2 picks wt+1
i / wt

i exp(⌘`
t
i) for a constant ⌘, which

we find achieves better performance than AdaBoost in our experiments.

The advantage of using our two-step approach is that when ↵ changes, we only need to adjust the
model weight vector � without training an entirely new set of base models. We next show that the
two-step approach is not just intuitively reasonable, but comes with strong theoretical guarantees. To
begin with, we consider a mixed algorithm called “AdaBoost + Average”, where we train the based
models with AdaBoost (as in Algorithm 2) and output the average of the base models (such that
� = (1

T , · · · ,
1
T)). For AdaBoost + Average, we have the following result:

Theorem 5. For any � > 0, and for T = O(logn
�2), the training ↵-CVaR zero-one loss of the ensemble

model given by AdaBoost + Average is at most g + � if we set ⌘ =
p

8 log n/T .

The theorem guarantees that AdaBoost + Average can achieve low ↵-CVaR zero-one loss. Next, note
that the ↵-CVaR zero-one loss of ↵-AdaLPBoost is upper bounded by the minimum of those of ERM
and AdaBoost + Average, because ↵-LPBoost ensures that the � it picks achieves the lowest ↵-CVaR
zero-one loss, while ERM corresponds to � = (1, 0, · · · , 0) and AdaBoost + Average corresponds to
� = (1

T ,
1
T , · · · ,

1
T). In other words, the theorem ensures that the tail performance of AdaBoost +

Average is high, and ↵-AdaLPBoost achieves a tail performance no lower than that.

3.4 Discussion

Generalization Bound for the CVaR Loss. In our analysis, we only provide theoretical guarantees
on the training ↵-CVaR zero-one loss for the methods we propose. One might be curious about the
generalization capability of boosting with respect to the CVaR loss. A recent work [KLPR20] proved
a generalization bound for the CVaR loss under the assumption that the hypothesis set F has a finite
VC-dimension, and it is well-known that if F has a finite VC-dimension, then the set of ensemble
models based upon F also has a finite VC-dimension (see e.g. Section 6.3.1 in [MRT18]). However,
in the VC-dimension-based analysis, the generalization error increases with T , while in practice it
usually decreases with T . Thus, people use the margin-based analysis to obtain a tighter bound. We
leave the margin-based analysis of Boosted CVaR Classification to future work.

Sensitivity to Outliers. An algorithm that maximizes the tail performance of a model can be very
sensitive to outliers. This is because such an algorithm puts more weight on samples on which the
model has high losses, while intuitively outliers tend to incur high losses. Consequently, the algorithm
puts more weight on outliers. A recent work [ZDKR21] proposed to solve this problem with an
algorithm called DORO, which ignores a fraction of the samples with the highest losses within the
minibatch for each iteration. DORO can also be combined with our Boosting algorithms.

Connection to (Domain-Aware) Group DRO. Our algorithm has a strong connection to Group
DRO proposed in [SKHL20] for domain-aware subpopulation tasks. Group DRO assumes that the
dataset is divided into K groups and minimizes the model’s maximum loss over the K groups with
AdaBoost. We can obtain Group DRO from AdaBoost + Average by choosing n = K, m = 1 and
defining `ti as the loss of model f t over group i. Our algorithm suggests that we can improve Group
DRO if we choose the model weights with LPBoost.

7

4 Experiments

4.1 Setup

Datasets. We conduct our experiments on four datasets: COMPAS [LMKA16], CelebA [LLWT15],
CIFAR-10 and CIFAR-100 [KH+09]. The first, COMPAS, is a tabular recidivism dataset widely
used in fairness research. The second, CelebA, with the target label as whether a person’s hair is
blond or not, was used in [SKHL20] to evaluate their proposed Group DRO algorithm. And finally,
CIFAR-10 and CIFAR-100 are two widely used image datasets. Both COMPAS and CelebA are
binary classification tasks, while CIFAR-10 is 10-class and CIFAR-100 is 100-class classification.
On COMPAS we use the training set as the validation set because the dataset is very small. CelebA
has its official train-validation split. On CIFAR-10 and CIFAR-100 we take out 10% of the training
samples and use them for validation. Our selection of datasets covers different types, complexity, and
both binary and multi-class classification.

Learner L. We implement the unfair learner L as follows: given a sample weight vector w =
(w1, · · · , wn) 2 �n, for each iteration we sample a minibatch with replacement according to the
probability distribution w, and then update the model parameters with ERM over the minibatch (by
minimizing the cross-entropy loss). The learner stops and returns the model after a fixed number of
iterations, with the learning rate decayed twice during training. See our code for training details.

Training. We use a three-layer feed-forward neural network with ReLU activations on COMPAS, a
ResNet-18 [HZRS16] on CelebA, a WRN-28-1 [ZK16] on CIFAR-10 and a WRN-28-10 on CIFAR-
100. On each dataset, we first warmup the model with a few epochs of ERM, and then train T = 100
base models on COMPAS and CIFAR-10, and T = 50 base models on CelebA and CIFAR-100 from
the warmup model with the sample weights given by the boosting algorithms. We train our models
with CPU on COMPAS and with one NVIDIA GTX 1080ti GPU on other datasets. We solve linear
programs with the CVXPY package [DB16, AVDB18], which at its core invokes MOSEK [ApS21]
and ECOS [DCB13] for optimization.5

On each dataset, we run ERM and ↵-AdaLPBoost with different values of ↵. Here ERM refers to
the deterministic version, in which a single base model is trained and used as the final model. For
↵-AdaLPBoost, we choose ⌘ = 1.0 on all datasets which is close to the theoretical optimal value
⌘ =

p
8 log n/T . We also compare ↵-AdaLPBoost with AdaBoost + Average in order to demonstrate

the effectiveness of selecting � with LPBoost. To simultaneously compare the performances under
different ↵, we plot the ↵-CVaR zero-one loss vs ↵ curve for each method on every dataset.

4.2 Results

We plot the experimental results in Figure 1. Each experiment is repeated five times with different
random seeds, and we plot the 95% confidence interval for each experiment. From the figure, we can
see that the results are very consistent across different random seeds. It is also remarkable that on
every dataset, the ↵-CVaR loss curve of ↵-AdaLPBoost almost overlaps with the minimum of ERM
and AdaBoost + Average. From the plots we can make the following observations:

• When ↵ is large, the ↵-CVaR loss is close to the average loss, and we can see that the
↵-CVaR loss of ↵-AdaLPBoost is very close to that of ERM. We also plot the test average
loss of the three methods on CIFAR-10 and CIFAR-100 in Figure 2, from which we can see
that there is a gap between the ERM line and AdaBoost + Average line, and the average loss
curve of ↵-AdaLPBoost mostly lies between them.

• When ↵ is small, the ↵-CVaR loss of ↵-AdaLPBoost is close to that of AdaBoost + Av-
erage, which is much lower than that of ERM. Recall our initial theoretical results on the
equivalence of minimizers of the average loss and the CVaR loss for deterministic models,
ERM achieves the lowest ↵-CVaR loss among all deterministic models, so the results show
that the ensemble model achieves higher tail performance than any deterministic model.

Overall, we find that ↵-AdaLPBoost can automatically choose between high average performance
(when ↵ is big) and high tail performance (when ↵ is small).

5Please refer to their official websites for license information.

8

(a) COMPAS (b) CIFAR-10

(c) CelebA (d) CIFAR-100

Figure 1: Test ↵-CVaR zero-one loss.

(a) CIFAR-10

(b) CIFAR-100

Figure 2: Test average loss.

One might ask why ↵-AdaLPBoost does not achieve lower average loss than ERM in our experiments,
given that the model class of the ensemble models is larger than that of the deterministic models.
The reason is that the model class we use for deterministic models (e.g. ResNet) is already very
complex, so the average performance of ERM is high enough, and its loss mainly comes from the
generalization gap instead of insufficient capacity of representation. In fact, we find that when ↵ is
big, the model weight vector produced by LPBoost is very close to (1, 0, 0, · · · , 0), i.e. almost all
the weight is put on the first ERM model. That is why the ↵-AdaLPBoost curve and the ERM curve
overlap when ↵ is big.

Comparison with Regularized LPBoost. Now we empirically show that ↵-AdaLPBoost can
achieve performance comparable to Regularized LPBoost. In Figure 3 we plot the ↵-CVaR loss of
ERM, ↵-AdaLPBoost and Regularized LPBoost (� = 100) on CIFAR-10. The plot clearly shows
that there is almost no gap between the performance of ↵-AdaLPBoost and Regularized LPBoost, so
we can safely replace the latter with the former for computational efficiency.

Convergence. Finally, we empirically examine the convergence rate of ↵-AdaLPBoost by studying
how the ↵-CVaR loss changes with T . In Figure 4 we plot the results on CIFAR-10 and CIFAR-100,
which show that AdaLPBoost converges slowly after T = 30. Theoretically, for a dataset with
n = 50000 samples, in order to acheive � < 0.1 in Theorem 5, we need T to be at least 500, which
would take a huge amount of time. Note that T = 30 does not mean that the training time is 30 times
more, because we can train each base model for fewer iterations since it is initialized from a warmup
model and only needs finetune. In our experiments, the training time of AdaBoost is 3-6 times the
training time of ERM if T = 30.

5 Conclusion

In this work, we addressed an issue raised by previous work that no deterministic model learning
algorithm could be better than ERM for DRO classification (which we show formally also extends to
CVaR) by learning randomized models. Specifically we proposed the Boosted CVaR Classification
framework which is motivated by the direct relationship between ↵-CVaR and ↵-LPBoost, which is
a sub-population variant of the classical LPBoost algorithm for classification. To further improve
the computational efficiency, we implemented the ↵-AdaLPBoost algorithm. In our experiments,
we showed that the ensemble models produced by ↵-AdaLPBoost achieved higher tail performance

9

Figure 3: Comparing between
↵-AdaLPBoost and Regularized
↵-LPBoost on CIFAR-10.

(a) CIFAR-10 (b) CIFAR-100

Figure 4: Test ↵-CVaR zero-one loss of ↵-AdaLPBoost under
different values of T .

than deterministic models, and the algorithm could automatically choose between high average
performance and high tail performance under different values of ↵.

One caveat of using a randomized model is that one might be able to game the model via repeatedly
using it. For example, when applying for a credit card, one can submit the application repeatedly
until it gets approved if the decision is given by a randomized model. It is important to study how
to improve the tail performance in this scenario where the model can be used repeatedly, which we
leave as an open question.

One future direction is the application of ensemble methods to the fairness without demographics
problem, in which the dataset is divided into several groups which are unknown during training, and
the goal is to minimize the model’s worst-group loss, i.e. its maximum loss over all the groups. The
worst-group loss can be upper bounded by the CVaR loss or certain families of DRO loss, but the
bound is loose, and the model with the lowest CVaR loss is not guaranteed to achieve the lowest
worst-group loss. Due to the difficulty of the problem, some recent works considered the scenario
where a small set of samples with group labels is provided after training and before testing. Ensemble
methods can be useful in this scenario: we can train T base models, and then solve a linear program
to obtain the optimal model weight vector with the provided validation set with no need of training
new models. We leave the design of such algorithms to future work.

Social Impact. Subpopulation shift has been widely studied to improve the fairness of machine
learning, which is of great social importance. Models with high tail performance are considered fair
because they perform well on all parts of the data domain. In this work we show how to improve
the tail performance by learning ensemble models, which is a great contribution to the area of fair
machine learning. However, we also observe that ensemble methods improve the tail performance by
lowering the accuracy over samples in the majority group. Such trade-offs are nonetheless inevitable
under the assumption that the average accuracy does not increase. It is an interesting sociological
question to what extent it is just to improve fairness by sacrificing the majority group.

Code. Codes for this paper can be found at: https://github.com/RuntianZ/boosted_cvar.

Acknowledgments and Disclosure of Funding

This research is supported by DARPA Guaranteeing AI Robustness against Deception (GARD) under
the cooperative agreement number HR00112020006 and the official title "Provably Robust Deep
Learning".

References

[ApS21] MOSEK ApS. MOSEK Optimizer API for Python. Version 9.2.44, 2021.

[AVDB18] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting
system for convex optimization problems. Journal of Control and Decision, 5(1):42–60,
2018.

10

https://github.com/RuntianZ/boosted_cvar

[BHL19] Dheeraj Bhaskaruni, Hui Hu, and Chao Lan. Improving prediction fairness via model en-
semble. In 2019 IEEE 31st International Conference on Tools with Artificial Intelligence

(ICTAI), pages 1810–1814, 2019.

[CBL06] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge
university press, 2006.

[DB16] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language
for convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[DBST02] Ayhan Demiriz, Kristin P Bennett, and John Shawe-Taylor. Linear programming
boosting via column generation. Machine Learning, 46(1):225–254, 2002.

[DCB13] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP solver for embedded systems. In
European Control Conference (ECC), pages 3071–3076, 2013.

[DN18] John Duchi and Hongseok Namkoong. Learning models with uniform performance via
distributionally robust optimization. arXiv preprint arXiv:1810.08750, 2018.

[FS97] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55(1):119–139, 1997.

[GFB+11] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and Fran-
cisco Herrera. A review on ensembles for the class imbalance problem: bagging-,
boosting-, and hybrid-based approaches. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 42(4):463–484, 2011.

[HNSS18] Weihua Hu, Gang Niu, Issei Sato, and Masashi Sugiyama. Does distributionally robust
supervised learning give robust classifiers? In International Conference on Machine

Learning, pages 2029–2037. PMLR, 2018.

[HSNL18] Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fair-
ness without demographics in repeated loss minimization. In Jennifer Dy and Andreas
Krause, editors, International Conference on Machine Learning, volume 80 of Proceed-

ings of Machine Learning Research, pages 1929–1938, Stockholmsmässan, Stockholm
Sweden, 10–15 Jul 2018.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

[IN19] Vasileios Iosifidis and Eirini Ntoutsi. Adafair: Cumulative fairness adaptive boosting.
CoRR, abs/1909.08982, 2019.

[KH+09] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[KLPR20] Justin Khim, Liu Leqi, Adarsh Prasad, and Pradeep Ravikumar. Uniform convergence
of rank-weighted learning. In International Conference on Machine Learning, pages
5254–5263. PMLR, 2020.

[LBC+20] Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee, Flavien Prost, Nithum Thain, Xuezhi
Wang, and Ed Chi. Fairness without demographics through adversarially reweighted
learning. Advances in Neural Information Processing Systems, 33, 2020.

[LLWT15] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes
in the wild. In Proceedings of the IEEE international conference on computer vision,
pages 3730–3738, 2015.

[LMKA16] Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. How we analyzed the
compas recidivism algorithm. ProPublica (5 2016), 9(1), 2016.

[MHN21] Paul Michel, Tatsunori Hashimoto, and Graham Neubig. Modeling the second player in
distributionally robust optimization. In International Conference on Learning Represen-

tations, 2021.

[MRT18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine

learning. MIT press, 2018.

11

http://arxiv.org/abs/1810.08750

[RWG07] Gunnar Rätsch, Manfred K Warmuth, and Karen A Glocer. Boosting algorithms for max-
imizing the soft margin. Advances in neural information processing systems, 20:1585–
1592, 2007.

[RWST05] Gunnar Rätsch, Manfred K Warmuth, and John Shawe-Taylor. Efficient margin maxi-
mizing with boosting. Journal of Machine Learning Research, 6(12), 2005.

[Sch90] Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227,
1990.

[Sch03] Robert E Schapire. The boosting approach to machine learning: An overview. Nonlinear

estimation and classification, pages 149–171, 2003.
[Shi00] Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting

the log-likelihood function. Journal of statistical planning and inference, 90(2):227–244,
2000.

[SKHL20] Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distribution-
ally robust neural networks for group shifts: On the importance of regularization for
worst-case generalization. In International Conference on Learning Representations,
2020.

[SL09] Chunhua Shen and Hanxi Li. A duality view of boosting algorithms. CoRR,
abs/0901.3590, 2009.

[SRKL20] Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of
why overparameterization exacerbates spurious correlations. In Hal Daumé III and Aarti
Singh, editors, Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pages 8346–8356. PMLR,
13–18 Jul 2020.

[WGV08] Manfred K Warmuth, Karen A Glocer, and SVN Vishwanathan. Entropy regularized
lpboost. In International Conference on Algorithmic Learning Theory, pages 256–271.
Springer, 2008.

[XDKR20] Ziyu Xu, Chen Dan, Justin Khim, and Pradeep Ravikumar. Class-weighted classifi-
cation: Trade-offs and robust approaches. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pages 10544–10554. PMLR, 13–18 Jul
2020.

[ZDKR21] Runtian Zhai, Chen Dan, Zico Kolter, and Pradeep Ravikumar. Doro: Distributional and
outlier robust optimization. In Marina Meila and Tong Zhang, editors, Proceedings of

the 38th International Conference on Machine Learning, volume 139 of Proceedings of

Machine Learning Research, pages 12345–12355. PMLR, 18–24 Jul 2021.
[ZK16] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint

arXiv:1605.07146, 2016.

12

http://arxiv.org/abs/1605.07146

A Proofs

A.1 Proof of Proposition 1

We have the following relationship: CVaR`0/1
↵ (F) = maxw2�n,w4 1

↵n

Pn
i=1 wi1{F (xi) 6=yi} =

min{1, 1
↵n

Pn
i=1 1{F (xi) 6=yi}} = min{1, 1

↵R̂
`0/1(F)}. Thus, CVaR`0/1

↵ (F) � CVaR`0/1
↵ (F ⇤) be-

cause R̂`0/1(F) � ERM`0/1(F ⇤), so F ⇤
ERM`0/1

⇢ F ⇤
CVaR

`0/1
↵

.

If minF R̂`0/1(F) < ↵, then for all F , we have CVaR`0/1
↵ (F) = 1

↵R̂
`0/1(F). Thus, F ⇤

ERM`0/1
=

F ⇤
CVaR

`0/1
↵

.

A.2 Proof of Proposition 2

For a deterministic model F , we have CVaR`0/1
↵ (F) = min{1, 1

↵R̂
`0/1(F)}. For a randomized

model F 0 such that ERM`0/1(F 0) = R̂`0/1(F), we have CVaR`0/1
↵ (F 0)  1 and

CVaR`0/1
↵ (F 0) = max

w2�n,w4 1
↵n

nX

i=1

wiP (F 0(xi) 6= yi) 
nX

i=1

1

↵n
P (F 0(xi) 6= yi)

=
1

↵
ERM`0/1(F 0) =

1

↵
R̂`0/1(F)

(10)

Thus, CVaR`0/1
↵ (F 0)  CVaR`0/1

↵ (F).

A.3 Derivation of the Primal-Dual Formulation of ↵-LPBoost

The primal problem of ↵-LPBoost is

max
�,⇢

⇢� 1

↵n

nX

i=1

(⇢� 1 +
tX

s=1

�s`si)+

s.t. � 2 �t

(11)

Introducing slack variables i = (⇢ � 1 +
Pt

s=1 �
s`si)+, the primal problem can be written as a

linear program:

max
�,⇢,

⇢� 1

↵n

nX

i=1

 i

s.t. � 2 �t

 i � 0, i � ⇢� 1 +
tX

s=1

�s`si , 8i 2 [n]

(12)

The Lagrangian of this problem is

L(�, ⇢, ,w,µ,⌫,�) =� ⇢+
1

↵n

nX

i=1

 i �
tX

s=1

µs�s + �(
tX

s=1

�s � 1)

�
nX

i=1

⌫i i �
nX

i=1

wi(i � ⇢+ 1�
tX

s=1

�s`
s
i)

=(
nX

i=1

wi � 1)⇢+
nX

i=1

(
1

↵n
� ⌫i � wi) i

+
tX

s=1

(� � µs +
nX

i=1

wi`
s
i)�s � � �

nX

i=1

wi

(13)

13

The dual problem is maxw<0,µ<0,⌫<0,� min�,⇢, L(�, ⇢, ,w,µ,⌫,�). In order to ensure that
min�,⇢, L 6= �1, we need

8
>>>>>>>><

>>>>>>>>:

nX

i=1

wi = 1

1

↵n
� ⌫i � wi = 0) wi 

1

↵n
; 8i 2 [n]

� � µs +
nX

i=1

wi`
s
i = 0) hw, `si � ��; 8s 2 [t]

(14)

Under these conditions, we have L = �� �
Pn

i=1 wi = �� � 1. Let � = � + 1, then the dual
problem becomes

max
w<0,�

� �

s.t. hw, `si � 1� �; 8s 2 [t]
nX

i=1

wi = 1, wi 
1

↵n
; 8i 2 [n]

(15)

which is equivalent to (5).

Connection to Original LPBoost. The original soft-margin LPBoost formulation (Eqn. (4) and
(5) in [DBST02]) is:

Dual:

min
w,�

�

s.t.
nX

i=1

wiyiHis  �; 8s 2 [t]

w 2 �n,w 4 D

(16)

Primal:

max
�,⇢,

⇢�D
nX

i=1

 i

s.t. i � ⇢� yihHi,�i, i � 0; (8i 2 [n])

� 2 �t

(17)

where H 2 Rn⇥t is some matrix and y 2 Rn is some vector. Now, let D = 1
↵n , yi = 1 for all

i 2 [n], and His = 1� `si for all i, s. Then, it is easy to show that the above primal-dual problem
becomes the ↵-LPBoost primal-dual problem (5) and (6).

A.4 Proof of Proposition 3

The proof is based on the following dual formulation of CVaR (see Example 3 in [DN18]):

CVaR`
↵(F) = min

⌘2R

(
↵�1 1

n

nX

i=1

(`(F (xi), yi)� ⌘)+ + ⌘

)
(18)

So we have

⇢t⇤ = max
�2�t

max
⇢2R

⇢� 1

↵n

nX

i=1

(⇢� 1 +
tX

s=1

�s`
s
i)+

!

= max
�2�t

�min
⇢2R

1

↵n

nX

i=1

(⇢� 1 +
tX

s=1

�s`
s
i)+ � ⇢

!

= max
�2�t

�min
⌘2R

1

↵n

nX

i=1

(
tX

s=1

�s`
s
i � ⌘)+ � 1 + ⌘

!
(⌘ = 1� ⇢)

= max
�2�t

⇣
1� CVaR`0/1

↵ (F)
⌘

(19)

since `si is defined as the zero-one loss of model fs over zi. And since the primal problem finds the
�⇤ that maximizes ⇢t⇤, �⇤ achieves the maximum above.

14

A.5 Proof of Theorem 5

Consider an expert problem where there are n experts such that the loss of expert i at round t is
1 � `ti 2 [0, 1] (e.g. let the prediction of expert i at round t be 1 � `ti, and let the loss function be
`(ŷ) = ŷ, ŷ 2 [0, 1]). A weighted average forecaster randomly samples an expert according to the
weights wt at round t, and its average loss is rt =

Pn
i=1 w

t
i(1 � `ti). Then Algorithm 2 satisfies

wt+1
i / exp(�⌘

Pt
s=1 r

s
i) for all t, so by Theorem 2.2 in [CBL06] we have

log n

⌘
+

T⌘

8
�

TX

t=1

rt � min
i2[n]

TX

t=1

(1� `ti) = max
i2[n]

TX

t=1

`ti �
TX

t=1

nX

j=1

wj`
t
j (20)

By assumption, for all t we have
Pn

j=1 wj`tj  g. With ⌘ =
q

8 logn
T , we have

max
i2[n]

1

T

TX

t=1

`ti  g +

r
log n

2T
(21)

Let � =
q

logn
2T , then T = O(logn

�2). Finally, note that the ↵-CVaR zero-one loss of the ensemble

model is upper bounded by maxi2[n]
1
T

PT
t=1 `

t
i.

B Experiment Details

On the COMPAS dataset, we use a three-layer feed-forward neural network activated by ReLU
as the classification model. For optimization we use momentum SGD with learning rate 0.01 and
momentum 0.9. The batch size is 128. We warmup the model for 3 epochs, and each base model is
trained for 500 iterations, with the learning rate 10x decayed at iteration 400.

On the CelebA dataset, we use a ResNet18 as the classification model. For optimization we use
momentum SGD with learning rate 0.001, momentum 0.9 and weight decay 0.001. The batch size is
400. We warmup the model for 5 epochs, and each base model is trained for 4000 iterations, with
learning rate 10x decayed at iteration 2000 and 3000.

On each of the Cifar-10/Cifar-100 dataset, we take out 5000 samples from the training set and make
them the validation set. The remaining 45000 training samples consist the training set. We use a
WRN-28-1 on Cifar-10 and a WRN-28-10 on Cifar-100. For optimization we use momentum SGD
with learning rate 0.1, momentum 0.9 and weight decay 0.0005. The batch size is 128. For Cifar-10,
we warmup the model for 20 epochs, and each base model is trained for 5000 iterations, with the
learning rate 10x decayed at iteration 2000 and 4000. For Cifar-100, we warmup the model for 40
epochs, and each base model is trained for 10000 iterations, with the learning rate 10x decayed at
iteration 4000 and 8000.

On all datasets and for all ↵, we use ⌘ = 1.0 for ↵-AdaLPBoost.

15

	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Boosted CVaR Classification
	3.1 -LPBoost
	3.2 The Boosted CVaR Classification Framework
	3.3 -AdaLPBoost
	3.4 Discussion

	4 Experiments
	4.1 Setup
	4.2 Results

	5 Conclusion
	A Proofs
	A.1 Proof of Proposition 1
	A.2 Proof of Proposition 2
	A.3 Derivation of the Primal-Dual Formulation of -LPBoost
	A.4 Proof of Proposition 3
	A.5 Proof of Theorem 5

	B Experiment Details

