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ABSTRACT
While current deep learning (DL) inference runtime systems
sequentially offload the model’s tasks on to an available
GPU/accelerator based on its capability, we make a case for
selectively redirecting some of these tasks to the CPU and
running them concurrently with the GPU doing other work.
This new opportunity specifically arises for emerging DL
models whose data flow graphs (DFGs) have much wider
fan-outs compared to traditional ones which are invariably
linear chains of tasks. By opportunistically moving some of
these tasks to the CPU, we can (i) shave off service times
from the critical path of the DFG, (ii) devote the GPU for
more deserving tasks, and (iii) improve overall utilization
of the provisioned hardware in the server. However, several
factors such as its criticality in the DFG, slowdown when
moved to a different hardware engine, and overheads in trans-
ferring input/output data across these engines, determine
the what/when/how of tasks to be directed. While this is
computationally demanding and slow to be solved optimally,
through a series of rationales we derive a fast technique for
task overflow from GPU to CPU. We implement this tech-
nique on a nimble heterogeneous concurrent runtime engine
built on top of the state-of-the-art ONNXRuntime engine
and demonstrate > 10% reduction in latency, > 19% gain
in throughput, and > 9.8% savings in GPU memory usage
for emerging neural network models.
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1 INTRODUCTION
This paper adapts the evolution of modern system archi-
tectures to the characteristics of emerging Deep Learning
(DL) applications. The growing popularity and adoption of
deep neural networks [16] (DNNs) for making accurate in-
ferences/predictions is leading to increasingly complex DL
models. Specifically, tasks in emerging models such as Faster-
RCNN [52] have larger Data-FlowGraph (DFG) fan-outs than
conventional neural networks such as ResNet [23]. On the
hardware side, heterogeneity continues to grow in modern
servers [22, 48], which are provisioned today with GPUs,
TPUs [34], FPGAs [11], and other accelerators [9] for meet-
ing the demands imposed by neural network computations.
This paper marries these two emerging trends by oppor-
tunistically mapping tasks in large fan-out neural networks
to multiple devices within heterogeneous servers, thereby
accelerating inference queries while boosting the hardware
utilization.
DNNs have become commonplace for numerous appli-

cations - image and voice recognition [10, 58], natural lan-
guage processing, conversational systems, and several sci-
entific [30, 39] applications. Earlier generations of DNNs,
such as the widely studied [8, 12] ResNet model [23], can
be viewed as a linear chain of data dependent tasks. Each
task by itself is quite demanding and is usually offloaded to
a specialized accelerator (TPU, FPGA, etc.) or to one or more
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GPUs with thousands of cores. Such an execution model,
which runs one task after another on these specialized en-
gines, is usually close to optimal for a linear task dependence
chain. However, newer DNN models for these applications
are growing in complexity to improve accuracy. For example,
models such as FasterRCNN can no longer be viewed as lin-
ear chains of tasks. The DFG between its tasks exhibit higher
fan-outs, implying more potential for parallel execution. This
paper will show how to assign these tasks to execute in par-
allel across heterogeneous devices to improve performance
over the conventional sequential execution style that is im-
plemented in today’s DNN execution engines such as ON-
NXRuntime [27], TensorRT [59], etc.
Today’s servers offer an eclectic mix of compute engines

beyond the many/multi-core CPUs. While software infras-
tructures/compilers [8, 38] exist that readily take high level
DNN models and compile/synthesize them to such diverse
hardware devices, the question still remains as to which
hardware engine is the best for executing a given task when
there are multiple such tasks waiting for available hardware.
This would depend not only on the relative suitability of
the hardware for the task but also issues such as “relative
criticality” (of the task in the DFG) and inter-task commu-
nication. At the application level, there have been several
proposals [8, 32] that try to optimize the graph of the model
- such as fusing neighboring operators and pruning unused
ones. Nevertheless, the optimized graph still needs an effi-
cient runtime system to map its tasks to the diverse hardware
engines.
We propose a heterogeneous execution runtime, which

sits below the optimizing compilers (which generate back-
end kernels) and makes informed decisions based on runtime
information to choose the right device for running the right
kernel at the right time to minimize the overall model execu-
tion time. Today’s runtime systems (e.g., ONNXRuntime [27])
execute kernels sequentially one after the other on special-
ized compute units such as the GPU. Our system augments
this to explore parallel execution of the kernels/tasks across
different (heterogeneous) computational units to speed up
execution of the whole model.

The mapping of a neural model’s tasks to heterogeneous
hardware has been examined to some extent from a the-
oretical perspective in prior works [2, 41, 47]. In general,
these approaches try to use the history of similar task execu-
tions (either in this model or in other models) to learn where
they should be executed. While these studies focus more on
learning techniques to solve the problem, this work aims to
navigate the practical challenges in implementing a solution
on a real inference engine.To our knowledge, this work is the
first attempt to extend a real DNN execution engine to ac-
commodate task assignment in a wide-spanning neural DFG
onto heterogeneous compute engines of a server to leverage

parallelism for inference workloads.While training is equally
important, in this study, we mainly focus on inference work-
loads, which are user-facing and require careful resource
allocation in order to meet stringent latency (especially tail
latency) requirements. Our discussion and evaluation focuses
on high-end servers containing multi-core CPUs and state-
of-the-art GPUs (GPUs are the dominant secondary compute
platform in today’s datacenters [53]), though our work could
be extended to include other devices in the future.

Considering the wide fan-out of emerging neural network
DFGs, we show that several of its tasks spend a consid-
erable time waiting for computation engines, even more
than the time taken to execute them. While we could redi-
rect/overflow all such waiting tasks opportunistically to the
abundantly available surplus CPUs, we show that blindly
doing so would simply shift the bottleneck there. Instead, we
want to be selective about which tasks to redirect - specifi-
cally prioritizing tasks that have minimal slowdown when
they get executed by the CPU instead of the GPU. Even doing
this only marginally improves the overall performance. It
is also important to consider the task communication costs
since the overheads of moving the dependent data between
the memories of the compute engines can be high. Based on
these observations, we develop strategic execution plans for
these wide-fan-out DFGs, called SIR+ 1 , that opportunisti-
cally leverages the CPU for selective tasks while boosting
the utilization of the GPU itself. The key contributions of
our work are:
• We study emerging wide fan-out DNNmodels and present
the opportunity to parallelize their execution between
under-utilized CPUs and the GPU on a heterogeneous
server.

• The queueing times of tasks, the slowdown of tasks (on
the CPU w.r.t. the GPU), and the communication between
tasks are equally important criteria when deciding what
tasks to redirect/overflow to the CPU. We develop an ef-
fective and fast algorithm that leverages these criteria
and show that this can significantly reduce the execution
time while boosting GPU utilization. We also show that
our approach performs close to an optimal placement so-
lution derived from a constrained optimization problem
formulation.

• We build the necessary system support by extending the
popular production inference engine (ONNXRuntime [27])
to implement SIR+. We also show SIR+ is extendable to
TensorRT. This requires the concurrency design to be fine-
tuned at the lower levels in order to make this work ef-
ficiently. The challenges posed by µs scale tasks of these

1 SIR+ enables the use of “Surplus" (CPU) resources for DNN Inference
Runtime systems
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neural networks, requires the use of agile lock-free ap-
proaches and memory saving techniques.

• Extensive evaluation across four different heterogeneous
server platforms for three emerging DNN models (Faster-
RCNN,MaskRCNN, SSD) indicate that SIR+ provides∼15%
latency savings under light load, upto 90% latency savings
under high load, and 45%-79% savings in tail latency (at
high load regions).

• SIR+ also provides higher throughput (by at least 19.8%) on
a single GPU and (by at least 11%) on multi-GPU settings
over the state-of-the-art ONNXRuntime. It dedicates the
GPUs for more demanding tasks by shifting some of the
load to the CPU, thus handling more load for the same
responsiveness.

• By moving some tasks to the CPU, SIR+ also reduces the
demand on “valuable” GPU memory by at least 9.8%. 2

2 DNN INFERENCE
Platform: DNN inference workloads are usually run on
servers with CPUs alone or in conjunction with GPUs and
other accelerators to speed up tasks that are amenable to
using the hardware [22, 48]. While there is no dearth of
commodity CPUs in the datacenter, GPUs [53] are the most
prevalent form of accelerators that are typically paired with
these “brawny" CPUs. This makes our work particularly rel-
evant today, and readily adoptable, for exploiting these two
intra-server heterogeneous computing engines (CPU+GPU)
for neural network inference services. The hardware plat-
form, used in our discussions, comprises a server running
Xeon CPUwith an Nvidia Titan RTXGPU (See PF1 in Table 5
for full details). We use the Microsoft ONNXRuntime [27]
execution engine, a state-of-the-art neural network execu-
tion platform that incorporates many optimizations [29] in-
cluding compiling optimized tasks for both CPU and GPU
devices. We will study both latency (i.e., the time taken to
produce the result from the time a single query and its input
is given to the server) as well as throughput (i.e., the number
of queries served by the system per second) in terms of per-
formance. Both metrics will not only be influenced by the
service time to perform their respective tasks, but also by
the waiting/queueing time to start executing them on the
compute engine (either the CPU or GPU).
Emerging DNNmodels: Conventional neural models such
as AlexNet/ResNet are well understood and extensively stud-
ied in the systems community [8, 12, 13, 18, 24, 32]. In con-
trast to these models, recent proposals in the ML/Vision com-
munity [36, 47, 61, 65] indicate an emergent trend towards
complex models with inherent differences in the structures
of their data-flow graphs (DFG). On comparing traditional
ResNet like models which have a low (in/out) degrees to

2SIR+ is available at https://github.com/minus-one/sir_plus.

emerging DNN models such as FasterRCNN, we observe a
clear distinction in the fan-out characteristics of the DFGs
of the emerging class of neural networks. While the fan-out
of traditional models is as low as <= 4 for ResNet50, with
most of them having just 2 edges (1 incoming and 1 outgoing
edge), it is as high as 83 incoming and/or outgoing edges for
emerging DNN models such as in the case of FasterRCNN.
This wide fan-out characteristic of emerging models offers
the possibility of executing several paths of the DFG that
could be executed in parallel without violating dependencies.
As explained earlier, our interest in this paper is beyond the
well studied conventional neural models, and instead, we
focus on the inherently more complex ones. We will use the
FasterRCNN (trained on COCO [37] images) model in the
next few sections to illustrate the issues behind our solution.

3 EXISTING SEQUENTIAL EXECUTION
DNN inference computations can be depicted as a Data-Flow-
Graph (DFG) of executions. A neural network execution
engine, such as ONNXRuntime, takes this DFG and executes
the nodes (tasks) of the DFG one after another in a sequential
fashion while obeying the data dependencies (e.g., using
a topological ordering of the graph). A static plan of the
execution is created when the model is first loaded onto the
engine. The plan contains the order of execution of all the
nodes as well as the choice of the device (CPU/GPU) to be
used for each node when serving a query.

Figure 1a visually depicts the execution of the FasterRCNN
model for the baseline ONNXRuntime as a Gantt chart. As
can be seen, most nodes (tasks) of the DFG for this model
run on the GPU with very few nodes (< 10% of the tasks)
relegated to the CPU. While this is shown specifically for
the ONNXRuntime, other neural execution engines such
as PyTorch [49] also execute these models similarly. Exe-
cution engines that sequentially schedule these DFG nodes
would perform (near) optimally for linear style DFGs (such
as ResNet50), but fall short for emerging DNN models such
as FasterRCNN.
To illustrate this, we plot the task wait time - referred to

as queueing time (Q.T.) henceforth - representing the delay
in starting a task after it becomes ready to execute (i.e., once
all its input data has become available). We can clearly see in
Figure 2a that cumulative Q.Ts are a lot shorter for ResNet50
compared with FasterRCNN, which has very high Q.Ts (18%
of the nodes must wait). Consequently, the current practice
of scheduling the sequential chain of tasks one by one on the
GPU would be close to optimal for older style models (e.g.,
ResNet50). But in newer style models (e.g., FasterRCNN), one
could possibly do better by scheduling the tasks in parallel
using other available computer engines instead of waiting
for the GPU.
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Figure 1: Gantt chart of executing FasterRCNN on a system with 1 CPU and 1 GPU using different placement
strategies.
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Figure 2: Queueing times (Q.T) and Service times (S.T)

On closely examining the Q.Ts of FasterRCNN tasks in
Figure 2b, we see that many tasks are waiting longer for the
GPU than the time taken to service them. This suggests that
one could selectively move these tasks to the largely idle
host CPU cores to reduce the make-span of the DFG.

4 SIR+: CONCURRENT DNN EXECUTION
We next explore different strategies to help alleviate the
high queueing delays experienced by tasks in the DFG by
opportunistically utilizing the CPU for their execution while
concurrently executing other tasks with the GPU. Note that
runtime environments such as ONNXRuntime come up with
a static plan of the order and placement to execute the tasks
a priori, and we would like to simply modify this plan so
that selected tasks get re-routed/overflowed for our desired
goals. SIR+ profiles the execution and applies a combination
of strategies to optimize the future re-routes of the tasks. As
these models are deployed to run for extended periods, we
simply use a short duration before model deployment for
profiling the baseline execution (Figure 2b).
Placing and scheduling the tasks (nodes) of the DFG of

a DL model is an NP-hard problem [26, 57]. We formulate
and present details of this problem in Section 5. Considering
DFGs of emerging DNN models with hundreds/thousands
of tasks (and this number is only expected to increase with
newer models), these problems take an excessive amount of
time (order of days) to produce optimal solutions. Instead, we
first seek fast techniques before comparing them to the MILP

Scheme Tasks
−→ CPU

Avg. Q.T. (µs)
GPU

Avg. Q.T. (µs)
CPU

Avg. Q.T. (µs)
Overall

Time (µs)
Overall

Baseline 0 188 16 172 69.94
QDall 544 244 2136 670 213.46
QD 519 236 504 255 80.6
Table 1: Performance breakdown for QD vs. Baseline.

formulation. In the forthcoming discussions, we assume a
batch-size of 1 for the inference as these newer models are
large enough to fully utilize the GPU and higher batch-sizes
generally incur higher latencies.

4.1 Queueing Delay-based Overflow to
CPU (QD)

Rationale: The question that arises is which tasks waiting
on the GPU must overflow to the CPU. A straw-man is to
overflow all the long waiting tasks to the CPU rather than
wait for the GPU.
Strategy: The naïve approach is to move all taskswith a non-
zero queueing delay (18% of tasks in the DFG) to the CPU
(denoted as QDall ). This might simply shift the bottleneck
to the CPU and defeat the whole purpose of employing a
GPU for compute intensive tasks. To avoid this problem,
rather than divert all tasks with non-zero queueing delays
to the CPU, we migrate only those tasks that can complete
earlier on the CPU. We estimate and compare the task finish
times on the CPU and the GPU and move it to the CPU if the
former is earlier than the latter. That is, if the service times
(S.T) of the task on the CPU < (Q.T + S.T) on the GPU, we
re-route the task to the CPU. This enhanced policy - termed
as QD - selectively overflows tasks based on whether they
can finish earlier on the CPU as compared to their original
completion time on the GPU.
Results with this Strategy: Table 1 shows the results on
employing the naïveQDall and the enhancedQD techniques
to re-route tasks from the GPU to the CPU. As surmised,
migrating all tasks which queue up on the GPU (QDall ) dra-
matically worsens the execution time as the migrated tasks
take significantly more time on the CPU. Surprisingly, even
selectively choosing a subset of tasks which finish earlier
on the CPU (termed as QD) results in a worse performance
than the baseline sequential execution.
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In general, there are 2 contrasting drivers. On the one hand,
moving from the GPU to the CPU can reduce the task’s Q.T.
to execute and also ease the load on the GPU for another
waiting task. On the other hand, moving a lot of tasks to
the CPU can shift the bottleneck there, causing even longer
waiting times as the CPU is usually less efficient at servicing
a task.We see that for both the naïveQDall and the enhanced
QD policy, the performance worsens giving credence to the
importance of the latter effect.
Figure 1b shows the Gantt chart for the QD strategy. As

a consequence of higher CPU utilization (compared to the
baseline Figure 1a), tasks now start to queue on the CPU.
Although the Q.Ts of the migrated tasks may have reduced,
this comes at the cost of a possibly higher Q.T for other tasks
both on the CPU and GPU. The overall Q.T (Table 1) shows
a marked increase. These tasks, and those dependent on
them, get inordinately delayed because of this new schedule,
resulting in an overall increase in latency for the query -
from 69.94ms in the baseline to 80.6ms with this approach.
These results suggest that while we can move tasks off

the GPU to reduce their waiting time, it is not profitable
overall as they cause other tasks to suffer from significant
slowdown.

4.2 Slowdown based Overflow to CPU (SD)
Rationale: As we carefully analyze the slowdown for each
task and avoid the inordinate slowdown caused by moving
them to the CPU, we observe the following about candidate
tasks that can be moved to the CPU. Not all tasks equally
slow down when they move from the “faster" GPU to
the “slower" CPU. For FasterRCNN we see that the spread
of the slowdown is very large - ranging from less than 100µs
to as large as 104µs . Compute heavy tasks like Convolution,
Add, and GEMM incur large slowdowns (order of 104µs). On
the other hand, a substantial chunk (≈80-90%) of computa-
tionally light-weight tasks like NonMaxSuppression, Softmax,
Square-Root, etc., take almost the same time on the CPU and
the GPU by leveraging the SIMD capabilities of the CPU
(when applicable). The top tasks contributing to the slow-
down (e.g., Convolution, GEMM, Relu, etc.) account for a
small number of tasks, while there is a long tail of tasks that
have much smaller contribution to slowdown. This encour-
ages us to apply the SD strategy, which moves these long
tail of tasks to the CPU.
Strategy: A clear trade-off is emerging when performing
re-routes of tasks to the CPU from the GPU. Redirecting
too many tasks can shift the bottleneck to the CPU while
redirecting too few tasks will achieve a similar result to the
baseline. We go against the conventional wisdom of always
preferring the faster device and explore this trade-off by nudg-
ing tasks with marginal slowdowns to the CPU. We start with

Scheme Time (µs)
CPU

Time (µs)
GPU

Time (µs)
Memcpy

Util. (%)
CPU

Util. (%)
GPU

Baseline 370 66597 2974 0.53 95.25
SD 16515 47816 34848 18.36 57.54
Table 2: SD vs. Baseline. Migrating short tasks boosts
CPU utilization but also introduces costly memory
copy operations.

a conservative threshold of 100µs (motivated by GPU kernel
launch overheads that are usually in the region of 10-100 of
µs) and assign tasks with a lower S.T increase less than this
threshold to the CPU.
Results with this Strategy: As we can see from the Gantt
chart in Figure 1c, the CPU is clearly more utilized than
the baseline. Table 2 gives a detailed breakdown of the time
spent on each device. Although we have only migrated the
tasks with a marginal slowdown, both the time spent on the
CPU and its utilization (column 2 and 5 in Table 2 respec-
tively) have been boosted significantly. Unfortunately, the
performance of this strategy is still worse than the baseline
sequential execution. This is explained as follows. Until now,
we have considered each task to be self-contained, with its
service time dependent only on the type of the computation
engine (CPU or GPU) where it runs. However, tasks oper-
ate on input data to produce output data, and the costs of
data transfers depend on where these tasks are run. When
data needs to be transferred between devices (from GPU
memory to host RAM or vice-versa), there is an additional
cost to perform this transfer (using DMA engines over the
PCIe bus) rather than simply accessing the local memory
as is the case when they are running on the same device.
In fact, if we consider the time spent in data transfers (see
column 4 in Table 2 and in the Gantt charts of Figure 1c),
we see that a considerable amount of time (≈ 41%) elapses
in performing such data transfers before the tasks can run,
thereby increasing the execution time in this scheme.
While selectively choosing tasks which do not suffer an

increase in S.T. is imperative to improve the utilization of
CPU, it is additionally important to consider the “cost of data
transfers" while migrating tasks to the CPU.

4.3 Communication+Slowdown aware
Overflow to CPU (Comm+SD)

Rationale:We set out with a goal to find fast and profitable
techniques to overflow tasks to the CPU and observed that
data transfer costs play a significant role in determining
task placements. Consequently, we develop an algorithm
(Algorithm 1) - which runs in the order of seconds - to take
communication costs into consideration on top of the SD
strategy.
Strategy: The SD policy (Section 4.2) already subsets candi-
date tasks for running on the CPU based on their increase in
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Algorithm 1 Comm+SD
Input: G = DFG of the model with N tasks
T [] = Ti is the choice of device for executing task i
µ[i][d] = Service time (S.T.) of task i on device d
Fi = Device on which task i has lowest service time
Data[i][j] = Data transfer size from task i to task j
Rate[d1][d2] = Data transfer rate from d1 to d2
α = Threshold for switch to a slower device (100µs)
max_iter_count = Maximum number of iterations
Initialize iter_count = 0
repeat

for i ∈ Topological ordering(G) do
CommTime = 0
for j ∈ Pred(G, i) do

if Tj , Ti then
CommTime + = Data[j][i] ∗ Rate[Tj ][Ti ]

end if
end for
for j ∈ Succ(G, i) do

if Tj , Ti then
CommTime + = Data[i][j] ∗ Rate[Ti ][Tj ]

end if
end for
FastDeviceTime = µ[i][Fi ]
CurrDeviceTime = µ[i][Ti ]
if (CurrDeviceTime + CommTime) >

(FastDeviceTime + α ) then
Ti = Fi

end if
end for
iter_count+ = 1

until (T changes) && (iter_count <max_iter_count )

Policy All tasks
to CPU

Common
Tasks

Avg. Q.T. (us)
Common Tasks

Avg. S.T. (us)
Common Tasks

Comm.
Cost (us)

SD 2316 2238 139 6 34848
Comm+SD 2238 2238 124 6 6293

Table 3: Performance breakdown, Comm+SD vs. SD.

S.T. We analyze the predecessors/successors of these tasks.
If they are placed to run on the GPU, then the costs for the
data transfer are included in the service time to re-evaluate
whether this task still satisfies the SD threshold. We perform
this iteratively till the set does not change any more (i.e., it
converges). In our experiments, we find that it converges
very fast (less than 10 iterations) and works very well even
for large graphs (1000s of nodes).
Results with this strategy: Figure 1d shows the Gantt
chart with this placement strategy, where we see a significant
improvement in the overall response time compared to the
baseline (by 9.5%) as well as compared to SD (by 24%). Of the
20.3ms (24%) improvement in the overall response time over

SD, the reduction in communication overheads constitute
the bulk, validating the need for considering communica-
tion overheads in placement. Table 3 compares these two
schemes showing the average queueing and service times in
the respective schemes for the tasks common to both these
schemes. These values are nearly the same suggesting that
the main savings are from the lower time spent in communi-
cation (shown in last column). The total size of the data flow
- both in and out - for tasks that incur communication cost
under the SD and CommSD schemes is 580MB (Avg.: 5.13MB)
and 152MB (Avg.: 1.97MB) respectively. The Comm+SD pol-
icy deliberately avoids moving tasks with significantly large
data-flows from the GPU to the CPU.

To effectively utilize all available devices on a hetero-
geneous server for executing the DFG of a DNN model,
one must account for both service time differences (sec-
tion 4.2) as well as the communication costs incurred
on the data flows (section 4.3).

5 MIXED INTEGER LINEAR PROGRAM
(MILP) TO MINIMIZE EXECUTION
TIME OF DEEP LEARNING INFERENCE

We pose the problem to find the optimal placements for the
tasks of a model as an MILP. Our goal is to determine the
optimal placement for each task in a model’s DFG consisting
of V nodes (i.e., tasks of the model) on a heterogeneous
server with D devices. The objective is to minimize the total
execution time (ET ) taken to complete all the tasks.

Let µdi represent the time taken taken by task i to run on
a device d . The binary variable Dd

i is used to indicate the
placement of a node (i) on a specific device (d). We include
variables ST d

i to denote the time at which task i starts on
device d if assigned to it, and FT d

i as the time at which
task i finishes on device d . We assume that µdi is constant
and known a-priori for all tasks i on all devices D, which
is reasonable given that task service times on a device do
not vary considerably. Data transfers between any 2 tasks (i
and j) executing on the same device is assumed to incur zero
cost, while the transfer between tasks running on different
devices (d and l ) is measured by a fixed transfer rate - Ratedl .
Dividing the size of the transfer Datai j by this rate would
yield the transfer time. Table 4 lists all the variables used in
the MILP model.

The goal of the optimization is to minimize the total infer-
ence time of the model as:
Objective:Minimize ET , where execution time is bounded
by the completion time of the last task.

ET ≥ FT d
i (i ∀V )(d ∀D) (1)

The finish time of task i on device d is determined by adding
the start time to the service time of this task i on device d
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Variable Description Type
V Nodes in the DL Model Set
D Devices available on the server Set
ET Execution Time Variable
ST d

i Start Time of node i on device d Variable
FT d

i Finish Time of node i on device d Variable
Dd
i Placement of node i on device d Indicator

µdi
Time taken by node i
on device d Constant

Datai j
Tensor transfer size
b/w nodes i and j Constant

Ratedl Data transfer rate between devices d and l Constant
Pred(j) Nodes preceding node j in V Constant set

Table 4: Model variables. Decision variables are inside
the box.

(µdi ) multiplied by the decision variable Dd
i to ensure it is

added only for the device on which it actually runs.
FT d

i = ST d
i + (D

d
i × µdi ) (i ∀V )(d ∀D) (2)

We now describe the various constraints to enforce place-
ment with exclusion guarantees (i.e., any device cannot ser-
vice two tasks simultaneously at any time) and ordering
constraints to respect dependencies specified between tasks.

Placement constraint: Each task should be assigned to
exactly 1 device:∑

d ∈D

Dd
i = 1 (i ∀V ) (3)

Exclusion constraint: At any time, a device can execute at
most 1 task (exclusion) and there is no preemption of tasks.
Hence for every task i running on a device d there should be
no other task j whose start time (ST d

j ) lies between its start
time (ST d

i ) and its finish time (FT d
i ).

¬ (ST d
i ≤ ST d

j ≤ FT d
i )(i, j ∀V , d ∀D) (4)

Precedence constraint: To enforce dependencies in the
DFG along with the communication costs, we need to ensure
that the start time of a task i is greater than the finish time
(FT l

j ) along with the data transfer overheads, over all its
precedent tasks (j ∈ Pred(i)).

ST d
i ≥ FT l

j + Datai j/Ratedl

(i ∀V )(d ∀D)(j ∈ Pred(i))(l ∀D − d) (5)
We suitably modify the equations using the well-known

Big-M method to construct the MILP and generate optimal
solutions using the Gurobi [20] solver.

6 SIR+ RUNTIME IMPLEMENTATION
Having presented our Comm+SD and MILP techniques for
efficient placement of tasks, we next discuss the challenges
when implementing this on a production DNN engine - ON-
NXRuntime [27]. The runtime system must run tasks of the
DFG concurrently across different devices by automatically
creating the data and control workflows while satisfying
the data dependencies between tasks. We first discuss the
support already available in ONNXRuntime that we tap into

and then illustrate the different system optimizations that
are necessary to incorporate the placement strategies.

6.1 Challenges with existing Runtimes
Inference serving frameworks [12, 54] use two main APIs
- load and run [28] - to load and execute the model. In ON-
NXRuntime, the loadAPI first parses an ONNX [4] (protobuf)
file and constructs an in-memory graph representation of
the model. This graph is subsequently passed through an
optimizer that assigns the nodes of the graph to the best
available (CPU/GPU) device. This stage also performs var-
ious optimizations like node fusion, constant folding etc.,
similar to the ones proposed by TASO [32], TVM [8], and
other such systems [56, 66, 67]. Once the graph has been opti-
mized, a buffer (tensor) allocation plan for each task is gener-
ated on a memory arena using the Best-Fit-With-Coalescing
(BFC) trace allocator. Note that memory allocation (malloc)
is avoided on the critical path. The final plan of execution
is generated containing (i) the order of execution of each
task on the appropriate device, (ii) fence operations to en-
force control flow dependencies using CUDA events API,
(iii) tensor allocation plan of weights and inputs, (iv) data
transfer operations between the devices (if any). When an
inference is initiated using the run API, the execution engine
calls the corresponding executor with this execution plan
which executes them sequentially.

There are three key challenges to realize a concurrent exe-
cution of an inference with the above workflow. (i) Unlike in
vanilla ONNXRuntime, tasks across different devicesmust ex-
ecute concurrently, with low overheads for synchronization.
(ii) The buffer allocation plan, must be amended to account
for concurrent execution. The allocation is easy to determine
a-priori in sequential execution, as once a task is complete
the tensors consumed by the task can be deallocated and
be re-used by another downstream task. With a concurrent
execution strategy, it is challenging to the re-use memory
buffers as downstream tasks can re-use tensors only when a
task is specifically marked as complete. (iii) Finally, as DNN
inference tasks are at the scale of µs , minor overheads cause
a significant impact in performance. We will next see how
SIR+ mitigates these challenges effectively.

6.2 SIR+: System for concurrent execution
We first describe the behavior of the concurrent executors
and subsequently discuss a few optimizations.

Multi-threaded device executor: To enable parallel execu-
tion spanning multiple devices, SIR+ uses device specific
queues to en-queue tasks. This serves as the driver to imple-
ment our concurrent placement strategies by en-queueing
each task into the appropriate device queue with minimal
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concurrency control. As opposed to a single sequential ex-
ecutor in ONNXRuntime, SIR+ launches executors on a
threadpool [17]. They poll their respective device queues
and execute tasks as and when tasks become ready (arrive
on their queue). On task completion, they consult the graph
for whether each successor node is ready (i.e., all its depen-
dent tasks are complete) and correspondingly push the tasks
on their respective device queues if dependencies are met.

Lock-free DFG execution: There are two important regions
of synchronization that need to be efficiently handled. On
task completion, each executor (i) should safely query the
graph for task readiness, and (ii) add the ready task appropri-
ately into the specific device queue. For the former, we use
atomic variables to track the completed dependencies for a
task. For the latter, we use a lock-free concurrent queue [6].
Together they provide light weight lock-free synchroniza-
tion for orchestrating the data-flow execution. Lastly, we
enhance the events based control flow mechanism by using
a pre-created CUDA event pool to avoid additional CUDA
induced synchronization overheads.

Memory re-use optimization: The next addition in SIR+
relates to the buffer allocator component. As described pre-
viously, the sequential executor determines re-use of buffers
and de-allocates the buffer for a tensor when all its (re)uses
are completed. In SIR+, each executor tracks and updates
the use of the buffers allocated using atomic variables and
de-allocates them upon the final use of the buffer.

Context-switch avoiding chain execution: On closely ana-
lyzing the above framework, one can see that when executing
a long chain of tasks (i.e., each task has one predecessor and
successor), unnecessary queue manipulation operations are
performed resulting in additional contention with hidden
context switch overheads. To avoid this, we perform an opti-
mization where we detect linear-chains of tasks and avoid
adding those tasks to the queue, which in effect fuses sev-
eral tasks into one. This has two advantages: (i) we perform
the DFG synchronization operations only when necessary,
which reduces contention on the lock-free data structures,
and (ii) for linear models like ResNet50, we do not impose
any additional overheads, which generalizes our solution to
all types of models.

6.3 Impact of system optimizations:
While the use of atomics and/or lock-free synchronization
primitivesmay seem excessive, we find that they are essential
for handling microsecond scale tasks. If we do not employ
these mechanisms and instead go with conventional locking
mechanisms, we find a 16% degradation (i.e., increase) in the
overall model execution time and a 4× increase in the memory
usage for the FasterRCNN model that we have studied so far.

PF1 PF2 PF3 PF4
Titan RTX 24 GB
Xeon Gold 6230
188 GB DDR4

Quadro RTX 48GB
Xeon Gold 6230
188GB DDR4

Tesla T4 16 GB
Xeon Gold 6230
188 GB DDR4

RTX 2060 8GB
Ryzen 2700X
16 GB DDR4

Table 5: Evaluated hardware platforms

Mean Latency
Savings (%)

PF1 PF2 PF3
Low
RPS=6

High
RPS=15

Low
RPS=6

High
RPS=15

Low
RPS=2

High
RPS=6

FasterRCNN 9.44 51.90 8.53 42.84 4.99 15.5
MaskRCNN 12.21 82.8 11.56 68.68 6.07 26.23
SSD 12.79 84.89 14.10 90.36 25.9 45.3
Table 6: % savings in mean latency for SIR+ over ORT

The optimization to avoid context-switching is important
to maintain the performance for DNN models with linear
DFGs. Thus, these low level design choices are critical for
performance.

7 EVALUATION
The goal of this work is to opportunistically utilize the CPU,
beyond simply using the GPU, to (i) reduce the latency and (ii)
increase the throughput of DNN inference on heterogeneous
servers. We evaluate on four different heterogeneous servers
comprising different CPUs/GPUs as described in Table 5. We
compare ONNXRuntime version 1.6.0 - compiled with CUDA
10.2, CuBLAS, CuDNN (ORT) with SIR+ incorporating our
Comm+SD placement algorithm. We consider 3 emerging
models - FasterRCNN [44], MaskRCNN [45], SSD [46] - all
trained on the COCO dataset [37] taken from the ONNX
model zoo.

In experiments measuring execution time, we use a closed
loop load generator calling ORT directly. For latency and
throughput measurements, we use an open loop load gener-
ator running on a separate CPU socket of the same server
with Poisson Process arrivals and inputs chosen at random to
create the inference requests/queries. The request-response
to this service is carried out using gRPC.

7.1 Latency for Emerging DNN Models
Execution time: Wefirst evaluate the execution time for the

emerging DNN models (FasterRCNN, MaskRCNN, and SSD)
over the entire COCO dataset. We show the execution time
distribution in Figure 3 on 4 different server platforms (see
Table 5). We observe savings (see parenthesis in Figure 3) of
4%-15% in the average execution time across these platforms
when using our SIR+ heterogeneous runtime over the state-
of-the-art ONNXRuntime (ORT).

Mean latency: To evaluate a real-world serving scenario,
we measure the mean latency as a function of arrival rate
for ORT and SIR+ on PF1 − 3. The Figures 4a-4f (for PF1
and PF2) show the latency and the savings with SIR+ are
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Figure 3: Execution time of ORT vs. SIR+ on different heterogeneous server configurations.
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Figure 4: Mean latency performance of ORT vs. SIR+
with the Comm+SD/Opt placement.

summarized in Table 6. With SIR+, all three models show
significant savings (at least 5-10%) at low arrival rates and
are substantial (as much as 90%) at higher loads.

Tail latency: For latency critical services, the tail latency
becomes as important as the mean latency. As seen in Fig-
ures 5a- 5f, SIR+ does significantly better in terms of 99th
percentile (P99) of the latency across different arrival rates.
At an arrival rate of 15 RPS, there is at least 45% (PF1) and
47% (PF2) tail latency reduction when using SIR+ compared
to vanilla ORT.

Comparison to Opt: We next compare Comm+SD with
the MILP formulation that generates the optimal execution
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Figure 5: P99 Tail latency performance of ORT vs. SIR+
with the Comm+SD/Opt placement.

plan. It is expensive/impractical to generate a fully optimal
solution for large graphs for this MILP problem. After two
days of optimizing the 3 models, only FasterRCNN and SSD
yielded a (marginally) better solution than our approach
(Comm+SD). We compare this optimal placement on ORT
and SIR+ (terming it as ORT-Opt SIR+Opt respectively) in
Figures 4a-4b (FasterRCNN),4e-4f(SSD). SIR+ improves the
mean latency at low load regions over ORT-Opt by 16% and
6.28%, and comes very close - less than 1% and 2.87% of
the overall optimal solution (SIR+Opt) for the two models
FasterRCNN and SSD respectively. Even if one is willing
to spend an inordinate amount of time generating optimal
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Model Scheme
PF1

1 GPU
TP (RPS)

PF1
Avg. GPU
SM-Util (%)

PF2
1 GPU

TP (RPS)

PF2
2 GPU

TP (RPS)

PF2
4 GPU

TP (RPS)

FasterRCNN ORT 15.6 89 17.6 34.9 69.6
SIR+ 18.7 93 19.5 38.4 77.3

Mask RCNN ORT 14.2 89 16.0 31.6 63.4
SIR+ 17.2 94 17.9 35.3 70.6

SSD ORT 16.11 86 18.8 37.8 75.6
SIR+ 22.04 94 23.9 46.8 94.2

Table 7: Peak throughput comparison. ORT vs. SIR+

placements, the system design of SIR+ is necessary to realize
any gain in performance.
These results reiterate the need to opportunistically lever-

age the surplus CPU devices for DNN inference instead of
relying on the GPU only. This can be achieved by using a
communication-and-slowdown aware placement strategy
implemented on a low overhead runtime like SIR+.

7.2 Throughput for Emerging DNN Models
Datacenters hosting these inference services aim tomaximize
the throughput of requests served to boost their profitability.
We measure the peak throughput that can be extracted from
these executions (both ORT and SIR+) and show the results
for the 3 emerging DNN models in Table 7 on single and
multi-GPU settings. We measure peak throughput both on
PF1 and PF2. On PF1, we first measure the peak throughput
on single GPU settings, and scale SIR+ up to 4 GPUs on PF2.
We run these models with a batch-size of 1 to satisfy their
real-time latency requirements. As a result, the only option
to measure the peak throughput is by running multiple in-
stances of these inference services which has been done to
obtain the results in Table 7.
When measured on PF1 with a single GPU, we see that

the peak throughput has increased by 19.8%, 21.1%, and 36.8%
respectively for FasterRCNN, MaskRCNN, and SSD models
with SIR+ over ORT. Since SIR+ moves some tasks to the
CPU from the GPU, the CPU utilization (not shown) obvi-
ously increases. Interestingly, the GPU utilization, obtained
using NVML [42], has also increased under SIR+. This is
because SIR+ assigns tasks that utilize the GPU capabilities
more effectively to the GPU while the less effective tasks are
redirected to the CPU. On scaling to multiple GPUs on PF2,
we observe near linear scaling of throughput across 2 and
4 GPUs where the peak throughput increases by 11%, 11%,
and 24% for the 3 models respectively when fully using the
4 GPUs available on the machine. This shows that SIR+ can
generally be deployed on dense servers where the surplus
CPUs generally tend to be wasted and under utilized.

7.3 GPU Memory Usage
Reducing the GPU memory footprint is an often noted con-
cern in deploying DNN models to production due to prohib-
itive costs of memory (GDDR6) per GB [7, 25, 47, 50]. An

important impact of our task placement is in reducing the
GPU memory footprint. As Table 8 shows, we save over 9.8%
of the GPU memory for the 3 models.

Model ORT (MB) SIR+ (MB) % Savings
FasterRCNN 1705 1517 11.0%
MaskRCNN 1715 1513 11.7%

SSD 1122.25 1012.25 9.8%

Table 8: GPU memory usage -
PF1

By migrating
tasks to the CPU,
the model param-
eters and tensors
of these tasks get
allocated in host
DRAM instead of GPU memory.

7.4 Extending SIR+ to TensorRT:
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Figure 6: TensorRT (TRT) vs. SIR+ - SSD model

We now implement and compare SIR+ with TensorRT [59]
(TRT) v7.0. TensorRT implements proprietary techniques
that generate backends for different deep learning operators
that extract maximum performance on Nvidia GPUs. We
piggyback on ORT’s capability to use TensorRT under-the-
hood, and integrate it with our SIR+ system components. By
applying our Comm+SD placement strategy, we profile and
selectively overflow tasks from the TRT engine to be run on
the CPU. Figure 6 shows the gain in execution engine by us-
ing SIR+ with TRT for the SSD model. The other two models
are excluded as they perform better with vanilla ORT/SIR+
than with TRT. We see at least 14% gain (on average) in ex-
ecution time for this model over the entire COCO dataset
demonstrating that SIR+ and the Comm+SD placement strat-
egy can be ported to different runtime engines.

8 RELATEDWORK
DL inference services: DL inference has been optimized
across the stack ranging from hardware [9, 11, 38] to soft-
ware solutions [8, 56, 64, 66]. Inference serving frame-
works [12, 18, 43, 54] all treat the execution engine as a
black box and provide higher level support - in terms of
cost [19, 21, 63]/SLO [62] - for deploying DL solutions at
scale. They all stand to gain by adopting SIR+ as the execu-
tion engine on heterogeneous servers.

Device placement problem: The learning commu-
nity [2, 14, 40, 41, 47, 60] calls the problem of placing tasks
of a model on different devices as the device placement prob-
lem and have proposed learnings approaches to place tasks
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automatically across devices. In the systems community,
Baechi [31] and BytePS [33] propose to place tasks of ML
training on various devices. Our work specifically proposes
a practical placement solution for inference tasks and navi-
gates the system challenges at µs scale on a real-world infer-
ence engine (Section 6.2).

DFG execution on heterogeneous devices: ETF [26]
deals with executing DFGs on multiple processing engines.
The ETF heuristic accounts for communication delays among
multiple homogeneous processing engines by first assigning
tasks to processing elements and subsequently accounting
for the communication delays. Recently, GETF [57] proposes
a scheduling framework generalizing ETF across heteroge-
neous processing engines with provable approximation guar-
antees. With the goal of extending such approaches to real
system implementations, we have designed and developed
SIR+ - by coupling a heuristic derived from empirical insights
with a practical implementation that mitigates system side
challenges - and shown substantial benefits in performance.

Heterogeneous task execution systems: In contrast
to prior heterogeneous task execution systems comprising
compilers [55]/runtimes [15, 35, 55]/schedulers [3] targeting
HPC or other application domains, in this work, we study
the inference of large DNNs with complex DFGs on a het-
erogeneous CPU + GPU system, with a focus on reducing
their latency for user-facing scenarios. Many existing run-
times [1, 55] including ONNXRuntime [27] provide support
for heterogeneous execution by compiling optimal backends
for individual tasks on CPUs/GPUs, executing most (if not
all) tasks on the GPU, and simply relegating tasks not imple-
mented on the GPU to the CPU. Instead of this conventional
approach, SIR+ proposes a scheduling policy (Comm+SD)
that carefully migrates tasks scheduled to run on the GPU
to run (concurrently) on the under-used CPUs. For DFGs
with wide fan-outs, this can significantly reduce the overall
execution time of the DNN model.
As we have highlighted in section 6.3, executing large

DFGs composed of 100s of µ-scale sub-tasks can result in
poor performance with ordinary support for concurrency,
as is the case with existing scheduling engines [3, 27]. To
efficiently execute the tiny sub-tasks of large DNN models
concurrently across the CPU and the GPU, SIR+ builds a
light-weight concurrency mechanism with added support to
minimize memory usage.

SIR+ is the first execution engine for DNN inference that
exploits the heterogeneity by navigating the system chal-
lenges at the microsecond scale. By opportunistically assign-
ing tasks to otherwise idle devices on the server, it reduces
the execution time even for a single DNN model.

9 CONCLUDING REMARKS
SIR+ paves the way to use surplus CPU devices inside increas-
ingly heterogeneous datacenters when performing DNN in-
ference, and demonstrates an holistic approach combining
CPUs and GPUs to yield lower execution times and higher
throughput. By opportunistically leveraging the surplus
CPUs for CPU-efficient tasks, we allow more GPU-efficient
tasks to better utilize the GPUs and reduce queueing times
on them. In addition to efficiently matching tasks to devices,
our Comm+SD placement strategy also accounts for com-
munication costs between the devices. We implement this
placement on the state-of-the-art ONNXRuntime execution
engine by adding enhancements to eliminate synchroniza-
tion bottlenecks for effectively supporting parallel execution
of µs scale tasks on heterogeneous devices. Results show ex-
ecution latency improvements of over 10% and throughput
improvements of over 19% in emerging DNN models (Faster-
RCNN, MaskRCNN, SSD) with wide DFG fan-outs. We have
laid the foundation for leveraging intra-server heterogeneity
(CPUs and GPUs that are widely present in today’s data-
centers) for such workloads, and we hope to extend it to a
richer diversity of accelerators [5, 51] such as FPGAs, and
customized ASICs in future work.
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