
Design and Implementation of a Strong
Representation System for Network Policies

Fangping Lan⇤, Sanchari Biswas†, Bin Gui‡, Jie Wu§ and Anduo Wang¶
Department of Computer and Information Sciences, Temple University

Philadelphia, PA, USA
Email: {⇤fangping.lan, †sanchari.biswas, §jie.wu0001}@temple.edu, {‡bguiethan, ¶anduo.wang}@gmail.com

Abstract—Policy information in computer networking today,

such as reachability objectives of a controller program running

on a Software Defined Network (henceforth referred to as SDN)

or Border Gateway Protocol (henceforth referred to as BGP)

configurations independently set by autonomous networks, are

hard to manage. This is in sharp contrast to the relational data

structured in a database that allows easy access. This paper asks

why cannot (or how can) we turn network policies into relational

data. One difficulty to such an approach is that a policy does not

always translate to a definite network snapshot, but rather is fully

described only when we include all the possible network states

it admits. We propose relational policies that, while capable of

representing and manipulating sets of network states in exactly

the same way as a single one, form a strong representation

system and accurately capture the information in a policy with

the usual Structured Query Language (henceforth referred to

as SQL) interface. We demonstrate how, like relational database

improves application productivity and enables rapid innovation,

relational policies allow us to extend the elegant solutions that

the database community developed, to mediate multiple data

sources in order to address long-standing challenges and new

opportunities for autonomous policy making in the distributed

networking environment. We also show the feasibility of relational

policies by evaluation on synthetic policies and realistic network

topologies.

Index Terms—Network Policies, Relational Algebra, Condi-

tional Tables, Network Manageability

I. INTRODUCTION
Policies being a fundamental part of computer networking,

many tools have been developed to exploit and/or manage
them throughout a network’s entire life cycle. Higher level
programming abstractions help operators realize reachability
objectives in SDNs [1]–[7]; intention-aware monitoring sys-
tems leverage network-wide queries to improve monitoring in
programmable hardware [8], [9]; BGP configurations [10]–
[14] are still the main vehicle affecting routing whenever
rich semantics is involved — whether in the global Inter-
net or datacenters; verification tools [15], [16] with varying
capabilities, such as expressiveness, scalability, speed, check
whether the network configurations, the SDN programs etc
actually obey the properties in the formal specification; and
synthesizers [13], [17] attempt to convert network specification
of varying forms, such as logical assertions, templates, etc,
directly into a concrete implementation.

Yet using and managing networking policies remain hard:
One has to fully understand the protocol mechanisms or its
operating environment to properly set policy attributes in that
protocol. In SDNs, while the goal is to simplify management,

the lack of a prefixed mental model makes it more difficult
for anyone not involved in writing the controller program to
make sense of or debug a policy. And few in the networking
community question the need for increasingly more complex
and disparate structures of policies, or the deeper integration
of policies with the rest of the system(s).

This is in sharp contrast to data management in relational
database [18] which is remarkably easier: The simple self-
explanatory relational data model has replaced many non-
relational application-specific data structures and gives a com-
mon understanding of the data, thus allowing for communica-
tion across tasks and between users. The relational database
system while striking a promising trade-off point between
specification complexity and performance, does not intend to
be a total solution. Instead, it draws a clean boundary between
a shared data component and the external applications, exposes
to applications an intuitive yet rigorous (SQL) interface, thus
improving productivity, enabling independent evolutions, and
accelerating innovations. Where networking today requires
people to master more computer science skills, database has
already been successfully running for non-programmers with
little expertise.

So why cannot (how can) we turn network policies into data,
structured in a database? One difficulty with a genuine data
approach is that a policy is rarely captured in a definite network
snapshot. While existing networking approaches address this
by including the broader contexts — mechanisms, dynamics,
additional models etc— to fully express a policy, we argue
that, like a predicate in set theory is accurately described by
the set it corresponds to, it is probably adequate to represent
a policy by all the possible network states it admits. Based on
this idea, we propose relational policies, a system capable of
representing and processing sets of possible network states
in exactly the same way as that of a network snapshot.
Central to relational policies is a relational structure called
conditional tables [18]–[20], which extend regular tables with
variables and constraints over those variables, operated via an
interface that is both intuitive (the familiar SQL operations),
and rigorous (safe operations, deriving information only if
in legitimate network state) and complete (capturing all the
legitimate states).

II. OVERVIEW
Relational policies, like relational databases, seek to provide

a versatile shared policy component capable of rapid innova-

tions, with the added benefit of exploiting a wealth of solutions
already developed in relational database. To demonstrate this,
we investigate the mismatch between the assumption most pol-
icy handling today rely on, i.e. a prior consistency and a single
exclusive enforcement point, and the networking reality that
decision making is autonomous in a distributed environment.
Specifically, we use relational policies to study two concrete
problems: (1) although local policy making can approximate
global optimal by participating in some form of information
exchange [21]–[26], the exchange is often low-level and ad
hoc, and (2) despite most policy-rich tools enforcing, checking,
synthesizing a set of coherent policies [15], [16], they say little
on how to obtain a consistent policy from disparate sources
(e.g.,. teams overseeing overlapping aspects or interacting
with parts of the network). We leverage the elegant solutions
that the database community developed to mediate multiple
(regular) data sources among multiple users [13], [27]–[35]:
we give formal and novel extensions of such classic notions
as data exchange and schema mapping (on regular tables)
into relational policies (conditional tables), and are able to
implement these extensions with moderate effort.

Finally, we study the feasibility of relational policies by
evaluating our prototype implementation on synthetic policies
and realistic network topologies. Network policy coordination
offers an interesting application area, and our preliminary
implementation might encourage more investigation into this
area.

III. BACKGROUND AND MOTIVATION

Conditional Tables as Policy Representation. Viewing a
policy by the set of network states it permits, our goal is
to find a representation for those states. Consider routing
policy for two prefixes 1.2.3.4 and 5.6.7.8 over two alternate
paths [ABC], [ADC]: suppose if any node owns both the
prefixes, traffic bound to them can take any of the two paths.
Such uncertain information can still be accurately expressed in
tables if we allow variables in the tuples. One such “variable
table” PR is shown in Table I, it has a desirable property: it
can handle join smoothly. If we know both alternate paths are
safe, as described by table PS , we can safely join (./) the
two to derive that both destinations are safe as shown in the
rightmost table.

PR dest path
1.2.3.4 x
5.6.7.8 y

PS path security
x safe
y safe

dest path security
1.2.3.4 x safe
5.6.7.8 y safe

TABLE I: Variable tables capable of expressing policy (uncertain
network states).

However, when we attempt to query this policy table,
we run into a problem: which destination uses path [ABC],
expressed by (in SQL format) Q:⇡dest(�path=[ABC])? This is
a simple conditional query, depending on the values taken
by the variables, any of the three possible answers —
{h1.2.3.4i},{h5.6.7.8i},{h1.2.3.4i,h5.6.7.8i} — can be correct,
but no variable table can represent all of them. Conditional
tables address this limitation by adding an additional column
that holds conditions over the variables, which determines

P

S

P’

S’

SQL query

SQL query

Rep Rep

conditional
tables

regular
tables

policy

state

P P’

S

query

S’

Rep Rep

policy

state

conditional
tables

regular
tables

query

Fig. 1: Conditional tables form a strong representation for network
policies.

when a tuple is actually presented. For example, Q(PR) in
Table II is the resulting conditional table that accurately
describes all of the correct answers. Note that it can also
be interpreted as a new policy that allocates paths through
[ABC], like a regular SQL query also represents a regular
table containing certain query answers.

Q(PR) dest
1.2.3.4 x=[ABC]
5.6.7.8 y=[ABC]

PL dest path
1.2.3.4 x
5.6.7.8 [ABC] x6=[ABC]

Q(PL) dest
1.2.3.4 x=[ABC]
5.6.7.8 x 6=[ABC]

TABLE II: Conditional tables also capable of representing answers
to queries (on policies).

To better demonstrate the strength of conditional tables,
we consider a form of load balancing policy, represented by
PL, which says path [ABC] will be used for 5.6.7.8 only
if it is not already allocated to 1.2.3.4. Evaluating query
Q (appending constraint x=[ABC] in the condition column)
on PL produces Q(PL) which encodes the answer set —
{h1.2.3.4i,h5.6.7.8i} (either of the prefixes is a correct answer,
but not simultaneously) — precisely.
A Strong Policy Representation System. In addition to join
and select as discussed above, all relational operators1 on
conditional tables can be performed in exactly the same way
as in the case of the usual relations2. This makes conditional
tables a strong representation system for network policies,
which we call relational policies. For a conditional table P
in Figure 1, which represents a network policy and maps to
(via variable valuations Rep) all possible legitimate states,
denoted by a set of regular tables S (= Rep(P)); given a
relational query Q, when computing the answers to Q(P),
denoted by P’, we can think of some unknown legitimate
state s2 S — as the current true network state — being
queried by Q, producing s’=Q(s); Querying a policy (Q(P))
will only return information that corresponds to the query on
some legitimate state (Q(s)) (safe); and all the information
found by querying any legitimate state s2 S (Q(s)) (complete).
In this sense, relational policies lift network policies to first
class data objects that can be accessed and processed in exactly
the same way as the network states they correspond to.

IV. RELATIONAL POLICY

A. A Strong Representation System with Conditional Tables

The classic notion of a conditional table resembles a reg-
ular table but adds two extensions to the data contents: (1)

1
SELECT,JOIN,PROJECT,UNION,DIFF (�, ./,⇡,[,�)

2Formal proof on conditional tables is presented in [18], [20].

P1 dest path
1.2.3.4 x x = [ABC]
y z y 6= 1.2.3.5 ^ y 6= 1.2.3.4

R dest path
1.2.3.4 [ABC]
1.2.3.4 [ADEC]
1.2.3.5 [ABE]
1.2.3.6 [ABE]

R ./ P1 dest path
1.2.3.4 [ABC]
1.2.3.6 [ABE]

TABLE III: P1: a policy that requires static route [ABC] for
1.2.3.4 and filters 1.2.3.5; R: (fragment of) current routing state;
R./P1: routing state after applying the policy.

allowing variables and (2) adding an extra condition column
of constraints over the variables, where each tuple is associated
with equality and/or inequality assertions over variables from
the condition column. A tuple is presented only when the asso-
ciated condition holds. Depending on the variable assignments
(valuations) that make the conditions true, a single conditional
table maps to many regular tables, also called possible worlds.
The complete set of regular relational operators (�, ./,⇡,[,�)
is extended to work on conditional tables naturally, notably,
Projection ⇡ is the same as relational projection except that
the conditional column can never be projected out, Selection
�A=a(T) retains all tuples in T and conjugates t(A) = a to
the condition of tuple t, and Join T ./ T 0 is obtained by
composing tuples from T and T 0 while jointly considering
conditions from T and T 0, and the join attribute constraints
(two tuples agree on valuations of the join attributes).

For example, in Table III: R is a regular table holding a
network’s routing state that consists of the network’s current
candidate routes (without loss of generality, we only show
a fragment of the content); P1 is a conditional table repre-
senting the policy that determines the network’s best route:
the variables x, y, z range over possible destination and path
values, and the conditions specify two high-level intentions
— (1) a static route [ABC] for 1.2.3.4 and (2) a filter that
prohibits 1.2.3.5. P1 represents all the routing states that
selects [ABC] for 1.2.3.4 but avoids 1.2.3.5, and the actual
state at a particular snapshot is determined by the routes
available then. This can be computed by joining R and P1

(R ./ P1).

B. User-Defined Functions and Aggregates

The conventional conditional tables with variables and
(in)equality are still too restricted for the rich semantics of net-
work policies, and our plan is to investigate new constructs. To
show that this is feasible, we sketch in the following possible
extensions with aggregation and user-defined functions, and
illustrate how these extensions give a concise representation of
one of the most widely used routing policy — the shortest path
policy. The forwarding state must follow, among a collection
of alternatives paths (to a common destination), the one with
shortest distance (hop-counts). This intent translates to the
one single tuple in P2 shown in Table IV: by allowing a
user-defined aggregation function s that returns the lowest
hop counts among all alternatives paths. The shortest path
actually selected — a specific forwarding state compliant

with this policy — will be jointly determined by the pol-
icy (P2) and the currently available routes (computed by
R ./ ⇡dest,path,s(path)(R), denoted by R0), which translates
to R0 ./ P2.

P2 dest path s(path)
x y z l(y) z

R0 dest path s(path)
1.2.3.4 [ABC] 3
1.2.3.4 [ADEC] 3
1.2.3.5 [ABE] 3
1.2.3.6 [ABE] 3

⇡dest,path(R0 ./ P2) dest path
1.2.3.4 [ABC]
1.2.3.5 [ABE]
1.2.3.6 [ABE]

TABLE IV: P2: shortest path policy; R’= R ./
⇡dest,path,s(path)(R): forwarding state R augmented with
smallest hop counts; (bottom) forwarding state selected by P2.

Next, we illustrate the strength of our knowledge represen-
tation system in facilitating policies (intents) that have been
poorly supported even with the simple foregoing extensions.
Using a load balancer as an example: the intent of a load
balancer is to split traffic to two remote servers (1.2.3.4
and 5.6.7.8) over two outgoing paths ([ABC] and [ADC]).
Existing approaches to such a load balancer, to the best of our
knowledge, are very imperative. One has to articulate a specific
“implementation” (e.g., sending traffic to 1.2.3.4 via [ABC]
while traffic to the other server via the [ADC] path). This
approach also effectively excludes the other possible imple-
mentation (i.e. swapping traffic allocation over the two paths).
In contrast, we can explicitly specify the high-level intent with
knowledge-driven policies — just avoid overloading any of
the outgoing paths, immaterial of which server is assigned
which path. This is conveniently captured by P3 in Table V
with a functional dependency (FD) dest ! {path, flag}:
The flag variables u, v and the associated conditions prevent
both traffic flows from being assigned to the same path, and
the functional dependency ensures a unique path assignment
for each server; note that this representation captures both
legitimate forwarding states as shown in I1 and I2. As a second
example, consider a stateful firewall that prohibits external
traffic to an internal server (1.2.3.4) unless the server initiated
communication first. We can translate this to the dependency
between two routes, as shown in P4, that routes (from some
node x) to the server are allowed only when some route from
the server (indicating outgoing traffic) to x is presented.

C. Network Addressing
We note that network addresses are not “atomic” entities

that can be referenced by constants or variables supported
in the foregoing conditional table representation (e.g., P1 in
Table III). Instead, due to scalability concerns (the sheer size
of IPv4 is 232), they — e.g., IP prefix or SDN headers with
wildcards — denote sets of “atomic” addresses. Consequently,
when the header attribute is referred to in a policy (or a
forwarding state), the header values that are different can
still overlap, and some form of disambiguation is performed
— longest prefix match for IP and priority for SDN. To

P3 dest path flag
1.2.3.4 [ABC] u u = 1
5.6.7.8 [ABC] u u 6= 1
1.2.3.4 [ADC] v v = 1
5.6.7.8 [ADC] v v 6= 1

P4 dest source path
x y w
1.2.3.4 x z y=1.2.3.4

I1 dest path
1.2.3.4 [ABC]
5.6.7.8 [ADC]

I2 dest path
1.2.3.4 [ADC]
5.6.7.8 [ABC]

TABLE V: P3: balances traffic to 1.2.3.4 and 5.6.7.8 on two
outgoing paths (ABC and ADC); I1 and I2: two equally legitimate
forwarding states that implement P3; P4: stateful firewall policy
that allows routes to an internal destination 1.2.3.4 only when an
outbound route from 1.2.3.4 was initiated first.

support such address attributes in conditional tables, one
possibility is to employ some pre-processing procedure that
transforms the header variables/constants into disjoint sets, in a
straightforward manner: for IP/SDN, simply subtract the more
specific/higher priority header from the less specific/lower-
priority ones, respectively. This approach leaves the addresses
processing out of the policy representation system, and has
the potential of independent evolution of addressing and poli-
cies. This workaround, however, can miss the opportunity of
further optimization with network addresses that a knowledge
representation system may offer.

We explore two alternatives that handle addresses within
the representation system: one incorporates native support for
sets into the representation system, and the other leverages
Satisfiability Modulo Theories (henceforth referred to as SMT)
solver to handle sets. To allow set in a conditional table and
support (set) operation within, we draw upon the insights
of extended relational algebra — how the SQL operators
originally designed for regular relations were extended to
accommodate variables and conditions [18]. In the following,
we show the idea by using the relational join (./) as an
example. In the extended relational algebra, a join T ./ T 0,
where T, T 0 are conditional tables, is obtained by composing
each tuple t 2 T with each tuple t0 2 T 0 like in the original
SQL join, but with the exception that the new tuple t · t0 will
have condition t(�) ^ t0(�) ^ �(t, t0), where t(�) and t0(�)
are the conditions carried in t and t0 respectively, and �(t, t0)
states that the variables and constants appearing in the join
attributes of t, t0 must agree on their values. Similarly, we can
add set support to ./ as follows: when IP prefix appears in the
join attributes, whether as a variable or constant, we extend the
value agreement requirement to set intersection. An example
is shown in Table VI. We believe the same method can be used
to extend the other relational operators, namely projection (⇡)
and selection (�).

An alternative to support set-based network addresses in
the conditional tables is to encode the IP address values by
the condition column: rather than directly give the address
values, whether as constants or a specific set (prefix), we
use constrained variables, the condition part of which will
be handled by an external constraint solver. For example, for
every IP address (i.e. constant c), we replace it by a variable
(x) and an associated condition (x = c), and then leverage

T1 dest path
200.23.16.0/20 [ABC]
u [ABD]

T2 dest type
v customer
200.23.20.0/23 w w6=provider

T1 ./ T2 dest path type
200.23.16.0/20\v [ABC] customer
200.23.20.0/23 [ABC] w w 6=provider
u\v [ABD] customer
u\200.23.20.0/23 [ABD] w w6=provider

TABLE VI: Extending relational join (./) to support IP prefix by
set operation (intersection).

SMT solving that already handles sets. Similarly, for every
prefix (set s), replace it by a variable (x) and the associated
condition (x 2 s), as shown in Table VII.

T1 dest path
u [ABC] u21.2.3.0/24

T2 dest type
v customer v2 1.2.3.4/28

T1 ./ T2 dest path type
u [ABC] customer u21.2.3.4/28

TABLE VII: Extending join by constraint solving.

With the native set support, we will be able to incorporate
custom set operation algorithm and continue to optimize
the implementation. Representation of IP addresses with the
SMT-based solution, although less direct, allows us to take
advantage of the already highly optimized constraint solving
with sets. In § VII, we profile and analyze the set-based
implementation with the Z3 SMT solver [36]–[38].

D. Extended Relational Algebra

P5 dest path
1.2.3.4 x x = [ADC]

I3 dest path
1.2.3.4 [ABC]
5.6.7.8 ...

P1 [P5 dest path
1.2.3.4 x x = [ABC]
1.2.3.4 x x = [ADC]
y z y 6= 1.2.3.5 ^ y 6= 1.2.3.4

I4 dest path
1.2.3.4 [ADC]
5.6.7.8 ...

TABLE VIII: When P5 applied in parallel to P1 , the static route
set for 1.2.3.4 can be either [ABC] or [ADC], as illustrated in the
two instances I3 and I4.

To illustrate the basics of modular composition with
knowledge-driven policies, consider policy P5 in Table VIII,
as opposed to P1 in Table III: P5 sets up an alternative static
route [ADC] for 1.2.3.4. When both P1 and P5 are permitted,
i.e. when P1 and P5 are applicable in parallel, their combined
effects are represented by a simple union P1[P5, a new con-
ditional table that prescribes two alternative static routes for
1.2.3.4. Correspondingly, the new composite P1 [P5 permits
two instances I3 and I4. Observe how our knowledge-driven
policies enable the admin to understand policies composed in
parallel by simply examining the conditional table obtained by
relational [.

Policies may also be combined sequentially, i.e. applied in
a strict order, the preceding policy having a higher priority.
For example, consider the sequential application of the static
routes and filtering policy P1 and the load balancer policy
P3 (Table V). By joining P1 and P3 (P1 ./ P3) as shown

P1./P3 dest path flag
1.2.3.4 x u x=[ABC] ^ u=1
1.2.3.4 x v x=[ABC] ^ x=[ADC] ^ v=1
y z u y=1.2.3.4 ^ y6=1.2.3.4 ^ z=[ABC] ^ u=1
y z u y=5.6.7.8 ^ z=[ABC] ^ u6=1
y z v y=1.2.3.4 ^ y6=1.2.3.4 ^ z=[ADC] ^ v=1
y z v y=5.6.7.8 ^ z=[ADC] ^ v6=1

I5 dest path
1.2.3.4 [ABC]
5.6.7.8 [ADC]

I6 dest path
5.6.7.8 [ABC]

TABLE IX: When P1 and P3 are applied sequentially, the join table
gives intuitive explanation of the combined policies, as shown by the
permitted instances I5 and I6.

3

Qx? Qy

Qx

Qy

?
Q1

Q2

Q3

Q4

Q7

Q5Q6

?
σ

!x

!y !5!6,σ6

σ1

σ1’

!2

!3
!4

3

Qx? Qy

Qx

Qy

?
Q1

Q2

Q3

Q4

Q7

Q5Q6

?
σ

!x

!y !5!6,σ6

σ1

σ1’

!2

!3
!4

3

Qx? Qy

Qx

Qy

?
Q1

Q2

Q3

Q4

Q7

Q5Q6

?
σ

!x

!y !5!6,σ6

σ1

σ1’

!2

!3
!4

Fig. 2: (left) sequential composition; (middle) parallel composition;
(right) example.

in Table IX, the proposed knowledge-driven policies give
a natural explanation of sequential composition: P1 ./ P3

produces a conditional table of 6 rows, out of which three
have a contradictory condition and are thus struck out. The
three remaining rows give a straightforward expression of the
combined intention: (1) traffic to 1.2.3.4 can take the explicit
path [ABC], but only when that path is not simultaneously
taken by 5.6.7.8; (2) traffic to 5.6.7.8 can freely take [ADC].
Correspondingly, the two possible forwarding states are shown
in I5 and I6. Note that the I2 state allowed by load balancer
policy P3 is now prohibited by P1 and is replaced by I6.

More generally, we propose to use the extended relational
operators {⇡,�, ./,[,�, ⇢} as an intuitive composition inter-
face: as shown in Figure 2 (left), the sequential composition
of two policies (Qx, Qy), producing a composite policy that
sequentially applies Qx and Qy to a network state, is obtained
by relational join (./). Optionally, the higher-priority policy
Qx may use relational selection (�) to select from Qy a subset
that it accepts. Thus we have Qx ./ �(Qy); On the other
hand, two policies taking effect in parallel in Figure 2 (middle)
are combined by union [: optionally, projection (⇡) may be
used to transform the policy schemas to ensure proper union,
thus we have ⇡x(Qx) [⇡y(Qy). Put everything together, as
illustrated in the example in Figure 2 (right), a composition
expressed can be naturally formed with the familiar relational
algebra as (⇡4((⇡2(�1(Q1) ./ Q2) [⇡3(�10(Q1) ./ Q3) [
⇡5(Q5)) ./ Q4) [⇡6(�6(Q6))) ./ Q7.

The SQL-like composition interface has the potential to
significantly lower the bar for policy management. In the con-
text of policy routing within an administrative domain using
BGP protocol, the nodes in Figure 2 (right) can correspond
to the BGP policies configured at individual BGP routers, and
our knowledge composition will allow the admin to precisely
predict (compute) the policy of the network as a whole, a
long thought-after question that remained unanswered until
now; In SDNs, on the other hand, knowledge-driven policy

8

X A

B

C

E

Q2

Q3

Q4

Q7

D

Q6

1.2.3.4

5.6.7.8

PAPX

Fig. 3: Policy interaction in interdomain routing: the realizable
policies of X are constrained by the policies made at A.

composition offers an attractive alternative: rather than forcing
the users to adopt and internalize a (more likely a set of) home-
grown domain specific languages, we rely on the familiar and
generic relational algebra.

V. LOCAL POLICY AND EXCHANGE: AN APPLICATION

In the previous section, we illustrate the possibility of
coordinating knowledge-driven policies from a single central
point. But in a distributed environment like inter-domain rout-
ing, policies are made by independent domains (autonomous
systems, or ASes). In fact, the border gateway protocol
(BGP) [12], [23], [39]–[43], the de-facto Internet routing
protocol, takes the extreme position of favoring autonomy
— policies are made based on local preferences within each
domains without conforming to any globally-agreed criteria.
This extreme approach can lead to unwanted interaction be-
tween policies when the choices available to one domain are
inadvertently decreased by the decisions made by another.
Consider routing policies for 1.2.3.4 and 5.6.7.8 in Figure 3:
As X requires routes no more than 3 hops to 1.2.3.4, it
is perfectly compatible with its upstream neighbor A whose
policy is to balance traffic from its neighbors C and D. That is,
a valid path [XACE] that simultaneously satisfies the policies
of X and A does exist. However, unaware of the preference
of X, A might end up choosing [ADBE] for 1.2.3.4 and the
shorter [ACE] for 5.6.7.8, a decision that, though compliant
with A’s local policy, will render X’s policy unsatisfiable.

We do not seek a comprehensive and/or best solution to
the foregoing problem — there are potentially many solutions
if proper technical and business-level changes can be made
to the current BGP system, each with their pros and cons.
Instead, we focus on one specific technical issue we termed
as policy exchange, and use it to highlight the potential of
the proposed knowledge-driven policies. In Figure 3: for A to
make a routing selection that is compliant with local policy
while “permitting” the neighbor X’s policy, A needs to take
into account the “impact” of X’s policy — the path to 1.2.3.4
should not exceed 2 hops (since A is one hop closer to
the destination). Such policy impact, thanks to our proposed
knowledge-driven policies, can be explicitly represented, com-
puted, and exchanged to enable informed policy making. As
shown in Table X, the original policies of X and A are stored
in PX and PA; the impact of X on A is to consider paths
with no more than 2 hops as represented by PX0 (“_” denotes
value that does not matter). Once we obtain PX0 , it can be
advertised to A, and merged with A’s local policy PA to form
PA0 — for the matching records join the conditions (l(u)  2
and x = 1, l(u)  2 and y = 1). The new policy PA0 jointly

7

I J

X Y

∑xy

I J

X Y+X

∑xy+φxy

φx φy

Fig. 4: From schema mapping to policy mapping: (left) extend target
schema to include variables referenced by constraints in the source;
(right) extend schema mapping to describe relationship between
source constraints and target constraints.

reflects A’s local concern and takes into account the policy
requirement of neighbor X. And the key policy question here
is how to compute PX0? In other words, how to transform PX

into PX0?

PX dest path
1.2.3.4 x l(x)3

PX’ dest nh flag path
1.2.3.4 _ _ u l(u)2

PA dest nh flag
1.2.3.4 C x x=1
1.2.3.4 D y y=1
5.6.7.8 C x x 6=1
5.6.7.8 D y y 6=1

PA’ dest nh flag path
1.2.3.4 C x u x=1^l(u)2
1.2.3.4 D y u y=1^l(u)2
5.6.7.8 C x v x6=1
5.6.7.8 D y v y6=1

TABLE X: Policy exchange: PX and PA represent the local policies
of X and A; PX’ represents impact of X on A. Merging PX’ into PA gives
PA’, a new policy that forces A to take into account the requirement
of X.

We argue that the answer is affirmative for knowledge-
driven policies, by extending the data exchange
paradigm [27]–[29], [34]. Data exchange, one of the oldest
data problems, as shown in Figure 4 (left), is concerned with
transforming a given source data instance (sets of tables with
the source schema X, denoted by I) to a target instance (a
new set of tables conforming to the target schema Y, denoted
by J), so that the target data “reflects” the source as accurately
as possible, while satisfying the source-target mapping ⌃XY .
⌃XY , also called schema mapping specification, often uses
some logical formalism to describe how the content from
the source relates to the data content in the target, or vice
versa. Policy transformation is concerned with a similar
problem: given a policy of X (PX), finding its impact on Y
(PX0) is to transform the original policy PX to adhere to Y’s
schema, while satisfying the relationship between X and Y.
Policy exchange uses the richer conditional tables, whereas
conventional data exchange framework only handles regular
tables (factual data). In the following, as shown in Figure 4
(right), we sketch our extensions for conditional tables to
enable policy transformation:

The key idea is to accommodate the new conditions that
are introduced in the conditional tables, denoted by �X in the
source (I) and �Y in the target (J): first we note that some
variables referenced by the source constraint �X may appear
in columns that only appear in the source schema (X) but not
in the target (Y). To make sure such constraints are accurately
reflected in the target, we extend the target schema Y to
include all attributes in X, denoted by Y +X . Using the trans-
formation of PX (source policy) to PX0 (target) in Figure 3 as
an example, the schema of A’s policy (dest,next_hop,flag)

is extended to (dest,next_hop,flag,path) to include path

variables. Second, we note that schema mapping ⌃XY in
conventional data exchange only specifies correspondence
between “regular” data, but not those between the constraints
in the condition column. Hence, we add a new component
to describe how �X maps to �Y , denoted by �XY . Using
specification similar to the standard logical formalism in
conventional data exchange, for example, policy PX can be
mapped to PX0 by the following logical statements:

1 ⌃XX0 : PX(d,x) ! (9 n,f)P
0
X(d,n,f,x’) ^ x=A�x’ % for

any destination d, every path x at node X is

learned from some path x’ at node A with some next

hop n and flag f.

2 �XX0 : l(x)3 ! l(x
0
)2 % maximum hop count of 3 at X

is reduced to 2 at A because A is one hop closer

to the destination.

VI. IMPLEMENTATION

As a prototype implementation of relational policies, we
developed a set of Python functions summarized in Table XI.

APIs Lines Usages

primitives

relational operators
(�,⇡, ./)

254
query, composition

IP-prefix handling 95
poss(s,p) 208 policy evaluation

applications poss_s(s,p,ds) 101 BGP simulation
poss_p(s,p,dp) 64 policy exchange

TABLE XI: Prototype implementation in Python with Z3.

Primitives. We first identify a minimal set of primitives
that provides the necessary relational policy functions, and
upon which new features can be built. This minimal set
includes a relational algebra engine and a policy analyzer
(evaluator): the relational algebra engine is the SELECT(�),
PROJECT(⇡), and JOIN(./) operators that take as input policy
tables — Python list in main memory, and outputs the resulting
policy list by evaluating the conditions via the Python API
of Z3 [38] constraint solver. Besides the classic conditional
table computation, we hard-coded the aggregates (shortest path
evaluation), represent user-defined functions (e.g., hop count)
as pre-defined assertions in Z3, and implement IP prefix by 64-
bit bit-vector — similar to HSA where two 0/1 bits to encode
a single bit in IP prefix with three possible values 0, 1, and
* — in both Z3 (when IP prefix appears in a condition) and
Python (in table).

The policy analyzer is a poss(s,p) predicate that takes as
input a network state s and a policy p, stored in two Python
lists, and determines whether there exists a possible world of
p in which the facts (tuples) of s are all true, by systematically
exploring valuations of variables in p with Z3. We emphasize
that we make poss(s,p) a primitive because it validates a
relational policy (p) on a given network state (s), a question
that must be answered before relational policies can be used
in a network. More importantly, the poss function (and its
incremental variants) provides a building block that is common
to many relational policy applications.
Rapid Innovations. As a demonstration of rapid innovation
enabled by relational policies, we implemented several appli-

 0
 0.2
 0.4
 0.6
 0.8

 1

 1 100 10000

pr
ob

ab
ili

ty

time (ms)

𝜎
𝜋

⋈1
⋈2

Fig. 5: Relational algebra pro-
cessing time.

1

50

2500

125000

100 1000 10000

tim
e

(s
ec

on
ds

)

size of policy table

overall
z3

Fig. 6: Scalability property of
relational algebra.

cations. BGP simulation checks whether an incoming route
announcement shall replace the current best route and is
implemented by poss_s(s,p,ds). poss_s is an incremental
variant of poss(s,p) that, assuming p (current routing policy)
permits s (current best route), checks whether a delta change
ds (route announcement) to s will still produce a best selection
under p. Similarly, poss_p(s,p,dp), a second incremental
variant of poss, implements Policy exchange as described in
§ V: assuming p permits s, poss_p(s,p,dp) checks whether
a delta change dp to policy p will still admit s. Both variants
only checks the delta against a small set of “relevant” poli-
cy/state, exploiting the fact that network policies on disjoint
destinations are often independent.

VII. EVALUATION
Route View BGP data — RIBs and UPDATEs — are used to

generate synthetic policies and realistic network topologies (as
observed by a BGP speaker), the two Route View collectors
are route-views2.oregon-ix.net and
route-views3.oregon-ix.net, and all files are taken on
February 1, 2021 at 00:00 PST. BGP data from the first
collector is used in all experiments, the second only in BGP
simulation. All experiments were ran on a 64-bit laptop with
AMD Ryzen 7 4800H CPU and 15.4G RAM.

A. Primitive Operations

Extended Relational Algebra. We first profile and analyze
performance of the relational algebra on symbolic destinations
(replacing IP prefix with integers). Figure 5 plots the pro-
cessing time (repeated 50 times) for each relational operator:
� (selection) and ⇡ (projection), using 1000 synthetically
generated tuples; ./1 applies shortest path policy P2 to a
path table; ./2 joins two synthetically generated policy tables,
both with 1000 tuples, following the pattern of P1 and P3.
As expected, the ⇡ and � delays are negligible, both  90
ms. The joins incur larger delays, and are slowest when both
input tables are conditional tables (policies), but the majority
still completes within 28439 ms. In all cases, our Python
implementation imposes small delay while Z3 remains the
dominating source. On average, Z3 takes 56% of the runtime
for ./1 and 96% of the runtime for ./2. Since P2 has only a
single entry, Z3 is only called some number of times on the
magnitude of the size of R0 for ./1 while ./2 has Z3 called
a number of times depending on the magnitude of the size of
P1 and P3.

We also profile the scalability property of relational algebra,
as shown in Figure 6, on the most expensive join (./2 of two
policies tables) on three policy sizes: while the processing

 0
 0.2
 0.4
 0.6
 0.8

 1

 10 1000 100000

pr
ob

ab
ili

ty

time (ms)

𝜎
𝜋

⋈1
⋈2

Fig. 7: (left) IP prefix operations; (right) Processing time breakdown
of poss(s,p): s contains 80 routing paths; p consists 31 tuples of static
routing (P1), 40 tuples of load balancers (P3), and 30 tuples of stateful
firewall (P4).

 0.0625
 0.25

 1
 4

 16
 64

 256
 1024
 4096

100 1000 10000

tim
e

(s
ec

on
ds

)

size of policy table

incre

naive

951

92850

9581900

24

965

5249

Fig. 8: Scalability property of
poss_s(s,p,ds).

 0.0625
 0.25

 1
 4

 16
 64

 256
 1024
 4096

100 1000 10000

tim
e

(s
ec

on
ds

)

size of policy table

incre

naive

975

95250

11242780

55

5050

500500

Fig. 9: Scalability property of
poss_p(s,p,dp).

time does grow exponentially, our implementation can handle
policy of 10,000 entries in  4164 sec. As explained earlier,
due to Z3 taking up 96% of the runtime for ./2, the time due
to Z3 makes up most of the overall time. Finally, Figure 7
(left) repeats the performance of the relational operators on
realistic destinations by embedding IP prefixes taken from the
BGP RIB. Compared to Figure 5, the processing delay is sig-
nificantly larger, because we indexed the integer destinations
in the symbolic case, but not with the set based IP prefix,
which explodes the Z3 calling time.
Policy Evaluation. Figure 7 (right) plots for poss the process-
ing time breakdown on a policy that includes the following:
a set of simpler static routing policy (P1) completes first, the
more complex firewall (P4) takes the longest time, and load
balancer sits in between. The overall processing time is within
 0.84 second, Z3 being the dominating source of delay.
Figure 8 and Figure 9 plot on varying input sizes how the two
incremental variants of poss significantly reduce processing
time: when incrementally evaluating state change (poss_s),
processing time reduces from 0.268 to 0.047 sec, yielding a
reduction rate of 82.5%, thus making the incremental time
much lower apart than the naive time (processing time for
poss). Incrementally evaluating policy change (poss_p) shows
similar trend but a more drastic reduction, because a single
policy change (update, insertion, or deletion) has a higher
impact than state change on processing delay. So, here as well,
the incremental time is significantly lower than the naive time.
In all experiments, the number of Z3 calls are also labeled,
giving trend — in terms of scalability property and reduction
rate — similar to the processing delay.

The implementation of JOIN takes advantage of hashmaps
to keep track of the indices where constants appear in one of
the ctables to be joined, so that when we compare tuples in
that ctable to tuples in the other table, we can easily exclude
tuples where there are mismatch of constants in corresponding

 0
 0.02
 0.04
 0.06
 0.08

 0.1

 100 1000 10000

tim
e

(s
ec

on
ds

)

size of policy table

Fig. 10: BGP simulation.

 0
 0.2
 0.4
 0.6
 0.8

 1

 50 60 70 80 90

pr
ob

ab
ili

ty

time (ms)

Fig. 11: Policy re-validation af-
ter policy exchange.

tuples and gain some performance boost. This same method
cannot be done with IP-JOIN with P1 and P3. Since with IP-
JOIN we do not consider equality for destinations, using a
hashmap to store those indices in the same way doesn’t make
sense. Additionally, in P1 each entry in the path column is
a Z3 variable and not a constant. This means that we cannot
determine in the same way which pair of tuples to exclude
when matching. So when joining tables of size 1k by 1k, we
must make a million comparisons, calling Z3 each time.

B. Applications

BGP Simulation and Policy Exchange. We show the use of
poss_s and poss_p in BGP simulation and policy exchange,
respectively. First, we use poss_s to simulate BGP operation
as described in § VI. Figure 10 plots the average route
processing on three policy sizes (100, 1k, and 10k), the error
bar shows variance. In all cases, the policy tables are static
routing and load balancer policies generated from the RIB
file as in primitive operations. And each delta state is a
BGP announcement extracted from the collector’s UPDATEs
collected in the same day. For each policy size, we repeat
poss_s on 1500 BGP updates, all complete within .1 second
even on the largest policy size.

Next, we plot poss_p overhead during policy exchange —
checking a network state after importing a policy fragment
generated from BGP RIBs as follows: we randomly select two
routeview collectors, denoted by X and A in the following,
to be the two nodes exchanging policies in a way similar to
Figure 3. Using the RIBs of A, we generate 652 tuples of
load balancer policies by randomly pick two paths of different
lengths. Next, using the RIBs of X, we generate 163 tuples
of path length constraint policies by looking for BGP feeds
that simultaneously (1) have an overlapping destination, and
(2) have a path length that is between the two counterpart
paths stored in the load balancer. Figure 11 shows promising
result that more than 95.4% of the policy exchanges can be
re-validated in  60 ms.

VIII. DISCUSSION

For relational policies to make an impact, we outline some
of the issues that we believe to be rewarding and urgent:
Native Implementation with Relational Database Man-

agement System (RDBMS). The performance of our rela-
tional policies with main-memory lists and list operations is
promising but not without flaws: while our implementation
adds little processing delay where the Z3 is the dominating

source, the memory usage poses a serious bottleneck as the
size of network topology and the number of prefixes in
policies grow. Compared to main-memory list, a more robust
alternative is to use existing relational database management
systems (RDBMS) that are known to easily handle large tables.
Previous network state management with databases [44]–[46]
all exhibited promising result. In particular, the postgres [47]
SDN controller [45] can handle millions of prefixes and the
largest Rocketfuel topology with single-digit ms per flow
operation. The native use of a highly optimized database also
has the added benefit of accelerating operations on relational
policies: for example, the incremental evaluation of policies
(e.g.,poss_p and poss_s) frequently queries the policy or state
to extract the relevant deltas before constraint solving with Z3.
As such, our immediate next step is to re-implement relational
policies as a native extension to a RDBMS.
Interfacing with Network System. Traditional databases use
SQL as a natural data sublanguage in application programs
(host language), but the interfacing of relational policies
with a network system is not straightforward: policy-carrying
attributes (parameters) are often scattered across diverse pro-
tocols and/or control software, set and used in many locations
and/or steps. For example, BGP features enormous amount of
policy knobs that can be tuned to influence route decision.
“Install”-ing a relational policy in BGP requires refactoring
into the usual BGP attributes — e.g., local preference, MED
— to properly enforce route preference or filters [12], [48]–
[51]. Our hope is that there may exist a single point (attribute)
— such as local preference in BGP — during the whole
policy making process that overrides all other aspects, so that
synthesizing that particular point alone would be adequate.
A Practical Foundation for Compelling Applications.

Whether relational policies can fulfill the potential to accel-
erate innovations also depends on whether we can keep its
overhead under control. While encouraging, the performance
of policy tables in this paper is obtained on policies that
are largely destination-based (i.e. destination acts as a key).
But such assumption does not always hold, policies in Multi-
Protocol Label Switching (MPLS) are attached to the topology
(end to end paths) — can we still achieve fast processing in
the absence of the destination key? On the other hand, the new
service of policy exchange relies on user-supplied mappings
between policy sources — to what extent can we efficiently
automate this process? Just as the relational database replaced
the non-relational ones only after its performance catch up,
thanks to optimization with indexing and hashing, the success
of relational policies depends on identifying compelling poli-
cies and their uses that are, at the same time, computationally
tractable.

IX. RELATED WORK

We have discussed in § I a range of network modeling and
specification techniques and compared them to the proposed
relational approach. This section discusses two more areas
that help place relational policies in the research community:
one prominent effort from the networking community that

we consider complementary, and the other stressing the co-
evolution of database and networking.
Inter-domain Routing Protocols and Architectures. To
enable more flexible policies, many proposals to extend or
replace BGP [24]–[26], [52]–[56] were proposed in the past,
with the policy components often carefully wired into some
clean slate mechanisms, driven by specific needs of a particular
party [52], [53], [57]–[61]. But none of these proposals were
widely deployed. More recently, D-BGP and Trotsky [62]–
[64] examined the simultaneous partial deployments of these
protocols, uncovering the architectural features needed to
allow their co-existence on the global Internet. Our effort is
complementary, we do not seek a total network solution that
carefully stitches together policy considerations and routing
that works best for all, instead, we focus on the sub-problem
of policies. We hope that our solution may become a policy
making sub-system which, separated from the connectivity
maintenance and route computation sub-system, makes each
sub-system easier to manage and independent to evolve, which
in turn produces a better policy routing system.
Declarative Networking. In the context of database usages in
networking, we are closest to declarative networking [65]–[71]
which introduces network datalog — a data query language
reminiscent of SQL — as a compact and efficient language for
expressing networking such as routing protocols and overlay
networks. Network datalog and its variants have proven to be
versatile, notable examples being cross tire flow management
in SDN control platforms [44], [46], [72]–[74], incremental
forwarding state computation in multi-tenant datacenters, and
scalable reachability verification for large datacenters. Our
work is built on similar belief that database query language
marries expressiveness/extensibility and performance/robust-
ness, permits rapid innovation, and has the potential to replace
disparate DSLs. But we go beyond programming with definite
data, to our best knowledge, we are the first to investigate
the use of indefinite data (i.e. conditional tables) to lift
policies (intentions) to first order data that can be queried
and transformed, to open the door to a new area of policy
mediation such as exchange and repair.

X. CONCLUSION

In this paper, we introduce relational policies, a representa-
tion system that lifts network policies as first class data objects,
features an intuitive (SQL) user interface, and gives a strong
semantics (captures all and only the network states prescribed
by the policy). We then present a first of its kind evaluation
based on the so-called conditional tables, a complex structure
originally invented in the incomplete database research known
for its theoretical interest, showing that incremental compu-
tation and IP-specific optimization can produce an efficient
implementation of relational policies in the narrower context of
networking. Moreover, through conditional tables, we illustrate
how relational policies can lend itself to novel extensions to a
wealth of data mediation techniques that allow us to address
long standing problems — e.g., the severely restricted Internet
policy routing, and to open the door to new opportunities

— e.g., quantitatively repair policies against conflicts. We
stress that our focus is not on what policies future networks
should support, but rather on arguing that a rigorous and
practical policy subsystem can, with some luck, play a more
positive role in today’s ever-evolving and increasingly more
programmable networks.
Acknowledgments. We thank the ICCCN reviewers whose
feedback helped improve this paper. This work was supported
by National Science Foundation Award CNS-1909450.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[2] X. Jin, J. Gossels, J. Rexford, and D. Walker, “Covisor: A compositional
hypervisor for software-defined networks,” ser. NSDI’15. USENIX
Association, 2015, pp. 87–101.

[3] N. Foster, A. Guha, M. Reitblatt, A. Story, M. J. Freedman, N. P.
Katta, C. Monsanto, J. Reich, J. Rexford, C. Schlesinger, D. Walker,
and R. Harrison, “Languages for software-defined networks.” IEEE
Communications Magazine, vol. 51, no. 2, pp. 128–134, 2013.

[4] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular
SDN Programming with Pyretic,” USENIX ;login, vol. 38, no. 5, October
2013.

[5] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Com-
posing software-defined networks,” ser. nsdi’13. USENIX Association,
2013, pp. 1–14.

[6] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark,
“Kinetic: Verifiable dynamic network control,” ser. NSDI’15. USENIX
Association, 2015, pp. 59–72.

[7] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “Pga: Using graphs to express
and automatically reconcile network policies,” in SIGCOMM ’15.

[8] S. Donovan and N. Feamster, “Intentional network monitoring: Finding
the needle without capturing the haystack,” ser. HotNets-XIII. New
York, NY, USA: Association for Computing Machinery, 2014, p. 1–7.

[9] Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and B. T. Loo,
“Quantitative network monitoring with netqre,” ser. SIGCOMM ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
99–112.

[10] N. Feamster, J. Borkenhagen, and J. Rexford, “Controlling the impact
of bgp policy changes on ip traffic,” 2001.

[11] T. Wirtgen, Q. De Coninck, R. Bush, L. Vanbever, and O. Bonaventure,
“Xbgp: When you can’t wait for the ietf and vendors,” ser. HotNets ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
1–7.

[12] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-
4),” Internet Requests for Comments, RFC Editor, RFC 4271, 2006.

[13] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker,
“Don’t mind the gap: Bridging network-wide objectives and device-level
configurations,” ser. SIGCOMM ’16. ACM, 2016, pp. 328–341.

[14] J. M. Halpern and C. Pignataro, “Service Function Chaining (SFC)
Architecture,” RFC 7665, 2015.

[15] P. Zhang, Y. Huang, A. Gember-Jacobson, W. Shi, X. Liu, H. Yang, and
Z. Zuo, “Incremental network configuration verification,” ser. HotNets
’20. New York, NY, USA: Association for Computing Machinery,
2020, p. 81–87.

[16] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach
to network configuration verification,” ser. SIGCOMM ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 155–168.

[17] R. Birkner, D. Drachsler-Cohen, L. Vanbever, and M. Vechev, “Con-
fig2spec: Mining network specifications from network configurations.”
Santa Clara, CA: USENIX Association, Feb. 2020, pp. 969–984.

[18] S. Abiteboul, R. Hull, and V. Vianu, Eds., Foundations of Databases:
The Logical Level, 1st ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1995.

[19] S. Abiteboul, P. Kanellakis, and G. Grahne, “On the representation and
querying of sets of possible worlds,” ser. SIGMOD ’87. New York,
NY, USA: Association for Computing Machinery, 1987, p. 34–48.

[20] T. Imieliundefinedski and W. Lipski, “Incomplete information in rela-
tional databases,” J. ACM, vol. 31, no. 4, p. 761–791, Sep. 1984.

[21] N. Feamster, H. Balakrishnan, and J. Rexford, “Some foundational
problems in interdomain routing,” in In HotNets, 2004. (Cited on, 2004,
pp. 41–46.

[22] T. G. Griffin and G. Wilfong, “A Safe Path Vector Protocol,” in
INFOCOM, 2000.

[23] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths problem
and interdomain routing,” IEEE Trans. on Networking, vol. 10, pp. 232–
243, 2002.

[24] W. Xu and J. Rexford, “MIRO: Multi-path interdomain routing,” in ACM
SIGCOMM, 2006.

[25] R. Mahajan, D. Wetherall, and T. Anderson, “Negotiation-based routing
between neighboring isps,” in NSDI, 2005.

[26] ——, “Mutually controlled routing with independent ISPs,” in NSDI,
2007.

[27] P. Barceló, “Logical foundations of relational data exchange,” SIGMOD
Rec., vol. 38, no. 1, p. 49–58, Jun. 2009.

[28] P. G. Kolaitis, “Schema mappings, data exchange, and metadata manage-
ment,” ser. PODS ’05. New York, NY, USA: Association for Computing
Machinery, 2005, p. 61–75.

[29] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakon-
stantinou, J. Ullman, and J. Widom, “The tsimmis project: Integration
of heterogenous information sources,” in Information Processing Society
of Japan (IPSJ 1994), 1994.

[30] F. N. Afrati and P. G. Kolaitis, “Repair checking in inconsistent
databases: Algorithms and complexity,” ser. ICDT ’09. New York,
NY, USA: Association for Computing Machinery, 2009, p. 31–41.

[31] J. Chomicki, “Consistent query answering: Five easy pieces,” ser.
ICDT’07. Berlin, Heidelberg: Springer-Verlag, 2007, p. 1–17.

[32] M. Arenas, L. Bertossi, and J. Chomicki, “Consistent query answers
in inconsistent databases,” ser. PODS ’99. New York, NY, USA:
Association for Computing Machinery, 1999, p. 68–79.

[33] L. Bertossi, “Consistent query answering in databases,” SIGMOD Rec.,
vol. 35, no. 2, p. 68–76, Jun. 2006.

[34] L. E. Bertossi, J. Chomicki, P. Godfrey, P. G. Kolaitis, A. Thomo, and
C. Zuzarte, “Exchange, integration, and consistency of data: report on
the arise/nisr workshop,” SIGMOD Record (SIGMOD), vol. 34, no. 3,
pp. 87–90, 2005.

[35] A. Y. Levy, “Logic-based techniques in data integration,” 1999.
[36] Yices, “http://yices.csl.sri.com/.”
[37] Examples of Yices and Maude Encoding of Routing Policies, http://

netdb.cis.upenn.edu/fsr/.
[38] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” ser.

TACAS’08/ETAPS’08. Springer-Verlag, 2008, pp. 337–340.
[39] T. Bates, E. Chen, and R. Chandra, “BGP route reflection: An alternative

to full mesh internal BGP (IBGP),” RFC 4456, 2006.
[40] P. Traina, D. McPherson, and J. Scudder, “Autonomous system confed-

erations for BGP,” RFC 5065, 2007.
[41] T. G. Griffin and G. Wilfong, “An analysis of BGP convergence

properties,” in SIGCOMM, 1999.
[42] L. Gao, T. G. Griffin, and J. Rexford, “Inherently safe backup routing

with BGP,” in IEEE INFOCOM, Apr. 2001.
[43] L. Gao and J. Rexford, “Stable Internet routing without global coordi-

nation,” in ACM SIGMETRICS, 2000.
[44] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,

I. Ganichev, J. Gross, N. Gude, P. Ingram, E. Jackson, A. Lambeth,
R. Lenglet, S.-H. Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan,
S. Shenker, A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt, A. Yip,
and R. Zhang, “Network virtualization in multi-tenant datacenters,” ser.
NSDI’14. USENIX Association, 2014, pp. 203–216.

[45] A. Wang, X. Mei, J. Croft, M. Caesar, and B. Godfrey, “Ravel: A
database-defined network,” ser. SOSR ’16. ACM, 2016, pp. 5:1–5:7.

[46] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,
“Fml: Practical declarative network management,” ser. WREN ’09.
ACM, 2009, pp. 1–10.

[47] PostgreSQL: The World’s Most Advanced Open Source Relational
Database, “https://www.postgresql.org/.”

[48] T. Griffin and G. T. Wilfong, “Analysis of the MED oscillation problem
in BGP,” in ICNP’02, 2002.

[49] D. R. McPherson and V. Gill, “BGP MULTI_EXIT_DISC (MED)
Considerations,” RFC 4451, Mar. 2006.

[50] T. Li, R. Chandra, and P. S. Traina, “BGP Communities Attribute,” RFC
1997, Aug. 1996.

[51] J. Borkenhagen, R. Bush, R. Bonica, and S. Bayraktar, “Policy Behavior
for Well-Known BGP Communities,” RFC 8642, Aug. 2019.

[52] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica, “Pathlet routing,”
in ACM SIGCOMM, 2009.

[53] X. Yang, D. Clark, and A. W. Berger, “Nira: a new inter-domain routing
architecture,” IEEE/ACM Trans. Netw., vol. 15, no. 4, 2007.

[54] Y. Wang, I. Avramopoulos, and J. Rexford, “Design for configurability:
Rethinking interdomain routing policies from the ground up,” IEEE
J.Sel. A. Commun., vol. 27, no. 3, pp. 336–348, Apr. 2009.

[55] T. G. Griffin, A. D. Jaggard, and V. Ramachandran, “Design principles
of policy languages for path vector protocols,” ser. SIGCOMM ’03.
ACM, 2003, pp. 61–72.

[56] L. Subramanian, M. Caesar, C. T. Ee, M. Handley, M. Mao, S. Shenker,
and I. Stoica, “Hlp: A next generation inter-domain routing protocol,”
ser. SIGCOMM ’05. ACM, 2005, pp. 13–24.

[57] D. Zhu, M. Gritter, and D. R. Cheriton, “Feedback based routing,”
SIGCOMM Comput. Commun. Rev., vol. 33, no. 1, p. 71–76, Jan. 2003.

[58] I. Ganichev, B. Dai, P. B. Godfrey, and S. Shenker, “Yamr: Yet another
multipath routing protocol,” SIGCOMM Comput. Commun. Rev., vol. 40,
no. 5, p. 13–19, Oct. 2010.

[59] H. T. Kaur, S. Kalyanaraman, A. Weiss, S. Kanwar, and A. Gandhi,
“Bananas: An evolutionary framework for explicit and multipath routing
in the internet,” SIGCOMM Comput. Commun. Rev., vol. 33, no. 4, p.
277–288, Aug. 2003.

[60] S. Agarwal, Chen-Nee Chuah, and R. H. Katz, “Opca: robust inter-
domain policy routing and traffic control,” in 2003 IEEE Conference
onOpen Architectures and Network Programming., 2003, pp. 55–64.

[61] K. Argyraki and D. R. Cheriton, “Loose source routing as a mechanism
for traffic policies,” ser. FDNA ’04. New York, NY, USA: Association
for Computing Machinery, 2004, p. 57–64.

[62] R. R. Sambasivan, D. Tran-Lam, A. Akella, and P. Steenkiste, “Boot-
strapping evolvability for inter-domain routing with d-bgp,” ser. SIG-
COMM ’17. ACM, 2017.

[63] ——, “Bootstrapping evolvability for inter-domain routing,” ser.
HotNets-XIV. ACM, 2015, pp. 12:1–12:7.

[64] J. McCauley, Y. Harchol, A. Panda, B. Raghavan, and S. Shenker, “En-
abling a permanent revolution in internet architecture,” ser. SIGCOMM
’19. New York, NY, USA: Association for Computing Machinery,
2019, p. 1–14.

[65] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan, “Declar-
ative routing: Extensible routing with declarative queries,” ser. SIG-
COMM ’05. ACM, 2005.

[66] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica, “Declarative
networking: Language, execution and optimization,” ser. SIGMOD ’06.
ACM, 2006, pp. 97–108.

[67] T. Condie, J. M. Hellerstein, P. Maniatis, S. Rhea, and T. Roscoe,
“Finally, a use for componentized transport protocols,” in In HotNets
IV, 2005.

[68] Y. Mao, B. T. Loo, Z. Ives, and J. M. Smith, “Mosaic: Unified declarative
platform for dynamic overlay composition,” ser. CoNEXT ’08. ACM,
2008, pp. 5:1–5:12.

[69] X. Chen, Z. M. Mao, and J. van der Merwe, “Towards automated
network management: Network operations using dynamic views,” ser.
INM ’07. ACM, 2007, pp. 242–247.

[70] C. Liu, L. Ren, B. T. Loo, Y. Mao, and P. Basu, “Cologne: A
declarative distributed constraint optimization platform,” Proc. VLDB
Endow., vol. 5, no. 8, pp. 752–763, Apr. 2012.

[71] C. Liu, B. T. Loo, and Y. Mao, “Declarative automated cloud resource
orchestration,” ser. SOCC ’11. ACM, 2011, pp. 26:1–26:8.

[72] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
a distributed control platform for large-scale production networks,” ser.
OSDI’10, 2010.

[73] B. Davie, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. Gude, A. Pad-
manabhan, T. Petty, K. Duda, and A. Chanda, “A database approach to
sdn control plane design,” SIGCOMM Comput. Commun. Rev., vol. 47,
no. 1, pp. 15–26, Jan. 2017.

[74] M. Casado, N. Foster, and A. Guha, “Abstractions for software-defined
networks,” Commun. ACM, vol. 57, no. 10, pp. 86–95, Sep. 2014.

http://yices.csl.sri.com/
http://netdb.cis.upenn.edu/fsr/
http://netdb.cis.upenn.edu/fsr/
https://www.postgresql.org/

	Introduction
	Overview
	Background and Motivation
	Relational Policy
	A Strong Representation System with Conditional Tables
	User-Defined Functions and Aggregates
	Network Addressing
	Extended Relational Algebra

	Local Policy and Exchange: An Application
	Implementation
	Evaluation
	Primitive Operations
	Applications

	Discussion
	Related Work
	Conclusion
	References

