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Abstract

Transformer architectures have become the model of

choice in natural language processing and are now being

introduced into computer vision tasks such as image classi-

fication, object detection, and semantic segmentation. How-

ever, in the field of human pose estimation, convolutional ar-

chitectures still remain dominant. In this work, we present

PoseFormer, a purely transformer-based approach for 3D

human pose estimation in videos without convolutional ar-

chitectures involved. Inspired by recent developments in

vision transformers, we design a spatial-temporal trans-

former structure to comprehensively model the human joint

relations within each frame as well as the temporal corre-

lations across frames, then output an accurate 3D human

pose of the center frame. We quantitatively and qualitatively

evaluate our method on two popular and standard bench-

mark datasets: Human3.6M and MPI-INF-3DHP. Exten-

sive experiments show that PoseFormer achieves state-of-

the-art performance on both datasets. Code is available at

https://github.com/zczcwh/PoseFormer

1. Introduction

Human pose estimation (HPE) aims to localize joints and

build a body representation (e.g. skeleton position) from in-

put data such as images and videos. HPE provides geo-

metric and motion information of the human body and can

be applied to a wide range of applications (e.g. human-

computer interaction, motion analysis, healthcare). Cur-

rent works generally can be divided into two classes: (1)

direct estimation approaches, and (2) 2D-to-3D lifting ap-

proaches. Direct estimation methods [31, 29] infer a 3D

human pose from 2D images or video frames without inter-

mediately estimating the 2D pose representation. 2D-to-3D

lifting approaches [25, 5, 43, 38] infer 3D human pose from

an intermediately estimated 2D pose. Benefiting from the

excellent performance of state-of-the-art 2D pose detectors,

2D-to-3D lifting approaches generally outperform direct es-

timation methods. However, the mapping of these 2D poses

to 3D is non-trivial; various potential 3D poses could be

generated from the same 2D pose due to depth ambiguity

and occlusion. To alleviate some of these issues and pre-

serve natural coherence, many recent works have integrated

temporal information from videos into their approaches.

For example, [25, 5] utilize temporal convolutional neural

networks (CNNs) to capture global dependencies from adja-

cent frames, and [33] uses recurrent architectures to similar

effect. However, the temporal correlation window is lim-

ited for both of these architectures. CNN-based approaches

typically rely on dilation techniques, which inherently have

limited temporal connectivity, and recurrent networks are

mainly constrained to simply sequential correlation.

Recently, the transformer [37] has become the de facto

model for natural language processing (NLP) due to its effi-

ciency, scalability and strong modeling capabilities. Thanks

to the self-attention mechanism of the transformer, global

correlations across long input sequences can be distinctly

captured. This makes it a particularly fitting architecture

for sequence data problems, and therefore naturally ex-

tendable to 3D HPE. With its comprehensive connectiv-

ity and expression, the transformer provides an opportunity

to learn stronger temporal representations across frames.

However, recent works [12, 36] show that transformers re-

quire specific designs to achieve comparable performance

with CNN counterparts for vision tasks. Specifically, they

often require either extremely large scale training datasets

[12], or enhanced data augmentation and regularization [36]

if applied to smaller datasets. Moreover, existing vision

transformers have been limited primarily to image classi-

fication [12, 36], object detection [4, 50], and segmenta-

tion [41, 47], but how to harness the power of transformers

for 3D HPE remains unclear.

To begin answering this question, we first directly ap-

ply the transformer on 2D-to-3D lifting HPE. In this case,

we view the entire 2D pose for each frame in a given se-

quence as a token (Fig. 1(a)). While this baseline approach

is functional to an extent, it ignores the natural distinction of
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Figure 1. Two baseline approaches.

spatial relations (joint-to-joint), leaving potential improve-

ments on the table. A natural extension to this baseline is

to instead view each 2D joint coordinate as a token, and

provide an input formed with these joints from across all

frames of the sequence (Fig. 1(b)). However, in this case,

the number of tokens becomes increasingly large when long

frame sequences are used (up to 243 frames and 17 joints

per frame is common in 3D HPE, the number of tokens

would be 243×17=4131). Since the transformer computes

direct attention with each token to another, the memory re-

quirement of the model approaches an unreasonable level.

Therefore, as an effective solution to these challenges,

we propose PoseFormer, the first pure transformer network

for 2D-to-3D lifting HPE in videos. PoseFormer directly

models the spatial and temporal aspects with distinct trans-

former modules for both dimensions. Not only does Pose-

Former produce strong representations across the spatial

and temporal elements, it does so without inducing enor-

mous token counts for long input sequences. On a high

level, PoseFormer simply takes a sequence of detected 2D

poses from an off-the-shelf 2D pose estimator, and out-

puts the 3D pose for the center frame. More specifically,

we build a spatial transformer module to encode local re-

lationships between the 2D joints in each frame. The spa-

tial self-attention layers consider the position information

of 2D joints and return a latent feature representation for

that frame. Next, our temporal transformer module analyzes

global dependencies between each spatial feature represen-

tation, and generates an accurate 3D pose estimation.

Experimental evaluations on two popular 3D HPE

benchmarks, Human3.6M [16] and MPI-INF-3DHP [27],

show that PoseFormer achieves state-of-the-art perfor-

mance on both datasets. We visualize our estimated 3D pose

compared with the state-of-the-art approach, and find that

PoseFormer produces smoother and more reliable results.

Also, visualizations and analyses of PoseFormer’s attention

maps are provided in the ablation study to understand the

internal workings of our model and demonstrate its effec-

tiveness. Our contributions are three-fold:

• We propose the first pure transformer-based model, Pose-

Former, for 3D HPE under the category of 2D-to-3D lift-

ing.

• We design an effective Spatial-Temporal Transformer

model, where the spatial transformer module encodes lo-

cal relationships between human body joints, and the tem-

poral transformer module captures the global dependen-

cies across frames in the entire sequence.

• Without bells and whistles, our PoseFormer model

achieves state-of-the-art results on both Human3.6M and

MPI-INF-3DHP datasets.

2. Related Works

Here we specifically summarize 3D single-person-

single-view HPE methods. Direct estimation approaches

infer 3D human pose from 2D images without intermedi-

ately estimating 2D pose representation. 2D-to-3D lifting

approaches utilize the 2D pose as input to generate the cor-

responding 3D pose, which is more popular among state-of-

the-art methods in this domain. Any off-the-shelf 2D pose

estimator can be effectively compatible with these methods.

Our proposed method, PoseFormer, also follows the 2D-to-

3D lifting pipeline, and therefore we will focus mainly on

such methods in this section.

2D-to-3D Lifting HPE. 2D-to-3D lifting approaches

leverage 2D poses estimated from input images or video

frames. OpenPose [3], CPN [6], AlphaPose [13], and HR-

Net [35] have been extensively used as the 2D pose de-

tectors. Based on this intermediate representation, the 3D

pose can be generated with a variety of methods. Martinez

et al. [26] proposed a simple and effective fully connected

residual network to regress 3D joint locations based on the

2D joint locations from just a single frame. However, in-

stead of estimating 3D human pose from monocular images,

videos can provide temporal information to improve accu-

racy and robustness [49, 10, 32, 8, 2, 44, 38]. Hossain and

Little [33] proposed a recurrent neural network using Long

Short-Term Memory (LSTM) cells to exploit temporal in-

formation in the input sequence. Several works [10, 2, 21]

utilized spatial-temporal relationships and constraints such

as bone-length and left-right symmetry to improve perfor-

mance. Pavllo et al. [32] introduced a temporal convolution

network to estimate 3D pose over 2D keypoints from con-

secutive 2D sequences. Based on [32], Chen et al. [5] added

a bone direction module and bone length module to ensure

temporal consistency across video frames, and Liu et al.

[25] utilized an attention mechanism to recognize signifi-

cant frames. However, the previous state-of-the-art methods

(e.g. [25, 5]) rely on dilated temporal convolutions to cap-

ture global dependencies, which are inherently limited in

temporal connectivity. Additionally, the majority of these

works [25, 5, 33, 32] project the joint coordinates to a la-

tent space using simple operations, without considering the

kinematic correlations of human joints.

GNNs in 3D HPE. Naturally, a human pose can be

represented as a graph where the joints are the nodes and

the bones are the edges. Graph Neural Networks (GNNs)

have also been applied to the 2D-to-3D pose lifting problem
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Figure 2. (a) Temporal transformer baseline. (b) Spatial-temporal transformer (PoseFormer) architecture, which consists of three modules.

A spatial transformer module for extracting features with considering joints correlations of each individual skeleton. A temporal trans-

former module for learning global dependencies of entire sequence. A regression head module regresses the final 3D pose of the center

frame. The illustration of the transformer encoder is followed by ViT [12].

and provided promising performance [9, 45, 24]. Ci et al.

[9] proposed a framework, named Locally Connected Net-

works (LCNs), which leverages both fully connected net-

works and GNN operations to encode the relationship be-

tween local joint neighborhoods. Zhao et al. [45] tackled a

limitation of Graph Convolutional Network [19] (GCN) op-

erations, specifically how the weight matrix is shared across

nodes. The semantic graph convolution operation was intro-

duced to learn channel-wise weights for edges.

For our PoseFormer, the transformer can be viewed as

a type of graph neural network with a unique, and of-

ten advantageous, graph operation. Specifically, a trans-

former encoder module essentially forms a fully-connected

graph, where the edge weights are computed using input-

conditioned, multi-headed self-attention. The operation

also includes the normalization of node features, a feed-

forward aggregator across attention head outputs, and resid-

ual connections which enable it to scale effectively with

stacked layers. Such an operation can be advantageous in

comparison to other graph operations. For example, the

strength of the connection between nodes is determined by

the self-attention mechanism of the transformer, rather than

predefined through an adjacency matrix as with the typical

GCN-based formulations employed in this task. This al-

lows the model flexibility to adapt the relative importance

of joints to each other with each input pose. Additionally,

the comprehensive scaling and normalization components

of the transformer are likely advantageous in mitigating the

over-smoothing effect that troubles many GNN operation

variants when numerous layers are stacked together [48].

Vision Transformers. Recently, there is an emerging in-

terest in applying transformers to vision tasks [17, 14]. Car-

ion et al. [4] presented a DEtection TRansformer (DETR)

for object detection and panoptic segmentation. Doso-

vitskiy et al. [12] proposed a pure transformer architec-

ture, Vision Transformer (ViT), which achieves state-of-

the-art performance on image classification. However, ViT

was trained on large-scale datasets ImageNet-21k and JFT-

300M that requires huge computation resources. Then, a

data-efficient image transformer (DeiT) [36] was proposed

which builds upon the ViT with knowledge distillation. For

regression problems such as HPE, Yang et al. [40] pro-

posed a transformer network, Transpose, which only esti-

mates 2D pose from images. Lin et al. [23] combined CNNs

with transformer networks in their method METRO (MEsh

TRansfOrmer) to reconstruct the 3D pose and mesh vertices

from a single image. In contrast to our approach, METRO

falls under the category of direct estimation. Also, tempo-

ral consistency is neglected in METRO, which limits the

robustness of its estimations. Our spatial-temporal trans-

former architecture exploits keypoint correlation in each

frame and preserves natural temporal coherence in videos.

3. Method

We follow the same 2D-to-3D lifting pipeline for 3D

HPE in videos as [26, 32, 25, 5]. The 2D pose of each

frame is obtained by an off-the-shelf 2D pose detector, then

2D pose sequences of consecutive frames are used as input

for estimating the 3D pose of the center frame. Compared

to the previous state-of-the-art models, which are based on

CNNs, we produce a highly competitive convolution-free

transformer network.

3.1. Temporal Transformer Baseline

As a baseline application of a transformer in 2D-to-3D

lifting, we treat each 2D pose as an input token and employ

a transformer to capture global dependencies among the in-

puts as illustrated in Fig. 2(a). We will refer to each input

token as a patch, similar in terminology to ViT [12]. For the

input sequence X ∈ R
f×(J·2), f is the number of frames

of the input sequence, J is the number of joints of each

2D pose, and 2 indicates joint’s coordinate in 2D space.

{xi ∈ R
1×(J·2)|i = 1, 2, . . . f} indicates the input vector

of each frame. The patch embedding is a trainable linear



projection layer to embed each patch to a high dimensional

feature. The transformer network utilizes positional embed-

dings to retain positional information of the sequence. The

procedure can be formulated as:

Z0 = [x1E; x2E; . . . ; xfE] + Epos. (1)

After embedding through a linear projection matrix E ∈
R

(J·2)×C and summing with the positional embedding

Epos ∈ R
f×C , the input sequence X ∈ R

f×(J·2) becomes

Z0 ∈ R
f×C , where C is the embedding dimension. Z0 is

sent to the Temporal Transformer Encoder.

As the core function of the transformer, self-attention is

designed to relate different positions of the input sequence

with embedded features. Our transformer encoder is com-

posed of Multi-head Self Attention blocks with multilayer

perceptron (MLP) blocks as in [12]. LayerNorm is applied

before every block and residual connections are applied af-

ter every block [39, 1].

Scaled Dot-Product Attention can be described as a

mapping function that maps a query matrix Q, key ma-

trix K and value matrix V to an output attention matrix.

Q,K, V ∈ R
N×d, where N is the number of vectors in

the sequence and d is the dimension. A scaling factor of
1√
d

is utilized within this attention operation for appropriate

normalization, preventing extremely small gradients when

large values of d lead dot products to grow large in mag-

nitude. Thus the output of the scaled dot-product attention

can be expressed as:

Attention(Q,K, V ) = Softmax(QK⊤/
√
d)V. (2)

In our temporal transformer, d = C and N = f . The

Q, K and V are computed from the embedded feature

Z ∈ R
f×C by linear transformations WQ, WK and WV

∈ R
C×C :

Q = ZWQ, K = ZWK , V = ZWV . (3)

Multi-head Self Attention Layer (MSA) utilizes multi-

ple heads to model the information jointly from various rep-

resentation subspaces with different positions. Each head

applies scaled dot-product attention in parallel. The MSA

output will be the concatenation of h attention head outputs.

MSA(Q,K, V ) = Concat(H1, H2, . . . , Hh)Wout (4)

where Hi = Attention(Qi,Ki, Vi), i ∈ [1, ..., h]
(5)

The Temporal Transformer Encoder structure of L layers

given our embedded feature Z0 ∈ R
f×C can be represented

as follows:

Z
′

ℓ = MSA(LN(Zℓ−1)) + Zℓ−1, ℓ = 1, 2 . . . L (6)

Zℓ = MLP(LN(Z
′

ℓ)) + Z
′

ℓ, ℓ = 1, 2, . . . L (7)

Y = LN(ZL), (8)

where LN(·) denotes the layer normalization operator

(same as in ViT). The temporal transformer encoder con-

sists of L identical layers and the encoder output Y ∈ R
f×C

keeps the same size as encoder input Z0 ∈ R
f×C .

In order to predict the 3D pose of center frame, the en-

coder output Y ∈ R
f×C is shrunk to a vector y ∈ R

1×C by

taking the average in the frame dimension. Finally, an MLP

block will regress the output to y ∈ R
1×(J·3), which is the

3D pose of the center frame.

3.2. PoseFormer: Spatial­Temporal Transformer

We observe that the temporal transformer baseline

mainly focuses on global dependencies between frames in

the input sequence. The patch embedding, a linear transfor-

mation, is utilized to project joint coordinates to a hidden di-

mension. However, the kinematic information between lo-

cal joint coordinates is not strongly represented in the tem-

poral transformer baseline because a simple linear projec-

tion layer is not able to learn attention information. One

potential workaround is to view each joint coordinate as an

individual patch and feeding the joints from all frames as

input to the transformer (see Fig. 1(b)). However, the num-

ber of patches would increase rapidly (frames f multiplied

by the number of joint J), resulting in a model computa-

tional complexity of O((f · J)2). For example, if we use

81 frames and 17 joints for each 2D pose, the number of

patches would be 1377 (ViT model uses 576 patches (input

size = 384× 384, patch size = 16× 16)).

To learn local joint correlations efficiently, we employ

two separated transformers for spatial and temporal infor-

mation, respectively. As shown in Fig. 2(b), PoseFormer

consists of three modules: spatial transformer module, tem-

poral transformer module, and regression head module.

Spatial Transformer Module. The spatial transformer

module is to extract a high dimensional feature embedding

from a single frame. Given a 2D pose with J joints, we con-

sider each joint (i.e. two coordinates) as a patch and follow

the general vision transformer pipeline to perform the fea-

ture extraction among all patches. First, we map the coordi-

nate of each joint to a high dimension with a trainable lin-

ear projection, which is referred to as the spatial patch em-

bedding. We sum this with the learnable spatial positional

embedding [12] ESPos ∈ R
J×c, and therefore the input

xi ∈ R
1×(J·2) of the i-th frame becomes zi0 ∈ R

J×c, where

2 indicates 2D coordinate in each frame and c is the spatial

embedding dimension. The resulting joint sequence of fea-

tures zi0 are fed into the spatial transformer encoder which

applies the self-attention mechanism to integrate informa-

tion across all joints. For the i-th frame, the output of spatial

transformer encoder with L layers will be ziL ∈ R
J×c.

Temporal Transformer Module. Since the spatial

transformer module encodes high dimensional features for

each individual frame, the goal for the temporal transformer

module is to model dependencies across the sequence of

frames. For the i-th frame, the output of the spatial trans-



former ziL ∈ R
J×c is flattened as a vector zi ∈ R

1×(J·c).
We then concatenate these vectors {z1, z2, . . . , zf} from

the f input frames as Z0 ∈ R
f×(J·c). Before the tempo-

ral transformer module, we add the learnable temporal po-

sitional embedding [12] ETPos ∈ R
f×(J·c) to retain frame

position information. For the temporal transformer encoder,

we apply the same architecture as the spatial transformer

encoder, which consists of multihead self-attention blocks

and MLP blocks. The output of the temporal transformer

module is Y ∈ R
f×(J·c).

Regression Head. Since we use a sequence of frames

to predict the 3D pose of the center frame, the output of

the temporal transformer module Y ∈ R
f×(J·c) needs to

be reduced to y ∈ R
1×(J·c). We apply a weighted mean

operation (with learned weights) on the frame dimension to

achieve this. Finally, a simple MLP block with Layer norm

and one linear layer returns output y ∈ R
1×(J·3) which is

the predicted 3D pose of the center frame.

Loss Function. To train our spatial-temporal trans-

former model, we apply the standard MPJPE (Mean Per

Joint Position Error) loss to minimize the error between the

predicted and ground truth pose as

L =
1

J
ΣJ

k=1‖pk − p̂k‖2, (9)

where pk and p̂k are the ground truth and estimated 3D joint

locations of the k-th joint, respectively.

4. Experiments

4.1. Datasets and Evaluation Metrics

We evaluate our model on two commonly used 3D HPE

datasets, Human3.6M [16] and MPI-INF-3DHP [27].

Human3.6M [16] is the most widely used indoor dataset

for 3D single person HPE. There are 11 professional actors

performing 17 actions such as sitting, walking, and talking

on the phone. Videos of each subject were recorded from 4

different views in an indoor environment. This dataset con-

tains 3.6 million video frames with 3D ground truth annota-

tion captured by an accurate marker-based motion capture

system. Following previous works [32, 25, 5], we adopt the

same experiment setting: all 15 actions are used for training

and testing, the model is trained on five sections (S1, S5,

S6, S7, S8) and tested on two subjects (S9 and S11).

MPI-INF-3DHP [27] is a more challenging 3D pose

dataset. It contains both constrained indoor scenes and com-

plex outdoor scenes. There are 8 actors performing 8 ac-

tions from 14 camera views which cover a greater diversity

of poses. MPI-INF-3DHP provides a test set of 6 subjects

with different scenes. We follow the setting in [22, 5, 38].

For the Human3.6M dataset, we use the most common

evaluation metrics (MPJPE and P-MPJPE) [46] to evaluate

the performance of our estimation with the ground truth 3D

pose. MPJPE (Mean Per Joint Position Error) is computed

as the mean Euclidean distance between the estimated joints

and the ground truth in millimeters; we refer to MPJPE as

Protocol 1. P-MPJPE is the MPJPE after rigid alignment

by post-processing between the estimated 3D pose and the

ground truth and it is more robust to individual joint predic-

tion failure. We refer to P-MPJPE as Protocol 2.

For the MPI-INF-3DHP dataset, we use MPJPE, Per-

centage of Correct Keypoint (PCK) within the 150mm
range [22, 5, 38], and Area Under Curve (AUC).

4.2. Implementation Details

We implemented our proposed method with Pytorch

[30]. Two NVIDIA RTX 3090 GPUs were used for train-

ing and testing. We chose three different frame sequence

lengths when conducting our experiments, i.e. f = 9, f = 27,

f = 81. The details about number of frames with results are

discussed in the ablation studies (Sec. 4.4). We apply pose

flipping horizontally as data augmentation both in training

and testing following [32, 25, 5]. We train our model using

the Adam [18] optimizer for 130 epochs with weight decay

of 0.1. We adopt an exponential learning rate decay sched-

ule with the initial learning rate of 2e-4 and decay factor

of 0.98 of each epoch. We set the batch size to 1024 and

employ stochastic depth [15] with a rate of 0.1 for trans-

former encoder layers. For the 2D pose detector, we use the

cascaded pyramid network (CPN) [7] on Human3.6M fol-

lowing [32, 25, 5], and we use the ground truth 2D pose as

input for MPI-INF-3DHP following [28, 22].

4.3. Comparison with State­of­the­Art

Human3.6M. We report all 15 action results of the test

set (S9 and S11) in Table 1. The last column provides

the average performance on all of the test set. Following

the 2D-to-3D lifting approach, we use the CPN network as

the 2D pose detector, then use the detected 2D pose as in-

put for training and testing. PoseFormer outperforms our

baseline (i.e. temporal transformer baseline in Sec. 3.1)

by a large margin (6.1% and 6.4%) under protocol 1 and

protocol 2, respectively. This clearly demonstrates the ad-

vantage of using spatial transformer to expressively model

the correlations between joints in each frame. PoseFormer

yields the lowest average MPJPE of 44.3mm under pro-

tocol 1 as shown in Table 1 (top). Comparing with the

transformer-based method METRO [23], which ignores the

temporal consistency since the 3D pose is estimated by a

single image, PoseFormer reduces the MPJPE by approxi-

mately 18%. For Protocol 2, we also obtain the best overall

result as shown in Table 1 (bottom). Moreover, PoseFormer

achieves more accurate pose predictions on difficult actions

such as Photo, SittingDown, WalkDog, and Smoke. Unlike

other simple actions, poses in these actions change more

quickly and some long-distance frames have strong corre-

lations. In this case, global dependencies play an important



Table 1. Quantitative comparison of Mean Per Joint Position Error between the estimated 3D pose and the ground truth 3D pose on

Human3.6M under Protocols 1&2 using the detected 2D pose as input. Top-table: results under Protocol 1 (MPJPE). Bottom-table: results

under Protocol 2 (P-MPJPE). f denotes the number of input frames used in each method, ∗ indicates that the input 2D pose is detected by

the cascaded pyramid network (CPN), and † denotes a Transformer-based model. (Red: best; Blue: second best)
Protocol 1 Dir. Disc. Eat. Greet Phone Photo Pose Purch. Sit SitD. Somke Wait WalkD. Walk WalkT. Average

Dabral et al. [11] ECCV’18 44.8 50.4 44.7 49.0 52.9 61.4 43.5 45.5 63.1 87.3 51.7 48.5 52.2 37.6 41.9 52.1

Cai et al. [2] (f = 7) ICCV’19 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8

Pavllo et al. [32] (f = 243)* CVPR’19 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8

Lin et al. [22] (f = 50) BMVC’19 42.5 44.8 42.6 44.2 48.5 57.1 52.6 41.4 56.5 64.5 47.4 43.0 48.1 33.0 35.1 46.6

Yeh et al. [42] NIPS’19 44.8 46.1 43.3 46.4 49.0 55.2 44.6 44.0 58.3 62.7 47.1 43.9 48.6 32.7 33.3 46.7

Liu et al. [25] (f = 243)* CVPR’20 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2 56.2 63.6 45.3 43.5 45.3 31.3 32.2 45.1

SRNet [43] * ECCV’20 46.6 47.1 43.9 41.6 45.8 49.6 46.5 40.0 53.4 61.1 46.1 42.6 43.1 31.5 32.6 44.8

UGCN [38] (f = 96) ECCV’20 41.3 43.9 44.0 42.2 48.0 57.1 42.2 43.2 57.3 61.3 47.0 43.5 47.0 32.6 31.8 45.6

Chen et al. [5] (f = 81)* TCSVT’21 42.1 43.8 41.0 43.8 46.1 53.5 42.4 43.1 53.9 60.5 45.7 42.1 46.2 32.2 33.8 44.6

METRO [23] (f = 1) † CVPR’21 - - - - - - - - - - - - - - - 54.0

Baseline (f = 81)*† 43.8 47.9 43.8 45.5 49.7 55.7 44.3 45.8 57.7 66.3 47.4 45.4 48.6 32.5 33.8 47.2

PoseFormer (f = 81)*† 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3

Protocol 2 Dir. Disc. Eat. Greet Phone Photo Pose Purch. Sit SitD. Somke Wait WalkD. Walk WalkT. Average

Pavlakos et al. [31] CVPR’18 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8

Hossain et al. [33] ECCV’18 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1

Cai et al. [2] (f = 7) ICCV’19 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 32.3 39.0

Lin et al. [22] (f = 50) BMVC’19 32.5 35.3 34.3 36.2 37.8 43.0 33.0 32.2 45.7 51.8 38.4 32.8 37.5 25.8 28.9 36.8

Pavllo et al. [32] (f = 243)* CVPR’19 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5

Liu et al. [25] (f = 243)* CVPR’20 32.3 35.2 33.3 35.8 35.9 41.5 33.2 32.7 44.6 50.9 37.0 32.4 37.0 25.2 27.2 35.6

UGCN [38] (f = 96) ECCV’20 32.9 35.2 35.6 34.4 36.4 42.7 31.2 32.5 45.6 50.2 37.3 32.8 36.3 26.0 23.9 35.5

Chen et al. [5] (f = 81)* TCSVT’21 33.1 35.3 33.4 35.9 36.1 41.7 32.8 33.3 42.6 49.4 37.0 32.7 36.5 25.5 27.9 35.6

Baseline (f = 81)*† 33.6 37.1 35.4 36.7 37.8 42.2 33.9 34.7 47.0 53.4 38.2 34.3 37.6 25.3 27.8 37.0

PoseFormer (f = 81)*† 32.5 34.8 32.6 34.6 35.3 39.5 32.1 32.0 42.8 48.5 34.8 32.4 35.3 24.5 26.0 34.6

role, and the attention mechanisms of the transformer are

particularly advantageous.

To further investigate the lower bound of our method,

we directly use the ground truth 2D pose as input to alle-

viate error caused by noisy 2D pose data. The results are

shown in Table 2. The MPJPE is reduced from 44.3mm
to 31.3mm, about 29.7% by using the clean 2D pose data.

PoseFormer achieves the best score in 9 actions and the sec-

ond best score in 6 actions. The average score is improved

by approximately 2% compared with SRNet [43].

In Fig. 3, we also compare the MPJPE for some of the in-

dividual joints which have the largest errors on Human3.6M

test set S11 with action Photo. PoseFormer achieves better

performance on these difficult joints than [32, 5].
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Figure 3. The average joint error comparison across all the frames

of the Human3.6M test set S11 with the Photo action.

MPI-INF-3DHP. Table 3 reports the quantitative results

of PoseFormer with other methods on MPI-INF-3DHP. This

dataset contains fewer training samples compared to Hu-

man3.6M, and some of the samples are taken from outdoor

scenes. We use 2D poses of 9 frames as our model input due

to the typically shorter sequence lengths of this dataset. Our

method again achieves the best performances on all three

evaluation metrics (PCK, AUC and MPJPE).

Qualitative Results. We also provide a visual compar-

ison between the 3D estimated pose and the ground truth.

We evaluate PoseFormer on the Human3.6M test set S11

with the Photo action, which is one of the most challenging

actions (all methods have a high MPJPE). Compared with

state-of-the-art method [5], our PoseFormer achieves more

accurate predictions as shown in Fig. 4.

4.4. Ablation Study

To verify the contribution of the individual components

of PoseFormer and the impact of hyperparameters on per-

formance, we conduct extensive ablation experiments with

the Human3.6M dataset under protocol 1.

The Design of PoseFormer. We investigate the impact

of the spatial transformer, as well as the positional embed-

dings of the spatial and temporal transformers in Table 4.

We input 9 frames of CPN-detected 2D poses (J = 17)

to predict the 3D pose. All the architecture parameters are

fixed for fairly comparing the impact of each module; the

spatial transformer embedding dimension is 17× 32 = 544
and the number of spatial transformer encoder layers is

4. For the temporal transformer, the embedding dimen-

sion is consistent with the spatial transformer (that is 544)

and we also apply 4 temporal transformer layers. To ver-

ify the impact of our spatial-temporal design, we first com-

pare with the transformer baseline we started with in Sec.

3.1. The results in Table 4 demonstrate our spatial-temporal

transformer makes a significant impact (from 52.5 to 49.9

MPJPE), as the joint-wise correlations are more strongly

modeled. This is also consistent with the results (Baseline

vs. PoseFormer) in Table 1 when f = 81. Next, we eval-

uate the impact of the positional embeddings. We explore

the four possible combinations: without positional embed-

dings, spatial positional embedding only, temporal posi-

tional embedding only, and both spatial and temporal po-



Table 2. Quantitative comparison of Mean Per Joint Position Error between the estimated 3D pose and the ground truth 3D pose on

Human3.6M dataset under Protocol 1 (MPJPE) using the ground truth 2D pose as input. (Red: best; Blue: second best)
GT Protocol 1 Dir. Disc. Eat. Greet Phone Photo Pose Purch. Sit SitD. Somke Wait WalkD. Walk WalkT. Average

Hossain et al. [33] ECCV’18 35.2 40.8 37.2 37.4 43.2 44.0 38.9 35.6 42.3 44.6 39.7 39.7 40.2 32.8 35.5 39.2

Pavllo et al. [32] (f = 243) CVPR’19 - - - - - - - - - - - - - - - 37.2

Liu et al. [25] (f = 243) CVPR’20 34.5 37.1 33.6 34.2 32.9 37.1 39.6 35.8 40.7 41.4 33.0 33.8 33.0 26.6 26.9 34.7

SRNet [43] ECCV’20 34.8 32.1 28.5 30.7 31.4 36.9 35.6 30.5 38.9 40.5 32.5 31.0 29.9 22.5 24.5 32.0

Chen et al. [5] (f = 243) TCSVT’21 - - - - - - - - - - - - - - - 32.3

PoseFormer (f = 81) 30.0 33.6 29.9 31.0 30.2 33.3 34.8 31.4 37.8 38.6 31.7 31.5 29.0 23.3 23.1 31.3

Figure 4. Qualitative comparison between our method (PoseFormer) and the SOTA approach Chen et al. [5] on Human3.6M test set S11

with the Photo action. The green arrows highlight locations where PoseFormer clearly has better results.

Table 3. Quantitative comparison with previous methods on MPI-

INF-3DHP. The best scores are marked in bold.
PCK ↑ AUC ↑ MPJPE ↓

Mehta et al. [27] 3DV’17 75.7 39.3 117.6

Mehta et al. [28] ACM ToG’17 76.6 40.4 124.7

Pavllo et al. [32] (81 frames) CVPR’19 86.0 51.9 84.0

Pavllo et al. [32] (243 frames) CVPR’19 85.5 51.5 84.8

Lin et al. [22] (25 frames) BMVC’19 83.6 51.4 79.8

Li et al. [20] CVPR’20 81.2 46.1 99.7

Chen et al. [5] (81 frames) TCSVT’21 87.9 54.0 78.8

PoseFormer (9 frames) 88.6 56.4 77.1

Table 4. Ablation study on different components in PoseFormer.

The evaluation is performed on Human3.6M (Protocol 1) using de-

tected 2D pose as input. (T: Temporal only; S-T: Spatial-temporal)

Input length (f ) T S-T
Spatial

Pos Emb

Temporal

Pos Emb
MPJPE

9 ✓ ✗ ✗ ✓ 52.5

9 ✗ ✓ ✗ ✗ 51.6

9 ✗ ✓ ✓ ✗ 50.7

9 ✗ ✓ ✗ ✓ 50.5

9 ✗ ✓ ✓ ✓ 49.9

Table 5. Ablation study on different architecture parameters in

PoseFormer. The evaluation is performed on Human3.6M (Proto-

col 1) using detected 2D pose as input. c is the spatial transformer

patch embedding dimension. LS and LT indicate the number of

layers in the spatial and temporal transformers, respectively.
c 16 16 16 32 32 32 48 48 48

LS 2 4 6 2 4 6 2 4 6

LT 2 4 6 2 4 6 2 4 6

MPJPE 52.8 51.7 50.4 52.4 49.9 50.3 51.7 50.4 50.5

sitional embeddings. Comparing the results of these com-

binations, it is obvious that positional embeddings improve

the performance. By applying these on both the spatial and

temporal modules, the best overall result is achieved.

Architecture Parameter Analysis. We explore the var-

ious parameter combinations to find the optimal network

Table 6. Comparison on computational complexity, MPJPE, and

inference speed (frame per second (FPS)). The evaluation is per-

formed on Human3.6M under Protocol 1 using detected 2D pose

as input. FPS is based on a single GeForce GTX 2080 Ti GPU.
f Parameters (M) FLOPs (M) MPJPE FPS

Hossain and Little [33] - 16.95 33.88 58.3 -

Pavllo et al. [32] 27 8.56 17.09 48.8 1492

Pavllo et al. [32] 81 12.79 25.48 47.7 1121

Pavllo et al. [32] 243 16.95 33.87 46.8 863

Chen et al. [5] 27 31.88 61.7 45.3 410

Chen et al. [5] 81 45.53 88.9 44.6 315

Chen et al. [5] 243 59.18 116 44.1 264

PoseFormer 9 9.58 150 49.9 320

PoseFormer 27 9.59 452 47.0 297

PoseFormer 81 9.60 1358 44.3 269

architecture in Table 5. c represents the embedded feature

dimension in the spatial transformer and L indicates how

many layers are used in the transformer encoder. In Pose-

Former, the output of the spatial transformer is flattened and

added with the temporal positional embedding to form the

input of the temporal transformer encoder. Thus the embed-

ding feature dimension in the temporal transformer encoder

is c× J . The optimal parameters for our model are c = 32,

LS = 4, and LT = 4.

Computational Complexity Analysis. We report the

model performance, total number of parameters, and es-

timated floating-point operations (FLOPs) per frame, and

the number of output frames-per-second (FPS) with var-

ious input sequence lengths (f ) in Table 6. Our model

achieves better accuracy when the sequence length is in-

creased, and the total number of parameters does not in-

crease much. This is because the number of frames only af-

fects the temporal positional embedding layer, which does

not require many parameters. Compared with other models,

our model requires fewer total parameters with competitive



performance. We report the inference FPS of different mod-

els on a single GeForce RTX 2080 Ti GPU, following the

same settings in [5]. Although our model’s inference speed

is not the absolute fastest, the speed is still acceptable for

real-time inference. For complete 3D HPE processing, the

2D pose is first detected by the 2D pose detector, then the

3D pose is estimated by our method. The FPS for the com-

mon 2D pose detector is usually below 80, which means the

inference speed of our model will not be the bottleneck.
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Figure 5. Visualization of self-attentions in the spatial transformer.

The x-axis (horizontal) and y-axis (vertical) correspond to the

queries and the predicted outputs, respectively. The pixel wi,j (i:

row, j: column) denotes the attention weight of the j-th query for

the i-th output. Red indicates stronger attention. The attention

output is normalized from 0 to 1.
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Figure 6. Visualization of self-attentions in temporal transformer.

The x-axis (horizontal) and y-axis (vertical) correspond to the

queries and the predicted outputs, respectively. The pixel wi,j (i:

row, j: column) denotes the attention weight of the j-th query for

the i-th output. Red indicates stronger attention. The attention

output is normalized from 0 to 1.

Attention Visualization. In order to illustrate the atten-

tion mechanism through multi-head self attention blocks,

we evaluate our model on Human3.6M test set S11 for a par-

ticular action (SittingDown) and visualize the self-attention

maps from the spatial and temporal transformers separately

as shown in Fig. 5 and Fig. 6. For the spatial self-attention

maps, the x-axis corresponds to the query of 17 joints and

the y-axis indicates the attention output. As shown in Fig.

5, the attention heads return different attention intensities

which represent the various local relations learned among

the input joints. We discover that Head 3 focuses on joints

15 and 16, which are the right elbow and right wrist. Head

5 builds the connection of the left leg to the left arm (joints

4, 5, 6 and joints 11, 12, 13). These joints can be grouped

as the left portion of the body, while Head 7 concentrates

on the right side (joint 1, 2, 3 with joint 12, 13, 14).

For the temporal self-attention maps in Fig. 6, the x-

axis corresponds to the query of 81 frames and the y-axis

indicates the attention output. Long term global dependen-

cies are learned by different attention heads. The attention

of Head 3 highly correlates to some frames (e.g. frame 58,

62, and 69) on the right side of the center frame. Head

7 captures the dependencies of frame 1, 20, 22, 42, 78 de-

spite their long distances. The spatial and temporal attention

maps demonstrate that PoseFormer successfully models lo-

cal relationships between joints, as well as captures long

term global dependencies of the entire input sequence.

Table 7. MPJPE evaluation on HumanEva test set. FT indicates

using pre-trained model on Human3.6M for fine tuning.
walk jog

S1 S2 S3 S1 S2 S3

PoseFormer (f = 43) 16.3 11.0 47.1 25.0 15.2 15.1

PoseFormer (f = 43) FT 14.4 10.2 46.6 22.7 13.4 13.4

Generalization to Small Datasets. Prior work such

as [12] concluded that transformers do not generalize well

when trained on insufficient amounts of data. We conduct

an experiment with our model to investigate the transformer

learning ability on a small dataset – HumanEva [34]. It is

a much smaller dataset (<50K frames) compared with Hu-

man3.6M (>1M frames). Table 7 shows the results of train-

ing from scratch as well as fine tuning using the pre-trained

model on Human3.6M. We find that the performance can

be improved by a large margin when fine tuning, which fol-

lows previous observations [12, 36] that transformers can

perform well when pre-trained on a large-scale dataset.

5. Conclusion

In this paper, we present PoseFormer, a pure

transformer-based approach for 3D pose estimation from

2D videos. The spatial transformer module encodes the

local relationships between the 2D joints and the tempo-

ral transformer module captures global dependencies across

the arbitrary frames regardless of the distance. Extensive

experiments show that our model achieves state-of-the-art

performance on two popular 3D pose datasets.
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Appendix

In this Appendix, we provide the following items:

• Comprehensive visualizations of spatial and temporal

attention maps.

• Frame-wise comparison to track the average MPJPE of

all the joints across frames.

• More qualitative comparison of estimated 3D poses.

• Estimated 3D poses using the proposed PoseFormer on

the in-the-wild videos collected from YouTube.

We also provide demo videos to showcase the 3D hu-

man pose estimation results of our proposed PoseFormer.

For more details, please visit https://github.com/

zczcwh/PoseFormer

A. Attention Visualization

We present more visualization examples of spatial at-

tention maps and temporal attention maps for all 8 heads

when evaluating our PoseFormer model on Human3.6M

test set S11 with the SittingDown action. For the spatial

self-attention maps in Fig. 7, the x-axis corresponds to the

query of 17 joints and the y-axis indicates the attention out-

put. The attention heads return different attention intensities

which represent the various local relations learned among

the input joints. For the temporal self-attention maps in Fig.

8, the x-axis corresponds to the query of 81 frames and the

y-axis indicates the attention output. Long term global de-

pendencies are captured by different attention heads. The

spatial and temporal attention maps have demonstrated that

PoseFormer successfully encodes the local relationship be-

tween 2D joints as well as models global dependencies

cross the arbitrary frames regardless of the distance.

B. Frame-wise Analysis

We perform frame-wise estimation analysis by com-

puting the average MPJPE of all estimated joints in each

frame. As shown in Fig. 9, we measure the frame-wise

MPJPE through Human3.6M [16] test set S11 with Eating

and Photo actions. Our PoseFormer (red line) yields lower

MPJPE in most frames of both actions, compared with our

baseline (temporal transformer only) and the state-of-the-art

method [5].

C. More Qualitative Results

We provide more visual comparison between the 3D es-

timated pose and the ground truth. We evaluate PoseFormer

on the Human3.6M test set S11 with the Greeting and Walk-

Dog actions. Compared with the state-of-the-art method [5]

and our baseline, PoseFormer achieves more accurate esti-

mations as shown in Fig. 10.

D. Performance on Videos in-the-wild

Our model was trained on the indoor dataset: Hu-

man3.6M that the background is static and the camera cap-

ture setting is known. Estimating 3D human pose from in-

the-wild videos is more challenging due to the dynamic en-

vironment and unknown camera setting. There are often

high variations in foreground/background objects appear-

ances and severe occlusions in unconstrained environment.

We also evaluate the performance of our PoseFormer on

some online videos from YouTube as shown in Fig. 11.

We first use AlphaPose [13] as 2D pose detector to generate

2D poses from the video frames, then apply PoseFormer for

3D pose estimation. We observe that PoseFormer achieves

acceptable performance in most of the frames, but there

are still some failure cases (see Fig. 11) due to inaccu-

rate 2D pose detection, occlusion, and fast motion. Since

PoseFormer is a 2D-to-3D lifting approach, any incorrect

detected 2D poses may lead to inaccurate 3D pose estima-

tion. Occlusion is a key challenge remains in 3D HPE since

the information is missing. Moreover, estimation from the

extreme fast motion may be affected by the motion blurring

of frames.
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Figure 7. Visualization of self-attentions in the spatial transformer. The x-axis (horizontal) and y-axis (vertical) correspond to the queries

and the predicted outputs, respectively. The pixel wi,j (i: row, j: column) denotes the attention weight of the j-th query for the i-th output.

Red indicates stronger attention. The attention output is normalized from 0 to 1.
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Figure 8. Visualization of self-attentions in temporal transformer. The x-axis (horizontal) and y-axis (vertical) correspond to the queries

and the predicted outputs, respectively. The pixel wi,j (i: row, j: column) denotes the attention weight of the j-th query for the i-th output.

Red indicates stronger attention. The attention output is normalized from 0 to 1.



S11 Eating

S11 Photo

Figure 9. Frame-wise comparison between our method (PoseFormer), our baseline, and the SOTA approach Chen et al. [5] on Human3.6M

test set. Top-figure: S11 with the Eating action. Bottom-figure: S11 with the Photo action.



2D image Chen et al. TCSVT’21 PoseFormer Ground truth Our baseline

Figure 10. Qualitative comparison between our method (PoseFormer), our baseline, and the SOTA approach Chen et al. [5] on Human3.6M

test set S11 with the Greeting and WalkDog actions. The green arrows highlight locations where PoseFormer clearly has better results.
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Figure 11. Qualitative results on in-the-wild videos: original frame sequence with detected 2D joints and the recovered 3D poses using

PoseFormer.
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