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Abstract

Cross-view image geo-localization aims to determine the
locations of street-view query images by matching with
GPS-tagged reference images from aerial view. Recent
works have achieved surprisingly high retrieval accuracy
on city-scale datasets. However, these results rely on the
assumption that there exists a reference image exactly cen-
tered at the location of any query image, which is not ap-
plicable for practical scenarios. In this paper, we redefine
this problem with a more realistic assumption that the query
image can be arbitrary in the area of interest and the refer-
ence images are captured before the queries emerge. This
assumption breaks the one-to-one retrieval setting of exist-
ing datasets as the queries and reference images are not
perfectly aligned pairs, and there may be multiple refer-
ence images covering one query location. To bridge the
gap between this realistic setting and existing datasets, we
propose a new large-scale benchmark —VIGOR- for cross-
View Image Geo-localization beyond One-to-one Retrieval.
We benchmark existing state-of-the-art methods and pro-
pose a novel end-to-end framework to localize the query
in a coarse-to-fine manner. Apart from the image-level re-
trieval accuracy, we also evaluate the localization accuracy
in terms of the actual distance (meters) using the raw GPS
data. Extensive experiments are conducted under differ-
ent application scenarios to validate the effectiveness of the
proposed method. The results indicate that cross-view geo-
localization in this realistic setting is still challenging, fos-
tering new research in this direction. Our dataset and code
will be released at https://github.com/Jeff—
Zilence/VIGOR.

1. Introduction

The objective of image-based geo-localization is to de-
termine the location of a query image by finding the most
similar image in a GPS-tagged reference database. Such
technologies have proven useful for accurate localization
with noisy GPS signals [4, 26] and navigation in crowded
cities [12, 9]. Recently, there has been a surge of interest

in cross-view geo-localization [24, 22,7, 17,29, 21], which
uses GPS-tagged aerial-view images as reference for street-
view queries. However, the performance may suffer from a
large appearance gap between query and reference images.

Recent works [7, 17, 29] have shown that the perfor-
mance of cross-view image matching can be significantly
improved by feature aggregation and sample mining strate-
gies. When the orientation of street-view (or ground-view)
image is available (provided by phone-based compass),
state-of-the-art methods can achieve a top-1 retrieval accu-
racy over 80% [!7], which shows the possibility of accu-
rate geo-localization in real-world settings. However, ex-
isting datasets [24, 27, 11] simply assume that each query
ground-view image has one corresponding reference aerial-
view image whose center is exactly aligned at the location
of the query image. We argue this is not practical for real-
world applications, because the query image can occur at
arbitrary locations in the area of interest and the reference
images should be captured before the queries emerge. In
this case, perfectly aligned one-to-one correspondence is
not guaranteed.

In light of the novelty of this problem, we propose
a new benchmark (VIGOR) to evaluate cross-view geo-
localization in a more realistic setting. Briefly, given an area
of interest (AOI), the reference aerial images are densely
sampled to achieve a seamless coverage of the AOI and the
street-view queries are captured at arbitrary locations. In
total, 90, 618 aerial images and 238, 696 street panoramas
are collected from 4 major cities in the United States (see
details in Sec. 3). The new dataset gives rise to two funda-
mental differences between this work and prior research.

Beyond One-to-one: Previous research mainly focuses
on the one-to-one correspondence because existing datasets
consider perfectly aligned image pairs as default. However,
VIGOR enables us to explore the effect of reference sam-
ples that are not centered at the locations of queries but still
cover the query area. As a result, there could be multiple
reference images partially covering the same query loca-
tion, breaking the one-to-one correspondence. In our geo-
localization method, we design a novel hybrid loss to take
advantage of multiple reference images during training.
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Beyond Retrieval: Image retrieval can only provide
image-level localization. Since the center alignment is not
guaranteed in our dataset, after the retrieval, we further
employ a within-image calibration to predict the offset of
the query location inside the retrieved image. Therefore,
the proposed joint-retrieval-and-calibration framework pro-
vides a coarse-to-fine localization. The whole pipeline is
end-to-end, and the inference is fast as the offset prediction
shares the feature descriptors with the retrieval task. More-
over, our dataset is also accompanied with raw GPS data.
Thus a more direct performance assessment, i.e. localiza-
tion accuracy in terms of real-world distance (e.g. meters),
can be achieved on our dataset.

Our main contributions can be summarized as follows:

* We introduce a new dataset for the problem of cross-view
image geo-localization. This dataset, for the first time,
allows one to study this problem under a more realistic
and practical setting and offers a testbed for bridging the
gap between current research and practical applications.

* We propose a novel joint-retrieval-and-calibration frame-
work for accurate geo-localization in a coarse-to-fine
manner, which has not been explored in the past.

* We develop a new hybrid loss to learn from multiple ref-
erence images during training, which is demonstrated to
be effective in various experimental settings.

* We also validate the potential of the proposed cross-view
geo-localization framework in a real-world application
scenario (assistive navigation) by simulating noisy GPS.

2. Related Work

Cross-view Datasets. A number of datasets have been
proposed for cross-view geo-localization [10, 25, 24, 27,

, I'1]. Lin et al. [10] consider both satellite images and
land cover attributes for cross-view geo-localization. 6, 756
ground-view images and 182,988 aerial images are col-
lected from Charleston, South Carolina. Although the aerial
images are densely sampled, they force a one-to-one cor-
respondence between two views and evaluation in terms
of distance is not available. The original CVUSA [25] is
a massive dataset containing more than 1 million ground-
level and aerial images from multiple cities in the United
States. Zhai et al. [27] further make use of the camera’s
extrinsic parameters to generate aligned pairs by warping
the panoramas, resulting in 35,532 image pairs for train-
ing and 8,884 image pairs for testing. This version of
CVUSA is the most widely used dataset in recent research
[7, 17,29, 14, 23] and we refer to it as CVUSA if not speci-
fied. Vo [24] consists of about one million image pairs from
11 cities in the United States. The authors randomly col-
lect street-view panoramas and generate several crops from
each panorama along with spatially aligned aerial images
from Google Maps. Similar to CVUSA, CVACT [11] also
consists of aligned panoramas and aerial images with ori-

entation information. It has 35, 532 image pairs for training
and 92, 802 pairs for testing. In a nutshell, all these datasets
consider one-to-one retrieval and none of them provide raw
GPS data for localization evaluation in terms of meters.
Cross-view Geo-localization. Early works [10, 25, 24, 22]
of cross-view geo-localization suffer from low retrieval ac-
curacy mainly because of the significant appearance gap be-
tween two views and poor metric learning techniques. With
tailored feature extractors and a modified loss function, Hu
et al. [ 7] show the possibility of achieving accurate localiza-
tion with end-to-end deep neural networks. Several recent
methods [14, 17] aim to reduce the domain gap by lever-
aging GANSs [6] and polar transformations [18]. Regmi et
al. [14] propose to generate the synthetic aerial-view image
from the ground-view query with a conditional GAN and
adopt feature fusion to achieve better performance. SAFA
[17] further takes advantage of the geometric prior knowl-
edge by applying a polar transformation on the query image
and replacing the global pooling with feature aggregation
blocks. The top-1 accuracy of [17] on CVUSA [27] is al-
most 90% if the orientation information is given. Other ap-
proaches [5, 29] exploring metric learning techniques (e.g.
hard samples mining strategy) also show promising results
on popular datasets, and they are not restricted by the geo-
metric assumptions. However, none of these methods con-
sider a sub-image level localization beyond the image-level
retrieval or multiple reference images for training.

3. VIGOR Dataset

Problem Statement. Given an area of interest (AOI), our
objective is to localize an arbitrary street-view query in this
area by matching it with aerial reference images. To guar-
antee that any possible query is covered by at least one ref-
erence image, the reference aerial images must provide a
seamless coverage of the AOIL. As shown in Fig. 1 (a),
coarsely sampled reference images (black square boxes) are
not able to provide full coverage of the AOI, and an arbitrary
query location (the red star) may lie in the area between
reference samples. Even if the query location (the yellow
star) lies at the edge of a reference aerial image, this refer-
ence image only shares partial (at most half) scene with the
one whose center is at the query location, which may not
provide enough information to be distinguished from other
negative reference images. These queries can be covered by
adding additional overlapping samples (the green box). As
shown in Fig. 1 (b), if query locations (red stars) lie at the
central area (the black dotted box) of the L x L aerial im-
age, the query and reference images are defined as positive
samples for each other. Other queries (blue stars) outside
the central area are defined as semi-positive samples. To
guarantee that any arbitrary query has one positive reference
image, we propose to densely sample the aerial images with
50% overlap along both latitude and longitude directions as
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Figure 1. The sampling strategy of the proposed dataset. The stars denote the query locations.

demonstrated in Fig. 1 (c). By doing so, any arbitrary query
location (the red star) in the AOI is covered by four refer-
ence images (size L x L). The green box denotes the pos-
itive reference and the other three semi-positive references
are denoted as blue boxes. The positive reference is consid-
ered as ground-truth, because it has the nearest GPS to the
query and contains the most shared objects with the query
image. The red box denotes the perfectly aligned aerial im-
age. Based on the definitions of positive and semi-positive
as illustrated in Fig. 1 (b), we can easily see that all positive
reference images have an IOU (Intersection Over Union)
greater than 0.39 with the perfectly aligned reference (see
Fig. 1 (d)). The IOU of a typical positive sample (offset rel-
ative to the center equals to (+%£,4+%)) is 0.62. The IOU
between the semi-positive samples and the aligned refer-

ence falls in [ ~ 0.14, 5% ~ 0.39).

1 2.

Manhattan Chicago

San Francisco -
Figure 2. Aerial image coverage (black polygon) in four cities and
the distributions of panoramas (red dots).

Data Collection. As shown in Fig. 2, we collect 90,618
aerial images covering the central areas of four cities, i.e.
New York City (Manhattan), San Francisco, Chicago, and
Seattle, as the AOI using the Google Maps Static API [2].
Then 238,696 street-view panorama images are collected
with the Google Street-View Static API [1] at zoom level 2
on most of the streets. All the GPS locations of panorama
images are unique in our dataset, and the typical interval
between samples is about 30 m. We perform data balanc-
ing on the original panoramas to make sure that each aerial
image has no more than 2 positive panoramas (see Fig. 3,

270°  360°

Figure 3. An example of positive samples (stars) and the orienta-
tion correspondence between aerial and ground views. The yellow
bar indicates North.

the distributions are included in the supplementary mate-
rial). This procedure results in 105,214 panoramas for the
geo-localization experiments. Also, around 4% of the aerial
images cover no panoramas. We keep them as distraction
samples to make the dataset more realistic and challenging.
The zoom level for satellite images is 20 and the ground res-
olution is around 0.114 m. The raw image sizes for aerial-
view and ground-view are 640 x 640 and 2048 x 1024, re-
spectively. Industrial-grade GPS tags for both aerial-view
and ground-view images are provided for meter-level eval-
uation. The panoramas are then shifted according to the ori-
entation information so that North lies in the middle. Fig. 3
shows an example of orientation correspondence between a
pair of aerial and street-view images.

Head-to-head Comparison. Table 1 shows a compari-
son between our dataset and previous benchmarks. The
most widely used dataset, CVUSA [27], consists of im-
ages mainly collected at suburban areas. Our dataset, on the
other hand, is collected for urban environments. In prac-
tice, the GPS signal is more likely to be noisy in urban ar-
eas than suburban (e.g. the phone-based GPS error can be
up to 50 meters in Manhattan [4]). Therefore, our dataset
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Vo [24] CVACT [11] | CVUSA [27] | VIGOR (proposed)

Satellite images ~ 450,000 128,334 44,416 90,618
Panoramas in total ~ 450,000 128,334 44,416 238, 696
Panoramas after balancing - - - 105,214
Street-view GPS locations Aligned Aligned Aligned Arbitrary
Full panorama X v v v
Multiple cities v X v v
Orientation information v v v v
Evaluation in terms of meters X X X v
Seamless coverage on area of interest X X X v
Number of references covering each query 1 1 1 4

Table 1. Comparison between the proposed VIGOR dataset and existing datasets for cross-view geo-localization.

has more potential application scenarios, e.g. vision-based
mobile assistive navigation. Besides, urban areas are more
crowded with tall buildings. The mutual semantics between
ground and aerial views are significantly reduced by occlu-
sions and shadows, making our dataset more challenging
than CVUSA. Furthermore, previous datasets simply adopt
one-to-one retrieval for evaluation, which is not the case of
real-world scenarios, because it is impossible to predict the
location of an arbitrary query and capture an aligned refer-
ence image there beforehand. Our dataset considers arbi-
trary query locations, and even the ground-truth reference
image does not have the same GPS location as the query;
thus it is more realistic but challenging for retrieval. Our
dataset also provides the raw GPS data for meter-level eval-
uation which is the ultimate goal of localization applica-
tions. We believe that our dataset is a great complement to
the existing cross-view image datasets, and can be served as
a testbed for bridging the gap between current research and
practical applications.

Same-Area Cross-Area
Number | City | Number City
Train Aerial | 90,618 All 44,055 New York
Street 52,609 All 51,520 | Seattle
Test Aerial | 90,618 All 46,563 San Francisco
Street 52,605 All 53,694 | Chicago

Table 2. The evaluation splits of VIGOR in two settings.

The Evaluation Protocol. We design two evaluation set-
tings for the experiments, i.e. same-area and cross-area eval-
uation, according to different application scenarios.
Same-area: If one plans to build an aerial-view reference
database for arbitrary street queries in an AOI, the goal of
model training is to handle arbitrary new queries. There-
fore, the best solution would be collecting GPS-tagged
queries in the same area for training rather than training in
other areas with cross-area transfer. In this case, the aerial
images in four cities are all included as the reference data
for both training and testing. Then all the street panoramas
are randomly split into two disjoint sets (see Table 2).
Cross-area: For cities where no GPS-tagged queries are

available for training, the cross-area transfer is necessary.
For this setting, all the images from New York and Seattle
are used for training, and images from San Francisco and
Chicago are held out for evaluation.

4. Coarse-to-fine Cross-view Localization

In this section, we propose a joint-retrieval-and-
calibration framework for geo-localization in a coarse-to-
fine manner. Sec. 4.1 introduces a strong baseline built
with state-of-the-art techniques based on only the positive
samples. Sec. 4.2 proposes an IOU-based semi-positive
assignment loss to leverage the supervision information of
semi-positive samples. With the retrieved best matching
reference image, Sec. 4.3 aims to estimate the offset of the
query GPS location relative to the center of the retrieved
aerial-view image as a meter-level calibration.

4.1. Baseline Framework

To achieve satisfactory results on the proposed dataset,
it is important to adopt state-of-the-art techniques to build
a strong baseline. Therefore, we employ the feature aggre-
gation module of SAFA (spatial-aware feature aggregation)
[17] with the global negative mining strategy from [29].
Feature Aggregation. SAFA [17] is a combination of po-
lar transformation, Siamese backbone and feature aggrega-
tion blocks. However, the polar transformation assumes that
the ground-view GPS is at the center of the corresponding
aerial-view reference image, which does not apply in our
case. Therefore, we only adopt the feature aggregation in
our framework (see Fig. 4). The main idea of the feature
aggregation block is to re-weight the embeddings in accor-
dance with their positions. The spatial-aware block pro-
vides a significant performance gain when the orientation
information of query images is available.

Mining Strategy. Metric learning literature [15, 20, 13]
has revealed the importance of mining hard samples dur-
ing training, as the model would suffer from poor conver-
gence when most samples barely contribute to the total loss.
For cross-view geo-localization, [29] further shows the im-
portance of mining global hard samples instead of mining
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Figure 4. An overview of the proposed end-to-end framework. The Siamese network provides embedding features for retrieval as a coarse

image-level localization. The offset prediction further generates refined

within a mini-batch. The key idea is to build a first-in-first-
out mining pool to cache the embedding of the hardest sam-
ple and refresh the pool along with back propagation effi-
ciently. In a mini-batch, the first half images are randomly
selected and the global hard samples with respect to each of
them are mined from the mining pool to form the other half
of the batch. We adopt this efficient global mining strategy
[29] in the baseline to further improve its performance.

4.2. I0U-based Semi-positive Assignment

If we only consider the positive samples, the retrieval
problem can be tackled with standard metric learning. For
the baseline, we adopt the widely used triplet-like loss pro-
posed in [7]:

Etm’plet = lOg (1 —+ ea(dposfdneg)) , (1)

where dp0s and d,,.4 denote the squared I distance of the
positive and negative pairs. In a mini-batch with /N ground-
view and aerial-view image pairs, we use the exhaustive
strategy [15] to build 2N (N — 1) triplets, thereby making
full use of all the input images. Following [7], we adopt 5
normalization on the output embedding features.

In addition to positive samples, it can be beneficial to
take advantage of the supervision information of semi-
positive samples. However, simply assigning semi-positive
samples as positive would hurt the retrieval performance.
For a street-view query, the semi-positive aerial images only
contain a small part of the scene at the query location,
thus the similarities in the feature embedding space between
semi-positive samples and the query should not be as high
as those of positive samples. An intuitive idea is to assign
the similarity according to the IOU between the reference
image and the aligned one (see Fig. 1 (d)). Therefore, the
IOU-based semi-positive assignment loss is expressed as:

EIOU _ <Ssemi _ IOUsemi>2,

Spos 10U s
where Spos and Sgem; denote the cosine similarity of the
positive and semi-positive pairs in the embedding space.

2

/:
/

Offset Prediction

localization in terms of meters.

I0Upes and 10Uy, denote the IOU of positive and semi-
positive pairs. This loss forces the ratio of the similarities in
the embedding space to be close to the ratio of IOUs. Other
assignment strategies for the semi-positive samples are also
investigated and evaluated in the ablation study.

4.3. Offset Prediction

With the top-1 retrieved reference aerial image, we em-
ploy an auxiliary task to further refine the localization in-
side the aerial-view image in a unified framework (see Fig.
4). With image retrieval, the minimal interval between re-
trieved reference images in our dataset is half of the width
of aerial images (L/2). To achieve more fine-grained local-
ization, we apply an MLP (Multilayer Perceptron) to predict
the offset of the query location relative to the center of the
retrieved reference image. As shown in Fig. 4, the auxil-
iary MLP consists of two fully connected layers and takes
the concatenated embedding features as input. Here we use
regression to generate the prediction, while we also provide

a comparison with classification in the experiments. The
offset regression loss is formulated as:
Lofpser = (lat — lat*)? + (lon — lon*)?, 3)

where lat and lon denote the predicted offset of the query
GPS location relative to the reference GPS in latitude and
longitude directions, and lat* and lon* denote the ground-
truth offset. They are all converted into meters and normal-
ized with L during training. The final hybrid loss function
is given by:

Lhybrid = ﬁtriplet + EIOU + Eoffset- (4)

S. Experiments

Implementation Details. All the experiments are deployed
based on Tensorflow [3]. Ground-view panoramas and
aerial-view images are resized to 640 x 320 and 320 x 320
respectively before being fed into the network. VGG-16
[19] is adopted as the backbone feature extractor and §
SAFA blocks are used by following [|7]. The mining strat-
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Same-Area Cross-Area
Top-1 | Top-5 | Top-1% | HitRate | Top-1 | Top-5 | Top-1% | Hit Rate
Siamese-VGG (Liriprer) | 18.1 42.5 97.5 21.2 2.7 8.2 61.7 3.1
SAFA (Liripter) | 33.9 584 98.2 36.9 8.2 19.6 77.6 8.9
SAFA+Mining (baseline, Liripier) | 38.0 62.9 97.6 41.8 9.2 21.1 71.8 9.9
Ours (Lhybria) | 41.1 65.8 98.4 44.7 11.0 23.6 80.2 11.6
Table 3. Retrieval accuracy (percentage) of different methods.
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Figure 5. Same-area (left) and cross-area (right) meter-level localization accuracy of different methods.

Semi-positive Assignment Same-Area - Cross-Area -
Top-1 | Top-5 | Top-1% | HitRate | Top-1 | Top-5 | Top-1% | Hit Rate
No semi-positive (i.e. baseline, Liripiet) 38.0 62.9 97.6 41.8 9.2 21.1 77.8 9.9
Positive (L¢riprer) | 20.3 45.7 97.9 25.4 2.7 7.6 58.2 3.1
10U (Ltriplet+Liov) | 411 65.9 98.3 44.8 10.7 23.5 79.3 114
Positive+I0U (Liripiet+Lrov) | 31.1 58.3 98.6 36.7 5.3 13.6 69.4 6.0

Table 4. Retrieval accuracy (percentage) of the proposed method with different semi-positive assignment strategies.

egy parameters are set the same as in [29]. Following [7],
we set o in the Lyyipie loss to 10. The Adam optimizer [8]
is used with a learning rate of 10~5. Our method is first
trained with Lyy;p1;. Then it switches to the hybrid loss
(Eq. 4) after 30 epochs for the same-area setting and 10
epochs for the cross-area setting. The baseline (Sec. 4.1)
for comparison is only trained with L¢ypiet.

Evaluation Metrics. We first evaluate the retrieval perfor-
mance with the top-k recall accuracy following previous
works [7, 17]. For each test query, its closest k reference
neighbors in the embedding space are retrieved as predic-
tion. One retrieval is considered correct if the ground-truth
image is included in the top-k retrieved images. If the re-
trieved top-1 reference image covers the query image (in-
cluding the ground-truth), it is considered as a hit and the
hit rate is also provided for retrieval evaluation. Moreover,
we compute the real-world distance between the top-1 pre-
dicted location and the ground-truth query GPS as meter-
level evaluation.

Main Results. On the proposed VIGOR dataset, we com-
pare the proposed method with previous approaches under
both same-area and cross-area settings. “Siamese-VGG”
[7] is a simple Siamese-VGG network with global average

pooling, and is trained with Ly jpe:. “SAFA” and “SAFA
+ mining” denote the SAFA [17] architecture w/o and w/
the mining strategy in [29] using L¢ripiet. As shown in Ta-
ble 3 and Fig. 5, the proposed method constantly outper-
forms previous approaches in terms of both retrieval and
meter-level evaluation. Compared with “SAFA+Mining”
(the baseline), the relative improvements of our method for
the 10-meter-level accuracy (see Fig. 5) are 124% (11.4%
— 25.5%) in the same-area setting, and 121% (2.8% —
6.2%) in the cross-area setting. The substantial improve-
ments reveal the superiority of the proposed hybrid loss.

6. Ablation Study

Semi-positive Assignment. @ We compare four semi-
positive assignment strategies. “No semi-positive” denotes
the baseline which ignores the semi-positive samples. “Pos-
itive” means assigning semi-positive samples as positive
and using Liriprer (Eq. 1). “IOU” denotes our IOU-based
assignment (Eq. 2). “Positive+IOU” means including the
semi-positive samples as positive in L¢ypre: along with the
IOU-based assignment loss. The results in Table 4 show
that only IOU-based assignment (“IOU”) boosts the per-
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Offset Prediction Same-Area - Cross-Area -
Top-1 | Top-5 | Top-1% | HitRate | Top-1 | Top-5 | Top-1% | Hit Rate
None (retrieval-only) | 41.1 65.9 98.3 44.8 10.7 23.5 79.3 11.4
Regression 41.1 65.8 98.4 44.7 11.0 23.6 80.2 11.6
Classification 41.5 66.3 98.4 45.2 10.7 232 79.3 11.4

Table 5. Retrieval accuracy (percentage) of the proposed method with different offset prediction schemes.
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Figure 6. Same-area (left) and cross-area (right) meter-level localization accuracy of different offset prediction methods.

formance compared with the baseline. Based on the re-
sults of “Positive” and “Positive+IOU”, assigning semi-
positive samples as positive hinders the retrieval perfor-
mance whether the IOU-based loss is used or not.

To further illustrate the difference between positive and
semi-positive matching, we conduct visual explanation.
Specifically, we use Grad-CAM [16, 28] to show which re-
gions contribute the most to the cosine similarity of the em-
bedding features of two views. As presented in Fig. 7, for
a query image, we select the ground-truth reference aerial
image (i.e. positive) and a semi-positive image (the query
GPS location lies at its edge area), and generate the activa-
tion maps of both views. For the positive matching case,
the surrounding objects (buildings, roads and trees) are all
available to provide high contribution to the similarity be-
tween two views. However, in the case of semi-positive
matching, two views only share half of the scene and the
building on the west of the query (around 90° in panorama)
does not contribute to the similarity, because it is not in this
semi-positive image. This example shows how the inter-
section semantics of two views affect the image matching,
which agrees with the design of our [OU-based assignment.

Offset Prediction. We investigate both regression and clas-
sification for offset prediction in our method. For classi-
fication, we split the central area of an aerial image (off-
set in [—L/4,L/4]) into a 10 x 10 grid, leading to 100
classes for classification. As shown in Table 5, both re-
gression and classification have negligible improvement on
the retrieval performance. However, as evident from Fig. 6,
regression-based calibration significantly boosts the meter-
level accuracy in both settings. For example, the regression

0° 90°

180° 270°  360°

Positive

Semi-
Positive S

Figure 7. Visualization results of the query image matched with
positive and semi-positive reference aerial images. Red circle de-
notes the query region.

aerial image. Red square, green circle and blue diamond denote
the final prediction with regression, ground-truth, and center (i.e.
the prediction with only retrieval), respectively.

method almost doubles the 10-meter-level localization ac-
curacy. However, classification does not work well for cal-
ibration possibly due to the ambiguous supervision of grid-
based classification. We provide a case study in Fig. 8 to
show examples of predicted offset on aerial images.
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Positive per Same-Area Cross-Area
Aerial Image Top-1 | Top-5 | Top-1% | HitRate | Top-1 | Top-5 | Top-1% | Hit Rate
Baseline 2 38.0 62.9 97.6 41.8 9.2 21.1 77.8 9.9
3 46.0 70.8 98.5 50.8 10.6 23.5 79.5 11.5
Ours 2 41.1 65.9 98.3 44.8 10.7 235 79.3 114
3 48.5 72.9 98.9 52.6 11.5 24.8 80.8 12.2
Table 6. Retrieval accuracy (percentage) of the proposed method with different sample balancing settings.
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Figure 9. Same-area (left) and cross-area (right) meter-level localization accuracy of different search scopes given noisy GPS signal.

Sample Balancing. To investigate the effect of sample
balancing in the pre-processing procedure, we compare
“balancing-2” with “balancing-3” in Table 7. The results in
Table 6 show that more densely sampled panoramas bring
slightly better performance on both settings, while the im-
provement is consistent across different balancing settings.

Balancing-2 | Balancing-3
Positives per aerial image 2 3
Number of panoramas 105,214 149,869
Number of aerial images 90,618 90,618
Table 7. The proposed dataset with different balancing numbers.

7. Application: Assistive Navigation

The GPS data provided by commercial devices such
as phones could be noisy in urban environments (e.g.
the phone-based GPS error can reach up to 50 meters in
Manhattan [4]). Image geo-localization can assist mo-
bile navigation. To further validate the potential of cross-
view geo-localization given noisy GPS signals [4, 26], we
simulate noisy GPS signals by adding random offsets in
[—100m, 100m)] to the ground-truth GPS data (latitude and
longitude) in our dataset. In the inference stage, the query
image can be matched with only a small sub-set of refer-
ence images around the noisy GPS locations instead of the
entire reference database (denoted by “All”). For a noise
level of 100m, a search scope of 200m is sufficient to cover
all possible references. To better illustrate the navigational
assistance provided by our image geo-localization, we com-
pare the results of multiple scopes with simply using the
noisy GPS signals (“Original”). As shown in Table 8 and
Fig. 9, smaller search scopes generate better results for both

retrieval and meter-level evaluation because there are less
negative reference samples. The same-area evaluation even
yields an accuracy higher than 70% for 30m-level localiza-
tion. Moreover, as compared to the original noisy GPS, our
cross-view geo-localization method significantly improves
the localization accuracy, demonstrating its practicality in
real-world applications.

Search Scope Same-Area Cross-Area
Top-1 | Top-5 | Top-1 | Top-5
All 41.1 65.8 11.0 23.6
1000 m 49.2 76.7 19.9 41.5
500 m 54.1 82.6 26.4 53.3
200 m 60.9 90.6 37.7 72.0

Table 8. Retrieval accuracy (percentage) of the proposed method
with noisy GPS signals.

8. Conclusion

We propose a new benchmark for cross-view image geo-
localization beyond one-to-one retrieval, which is a more
realistic setting for real-world applications. Our end-to-end
framework first coarsely localizes the query with retrieval,
and then refines the localization by predicting the offset
with regression. An IOU-based hybrid loss is designed to
leverage the supervision of semi-positive samples. Exten-
sive results show great potential of the proposed method in
realistic settings. Our proposed dataset offers a new testbed
for cross-view geo-localization and inspires novel research
in this field.
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